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This paper develops an asymptotic theory for integrated and near-integrated time
series whose range is constrained in some ways+ Such a framework arises when
integration and cointegration analyses are applied to time series that are bounded
either by construction or because they are subject to control+ The asymptotic prop-
erties of some commonly used integration tests are discussed; the bounded unit
root distribution is introduced to describe the limiting distribution of the sample
first-order autoregressive coefficient of a random walk under range constraints+
The theoretical results show that the presence of such constraints can lead to dras-
tically different asymptotics+ Because deviations from the standard unit root theory
are measured through two noncentrality parameters that can be consistently esti-
mated, simple measures of the impact of range constraints on the asymptotic dis-
tributions are obtained+ Generalizations of standard unit root tests that are robust
to the presence of range constraints are also provided+ Finally, it is shown that the
proposed asymptotic framework provides an adequate approximation to the finite-
sample properties of the unit root statistics under range constraints+

1. INTRODUCTION

Despite the extensive literature on modeling nonstationary economic time series
and on limited-dependent variables, a controversial and rarely discussed topic
is how to interpret and analyze time series whose behaviors can be well approx-
imated by means of integrated processes, I~1!, but are “limited” in the sense
that their range is constrained by fixed bounds+ Common cases arise in the con-
text of composition ratios, such as expenditure shares or unemployment rates,
or in the presence of nonnegativity restrictions, e+g+, for nominal interest rates+
Moreover, range constraints represent the standard framework in the context of
target zone exchange rates and, more generally, of time series that are subject
to control+ In the following discussion, time series satisfying ~one-sided or two-
sided! range restrictions are called “limited” or “bounded+”
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Although limited time series cannot be integrated in the usual sense, in many
theoretical and econometric studies they are modeled in the I~1! framework+
For example, several empirical models of European Monetary System exchange
rates have been specified by using ~co-!integrated vector autoregressive ~VAR!
models without taking account of the presence of the target zones ~see, among
many others, Anthony and MacDonald, 1998; Svensson, 1993; see also Phil-
lips, 2001, and references therein!+ Similarly, in their influential paper Nelson
and Plosser ~1982! reject the unit root hypothesis in the U+S+ unemployment
rate ~see the discussions in Caner and Hansen, 2001; Abadir and Taylor, 1999!,
whereas several authors have looked for possible cointegrating relations link-
ing unemployment rates to other variables+ Some theoretical models consistent
with a unit root in the unemployment rate have also been proposed ~Blanchard
and Summers, 1986; Lindbeck and Snower, 1989!+ In some cases, preliminary
data transformations are applied to deal with time series with infinite support+
However, such transformations ~i! may worsen the overall model fit ~Caner and
Hansen, 2001, pp+ 1581–1582, for the U+S+ male unemployment rate! and ~ii!
cannot be applied when the time series of interest reaches the upper or the lower
bound+

A partial attempt to define I~1! processes with range constraints is made by
Barr and Cuthbertson ~1991, n+ 21!, regarding investment shares+ They observe
that

although shares are I~1! in the data there is a theoretical problem in that shares
are bounded+ Shares cannot be a random walk since such a series is unbounded+
However, a random walk is a very special case of an I~1! series, namely linear
with an additive Gaussian error+ Near the boundary shares must have a non-
Gaussian error+ Similar considerations apply to variables such as the percentage
unemployment and bilateral exchange rates ~which are bounded below! which
have been examined using cointegration techniques+

A more formal explanation is given by Nicolau ~2002!, who shows that
~quasi-! integrated dynamics can arise when there are nominal bounds also+What
is not generally discussed in the literature is ~i! why in some cases the con-
straints can reasonably be neglected and therefore standard I~1! modeling is
still appropriate, ~ii! to what extent the misspecification depending on the omis-
sion of the range constraints affects standard ~co-!integration tests, and ~iii!
how to test for unit roots ~or cointegration! in the presence of range constraints+

The existence of range constraints makes the interpretation of the outcome
of unit root tests controversial+ Suppose, e+g+, that the unit root hypothesis is
rejected+ Should such a rejection be attributed to the absence of a unit root, or
does it depend on the presence of range constraints? Standard unit root tests
cannot provide an answer to this question+

In this paper all of these issues will be addressed within a unified frame-
work+ This aim will be achieved by developing a new asymptotic theory that
accounts for both nonstationarity and presence of bounds+ This approach allows
us to generalize the large-sample theory for integrated and near-integrated pro-
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cesses to the case of range constraints+ The unit root distribution can be extended
to the case of bounds; the standard theory ~see, e+g+, Phillips, 1987a, 1987b! is
obtained as a special case+ The limiting “bounded unit root” distribution depends
on two noncentrality parameters that are expressed in terms of the position of
the bounds+ Such parameters can be estimated and allow a rapid evaluation of
the impact of the range constraints on the properties of unit root tests+ More-
over, they allow generalization of unit root inference to limited time series+

The paper is organized as follows+ The next section defines integrated and
near-integrated processes under range constraints, and some basic asymptotic
results are obtained+ In Section 3 the bounded unit root distribution is derived
and analyzed in the context of the unit root statistics+ Implications for unit root
tests are discussed in Section 4+ In Section 5 the problem of testing for unit
roots in the presence of bounds is tackled+ Two illustrative applications are
reported in Section 6+ Section 7 concludes with a discussion on some possible
extensions of the results obtained+

2. LIMITED AUTOREGRESSIVE PROCESSES

We start by considering a standard, integrated or near-integrated ~NI~1!!, real-
valued AR~1! process $St %

St � rT St�1 � «t ,

where rT is unity or near unity, and a stochastic process $Xt % that is obtained
by properly mapping the sample paths of $St % onto an interval @ tb, Nb# + This can
be done by requiring that $DXt % depends on $DSt % in such a way that the
constraint

Xt � @ tb, Nb#

holds almost surely for all t ~i+e+, DXt � @ tb � Xt�1, Nb � Xt�1# a+s+, all t !+ The
simplest process satisfying these requirements is obtained by assuming that,
conditionally on Xt�1, DXt is determined by truncating DSt at tb � Xt�1 and Nb �
Xt�1; alternatively, by censoring DSt at tb � Xt�1 and Nb � Xt�1+ Both ~censored
and truncated! types of behavior near the bounds can be nested within a more
general class of limited processes+ The conditions that define such a class are
given as follows+1

DEFINITION 1+ A stochastic process $Xt %0
T is called “limited near-

integrated of order 1,” or “bounded near-integrated of order 1,” briefly BNI~1!,
if the range constraint

Xt � @ tb, Nb# , a+s+ , all t (1)

and the following assumptions hold:
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(A1) the differenced process DXt �: ut can be decomposed as ut � DSt �
rjt � Njt , where

St � rT St�1 � «t , rT :� exp~�a0T !, a� 0, S0 �
a+s+

0 (2)

and $ rjt %, $ Njt % are nonnegative processes such that rjt � 0 iff Xt�1 �DSt � tb and
Njt � 0 iff Xt�1 � DSt � Nb; specifically, if Xt�1 � DSt � tb, then rjt satisfies the

constraint

tb � ~Xt�1 � DSt ! � rjt � Nb � ~Xt�1 � DSt ! a+s+ , (3)

and, similarly, if Xt�1 � DSt � Nb, then Njt satisfies the constraint

~Xt�1 � DSt !� Nb � Njt � ~Xt�1 � DSt !� tb a+s+; (4)

(A2) $«t % (see eqn. (2)), is a zero-mean process satisfying restrictions suffi-
cient to ensure that, for some l � ~0,`! , ST ~{! :� ~l2T !�102(t�1

@{T # «t
w
&& B~{! ,

B being a standard Brownian motion;
(A3) $ rjt % and $ Njt % satisfy restrictions sufficient to ensure that maxt�1, + + + ,T 6 rjt 6

and maxt�1, + + + ,T 6 Njt 6 are of op~T 102!;
(A4) tb � sclT 102, Nb � SclT 102, X0 � c0lT 102, sc � c0 � Sc, 6c06 � `, sc � Sc.

When a � 0, $Xt % is called “limited integrated of order 1” or “bounded inte-
grated of order 1,” briefly BI~1! .

Remarks+
2+1+ Assumption A :� $A1,A2,A3,A4% defines the time series behavior of

$Xt % + The basic idea is to separate the effect of the bounds from the dynamics
that characterize $DXt % in the absence of range restrictions+ This is achieved
through the decomposition of the differenced process $ut % given in Assumption
~A1!+ Specifically, ~A1! implies that $Xt % has the component representation
DXt � DSt � rjt � Njt , and hence Xt � X0 � St � Mt , Mt :� (i�1

t ~ rji � Nji !+
Because in the absence of bounds Xt � X0 � St , the difference Mt � ~Xt �
X0!� St represents the ~cumulated! amount that controls the trajectory of $Xt %
to satisfy the range constraint ~1!+ Note that rjt and Njt are different from zero if
and only if Xt�1 � DSt does not respect the range constraint+ When Xt�1 �
DSt � Nb ~Xt�1 � DSt � tb!, Njt ~ rjt ! is large enough to ensure that Xt satisfies
~1!+ The rationale behind Assumption A is that any truncated0censored0reflected
random variable ~r+v+! can be written as a random transformation of a r+v+ with
infinite support+2

2+2+ The process $«t % ~see ~A2!! satisfies an invariance principle and is there-
fore Rényi-mixing ~Phillips and Ouliaris, 1990!, or I~0! in a broad sense; see
also Davidson ~2002!+ Hence, the local-to-unity asymptotics of Phillips
~1987b! imply that ~l2T !�102S@sT #

w
&& Ja~s! :� *0

s exp $�a~s � r!% dB~r!, i+e+,
an Ornstein–Uhlenbeck process+ For a � 0, $St % is therefore near-integrated+
In the special case a � 0, DSt � «t and $St % is I~1!+ Note that ~A2! also
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implies that the running maximum of 6«t 6 does not diverge too much, i+e+, that
maxt�1, + + + ,T 6«t 6 is of op~T 102!+3

2+3+ Assumption ~A3! is a technical condition that is needed to prevent $Xt %
from “jumping” at the bounds+ Specifically, ~A2! and ~A3! together imply that
maxt�1, + + + ,T 6DXt 6 is of op~T

102!+ It is also worth noting that for some bounded
processes Assumption ~A3! automatically follows from ~A1!, ~A2!, and ~A4!+
Consider, e+g+, the simple bounded random walk $Xt % , recursively obtained by
censoring Xt�1 � «t at tb and Nb ~see Cox and Miller, 1965!, which is a bounded
I~1! process with rjt :� @ tb � ~Xt�1 � «t !#I$Xt�1 � «t � tb% and Njt :� @~Xt�1 �
«t ! � Nb#I$Xt�1 � «t � Nb% + In this case rjt , Njt � 6«t 6 and by Assumption ~A2!
maxt�1, + + + ,T rjt ,maxt�1, + + + ,T Njt � maxt�1, + + + ,T 6«t 6 � op~T

102! ~see Remark 2+2!;
hence, ~A3! holds+ In general, however, ~A3! does not follow from ~A1!, ~A2!,
and ~A4! as these assumptions do not rule out jumps of magnitude Op~T 102!
when the process breaches the bounds+ To see this fact, suppose, e+g+, that rjt is
defined in a slightly different way:

rjt :� @ tb � ~Xt�1 � «t !� Pt #I$Xt�1 � «t � tb%,

where Pt :� ~ Nb � tb!02 � T 102l~ Sc � sc!02+ In this case, once the lower bound is
breached, the process jumps to the middle of the interval @ tb, Nb# + It therefore
follows that

max
t�1, + + + ,T

rjt � max
t�1, + + + ,T

~~ tb � ~Xt�1 � «t !!I$Xt�1 � «t � tb%� Pt I$Xt�1 � «t � tb%!

� max
t�1, + + + ,T

Pt I$Xt�1 � «t � tb%� T 102
l~ Sc � sc!

2
AT ,

with AT :� 1 �)t�1
T

I$Xt�1 � «t � tb% , so that if Pr $AT � 1%� op~1!, Assump-
tions ~A1!, ~A2!, and ~A4! do not imply ~A3!+ In this respect, Assumption ~A3!
allows us to rule out jumps that are not asymptotically negligible ~i+e+, that are
not of op~T 102!!+

2+4+ Assumption ~A4! may appear unusual+ It states a relation between the
position of the bounds ~ tb, Nb! and the sample size T+ ~A4! is a key condition to
assess both empirically and theoretically to what extent the bounds impact on
the behavior of the process+ As will be stressed later on, sc and Sc in ~A4! pro-
vide a way to measure the influence of such bounds in finite samples+ More-
over, they allow derivation of an asymptotic theory in the presence of range
restrictions without modeling the behavior of the process near the bounds in a
parametric fashion+ Finally, ~A4! enables us to obtain a convenient unification
of the ~near-!unit root asymptotic theory with the limited-dependent variable
framework, and also to modify standard unit root inference to take account of
the range constraints properly+

2+5+ Because the bound parameters tb and Nb ~and also the initial value X0!
depend on T, a time series generated according to Definition 1 formally consti-
tutes a triangular array of the type $XTt : t � 0,1, + + + ,T; T � 0,1, + + + % ~see, e+g+,
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Phillips, 1987b!+ This notation is not essential to the discussion that follows;
hence, limited ~near-!integrated processes will be simply denoted as $Xt % + Note
that this richer notation would also allow us to justify Assumption ~A4! by refer-
ring to the so-called triangular array asymptotics ~Andrews and McDermott,
1995!, where the sample size is fixed at T0 and the model is imbedded in the
triangular array $XTt % ~see also Saikkonen and Choi, 2004!+

A bounded near-integrated process reverts ~i! because of the bounds @ tb, Nb#
and, if a � 0 in equation ~2!, ~ii! because its driving process $St % has no unit
roots+ In the special case of bounded integrated dynamics, i+e+, a � 0, the pro-
cess is mean reverting in the close neighborhood of tb and Nb only; hence BI~1!
processes have a unit root but differ from standard I~1! processes because of
the range constraints+ In Section 5 it will be shown how the constraint a � 0
implied by the BI~1! model can be tested against the alternative hypothesis of
limited autoregressive dynamics without a unit root+

A basic result of this paper is that BI~1! processes satisfy an invariance prin-
ciple as in the standard I~1! framework; in this case, however, the limiting pro-
cess is not a Brownian motion in general but depends on the parameters c0, sc,
and Sc of Assumption ~A4!+ To derive this property, we need to introduce the
following definition+

DEFINITION 2+ Let Z be a stochastic process in C with Z~0! � @a, b# ,
a � b. The bivariate process ~L,U ! is said to be a “two-sided regulator” of Z,
with bounds a,b, if (i) Za

b~s! :� Z~s!� L~s!� U~s! � @a,b# , (ii) L and U are
increasing and continuous with L~0! � U~0! � 0 a.s., (iii) L and U increase
only when Za

b � a and Za
b � b, respectively. If Z � B, i.e., a standard Brownian

motion, then Za
b is called “regulated Brownian motion.”

The two-sided regulator controls the trajectory of a process in C by keeping
its sample paths between the given bounds a,b; the regulated process lies in C
also+ Note that for s � 0 the ~nondecreasing! regulators L and U equal 0 and
hence Za

b � Z until the first time at which Z is about to cross one of the two
bounds a,b+ Then, although Z could escape out of the interval @a,b# , the regu-
lated process is forced to lie within the interval because of the two-sided regu-
lator ~L,U !+ The reader can refer to Harrison ~1985! and Dixit ~1993! for further
insights+

Consider the following continuous-time approximant of $Xt % :

XT ~s! :�
1

lT 102 X@sT # , s � @0,1# + (5)

Then, in the unit root case ~a � 0! the next theorem follows+

THEOREM 1+ Let $Xt % be a BNI(1) process (see Definition 1). Moreover,
let XT ~{! be defined as in (5). Then, if a � 0, as T F ` XT ~{! � XT ~0!

w
&&
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B sc�c0

Sc�c0~{! , where B sc�c0

Sc�c0 is a regulated Brownian motion with bounds at sc � c0,
Sc � c0.

This result differs from standard I~1! asymptotics mainly because the limit-
ing process is not a standard Brownian motion, as, e+g+, in Phillips ~1987a!, but
is a regulated Brownian motion+ The sample paths of the limiting process are
therefore bounded between sc � c0 and Sc � c0+ Theorem 1 obviously nests usual
asymptotics because, for c0 � sc and Sc � c0 equal to infinity, the standard invari-
ance principle follows+ Finally, note also that the weak convergence given in
Theorem 1 allows us to consider a BI~1! process as a discrete analog of the
regulated Brownian motion+

Remark+
2+7+ When b �` and a is finite, the regulator in Definition 2 is said to be a

“one-sided regulator” and the regulated process can equivalently be defined as

Za
�`~s! :� Z~s!� L~s!, L~s! :� ��0 ∧ inf

0�s ' � s
~Z~s ' !� a!� (6)

~see Harrison, 1985, Prop+ 2+3!+ Hence, if Sc � �` the ~one-sided! regulated
Brownian motion in Theorem 1 can be expressed as B sc�c0

�` ~s! :� B~s! � $0 ∧
inf0�s '�s~B~s

' ! � ~ sc � c0!!% + The case of an upper bound follows similarly+

3. THE “BOUNDED UNIT ROOT” DISTRIBUTION

In this section we will show how the presence of range constraints modifies the
asymptotic framework of unit root tests+ Specifically, by relying on the weak
convergence result given in the previous section, the so-called unit root distri-
bution will be generalized to the case of bounds+

Given a sample $Xt %0
T drawn from a BI~1! process, with X0 � 0, let [rT be

the sample first-order autoregressive coefficient, which solves [rT(t�1
T Xt�1

2 �

(t�1
T Xt Xt�1 + It is well known that if no range constraints are imposed, namely,

if sc � �` and Sc � �`, under well-known conditions4 [rT has the following
asymptotic distribution ~see Phillips, 1987a!:

T ~ [rT � 1! w
&&

B~1!2 � s 20l2

2�
0

1

B~s!2 ds

+ (7)

In the special case l2 � s 2 , the asymptotic distribution ~7! is known as the
unit root ~or Dickey–Fuller! distribution, Z in the following discussion+ By refer-
ring to Theorem 1, it is straightforward to extend the asymptotics summarized
in ~7! to the case of bounds+ To this purpose, we strengthen Definition 1 by
requiring that the following assumption holds+
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Assumption B+ ~B1! $«t % ~see ~A2! of Definition 1! is the linear process
«t :� (j�0

` cj vt�j , where C~z! :� (j�0
` cj z j � 0 for all 6z 6 � 1 and

(j�0
` j 6cj 6 � `; $vt ,Ft % is a martingale difference sequence with respect to

some filtration Ft satisfying E~vt2 6Ft�1! � sv
2 � ` and supt�Z E6vt 62�h � `

for some h � 0; ~B2! for some rh, Th � 0, $ rjt % and $ Njt % ~see ~A3! of Defini-
tion 1! satisfy supt�1, + + + ,T E6 rjt 62� rh � ` and supt�1, + + + ,T E6 Njt 62� Th � `+

The unit root distribution in the presence of range constraints is presented in
the next theorem+

THEOREM 2+ Let $Xt % be a BNI(1) process (see Definition 1); moreover,
suppose that Assumption B also holds. Then, if a � 0 and X0 � 0, as T F `,

Zr :� T ~ [rT � 1! w
&&

B sc
Sc~1!2 � s 20l2

2�
0

1

B sc
Sc~s!2 ds

, (8)

where B sc
Sc is a regulated Brownian motion with bounds at sc, Sc, s 2 :� sv2(j�0

` cj
2 ,

and l2 :� sv2 C~1!2.

For l2 � s 2 the sample autoregressive coefficient is asymptotically distrib-
uted as ~2*B sc

Sc~s!2 ds!�1~B sc
Sc~1!2 � 1!, which differs from the usual unit root

distribution only because it is expressed in terms of functionals of a regulated
Brownian motion and not of a standard Brownian motion+ This distribution is
called a “bounded unit root distribution,” with parameters sc and Sc, and denoted
as Z ~ sc, Sc!+

Kernel estimates of the probability density function ~p+d+f+! associated with
the bounded unit root distribution for various values of Sc � � sc �: c � 0, i+e+,
under symmetric bounds around the origin, are reported in Figure 1+ These are
based on 50,000 Monte Carlo ~MC! replications where the limiting regulated
Brownian motion is obtained as B sc

Sc~s! � w sc
Sc~B~s!!, where w sc

Sc~{! is the reflec-

Figure 1. Probability density function of the bounded unit root distribution Z ~�c, c!
for c � 0+3,0+5,1+1,�` ~standard unit root distribution!+ Kernel estimates with Epanech-
nikov weights+
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tion function ~Karatzas and Shreve, 1988, p+ 97, for sc � 0 and Sc � a! and the
Brownian motion is approximated by its discrete realization from a sample of
size N � 20,000; the rationale behind this algorithm is that B sc

Sc �
d
w sc
Sc~B! ~see

Harrison, 1985!+5 As expected, for c sufficiently large the bounded unit root
distribution approaches the standard unit root distribution+ The presence of
bounds translates the asymptotic distribution of the autoregressive coefficient
toward negative values: the smaller c is, the more the bounded unit root distri-
bution is skewed toward negative values+

The 5% quantile of the bounded unit root distribution Z ~�c, c! is reported
in Figure 2 for various values of c+6 A selection of 5% quantiles of the unit root
distribution under symmetric bounds is also reported in Table 1 ~third column,
with c00 sc � 0!+ Again, for c sufficiently large the quantiles correspond to those
of the standard unit root distribution+ The 5% quantile diverges to �` as c
approaches 0+

Several implications can be derived from the preceding results+ First, in the
presence of range constraints the large-sample distribution of the first-order auto-
regressive coefficient is nonstandard+ With respect to the usual unit root distri-
bution, the limiting “bounded unit root” distribution has two more noncentrality
parameters, sc and Sc+ Second, the quantiles of the bounded unit root distribution
can be extremely different from those of the standard unit root distribution+ To
which extent the quantiles differ depends ~i! on the distance of the bounds from
the initial value of the process ~through the parameters sc, Sc! and ~ii! on the
variability of the innovations to $Xt % ~through the long-run variance l2!+ Third,
only for bounds sufficiently far from the starting value of the process the quan-
tiles of the bounded unit root distribution are well approximated by the quan-
tiles of the standard unit root distribution+

Remarks+
3+1 ~Initial conditions!+ The previous derivation of the bounded unit root dis-

tribution is based on the condition X0 � 0+ However, if the process starts in
X0 :� c0lT 102 , where c0 � @ sc, Sc# , the weak convergence ~8! still holds with
~ sc, Sc! replaced by ~ sc � c0, Sc � c0!, provided that [rT is based on the deviations
from the initial value, i+e+, on $Xt � X0% + Note that the ~5%! quantiles of the
bounded unit root distribution are highly sensitive to the presence of asymmet-
ric bounds ~i+e+, �~ sc � c0! � Sc � c0!; see Table 1, third column ~Zr!+

3+2+ ~One-sided bounds!+ One-sided bounds can be treated as a special case
by setting Sc � �` ~lower bound only! or sc � �` ~upper bound only!+ By let-
ting X0 � 0 and Sc � �` the 5% quantile of the bounded unit root distribution
Z ~ sc,�`! is reported in Figure 3 for various values of c :� � sc, and a selection
of 5% quantiles is reported in Table 2, second column ~Zr!+ It is interesting to
observe that, as sc F 0, i+e+, the process starts at the lower bound, the quantiles
converge to those of the standard unit root distribution+ This result—which
has already been pointed out in Cavaliere ~2003! under more restrictive
assumptions—follows from the distribution equality B0

�` �
d 6B 6 ~see Harrison,

1985, p+ xii!, which implies that Z ~0,�`! �
d Z+
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3+3 ~Deterministic term corrections!+ If the computation of the sample first-
order autoregressive coefficient [rT is based on the demeaned series $Xt � PX % ,
the bounded unit root distribution has the form

Table 1. Critical values of the Phillips–Perron unit root tests in the two-
bound ~at � sc and at Sc! case

Tests based on
$Xt � X0%

Tests based
on $Xt � PX %

Sc � � sc c00 sc Zr Zt Zr+c Zr+t

0+3 0 �22+715 �3+340 �31+834 �3+972
1
4
_ �25+992 �3+569 �31+607 �3+967
1
2
_ �24+700 �3+472 �31+438 �3+977
3
4
_ �15+945 �2+773 �31+504 �4+025
1 �9+093 �2+082 �32+339 �4+136

0+5 0 �10+889 �2+290 �25+078 �3+616
1
4
_ �13+639 �2+564 �25+246 �3+624
1
2
_ �21+750 �3+262 �25+989 �3+655
3
4
_ �18+905 �3+019 �26+778 �3+709
1 �8+106 �1+946 �27+971 �3+857

0+7 0 �8+309 �1+979 �20+159 �3+372
1
4
_ �9+550 �2+132 �21+205 �3+411
1
2
_ �14+753 �2+675 �23+689 �3+497
3
4
_ �23+416 �3+372 �26+030 �3+613
1 �8+106 �1+946 �27+822 �3+808

0+9 0 �8+106 �1+946 �16+851 �3+172
1
4
_ �8+277 �1+975 �18+209 �3+228
1
2
_ �11+021 �2+299 �21+846 �3+383
3
4
_ �23+547 �3+388 �25+455 �3+559
1 �8+106 �1+946 �27+822 �3+793

1+1 0 �8+106 �1+946 �15+132 �3+054
1
4
_ �8+112 �1+947 �16+353 �3+109
1
2
_ �9+164 �2+090 �20+042 �3+274
3
4
_ �19+648 �3+100 �24+646 �3+507
1 �8+106 �1+946 �27+822 �3+787

1+5 0 �8+106 �1+946 �14+205 �2+930
1
4
_ �8+106 �1+946 �14+606 �2+969
1
2
_ �8+140 �1+952 �17+040 �3+117
3
4
_ �13+616 �2+562 �23+166 �3+426
1 �8+106 �1+946 �27+822 �3+786

Notes: Nominal level 5%+When c00 sc � 0 the bounds are symmetric around the starting value+When c00 sc � 1 the
process starts on the lower bound+ Critical values have been obtained through MC simulation by discretizing the
limiting regulated Brownian motion over T � 20,000 segments and using 50,000 replications+
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Zr+c
w
&&

DB scSc~1!2 � DB scSc~0!2 � s 20l2

2�
0

1

DB scSc~s!2 ds

, (9)

where DB scSc :� B sc
Sc � *0

1 B sc
Sc~s! ds is a demeaned regulated Brownian motion+ On

the other hand, the Zr statistic calculated after local generalized least squares
~GLS! demeaning at Sr :� 1 � TaT �1 ~see Elliott, Rothenberg, and Stock, 1996!
has the limiting representation given in ~8!+ In a similar way, if the com-
putation of [rT involves fitting a linear time trend by ordinary least squares
~OLS! the limiting distribution is given by ~9! with DB scSc replaced by a demeaned
and detrended regulated Brownian motion, namely, B scSc~s!� [a� Zbs, ~ [a, Zb! :�
arg mina,b *0

1~B sc
Sc~r! � a � br!2 dr+ Finally, Zr computed on data obtained

from local GLS linear detrending at Sr :� 1 � TaT �1 has the limiting represen-
tation given in ~8! with B sc

Sc~s! replaced by V sc, Ta
Sc ~s! :� B sc

Sc~s! � s~ Nl TaB sc
Sc~1! �

3~1 � Nl Ta!*0
1 rB sc

Sc~r! dr!, where Nl Ta :� ~1 � Ta!0~1 � Ta � Ta 203!+
3+4+ It is straightforward to notice that Assumption B is stronger than ~A2!

and ~A3! of Definition 1+ Specifically, under ~B1! $«t % satisfies the weak con-
vergence given in ~A2! with l2 as in Theorem 2 ~see Phillips and Solo, 1992!+
Similarly, by standard arguments

Pr � max
t�1, + + + ,T

rjt � «T 102� �(
t�1

T

Pr $ rjt � «T 102 %�

sup
t�1, + + + ,T

E6 rjt 62� rh

«2� rhT rh02
r 0

and

Pr � max
t�1, + + + ,T

Njt � «T 102� �

sup
t�1, + + + ,T

E6 rjt 62� Th

«2� ThT Th02 r 0;

Figure 2. The 5% quantile of the bounded unit root distribution Z ~�c, c! for various
values of c: ~a! raw data; ~b! demeaned data+
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Figure 3. The 5% quantile of the bounded unit root distribution Z ~�c,�`! for vari-
ous values of c: ~a! raw data; ~b! demeaned data+

Table 2. Critical values of the Phillips–Perron unit root tests in the one-
bound ~at � sc! case

Tests based on $Xt � X0% Tests based on $Xt � PX %

� sc Zr Zt Zr+c Zt+c

0+0 �8+106 �1+946 �27+822 �3+786
0+1 �16+275 �2+800 �26+615 �3+646
0+2 �24+177 �3+431 �25+813 �3+575
0+3 �17+780 �2+946 �24+350 �3+486
0+4 �12+596 �2+462 �22+761 �3+400
0+5 �9+965 �2+182 �20+974 �3+314
0+6 �8+663 �2+029 �19+169 �3+223
0+7 �8+207 �1+964 �17+715 �3+144
0+8 �8+112 �1+948 �16+525 �3+087
0+9 �8+106 �1+946 �15+668 �3+034
1+0 �8+106 �1+946 �15+067 �2+995
1+2 �8+106 �1+946 �14+448 �2+945
1+4 �8+106 �1+946 �14+216 �2+912
1+6 �8+106 �1+946 �14+144 �2+891
1+8 �8+106 �1+946 �14+139 �2+878
2+0 �8+106 �1+946 �14+139 �2+872
2+5 �8+106 �1+946 �14+139 �2+866
3+0 �8+106 �1+946 �14+139 �2+864

Notes: Nominal level 5%+When sc � 0 the process starts on the lower bound+ Critical values have been obtained
through MC simulation by discretizing the limiting regulated Brownian motion over T � 20,000 segments and
using 50,000 replications+
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hence, ~B2! implies ~A3!+ Under Assumption B, the process $«t % is a quite gen-
eral linear process in terms of a martingale difference+ It is worth noting that
the conditions given in Assumption ~B1!, although allowing a neat derivation
of the results presented in Theorem 2, are not strictly necessary+ For instance,
the strong mixing conditions given in Phillips ~1987a, Thm+ 3+1!, could have
also been considered+ Similarly, ~B2! is not strictly necessary for the results
given in Theorem 2 and could have been replaced by any set of conditions
ensuring that both maxt�1, + + + ,T rjt and maxt�1, + + + ,T Njt are of op~T 102!+

There are important implications of the convergence results outlined previ-
ously for unit root testing+ Such implications are examined in the next section+

4. IMPLICATIONS FOR UNIT ROOT TESTS

The most common approach to testing for a unit root against stable alternatives
is to refer to statistic ~8! as a left-sided test, i+e+, to reject the null of a unit root
for large negative values of Zr :� T ~ [rT � 1!+ By using the distribution results
of the previous section it can be reasonably argued that in some cases the rejec-
tion rate of the test can be substantially affected by the range constraints+

To stress this result, assume that the data generating process ~DGP! is BI~1!
with uncorrelated homoskedastic innovations ~s 2 � l2!+ The rejection proba-
bilities of the Zr test when standard critical values are employed ~estimated
through MC simulation; see the previous section! are reported in Figure 4; the
significance level is set to 5%+ As expected, the rejection frequency is strongly
related to the position of the bounds+ There are at least two important conse-
quences deriving from this result+

Figure 4. Size of the unit root tests in the two-bound case for various values of Sc �
� sc �: c and c0 � 0+ DF-rho: Zr unit root test; DF-t: Zt unit root test; VNR: von Neu-
mann ratio test; VR: variance-ratio test, t � 0+5+ ~a! Tests based on raw data; ~b! tests
based on demeaned data+
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On the one hand, in the framework of limited time series tests based on con-
ventional critical values could point to the rejection of the unit root hypothesis
and the researcher might erroneously conclude that the process has no unit roots,
whereas it has a unit root but it is also subject to ~one-sided or two-sided! range
constraints+ When testing for unit roots in the presence of limited time series,
an analysis of the “negligibility” of the bounds is therefore a necessary step
before interpreting the outcome of standard unit root tests in the usual way+
Such a step is usually missing when unit root techniques are applied to the
analysis of bounded time series+

On the other hand, Figure 4 also explains why the practitioner might fail to
reject the ~false! standard I~1! model in the presence of bounds+When the bounds
are sufficiently far away, the rejection frequencies of the unit root test when the
DGP is I~1! or BI~1! are in fact identical+ That is, unit root tests are not always
able to detect the presence of the bounds+

A further important implication is that, despite the fact that the bounded unit
root distribution ~and also the asymptotic distributions of other unit root test
statistics; see the discussion that follows! depends on three nuisance param-
eters, namely, ~ sc � c0, Sc � c0,s0l!, the unit root statistic ~8! can be rearranged
to eliminate s0l from its asymptotic distribution; this can be achieved by fol-
lowing the approach of Phillips ~1987a!+ Let Zl2, [s 2 be two consistent estima-
tors for l2,s 2 in the absence of bounds ~i+e+, when Sc � �` and sc � �`!; for
simplicity we assume that [s 2 :� ~10T ! (t�1

T [ut
2 , where $ [ut % denotes the OLS

residuals obtained by regressing Xt on Xt�1 ~and, if necessary, on a constant
term!, and that Zl2 is a conventional sum-of-covariances ~SC! estimator of the
form

Zl2 :�
1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

[ut [ut�6 j 6 (10)

~see, e+g+, de Jong and Davidson, 2000, and references therein!+ We further
require the following assumption to hold ~see Jansson, 2002!+

Assumption K+ ~K1! For all x � R, v~x! � v~�x! ; v~0! � 1; v~{! is
continuous at zero; Tv~0! � `, and *@0,`! Tv~x! dx � `, where Tv~x! :�
supx '�x 6v~x ' !6; ~K2! qT � ~0,`! and limTr`~qT

�1 � T �dqT ! � 0 for some
d � ~0, 12_ # +

Assumption K places some restrictions on the kernel function v~{! and on
the bandwidth0lag truncation parameter qT , which needs to grow just more
slowly than T 102 ; such restrictions, however, are rather general and almost stan-
dard in the literature+ When Assumption K holds and $«t % satisfies ~B1! of
Assumption B, then the idealized estimator

Dl2 :�
1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

«t «t�6 j 6 (11)
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satisfies Dl2 p
&& l2 ~Jansson, 2002, Thm+ 2!, and, if there are no bounds ~i+e+,

sc � �` and Sc � �`! and $Xt % has a unit or near unit root, also Zl2 is a con-
sistent estimator of l2 +7

When there are bounds, consistency can still be preserved given that the
bandwidth0lag truncation parameter qT satisfies a regularity condition that is
slightly stronger than the one given in ~K2! of Assumption K+ The following
lemma summarizes this result+

LEMMA 3+ Under the assumptions of Theorem 2, as T F `, [s 2 p
&& s 2.

Moreover, if Assumption K holds with (K2) replaced by the following
assumption:

(K2
'
). qT � ~0,`! and, for some d � ~0,d *# , limTr`~qT

�1 � T �dqT ! � 0,
where d * :� 1

2
_ @h*0~2 � h*!# , h* :� min$h, rh, Th%;

then, as T F `, Zl2 p
&& l2.

Note that ~K2'! simply slows down the growth rate of qT by establishing a
trade-off between the rate at which qT is allowed to diverge and the moments
of «t , rjt , and Njt ~recall from Assumption B that h, rh, and Th control the existing
moments of «t , rjt , and Njt , respectively!+ Now, qT is allowed to grow just
more slowly than T 102 only in the very special case that h* � �`, i+e+, all
moments exist+ If, e+g+, h* � 2 ~i+e+, fourth-order moments exist! then d * � 1

4
_ ,

and the well-known o~T 104! rate suggested in Phillips ~1987a! is obtained+
The main consequence of Lemma 3 is that the unit root statistic of Phillips
~1987a!

ZZr :� T ~ [rT � 1!�
Zl2 � [s 2

2T �2(
t�1

T

Xt�1
2

and also the asymptotically equivalent “modified” statistic ~Ng and Perron, 2001!

MZr :�
T �1XT

2 � Zl2

2T �2(
t�1

T

Xt�1
2

satisfy ZZr,MZr
w
&& Z ~ sc, Sc!, i+e+, weak convergence to a bounded unit root dis-

tribution with parameters ~ sc, Sc!+ Hence, the presence of range constraints does
not affect the consistency of the estimators of the nuisance parameters ~s 2,l2!,
which do not enter the asymptotic distribution of the test statistics+ However, sc
and Sc are still two noncentrality parameters affecting the asymptotic distribu-
tions and, consequently, the outcome of the tests+

Remarks+
4+1+ ~One-sided bounds!+ Consider the one-sided bound case ~see Remark

3+2!+ Such a case arises, e+g+, in the ~co-!integration analysis of nominal inter-
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est rates ~see, among others, Bec and Rahbek, 2004!+ For X0 � 0 and Sc � �`
the asymptotic rejection frequencies of the Zr ~ ZZr for s 2 � l2! unit root test
are reported in Figure 5 for various values of � sc :� c; the nominal level of the
test is 5%+As in the two-bound case, the rejection frequency essentially depends
on the distance between the starting value of the process and the position of the
bound+ However, if such a distance is negligible, i+e+, sc � 0, the quantiles are
identical to those of the standard unit root distribution ~see Remark 3+2!; this
result does not apply when the test involves OLS demeaning ~or detrending! of
the original time series+ In general, in the one-bound case the rejection rate is
not as high as in the two-bound case; nevertheless, it can considerably exceed
the significance level+

4+2 ~Other unit root tests!+ Comparable evidence affects most of the proce-
dures usually employed to test for unit roots+ The t-ratio unit root test ~Zt ! based
on the t-statistic associated to [p in the regression equation DXt �pXt�1� error
has asymptotic distribution ~l0s!~4*B sc

Sc~s!2 ds!�102~B sc
Sc~1!2 � ~s0l!2!+ By

Lemma 3, Phillips’ t-test ZZt :� ~ [s0 Zl!Zt � ~ [s 2 � Zl2 !~4 Zl2T �2 (t�1
T Xt�1

2 !�102

and the corresponding “modified” statistic MZt :� ~T �1XT
2 � Zl2 !�

~4T �2 (t�1
T Xt�1

2 !�102 converge weakly to ~4*0
1 B sc

Sc~s!2 ds!�102~B sc
Sc~1!2 � 1!,

which differs from the usual asymptotic distribution because B sc
Sc replaces the

Brownian motion B+ The von Neumann ratio test of Sargan and Bhargava ~1983!,
based on the statistic VN :� Zl2T 20(t�1

T Xt
2 , satisfies the convergence VN w

&&

~*0
1 B sc

Sc~s!2 ds!�1 , which assumes larger values with respect to the standard lim-
iting distribution ~*0

1 B~s!2 ds!�1 + The variance-ratio test, based on VR~t! :�
~ ZlT !�2 (t�@tT #

T ~Xt � Xt�@tT #!
2 , satisfies VR~t! w

&& *t
1~B sc

Sc~s!� B sc
Sc~s � t!!2 ds,

which is closer to 0 than the standard limiting distribution *t
1~B~s! �

B~s � t!!2 ds+ Asymptotic sizes at the 5% nominal level are plotted in Fig-

Figure 5. Size of the unit root tests in the one-bound case for various values of � sc �: c
and c0 � 0+ DF-rho: Zr unit root test; DF-t: Zt unit root test; VNR: von Neumann ratio
test; VR: variance-ratio test, t � 0+5+ ~a! Tests based on raw data; ~b! tests based on
demeaned data+
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ures 4 ~two-bound case! and 5 ~one-bound case!+ See also Tables 1 and 2 for
the 5% quantiles of the ZZt test+

4+3 ~Deterministic term corrections!+ As noticed for the bounded unit root
distribution ~see Remark 3+1!, if the initial condition is X0 � c0lT 102, the results
do not change provided that the tests are based on $Xt � X0% ~or on GLS-
demeaned data! and sc, Sc are replaced by sc � c0, Sc � c0+ If the tests are based on
OLS-demeaned ~demeaned and detrended! variables the limiting distributions
depend on a demeaned ~demeaned and detrended! regulated Brownian motion
DB scSc as follows: ZZt

w
&& ~4*0

1 DB scSc~s!2 ds!�102~ DB scSc~1!2 � DB scSc~0!2 � 1!; MZt
w
&&

~4*0
1 DB scSc~s!2 ds!�102~ DB scSc~s!2 � 1!, VN�1 w

&& *0
1 DB scSc~s!2 ds; VR~t! w

&& *t
1~ DB scSc~s!�

DB scSc~s � t!!2 ds+When the tests are based on GLS linear detrending, the limiting
distributions are those given in Remark 4+2 with the regulated Brownian motion
replaced by the functional V sc, Ta

Sc given in Remark 3+3+
4+4 ~Empirical assessment of the impact of the bounds!+ Figures 2 and 4 pro-

vide simple tools for understanding to what extent in the basic BI~1! model
with symmetric bounds the rejection of the unit root hypothesis could depend
on the presence of the bounds+ Figures 3 and 5 can be referred to in the case of
a lower ~upper! bound; similar pictures can be easily obtained by simulation
for any value of ~ sc � c0, Sc � c0!+ Note, however, that because sc � c0 and Sc � c0

are not generally known, they should at least be consistently estimated+ Sec-
tion 5 tackles this issue+

We end this section by briefly investigating the power function of the Zr unit
root test in the presence of near-integrated dynamics and range constraints+ The
DGP is therefore BNI~1! with a � 0+ Note that the I~1! hypothesis is violated
~i! because the DGP has no unit roots and ~ii! because of the range constraints+
We might therefore expect the rejection frequency to be higher than in the usual
near-integrated, NI~1!, case+

To explore this issue we need to derive the asymptotic distribution of the
unit root test statistics when the DGP is BNI~1! with a � 0+ The next result
provides the result for the Zr, ZZr statistics+

THEOREM 4+ Under the assumptions of Theorem 2 with a� 0 replaced by
a � 0 then, as T F `,

Zr :� T ~ [rT � 1! w
&&

J sc+a
Sc ~1!2 � s 20l2

2�
0

1

J sc+a
Sc ~s!2 ds

, (12)

where J sc+a
Sc ~s! :� Ja~s! � L~s! � U~s! , Ja being the diffusion Ja~s! :�

*0
s exp $�a~s � r!% dB~r! and $L,U % being the two-sided regulator of Ja with

bounds at sc, Sc. The heteroskedasticity and autocorrelation robust statistic ZZr
satisfies (12) with s 20l2 replaced by unity, provided that Assumption K holds
with (K2) replaced by (K2

'
).
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Hence, with respect to the near-integrated framework, the asymptotic distri-
bution of Zr depends on a regulated Ornstein–Uhlenbeck process+ For s 2 � l2

the distribution ~12! can be denoted as “bounded near-unit root distribution,”
Za~ sc, Sc!+ The theorem can be easily extended to the various unit root tests and
to the case of ~OLS or GLS! deterministic corrections+

The asymptotic rejection frequency of the Zr ~ ZZr for s 2 � l2! test is plotted
for various values of a and c :� Sc � � sc under c0 � 0 ~symmetric case! in
Figure 6+ The figures are based on an MC experiment with 50,000 replications
where the limiting regulated Ornstein–Uhlenbeck process is obtained by apply-
ing the two-sided regulator ~see Definition 2! to a discrete realization of the
Ornstein–Uhlenbeck process over a grid of 20,000 points+ In the left panel of
the figure, the test is based on raw data, whereas in the right panel it is based
on OLS-demeaned data+ For c � �` the usual rejection rate of the Zr test
when the DGP is near-integrated is obtained ~see, e+g+, Elliott et al+, 1996,
Figs+ 1,2!+ In addition, the figure shows that in the presence of symmetric bounds,
the unit root Zr test tends to reject more often than in the absence of constraints+

5. TESTING THE “BOUNDED UNIT ROOT” HYPOTHESIS

When there are bounds, instead of testing the ~trivially false! I~1! hypothesis
the researcher should be more interested in testing the “bounded I~1!” hypoth-
esis against a bounded alternative with no unit roots, e+g+, the bounded, near-
I~1! model+ Our framework allows us to tackle this testing problem+ Specifically,
despite the fact that the bounded unit root distribution ~and also the asymptotic
distributions of the other unit root test statistics! depends on three nuisance
parameters, ~ sc � c0, Sc � c0,s0l!, it is possible to define a proper rejection region

Figure 6. Asymptotic power function of the unit root Zr test against bounded near-
integrated alternatives for various values of Sc � � sc �: c, c0 � 0, and a ranging from 0
to 30: ~a! tests based on raw data; ~b! tests based on demeaned data+
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to test the BI~1! hypothesis at a given significance level, hence avoiding spu-
rious rejections caused by the presence of the bounds+

The main result needed to develop a BI~1! test is given by the following
corollary of Lemma 3, which shows that the two unknown parameters
~ sc � c0, Sc � c0! can be consistently estimated+

COROLLARY 5+ Let the assumptions of Theorem 2 hold and suppose that
Assumption K holds with (K2) replaced by (K2

'
). Then, as T F`, [sc

p
&& sc, [Sc

p
&& Sc,

and [c0
p
&& c0, where [sc :� tb~ Zl2T !�102, [ Sc :� Nb~ Zl2T !�102, and [c0 :� X0~ Zl2T !�102+

Hence, given that the bounds ~ tb, Nb! are known, from the consistency of Zl2 it
follows that the two nuisance parameters of the bounded unit root distribution,
sc � c0 and Sc � c0, can be consistently estimated by [sc � [c0 and [ Sc � [c0,
respectively+

Therefore, if the DGP is a BI~1! process, the rejection frequency of the ZZr
unit root test equalizes the selected significance level in large samples as far as
the quantiles of the Z ~ [sc � [c0, [ Sc � [c0! distribution are used; such quantiles can
easily be computed by MC simulation+8 Moreover, the same procedure can be
applied to all the unit root tests previously discussed+ In the following discus-
sion it will be shown that this asymptotic framework also provides excellent
results in small samples+ The asymptotic local power properties of the BI~1!
test will be investigated beforehand+

5.1. Asymptotic Local Power

It is interesting to compare the asymptotic power function of BI~1! tests against
BNI~1! with the asymptotic power function of standard unit root tests in the
absence of range constraints+ To analyze this issue we do not need any further
theoretical result because ~i! the distribution of the unit root statistics under
BNI~1! dynamics has already been obtained in Section 4, Theorem 4, and ~ii!
Corollary 5 remains valid+

To assess to what extent the triple $a, sc, Sc% affects the asymptotic power func-
tion of the “bounded unit root” tests, in Figure 7 the asymptotic power function
of the BI~1! Zr test ~ ZZr for s 2 � l2! against BNI~1! is plotted for various
values of a and c :� Sc � � sc under c0 � 0 ~symmetric case!+ In the left panel of
the figure the test is applied to raw data, whereas in the right panel the test
refers to OLS-demeaned data+

As expected, tests of the BI~1! hypothesis are less powerful than standard
I~1! tests; i+e+, in the presence of range constraints it is more difficult to assess
whether a given series has a unit root than in the usual case of no constraints+
Specifically, the smaller c is, the lower the power of the test is+ It is also worth
noting that, in the case of symmetric bounds, OLS demeaning reduces the power
of the test ~for a close to zero the test has no power against BNI~1! alterna-
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tives!+ This evidence, however, does not necessarily hold when the bounds are
either asymmetric or one-sided; in particular, when the bounds are asymmetric,
the tests based on OLS demeaning can outperform the tests based either on the
deviations from the initial value or on GLS demeaning+ This result suggests
that the practitioner should compute both OLS and GLS demeaning-based tests
when the null of interest is the BI~1! hypothesis+

5.2. Finite-Sample Properties

In this section we briefly report the outcome of a set of MC simulations on the
small-sample size of the bound-corrected unit root tests outlined earlier+ Because
a key assumption ~~A4! of Definition 1! of BI~1! asymptotics is that the posi-
tion of the bounds depends on T, one could reasonably argue that the small-
sample accuracy of the test ~at least in terms of size! might be inadequate+ In
the following discussion it will be shown that this is not the case+9

Initially, a BI~1! process $Xt % is chosen with $«t % being a Gaussian indepen-
dent and identically distributed ~i+i+d+! process with zero mean and unit vari-
ance+ The ~conditional! distribution of $«t % is reflected at the bounds ~see note 2!;
the results for different truncation mechanisms do not substantially differ+Atten-
tion is paid to the case of two symmetric bounds ~ Sc � � sc �: c � 0 and
X0 � 0! and also to the case of a single bound ~ Sc � `, � sc �: c � 0 and
X0 � 0!+We consider the Zr and Zt unit root tests, both based on the deviations
of the observed series from the initial value and from the sample average; the
results for tests based on GLS demeaned variables, and also for the modified
MZ tests, do not differ from those discussed here+ Because l2 � s 2 , c is esti-

Figure 7. Asymptotic power function of the “bounded unit root” Zr test against bounded
near-integrated alternatives for various values of Sc � � sc �: c, c0 � 0, and a ranging
from 0 to 30: ~a! tests based on raw data; ~b! tests based on demeaned data+
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mated by [c � tb~ [s 2T !�102 � Nb~ [s 2T !�102 + The critical values of the asymptotic
distribution under the null hypothesis are then retrieved through a linear inter-
polation of the critical values obtained by simulation in Sections 3 and 4+ The
selected sample sizes are T � 50,100,250,500, and the number of MC replica-
tions is 20,000+

The results are summarized in Table 3+ The small-sample performance of the
tests is excellent+ The empirical rejection frequency exceeds the significance
level only in the two-bound case, for c � 0+3 and T � 50, when the tests are
based on raw data+ Nevertheless, when c � 0+3 and T � 100 the rejection rate is
already very close to the nominal size for most tests+ For the other values of
~c,T ! the asymptotic approximation of the distribution of the tests considered
is extremely well behaving+

We now turn to the two-bound case in the presence of autocorrelated errors+10

Table 4 concerns the case of AR~1! errors; specifically, «t � f«t�1 � nt where

Table 3. Finite-sample null rejection probabilities white noise ~WN! model
in the one-bound ~at �c! and in the two-bound ~at �c and c! cases

Two-sided constraints ~�c, c! One-sided constraints ~�c,�`!

c T Zr Zt Zr+c Zt+c Zr Zt Zr+c Zt+c

` 50 4+630 5+355 3+635 6+465 4+630 5+355 3+635 6+465
100 4+545 4+760 4+185 5+345 4+545 4+760 4+185 5+345
250 4+805 4+910 4+765 5+045 4+805 4+910 4+765 5+045
500 4+840 4+865 4+975 5+380 4+840 4+865 4+975 5+380

0+9 50 4+630 5+360 3+840 7+400 4+630 5+355 3+780 7+015
100 4+550 4+765 4+155 5+880 4+545 4+765 4+095 5+485
250 4+810 4+915 4+545 5+330 4+805 4+910 4+435 5+115
500 4+840 4+865 4+950 5+440 4+840 4+865 4+845 5+310

0+7 50 4+730 5+695 3+870 7+480 4+650 5+555 3+765 6+975
100 4+640 4+985 4+280 6+080 4+575 4+825 4+095 5+655
250 4+825 4+995 4+765 5+490 4+865 4+995 4+375 5+050
500 4+905 4+850 4+895 5+300 4+870 4+815 4+775 5+230

0+5 50 5+270 7+735 3+380 6+530 4+765 6+420 3+460 6+410
100 4+970 6+070 3+970 5+690 4+525 5+470 4+005 5+565
250 4+800 5+330 4+335 5+070 4+950 5+220 4+320 4+835
500 5+010 5+265 4+455 4+865 4+730 5+025 4+595 4+850

0+3 50 12+370 28+320 2+255 8+130 5+150 8+390 2+430 5+285
100 8+015 15+315 3+350 6+165 4+685 6+630 3+345 4+755
250 5+870 8+490 3+875 5+000 4+525 5+305 3+940 4+445
500 5+380 6+425 4+010 4+570 4+600 5+090 4+315 4+570

Notes: Zr and Zt denote the standard coefficient and t-tests, respectively ~without heteroskedasticity and autocor-
relation correction!; Zr+c and Zt+c are based on OLS-demeaned data+
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nt is i+i+d+ N~0, ~1 � f!2! and f � 60+3+ Table 5 concerns the case of MA~1!
errors; specifically, «t � unt�1 � nt where nt is i+i+d+ N~0,10~1 � u2!! and u �
60+3+ Note that in both cases the long-run variance of $«t % is equal to unity+ In

Table 4. Finite-sample null rejection probabilities AR~1! model; two-bound
~at �c and c! case

f c T ZZr ZZt MZr
AR ZZr+c ZZt+c MZr+c

AR MZr
AR

0+3 ` 50 2+425 2+530 2+370 1+520 3+370 1+345 4+485
100 2+845 2+950 3+410 2+235 3+335 2+320 5+175
250 3+745 3+755 4+410 3+280 3+680 4+050 5+260
500 4+010 3+985 4+550 3+955 4+315 4+530 5+020

0+7 50 2+260 2+390 1+475 1+795 4+685 0+505 3+260
100 2+775 2+895 2+865 2+440 3+900 1+165 4+650
250 3+610 3+615 4+095 2+990 3+895 2+835 4+870
500 3+945 3+905 4+420 3+405 3+910 3+415 4+940

0+5 50 1+845 2+160 0+680 2+355 4+170 0+600 1+805
100 2+390 2+530 1+905 2+330 3+420 0+925 3+425
250 2+895 2+975 3+160 2+555 3+010 2+135 4+050
500 3+370 3+400 3+675 2+805 3+120 2+875 4+235

0+3 50 1+720 2+825 0+375 1+680 2+840 0+155 1+720
100 1+145 1+625 0+355 1+505 2+065 0+405 0+900
250 1+480 1+670 1+240 1+830 2+040 1+010 1+765
500 1+840 1+915 1+695 2+095 2+255 2+050 2+000

�0+3 ` 50 9+095 10+630 3+045 12+265 15+135 2+035 5+885
100 7+730 8+410 3+150 10+915 12+090 2+435 4+785
250 6+950 7+245 4+030 9+080 9+160 3+350 4+750
500 6+200 6+275 4+420 7+990 7+910 4+260 4+935

0+7 50 10+865 14+295 2+755 9+415 14+895 0+600 7+060
100 8+690 10+240 3+190 9+615 12+790 1+515 5+445
250 7+175 7+920 4+140 8+415 9+535 2+940 5+065
500 6+475 6+795 4+480 7+580 8+155 3+715 5+055

0+5 50 18+190 29+490 2+315 7+725 15+470 0+165 6+960
100 13+785 19+520 3+555 9+760 13+870 1+020 6+675
250 9+960 11+935 4+305 8+685 10+405 2+180 5+990
500 8+115 9+005 5+020 7+755 8+690 2+965 5+840

0+3 50 51+555 82+650 1+115 16+235 49+355 0+025 2+550
100 43+055 71+245 2+815 19+175 41+825 0+525 5+110
250 27+830 44+475 5+740 15+085 24+080 1+700 7+585
500 19+160 27+245 7+110 11+390 14+875 2+450 8+335

Notes: ZZr and ZZt , respectively, denote the Phillips–Perron coefficient and t-tests with long-run variance l2 esti-
mated according to the Andrews ~1991! SC estimator with quadratic spectral kernel and AR~1!-automatic band-
width selection; MZr

AR is the modified coefficient test based on the AR estimator of the long-run variance with
the number of lags k, 0 � k � @12{~T0100!0+25# chosen according to the MAIC criterion of Ng and Perron ~2001!;
+c denotes tests based on OLS-demeaned data; MZr

AR denotes the modified coefficient test based on GLS-
demeaned data+
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the autocorrelated case the issue of precise estimation of the long-run variance
~and hence of c, which is now estimated by [c � tb~ Zl2T !�102 � Nb~ Zl2T !�102 ; see
Corollary 5! becomes crucial+ Hence, together with the Phillips–Perron tests
based on the SC estimator of Andrews ~1991!11 of l2 ~ ZZr, ZZt !, we also report
the results obtained by the modified coefficient test ~MZr

AR! based on an auto-
regressive estimator of l2 , ZlAR

2 in the following discussion, with the number of

Table 5. Finite sample null rejection probabilities MA~1! model; two-bound
~at �c and c! case

u c T ZZr ZZt MZr
AR ZZr+c ZZt+c MZr+c

AR MZr
AR

0+3 ` 50 3+195 3+340 2+350 2+180 3+970 1+210 4+515
100 3+610 3+675 3+540 2+975 3+835 2+360 5+280
250 4+225 4+290 4+675 4+000 4+250 4+185 5+495
500 4+475 4+430 4+615 4+500 4+755 4+595 5+115

0+7 50 3+040 3+210 1+515 2+375 4+630 0+475 3+110
100 3+455 3+570 2+970 2+930 4+140 1+300 4+910
250 4+045 4+095 4+270 3+560 4+270 2+990 5+135
500 4+465 4+355 4+460 3+850 4+330 3+580 5+025

0+5 50 2+590 3+025 0+785 2+285 4+160 0+465 2+250
100 3+065 3+270 2+055 2+705 3+660 1+000 3+545
250 3+455 3+585 3+295 3+080 3+485 2+275 4+380
500 3+960 4+015 3+845 3+300 3+545 3+025 4+475

0+3 50 2+715 5+285 0+385 1+400 2+720 0+110 1+925
100 2+070 3+025 0+490 1+735 2+475 0+345 1+210
250 2+125 2+435 1+545 2+315 2+615 1+190 2+180
500 2+455 2+770 2+115 2+625 2+800 2+280 2+580

�0+3 ` 50 12+335 13+665 3+830 17+470 19+795 3+120 7+550
100 11+115 11+850 3+895 15+920 16+570 3+335 5+900
250 9+290 9+720 4+785 13+140 12+585 4+290 5+730
500 8+125 8+240 4+880 10+910 10+560 4+940 5+315

0+7 50 15+860 21+015 3+540 10+645 17+270 0+550 9+525
100 13+070 15+760 3+955 12+920 16+780 1+690 7+165
250 10+405 11+345 4+840 11+340 12+855 3+235 6+075
500 8+570 8+955 5+100 10+095 10+740 4+000 5+775

0+5 50 26+275 42+425 3+080 8+800 19+275 0+155 7+815
100 21+810 30+910 4+505 12+980 18+690 1+165 8+385
250 15+225 18+880 5+550 12+345 14+685 2+325 7+675
500 11+780 13+380 6+110 10+850 12+035 3+205 7+125

0+3 50 62+460 90+860 0+935 23+790 65+030 0+005 2+425
100 58+210 85+785 3+540 31+740 62+390 0+625 5+590
250 45+995 67+405 8+160 27+915 44+605 2+190 10+485
500 33+040 45+810 10+180 20+360 28+250 3+065 11+745

Note: See the previous table+
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lags chosen according to the modified Akaike information criterion ~MAIC!
defined in Ng and Perron ~2001!+ Finally, together with the tests based on raw
data, tests based on OLS and GLS demeaning ~MZr+c

AR and MZr+c
AR , respectively!

are included in the tables+
In the AR~1! case ~Table 4! with positively autocorrelated errors, the simu-

lation evidence is comparable to that obtained in the white noise case, although
the tests tend to be slightly conservative when the bounds are very close to
each other ~c � 0+3!+ The various tests have almost the same size+ When the
errors are negatively autocorrelated, the tests based on ZlAR

2 perform better
than the tests based on the SC estimator ~as in the standard I~1! framework,
c � ` in the table!+ The MA~1! case ~Table 5! does not significantly differ
from the AR~1! case when the errors are positively correlated, but size distor-
tions are more pronounced when the errors are negatively correlated and
the SC estimator of l2 is employed+ On the contrary, the tests based on ZlAR

2

behave very well also in the presence of negatively correlated MA errors+ In
general, when the errors are autocorrelated, tests employing an autoregressive
estimator of the long-run variance deliver the best results in terms of size
accuracy+

Overall, the small-sample performance of the asymptotic approximation com-
bined with the use of appropriate empirical estimates of the bound parameters
seems to be adequate, and the small-sample size of the BI~1! test appears to be
largely satisfactory+

6. EMPIRICAL ILLUSTRATIONS

In this section, we briefly discuss two common applications of unit root tests to
limited time series, namely, testing for exchange rate mean reversion within a
target zone and testing for a unit root in the unemployment rate+

6.1. European Monetary System Target Zone Exchange Rates

We start by examining an empirical problem that has often been tackled in the
literature, i+e+, testing for exchange rate mean reversion in the presence of a
target zone+ The reader can refer to Svensson ~1993! and Anthony and Mac-
Donald ~1998!+ Economic theories of target zone exchange rates usually asso-
ciate the rejection of the unit root hypothesis with the presence of either
intramarginal Central Bank interventions or mean reverting fundamentals ~Del-
gado and Dumas, 1992!+ However, as noticed by Svensson ~1993!, the pres-
ence of the target zone can be the source of mean reversion of the exchange
rate+ In this framework, we will briefly show how the outcome of unit root
tests in the presence of ~target zone–! range constraints can lead to wrong eco-
nomic conclusions and how the researcher can properly modify the conven-
tional test procedures to take the target zone into account+

930 GIUSEPPE CAVALIERE

https://doi.org/10.1017/S0266466605050462 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050462


The exchange rates of four currencies are considered, namely, the Danish
krone ~DK!, the French franc ~FF!, the Irish pound ~IP!, and the Dutch guilder
~NG!, all against the Deutsche mark ~DM!;12 see Figure 8+ The exchange rates
have been transformed by taking logs and multiplying by 100; the observation
frequency is daily+ The selected sample starts on 87:01:12 and ends on 93:01:29+
During such a period, all the ~bilateral! exchange rates considered were bounded
within 62+25% target zones, which had not been realigned+

In Table 6 the ~constant-corrected! Phillips–Perron coefficient and t-tests ~ ZZr+c
and ZZt+c! are reported; the long-run variance l2 is estimated according to the
SC estimator of Andrews ~1991! with quadratic spectral kernel and AR~1!-
automatic bandwidth selection; see the previous section+ Together with the
Phillips–Perron tests, we also show the results obtained by using the modified
coefficient test, MZr+c

AR , which employs an autoregressive estimator of the long-
run variance with the number of lags k chosen by both the MAIC criterion of
Ng and Perron ~2001! and the Bayesian information criterion ~BIC! ~MZr+c

AR and
MZr+c

bic , respectively! under the constraint k � @12~T0100!104# +
Evidence against the I~1! hypothesis is generally found for the French franc,

the Irish pound, and the Dutch guilder at the 5% significance level and for the
Danish krone at the 10% significance level+ Therefore, the researcher might
erroneously conclude that the four European monetary system exchange rates
considered do not have a unit root and that they are mean reverting within the
band+

However, because there are nominal bounds, the relevant question is whether
the rejection of the I~1! hypothesis depends on the presence of the target zone
~i+e+, the DGP is a bounded process with a unit root, BI~1!! or whether it should
be interpreted as evidence of mean reversion within the band ~i+e+, the DGP is a
bounded process with no unit roots, BNI~1!!+ Standard unit root analysis does
not provide an answer to this question+ However, an answer can be given by
employing the BI~1! test introduced in Section 5+ In the second half of Table 6
the estimates of the bound parameters ~ Sc � c0, sc � c0! are reported, in addition
to the asymptotic 5% and 10% quantiles associated to the corresponding test
statistics under the “bounded unit root” null hypothesis+ For the DM0IP and
the DM0NG exchange rates, almost all tests reject the null of a unit root even
when bound-corrected critical values are employed+ Therefore, for these two
exchange rates there is evidence of mean reversion that cannot be attributed to
the presence of the target zone alone ~i+e+, the DM0IP and the DM0NG exchange
rates are mean reverting within the band!+

The results for the DM0DK exchange rate and for the DM0FF exchange
rates are opposite+ Contrary to the results obtained when standard critical val-
ues are employed, the “bounded unit root” tests do not substantially lead to the
rejection of the hypothesis of a unit root: the observed mean reversion can be
explained by the presence of the target zone alone ~i+e+, the DM0DK and the
DM0FF exchange rates are not mean reverting within the band!+
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Figure 8. European monetary system exchange rates of the Danish krone ~DK!, the French franc ~FF!, the Irish pound ~IP!, and the Dutch
guilder ~NG!, all against the Deutsche mark, 1987:01–1993:01+ Percentage deviations from the central parity+
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6.2. U.S. Unemployment Rate

In this section we analyze the monthly U+S+ unemployment rate among adult
males from January 1948 through August 1999; see Figure 9+ These data have
recently been analyzed by Caner and Hansen ~2001! by means of threshold
autoregression methods; the reader can refer to their paper for further details
on data definition+

Our first question is whether the I~1! hypothesis is rejected over the consid-
ered sample+ By construction, the unemployment rate is bounded, and therefore
the I~1! specification should not provide an adequate representation of the data+
We explore this issue by referring to the tests previously discussed; we also con-
sider the rescaled range unit root test based on the statistic [rm :� ~ Zl2T !�102 �
~maxt�1, + + + ,T Xt � mint�1, + + + ,T Xt !, which has been applied to U+S+ unemploy-
ment by Cavaliere ~2001!+ For the ZZr+c, ZZt+c, and [rm tests, the long-run variance
l2 is estimated through the Andrews ~1991! quadratic spectral kernel SC esti-
mator based on first-order autoregression residuals with 12 lags to take account
of the peak at the 12-month frequency in the autocorrelation function of the
unemployment rate changes+ For the modified coefficient test, MZr+c

AR , l2 is

Table 6. European monetary system exchange rates: Unit root tests, estimates
of the bound parameters, and bound-corrected critical values

DK FF

ZZr+c ZZt+c MZr+c
AR MZr+c

bic ZZr+c ZZt+c MZr
AR MZr+c

bic

�12+918b �2+655b �9+887 �12+960b �17+153a �3+230a �17+623a �17+623a

Zl 0+113 0+113 0+098 0+103 0+101 0+101 0+103 0+103
[sc � [c0 �0+401 �0+401 �0+463 �0+399 �0+322 �0+322 �0+315 �0+315
[ Sc � [c0 0+615 0+615 0+711 0+612 0+809 0+809 0+793 0+793

c+v+0+05 �25+353 �3+635 �23+442 �25+401 �25+016 �3+593 �25+224 �3+608
c+v+0+10 �20+324 �3+229 �18+834 �20+388 �19+718 �3+196 �19+902 �19+902

IP NG

ZZr+c ZZt+c MZr+c
AR MZr+c

bic ZZr+c ZZt+c MZr
AR MZr+c

bic

�34+424a �4+023a �12+958b �34+385a �20+546a �3+238a �16+177a �21+872a

Zl 0+109 0+109 0+071 0+110 0+025 0+025 0+022 0+026
[sc � [c0 �0+341 �0+341 �0+524 �0+339 �2+470 �2+470 �2+778 �2+383
[ Sc � [c0 0+708 0+708 1+088 0+705 2+105 2+105 2+368 2+031

c+v+0+05 �25+340 �3+630 �20+661 �25+372 �14+193 �2+879 �14+193 �14+193
c+v+0+10 �20+210 �3+217 �16+479 �20+229 �11+354 �2+583 �11+351 �11+354

Notes: All exchange rates are against the Deutsche mark+ Standard 5% ~10%! critical values are �14+10 ~�11+35!
for the ZZr+c and MZr+c tests, �2+86 ~�2+57! for the ZZt+c test; a ~b! denotes a statistic significant at the 5% ~10%!
significance level when standard I~1! critical values are used+ Critical values for the BI~1! hypothesis have been
obtained through MC simulation by discretizing the limiting regulated Brownian motion over T � 20,000 seg-
ments and using 50,000 replications+
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Figure 9. Monthly U+S+ percentage unemployment rate among adult males from January 1948 through August 1999+
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estimated by the autoregressive estimator ZlAR
2 with number of lags k equal to

12, which corresponds to the lag length selected by means of the BIC and the
MAIC criteria; k � 12 is also the lag length selected by Caner and Hansen
~2001!+ The range statistic based on ZlAR

2 , [rmAR , is also reported+
The results are summarized in Table 7, first row+ All tests suggest rejecting

the I~1! model at the 5% significance level, with the [rm test rejecting at the 1%
level ~the standard 1% critical value of the [rm test is 0+833!+ The researcher
should therefore investigate whether such a rejection depends on the existence
of an upper and a lower bound or if it can be attributed to the absence of a unit
root+ In the third, fourth, and fifth rows of Table 7 the estimates of l2 , sc � c0,
and Sc � c0 are reported+ Because sc � c0 is between �0+32 and �0+33 whereas
Sc � c0 is between 9+86 and 10+28, the presence of the upper barrier at Nb � 100

seems to be negligible+ Conversely, according to Figure 5, a lower barrier at
�0+32 inflates the asymptotic rejection frequency of the ~5% nominal level!
OLS-demeaned tests to 18% for ZZr+c 0MZr+c

AR and to 13% for ZZt+c; similarly, the
asymptotic rejection frequency of [rm is found to be about 30%+ Therefore, the
outcome of unit root tests is likely to be affected by the presence of the lower
bound+

Bound-corrected critical values can easily be obtained by referring to the
criteria outlined in Section 5+ The estimates of the 5% and 10% critical values
for testing the BI~1! hypothesis are presented in the last two rows of Table 7+
Now, two tests reject the BI~1! null hypothesis at the 10% level, with the remain-
ing tests leading to the maintenance of the null hypothesis even at the 10%
level+ Hence, once one has properly taken account of the bounds, the evidence
against the unit root hypothesis in the postwar U+S+ male unemployment rate is
much weaker than the evidence obtained without accounting for the bounds+

Table 7. U+S+ male unemployment rate: Unit root tests, estimates of the bound
parameters, and bound-corrected critical values

ZZr+c ZZt+c [rm MZr+c
AR [rmAR

�19+172a �3+115a 0+827a �17+342a 0+869a

l2 0+158 0+158 0+158 0+143 0+143
sc � c0 �0+317 �0+317 �0+317 �0+334 �0+334
Sc � c0 9+864 9+864 9+864 10+282 10+282

c+v+0+05 �24+567 �3+494 0+648 �24+200 0+651
c+v+0+10 �18+927 �3+081 0+728 �18+710 0+732

Notes: Standard 5% ~10%! critical values are �14+10 ~�11+35! for the ZZr+c and MZr+c tests, �2+86 ~�2+57! for
the ZZt+c test, and 0+975 ~1+063! for the [rm test; a ~b! denotes a statistic significant at the 5% ~10%! significance
level when standard I~1! critical values are used+ Critical values for the BI~1! hypothesis have been obtained
through MC simulation by discretizing the limiting regulated Brownian motion over T � 20,000 segments and
using 50,000 replications+
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7. EXTENSIONS AND CONCLUDING REMARKS

This paper shows how the presence of range constraints affects the asymptotic
distribution of unit root tests+ Testing for unit roots in bounded time series should
always be carried out with caution because, when the unit root hypothesis is
rejected, the range constraints can be the leading cause of the rejection+ The
approach suggested in the paper provides a way to assess the role of range
constraints, and it can be implemented easily+ It allows a quick evaluation of
the relevance of the bounds and also allows the researcher to test statistically
whether a given limited time series reverts because of the presence of the bounds
alone ~the “bounded unit root” hypothesis! or because it does not have a unit
root ~the “bounded, near-unit root” hypothesis!+Moreover, the proposed asymp-
totic framework provides an adequate approximation of the finite-sample prop-
erties of unit root tests under range constraints+

The asymptotics and the finite-sample methods discussed in this paper can
be extended to a multivariate framework+ Specifically, it can be shown that the
stronger the range constraints on the data, the higher the probability that cointe-
gration tests will point toward ~spurious! cointegration+

Finally, it is worth noting that the asymptotics obtained also provide a basis
for ~asymptotic! power comparisons when the researcher wants to test whether
a given time series with integrated behavior is bounded by unobservable bounds+
For example, in the context of floating nominal exchange rates one might be
interested in testing whether a given bilateral exchange rate is regulated within
an undeclared target zone ~see Nicolau, 2002, and references therein!+ The
asymptotics of Section 4 allow us to understand which tests are preferable in
terms of power when the standard I~1! hypothesis is tested against the bounded
I~1! alternative+

NOTES

1+ In the following discussion, C :� C @0,1# denotes the space of all continuous, real valued
functions on @0,1# , whereas D :� D@0,1# denotes the space of all real valued “cadlag” functions on
@0,1# , i+e+, real valued functions that are right continuous at each point of @0,1! with left limit
existing at each point of ~0,1# + Finally, w

&& and
p
&& denote weak convergence and convergence in

probability, respectively+
2+ Consider for ease of notation the lower bound case only, and suppose that a r+v+ u is cen-

sored at tb and that its cumulative distribution function ~c+d+f+! has the form Fu~x!� G~x!I$x � tb% ,
where G~{! is an uncensored c+d+f+ The same distribution can be obtained by taking u :� « � rj,
where « is a r+v+ with c+d+f+ G~{! on all the real set and rj :� ~ tb � «!I$« � tb% + Truncation at tb, i+e+,
Fu~x!� @1 � G~ tb!#�1 @G~x!� G~ tb!#I$x � tb% can be obtained by simply taking « as a r+v+ with c+d+f+
G~{! and by taking rj as a r+v+ such that F rj6«� tb~x!� Fu~x � «! and F rj6«� tb~x!� I$x � 0% + Reflection
at tb, i+e+, Fu~x! � @G~x! � G~2 tb � x!#I$x � tb% is given by taking « with c+d+f+ G~{! and defining
rj :� ~2 tb � x!I$« � tb% +

3+ A formal proof is provided in the Appendix, Proof of Theorem 1+
4+ See, e+g+, Assumption ~B1! in this section+
5+ It is worth noting that, although this algorithm allows exact simulation of the regulated

Brownian motion over a discrete grid, simulation of functionals such as *0
1 g~B sc

Sc~s!! ds requires the
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discretized time increment 10N to be extremely fine to obtain an accurate assessment of the limit-
ing distribution ~see Asmussen, Glynn, and Pitman, 1995!+

6+ Quantiles of the bounded unit root distribution ~and also the quantiles of the various statis-
tics discussed in the paper! have been estimated over a grid of values for c � 0+20, 0+21, + + + ,
1+00,1+02, + + + ,2+00+

7+ Consistency follows, e+g+, from Theorem 3 of Hansen ~1992!+
8+ A selection of 5% quantiles and a GAUSS program for simulating the asymptotic quantiles

of unit root tests for any choice of ~ sc, Sc! are available from the web page http:00www2+stat+unibo+it0
cavaliere0rconstr0+

9+ We do not report the results related to the power properties of the tests in finite samples
because the asymptotic local power analysis provides a good description of the finite-sample per-
formance, with all tests approaching the corresponding asymptotic local power function relatively
fast as T increases+

10+ When the errors are autocorrelated and there is one bound only, the size performance of the
tests ~not reported! is very close to the size performance in the no-bound case ~c � `!+

11+ Specifically, the SC estimator is based on the OLS residuals obtained by regressing Xt on
Xt�1 ~on ~Xt�1I1!' for the constant-corrected tests! and employs a quadratic spectral kernel with
bandwidth parameter chosen according to the Andrews ~1991! automatic data-dependent procedure
using the plug-in method based on an AR~1! model fit to the data+ Note that the quadratic spectral
kernel satisfies Assumption ~K1!; cf+ Andrews ~1991, p+ 837! and Jansson ~2002, p+ 1450!+

12+ The data were obtained from Ecu rates extracted from the Bank of International Settle-
ments ~BIS! database+ All exchange rates are spot Ecu rates recorded at a daily Central Bank tele-
phone conference at 2+30 p+m+ Swiss time+ The bilateral exchange rates have been calculated from
these Ecu rates+
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APPENDIX
Proof of Theorem 1. Consider the process $ FXt % defined recursively as

FXt � �
FXt�1 � «t if FXt�1 � «t � @ tb, Nb#

Nb if FXt�1 � «t � Nb

tb if FXt�1 � «t � tb

(A.1)

with initial condition FX0 � X0+ By setting FXT ~{! :� ~l2T !�102 FX@{T # the following theo-
rem holds+

THEOREM 6+ Under the conditions of Theorem 1, as T F ` FXT ~{! � FXT ~0!
w
&&

B sc�c0

Sc�c0~{! , where B sc�c0

Sc�c0 is a regulated Brownian motion with bounds at sc � c0, Sc � c0.
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Proof. The proof consists of two steps+ First, we define a continuous approximant of
FXT ~{! that satisfies Harrison’s construction of the regulated Brownian motion, and weak

convergence is proved+ Then, it is shown that weak convergence holds for FXT ~{! too+
The process $ FXt % can be recursively defined as FXt � FX0 � St � Lt � Vt , where

St :�(i�1
t «i , Lt :�(i�1

t li , Vt :�(i�1
t vi , lt :��~ FXt�1 � «t !I$ FXt�1 � «t � sclT 102% , and

vt :� ~ FXt�1 � «t � SclT 102!I$ FXt�1 � «t � SclT 102% + Obviously, FXt � @ sclT 102, SclT 102# ,
all t+ To define a continuous approximant of FXt , say, FXT

�~{!, let us define continuous
approximants for all its normalized components, i+e+, ~l2T !�102St , ~l2T !�102Lt , and
~l2T !�102Vt + For the partial sum St we can set

ST
�~s! :�

1

lT 102 (
t�1

@sT #

«t � «@sT #�1

~sT � @sT # !

lT 102 � ST ~s!� «@sT #�1

~sT � @sT # !

lT 102 , (A.2)

ST
�~1! :�

1

lT 102 (
t�1

T

«t � ST ~1!,

which represents the process obtained by joining the points ~t0T, ~l2T !�102St ! by means
of straight lines+ For Vt and Lt we define this approximation in a slightly different way:

VT
�~s! :� �

1

lT 102 (
t�1

@sT #

vt if v@sT #�1 � 0

1

lT 102 (
t�1

@sT #

vt �
1

lT 102

sT � @sT #�
«@sT #�1 � v@sT #�1

«@sT #�1

1 �
«@sT #�1 � v@sT #�1

«@sT #�1

v@sT #�1

� I�sT � @sT #�
«@sT #�1 � v@sT #�1

«@sT #�1
� if v@sT #�1 � 0

,

VT
�~1! :�

1

lT 102 (
t�1

T

vt ,

and

LT
� ~s! :� �

1

lT 102 (
t�1

@sT #

lt if l@sT #�1 � 0

1

lT 102 (
t�1

@sT #

lt �
1

lT 102

sT � @sT #�
«@sT #�1 � l@sT #�1

«@sT #�1

1 �
«@sT #�1 � l@sT #�1

«@sT #�1

l@sT #�1

� I�sT � @sT #�
«@sT #�1 � l@sT #�1

«@sT #�1
� if l@sT #�1 � 0

,

LT
� ~s! :�

1

lT 102 (
t�1

T

lt +
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With respect to linear interpolations like ~A+2!, this construction still interpolates
~l2T !�102Xt but also satisfies the following properties:

~1! LT
� ~{! and VT

�~{! are increasing and continuous with LT
� ~0! � VT

�~0! � 0;
~2! FXT

�~s! � c0 � ST
�~s! � LT

� ~s! � VT
�~s! � @ sc, Sc# , all s � @0,1# ;

~3! LT
� ~{! and VT

�~{! increase only when FXT
�~{! � sc and FXT

�~{! � Sc, respectively+

From Harrison ~1985, Prop+ 2+6!, the continuous mapping FXT
�~{! � g sc

Sc~c0 � ST
�~{!! �

c0 � ST
�~{! � LT

� ~{! � VT
�~{! is the unique functional that regulates c0 � ST

�~{! to lie
within the interval @ sc, Sc# and that satisfies properties 1–3+ This allows us to obtain the
limiting distribution of FXT

�~{! by applying the continuous mapping theorem ~CMT! ~see
Billingsley, 1968! to the limit of c0 � ST

�~{!+ Specifically, if we prove that ST
�~{! w

&& B~{!
under Assumption ~A2!, then the CMT would imply that FXT

�~{! � g sc
Sc~c0 � ST

�~{!! w
&&

g sc
Sc~c0 � B~{!!, which is a Brownian motion with initial value c0, regulated at sc and at Sc+

To show that ST
�~{! w

&& B~{!, it suffices to consider the following result:

sup
s�@0,1#

6ST
�~s!� ST ~s!6 �

1

lT 102 max
t�1, + + + ,T

6«t 6� op~1! (A.3)

under Assumption ~A2!, so that from Billingsley ~1968, Theorem 4+1!, ST ~{!
w
&& B~{!

implies ST
�~{! w

&& B~{!+ To see that the last equality in ~A+3! holds, note that because
weak convergence on a compact space implies stochastic equicontinuity ~see, e+g+, Pol-
lard, 1990!, we have for all « � 0,

lim sup
dr0

lim sup
Tr`

Pr � sup
s�@0,1#

sup
s '�@0,1# : 6s '�s6�d

6ST ~s!� ST ~s
' !6 � «� � 0+ (A.4)

Now, maxt�1, + + + ,T 6«t 6 � lT 102 maxt�1, + + + ,T 6ST ~t0T ! � ST ~~t � 1!0T !6, and hence

Pr � max
t�1, + + + ,T

6«t 6 � «lT 102� � Pr � max
t�1, + + + ,T

6ST ~t0T !� ST ~~t � 1!0T !6 � «�
� Pr � sup

s�@0,1#
sup

s '�@0,1# : 6s '�s6�T �1
6ST ~s!� ST ~s

' !6 � «� ,
which converges to 0 as T diverges; see ~A+4!+

To prove weak convergence of FXT ~{! it is sufficient to prove that the process

FXT
�~s!� FXT ~s! � �LT

� ~s!�
L@sT #

lT 102�� �VT
�~s!�

V@sT #

lT 102�
�

1

lT 102 «@sT #�1~sT � @sT # ! (A.5)

converges to 0 uniformly in probability+ Because both 6LT
� ~s! � ~l2T !�102L@sT #6 and

6VT
�~s! � ~l2T !�102V@sT #6 are smaller than ~l2T !�102 6«@sT #�16, and because the set of

increasing points of LT
� ~{! and the set of increasing points of VT

�~{! are disjoint, it fol-
lows that

6 FXT
�~s!� FXT ~s!6 �

2

lT 102 6«@sT #�16~sT � @sT # !�
2

lT 102 6«@sT #�16; (A.6)
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therefore, sups�@0,1# 6 FXT
�~s! � FXT ~s!6 � 2~l2T !�102 maxt�1, + + + ,T 6«t 6, which is of op~1!

~see equation ~A+3!!, and hence the weak convergence of FXT ~{! follows+ The proof is
completed by noting that because FXT ~{! converges weakly to a Brownian motion start-
ing at c0 and regulated at sc, Sc, the convergence of FXT ~{! � FXT ~0! � FXT ~{! � c0 to a
standard Brownian motion, regulated at sc � c0, Sc � c0, also follows+ �

To complete the proof of Theorem 1 it is sufficient to refer to the following lemma+

LEMMA 7+ $Xt % and $ FXt % satisfy the relation

max
t�0, + + + ,T

6Xt � FXt 6 � max
t�0, + + + ,T

Njt � max
t�0, + + + ,T

rjt (A.7)

for all T � 0.

Proof. Let dt :� maxt '�t 6Xt � FXt 6+ As maxt�0, + + + ,T 6Xt � FXt 6 � maxt�0, + + + ,T dt we
prove the lemma by showing that the relation

dt � max
t '�0, + + + , t

Njt ' � max
t '�0, + + + , t

rjt ' (A.8)

holds for all t � 0,1, + + + ,T+ The relation ~A+8! is proved by induction+ When t � 0,
X0 � FX0, d0 � Nj0 � rj0 � 0, and ~A+8! holds; therefore it suffices to show that dt�1 �
maxt '�0, + + + , t�1 Njt ' � maxt '�0, + + + , t�1 rjt ' given that relation ~A+8! holds at time t+ Suppose
that Xt � FXt and «t�1 � 0+ If FXt � «t�1 � tb, also Xt � «t�1 � tb, so that rjt�1 � Njt�1 � 0,
dt�1 � dt , and relation ~A+8! holds because maxt '�0, + + + , t Njt ' � maxt '�0, + + + , t rjt ' �
maxt '�0, + + + , t�1 Njt ' � maxt '�0, + + + , t�1 rjt ' + If FXt � «t�1 � tb and Xt � «t�1 � tb, then rjt�1 �
Njt�1 � 0; hence, as Xt�1 � FXt�1 � Xt � FXt � ~ FXt � «t�1 � tb! with Xt�1 � FXt�1 � 0,

Xt � FXt � 0, and ~ FXt � «t�1 � tb! � 0, relation ~A+8! holds as dt�1 � dt �
maxt '�0, + + + , t Njt ' � maxt '�0, + + + , t rjt ' � maxt '�0, + + + , t�1 Njt ' � maxt '�0, + + + , t�1 rjt ' + If both FXt �
«t�1 and Xt � «t�1 are smaller than tb, then FXt�1 � tb, Xt�1 � Xt � «t�1 � rjt�1, and
Njt�1 � 0; because 0 � Xt�1 � FXt�1 � ~Xt � «t�1 � tb!� rjt�1 � rjt�1 ~as Xt � «t�1 � tb!,

we have dt�1 � maxt '�0, + + + , t�1 Njt ' � maxt '�0, + + + , t�1 rjt ' , so that relation ~A+8! holds+ By
similar arguments, the induction proof also holds when Xt � FXt and, symmetrically,
when «t�1 � 0+ �

Under ~A3!, maxt�0, + + + ,T Njt � maxt�0, + + + ,T rjt is of op~T 102!, and hence Lemma 7 implies
that sups�@0,1#6XT ~s! � XT ~0! � ~ FXT ~s! � FXT ~0!!6 � sups�@0,1#6XT ~s! � FXT ~s!6

p
&& 0+

Consequently, we can apply Billingsley ~1968, Theorem 4+1!, to conclude that Theo-
rem 6 holds for XT ~{! � XT ~0! also+ �

Proof of Theorem 2. As in Phillips ~1987a!, we begin by writing the unit root
statistics as the ratio between ~ 12

_ !~T �1XT
2 � [s0

2!, [s0
2 :� T �1 (t�1

T ~DXt !
2 , and

T �2 (t�1
T Xt�1

2 + Under Assumption B, the weak convergence in ~A2! of Definition 1
holds with l2 :� sv2 C~1!2 ~Phillips and Solo, 1992, Thm+ 3+15!; consequently, Theo-
rem 1 and the CMT imply the joint weak convergence of ~T �1XT

2 ,T �2 (t�1
T Xt�1

2 !' to
l2~B sc

Sc~1!2,*0
1 B sc

Sc~s!2 ds!' with l2 as previously defined+ Finally, the convergence [s0
2 p
&&

s2 :� sv2(j�1
` cj

2 ~see the proof of Lemma 3, which follows!, the CMT, and Theo-
rem 4+1 of Billingsley ~1968! give the desired result+ �

Proof of Lemma 3. For ease of notation and without loss of generality, we prove the
lemma for the case of one bound at sc � c0+ Initially, we consider the estimator of l2

based on first-differenced data:
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Zl0
2 :�

1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

DXt DXt�6 j 6�
1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

ut ut�6 j 6 ;

later, we generalize the proof to the residual-based estimator+ First, decompose Zl0
2 as

Zl0
2 �

1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

ut ut�6 j 6

�
1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

~«t � rjt !~«t�6 j 6� rjt�6 j 6 !

�
1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

«t «t�6 j 6

�
1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

~ rjt «t�6 j 6� «t rjt�6 j 6� rjt rjt�6 j 6 !

� Dl2 �
1

T (j��T�1

T�1

v� j

qT
� (

t�6 j 6�1

T

~ rjt «t�6 j 6� «t rjt�6 j 6� rjt rjt�6 j 6 !, (A.9)

where Dl2 is the idealized estimator given in equation ~11!+ Under Assumptions K and
~A2!, Theorem 2 in Jansson ~2002! shows that Dl2 p

&& l2 , and hence to complete the
proof we only need to prove that the last term on the right-hand side of equation ~A+9!
goes to 0 in probability+ As rjt � 0, all t, we can focus on the following inequalities:

� 1

T (j��T�1

T�1

v� j

qT
�~ rjt «t�6 j 6� «t rjt�6 j 6� rjt rjt�6 j 6 !�

�
1

T (j��T�1

T�1

�v� j

qT
�� (

t�6 j 6�1

T

6 rjt «t�6 j 6� «t rjt�6 j 6� rjt rjt�6 j 6 6

�
1

T (j��T�1

T�1

�v� j

qT
��max� max

t�1, + + + ,T
6«t 6, max

t�1, + + + ,T
rjt�(

t�1

T

3 rjt

�
3LT

T 102 � max
t�1, + + + ,T

6«t 6� max
t�1, + + + ,T

rjt� (
j��T�1

T�1

�v� j

qT
�� 1

T 102 (A.10)

with LT :� (t�1
T rjt + Recursive substitutions allow us to express XT as XT � c0lT 102 �

(t�1
T «t � (t�1

T rjt , implying that T �102LT � T �102 (t�1
T rjt � T �102XT � c0l �

T �102 (t�1
T «t converges weakly to the well-defined random variable l~B sc�c0

�` ~1! �
B~1!!+ Moreover, consider the following equality:

1

T 102 � max
t�1, + + + ,T

6«t 6� max
t�1, + + + ,T

rjt� (
j��T�1

T�1

v� j

qT
�

�
qT

T d
* � max

t�1, + + + ,T

6«t 6

T 102�d*
� max

t�1, + + + ,T

rjt

T 102�d*�� 1

qT
(

j��T�1

T�1

v� j

qT
��+ (A.11)
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By ~B1!, ~B2!, and ~K2'!,

max
t�0, + + + ,T

6«t 6

T 102�d*
,

max
t�0, + + + ,T

6 rjt 6

T 102�d*
� Op~1!+ (A.12)

To check this result note that because ~K2 ' ! implies that d *,h* solve ~ 1
2
_ � d * ! �

~2 � h*! � 1 � 0, it follows that

Pr� max
t�0, + + + ,T

6«t 6

T 102�d*
� «� � Pr � max

t�0, + + + ,T
6«t 6 � «T 102�d* � �

sup
t�1, + + + ,T

E6«t 62�h

«2�hT ~102�d* !~2�h!�1

�

sup
t�1, + + + ,T

E6«t 62�h

«2�hT ~102�d* !~2�h* !�1 �

sup
t�1, + + + ,T

E6«t 62�h

«2�h
(A.13)

and, similarly,

Pr� max
t�0, + + + ,T

rjt

T 102�d*
� «� �

sup
t�1, + + + ,T

E6 rjt 62� rh

«2� rhT ~102�d* !~2� rh!�1 �

sup
t�1, + + + ,T

E6 rjt 62� rh

«2� rh + (A.14)

As ~A+13! and ~A+14! can be made arbitrarily small by choosing « appropriately, the
result ~A+12! is proved+ Consequently, because ~i! qT T �d* r 0 ~see ~K2'!!; ~ii! ~K1!
implies supT�1~10qT !(j��T�1

T�1 6v~ j0qT !6 � ` ~see Jansson, 2002!; ~iii! T �~102�d* !�
~maxt�1, + + + ,T 6«t 6 � maxt�1, + + + ,T 6 rjt 6! � Op~1!; ~iv! T �102LT � Op~1!, it holds that
~A+10!, and hence Zl0

2 � l2 , are of op~1!+
By setting qT � 1, v~x! :� I$x � 0% and using the weak law of large numbers Is2 :�

~10T !(t�1
T «t

2 p
&& s2 :� sv2(j�1

` cj
2 ~which holds under ~B1!, see, e+g+, Jansson, 2002,

p+ 1450!, it also follows that [s0
2 :� ~10T !(t�1

T ~DXt !
2 � ~10T !(t�1

T ut
2 p
&& s2 ; note

that this result holds irrespective of Assumption K+
Now, consider the difference Zl2 � Zl0

2 , where Zl2 is given in ~10!+ Because [ut � ut �
~ [rT � 1!Xt�1, simple algebra allows us to show that

6 Zl2 � Zl0
2 6 � � (

j��T�1

T�1

v� j

qT
� 1

T (t�6 j 6�1

T

~ [ut [ut�6 j 6� ut ut�6 j 6 !�
� � ~ [rT � 1! (

j��T�1

T�1

v� j

qT
�

�
1

T (t�6 j 6�1

T

~~ [rT � 1!Xt�1 Xt�1�6 j 6� ut Xt�1�6 j 6� Xt�1 ut�6 j 6 !�
� 6 [rT � 16 (

j��T�1

T�1

�v� j

qT
��

� �6 [rT � 16 max
t�1, + + + ,T

Xt
2 � 2 max

t�1, + + + ,T
6ut 6 max

t�1, + + + ,T
6Xt 6�

� T 6 [rT � 16� 1

qT
(

j��T�1

T�1

�v� j

qT
���

�
qT

T d
* �T d

*
6 [rT � 16

max
t�1, + + + ,T

Xt
2

T
� 2

max
t�1, + + + ,T

6ut 6

T 102�d*

max
t�1, + + + ,T

6Xt 6

T 102
�,
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which is op~1! because ~i! T ~ [rT � 1! � Op~1! ~Theorem 2!; ~ii! T �d*qT r 0 and
qT

�1(j��T�1
T�1 6v~ jqT

�1!6 is asymptotically bounded ~Assumption K!; ~iii! maxt�1, + + + ,T

T �102 6Xt 6 is of op~1! ~Theorem 1 and the CMT!; and ~iv! maxt�1, + + + ,T T �~102�d* ! 6ut 6 �
maxt�1, + + + ,T T �~102�d* ! 6 rjt 6 � maxt�1, + + + ,T T �~102�d* ! 6«t 6 � Op~1! ~see equation ~A+12!!+
Therefore, Zl2 p

&& l2 also+ As before, by setting qT � 1 and v~x! :� I$x � 0% it also fol-
lows that [s2 � [s0

2 � op~1!, which does not require Assumption K to hold+
Extension to the two-bound case and to the case of demeaned data follows

similarly+ �

Proof of Theorem 4. We initially prove that when a � 0, Theorem 1 holds with
XT ~{!

w
&& B sc

Sc~{! replaced by XT ~{!
w
&& J sc+a

Sc ~{!+ First, under ~A2!, Lemma 1~a! of Phillips
~1987b! holds and implies that ~l2T !�102S@{T #

w
&& Ja~{!+ The same weak convergence

holds for the approximant

ST
a~s! :�

1

lT 102 S@sT #� ~S@sT #�1 � S@sT # !
~sT � @sT # !

lT 102 ,

ST
a~1! :�

1

lT 102 ST ,

because

sup
s�@0,1#

�ST
a~s!�

1

lT 102 S@sT #�

�
1

lT 102 sup
s�@0,1#

6S@sT #�1 � S@sT # 6

� ~e�a0T � 1! sup
s�@0,1#

� S@sT #

lT 102 ��
1

lT 102 max
t�1, + + +T

6«t 6� op~1!+

Second, convergence to the regulated diffusion J sc+a
Sc is obtained by following the proof

of Theorem 1, where ~A+2! is now replaced by ST
a~s!; see the preceding discussion+

As in the proof of Theorem 2, the weak convergence in ~12! holds if [s0
2 :�

T �1 (t�1
T ~DXt !

2 converges to s2 in probability+ But this result follows from the
decomposition

[s0
2 �

1

T (t�1

T

~DSt � rjt � Njt !
2 �

1

T (t�1

T

~~rT � 1!St�1 � «t � rjt � Njt !
2

�
1

T (t�1

T

~«t � rjt � Njt !
2 �
~rT � 1!2

T (
t�1

T

St�1
2 �

2~rT � 1!

T (
t�1

T

~«t � rjt � Njt !St�1
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because ~i! T �1 (t�1
T ~«t � rjt � Njt !

2 p
&& s2 ~see Lemma 3!; ~ii! T �1~rT � 1!2 �

(t�1
T St�1

2 � Op~T �1! ~as rT � 1 � �a0T � O~T �2!!; and ~iii!

� rT � 1

T (
t�1

T

~«t � rjt � Njt !St�1�
� � rT � 1

T �(
t�1

T

6«t � rjt � Njt 6 6St�16

� � rT � 1

T � max
t�1, + + + ,T

6«t � rjt � Njt 6(
t�1

T

6St�16

� T 6rT � 16
max

t�1, + + + ,T
~6«t 6� rjt � Njt !

T 102 sup
s�@0,1#

� S@sT #

T 102 �� op~1!+

To prove the second part of the theorem, we only need to show that if the DGP is
BNI~1!, Lemma 3 continues to hold, and hence Zl2 p

&& l2 + This can be done by follow-
ing mechanically the proof of Lemma 3, and it is therefore omitted for brevity+ �

Proof of Corollary 5. Because by Assumption ~A4!, [sc :� tb~ Zl2T !�102 � sclT 102 �
~ Zl2T !�102 � scl0 Zl, consistency follows from Zl2 p

&& l2 � 0; see Lemma 3+ The same
proof applies to [ Sc and to [c0+ �
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