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We develop a macroeconomic model in which the government does not guarantee to repay
debt. We ask whether movements in the price of government bonds can be rationalized by
lenders’ unwillingness to fully roll over debt when the outstanding level of debt exceeds
the government’s repayment capacity. Investors do not support a Ponzi game in this case,
but ration credit supply, thus forcing default at an endogenously determined fractional
repayment rate. Interest rates on government bonds reflect expectations of this event.
Numerical results show that default premia can emerge at moderately high debt-to-GDP
ratios where even small changes in fundamentals lead to steeply rising interest rates. The
behavior of risk premia broadly accords with recent observations for several European
countries that experienced a worsening of fundamental fiscal conditions.
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1. INTRODUCTION

The recent financial crisis has turned into a fiscal crisis in several European
countries. An unusually large adverse shock has reduced tax revenues and has
led to higher government spending in an attempt to mitigate the consequences
of the shock for aggregate output and employment. The resulting boost in public
deficits has led to high levels of government debt, which are already above 100%
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of annual GDP in some countries and are predicted to rise to even higher levels
in the near future. Sizeable yield spreads between government bonds of member
countries of the European Monetary Union have emerged and for some countries
(in particular for Greece, Ireland, Spain, and Portugal), yield spreads in relation
to comparatively safe German bonds increased dramatically since 2008.

It is hardly controversial that these spreads reflect the risk that governments
might default on their debt obligations. The purpose of the present paper is to
analyze the emergence of default risk premia on government bonds based on an
ability-to-repay approach. In the literature, a common approach is to determine
default as an outcome of an optimizing sovereign borrower who is willing to default
if the gains from nonrepayment of external debt exceed the costs of autarky and
potential resource losses in case of default [“willingness-to-repay approach"; see
Eaton and Gersovitz (1981) or Arellano (2008), among others].1 In contrast to this,
we consider an alternative approach where default is due to credit rationing by
lenders when outstanding public debt exceeds the government’s debt repayment
capacity. We specify fiscal policy in a nonoptimizing way and assume that debt
is held by investors, who fully take into account the possibility that the present
value of government surpluses might not be sufficient to cover outstanding debt.
We show that such a setup is sufficient to obtain interest rates that are almost
insensitive to low debt-to-GDP ratios and steeply rising for debt-to-GDP ratios
comparable to those recently observed in European countries.

We apply a basic closed economy model and consider a government with
limited commitment.2 It levies an exogenously determined proportional tax on
labor income and issues one-period bonds to finance real government expen-
ditures, while failing to guarantee repayment of debt. Because of endogenous
production, tax revenues are limited and depend on the state of the economy.
These bonds are non-state-contingent when debt is fully repaid, whereas default
induces a partial state contingency. It is well established that if a government is
committed to raising fiscal surpluses in response to rising debt levels [see Bohn
(1998)], this can guarantee intertemporal solvency as long as tax rates are below
the revenue-maximizing level and can always be freely adjusted. Our point of
departure, instead, is that the government is not committed to such a policy, so
that default triggered by a potential failure of intertemporal solvency becomes a
possibility. The present paper studies the qualitative properties and quantitative
implications of the resulting equilibrium when investors take this possibility into
account.

In particular, if adverse productivity shocks lead to a build-up of public debt and
the present value of future surpluses falls short of covering the level of outstanding
debt, the government’s debt repayment capacity is exceeded.3 Household lenders
realize that they would support a Ponzi game if they further invested in govern-
ment bonds, and thus they ration credit supply according to their transversality
condition. In this case, default becomes inevitable and the government repays
outstanding debt using available revenues from current surpluses and issuance
of debt that can be partially rolled over. Bondholders therefore experience only
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a partial redemption of their investments at an endogenously determined rate.
Each individual lender assesses the probability that this event will occur and,
consequently, demands a default risk premium as a compensation for expected
losses.

We consider neither governments’ incentives to default on external debt nor
the real costs of default, which might cause governments to raise surpluses that
preclude costly defaults. Instead, the essence of the analysis is exploring the impact
of fiscal sustainability on equilibrium bond prices. To assess the implications of this
approach in the most transparent way, we assume that tax rates and government
spending are exogenous [as in the literature on the fiscal theory of the price
level—see Sims (1994) and Woodford (1994)—or on the fiscal theory of sovereign
default—see Uribe (2006)].4 These simplifying assumptions obviously come at
the cost that we may underestimate the full impact of fiscal policy on default
probabilities to the extent that in reality governments behave in a less mechanical
way.

The main results are as follows. We analytically show that there is a unique
equilibrium for the price of risky government bonds. We find that the relation
between the debt-to-GDP ratio and the default risk premium can be very steep
above certain critical levels of debt-to-GDP ratio, consistent with the observation
that risk premia may rise suddenly and very strongly when fiscal positions worsen.
Of course, the precise value of the critical debt ratio depends on fiscal policy and
business cycle parameters. We present calibrated versions of the model intended
to capture relevant quantitative features of average European Monetary Union
member countries, as well as parameterizations pertaining to countries that have
recently faced sharply rising interest rates on their public debt, such as Greece,
Portugal, and Spain. We find that risk premia are generally indistinguishable from
zero for low debt-to-GDP ratios and can, if fiscal policy ensures a sufficient amount
of surplus, remain negligible for debt-to-GDP ratios as high as 100%. However,
above certain thresholds, risk premia tend to rise steeply and in a convex way with
higher debt-to-GDP ratios. Additionally, the size of risk spreads on government
bonds responds to the state of the business cycle, with a severe slump (because of its
adverse consequences for government revenues) being able to trigger substantial
increases in spreads even if the risk spreads associated with the same initial debt
ratio were negligible outside recessions.

The relation between interest rate premia on government bonds and the debt-
to-GDP ratio implied by the model is broadly in line with the experience of
those European countries that have been heavily affected by the recent debt crisis.
Although the model is admittedly too stylized to be considered a full-fledged
quantitative analysis, its main properties show some interesting similarities to
empirical observations. In particular, the model replicates the convex empirical
relation between interest rate spreads and debt-to-GDP ratio found in the crisis
period following the recession in 2008–2009, as well as the observed nonrespon-
siveness of interest rates to changes in debt at lower values of indebtedness in the
earlier years of the 2000s decade. We conclude that the quantitative properties
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of observed interest rate spreads can broadly be understood from the impact of
macroeconomic fundamentals.

Our approach to model sovereign default is related to Uribe’s (2006) “Fiscal
Theory of Sovereign Default.” He considers nominal debt and exogenous surpluses
in an endowment economy to demonstrate that default is inevitable under certain
monetary–fiscal policy regimes. For a regime that holds the price level constant,
the default rate adjusts in every period to equate the current value of debt to the
present value of future surpluses. As shown in Schabert (2010), the intertemporal
budget constraint is not sufficient as a criterion to determine the entire sequence of
the default rate. To overcome this indeterminacy, Uribe (2006) introduces default
rules by which the government defaults when the current surplus falls below some
ad hoc threshold in terms of current debt or output.5 In the present paper, we
instead introduce the assumption that, when outstanding debt exceeds the present
value of surpluses, households restrict credit supply to the maximum amount of
debt that can be expected to be repaid. This assumption on the lenders’ behavior,
together with the assumption that the government serves lenders with available
revenues, allows us to determine an entire sequence of default rates. Our approach
to determining the default rate differs fundamentally from that of Bi (2012) and
Bi and Leeper (2012), in which a default event as well as the default rate is
randomly determined, so that default can in principle occur in every state and at
every rate (though with different probabilities). Daniel and Shiamptanis (2012)
analyze default risk in a monetary union model with an exogenous upper limit on
the fiscal surplus. Evans et al. (2013) use an overlapping-generations model where
the government pays a fixed amount of transfers until the sustainable limit of this
policy is reached. Our own approach of relating default risk to the maximum debt
capacity has most recently also been used by Lorenzoni and Werning (2013). These
authors analyze the conditions under which multiple self-fulfilling equilibria in
the government bond market are possible.6

The remainder is organized as follows. Section 2 introduces the model. Section
3.1 describes the determination of equilibrium bond prices in a simplified version
where analytical results are available, whereupon Section 3.2 presents quantitative
results for a calibrated model version. Section 4 concludes.

2. THE MODEL

In this section, we present a simple real dynamic general equilibrium model
where the government levies income taxes and issues non-state-contingent one-
period debt. Labor supply is endogenous, which gives rise to a Laffer curve
that bounds equilibrium tax revenues. We consider the case where fiscal policy
does not guarantee that the government never runs a Ponzi game.7 Individual
households will ration lending to the government when they realize that a Ponzi
scheme is inevitable. Without access to enough credit to completely roll over its
debt, the government then defaults when debt is partially repaid. Specifically, the
government repays the fraction of maturing debt that can be serviced out of current
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surpluses and the amount of newly issued debt that household lenders are willing
to roll over. Households consider that partial repayment is possible when adverse
productivity shocks lead to a build-up of public debt. They form expectations
of the future fractional rate of repayment of government debt. Accordingly, in an
arbitrage-free equilibrium, default premia exist that compensate household lenders
for expected government default.

2.1. The Private Sector

There exists a continuum of infinitely lived and identical households of mass one.
Their utility increases in consumption ct and decreases in working time lt , the
latter variable being bounded by a unit time endowment such that lt ∈ (0, 1). The
objective of a representative household is given by

max Es

∞∑
t=0

βt

[
c1−σ
t+1 − 1

1 − σ
+ 1 − lt+s

γ

]
, with β ∈ (0, 1), γ > 0, σ ≥ 1, (1)

where β denotes the subjective discount factor. Households borrow and lend
among each other via one-period state-contingent claims. Let φt,t+1 denote the
period-t price of one unit of the consumption good in a particular state of period
t + 1 normalized by the probability of occurrence of that state, conditional on the
information available in period t . The price of a random payoff dt+1 in period t +1
is given by Et [φt,t+1dt+1]. We restrict our attention to the case where private debt
contracts are enforceable and households satisfy the borrowing constraint

lim
k→∞

Etφt,t+kdt+k ≥ 0. (2)

Utility maximization subject to the borrowing constraint (2) requires the following
first-order condition for borrowing and lending in terms of state-contingent claims
to be satisfied: φt,t+1 = βc−σ

t+1/c
−σ
t . A portfolio that leads to a payoff of one in

each state is associated with the risk-free interest rate Rrf
t , where 1/Rrf

t = Etφt,t+1,
such that

1/Rrf
t = cσ

t βEt

(
c−σ
t+1

)
. (3)

Further, the transversality condition holds in the household optimum

lim
k→∞

Etφt,t+kdt+k = 0. (4)

Households can further invest in one-period government bonds bt , subject to
b−1 > 0 and bt ≥ 0. Following the literature on sovereign default [see Arellano
(2008)], we consider discount bonds, which make it possible to determine the price
of bonds and the expected default rate separately. Specifically, the government
offers one-period debt contracts at the price 1/Rt in period t that deliver one unit
of output in period t + 1 if the borrower is equipped with a sufficient amount
of funds. In contrast to private borrowers, however, the government does not
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guarantee full debt repayment. In case of default, lenders will redeem only an
endogenously determined fraction of their investments.

If current and discounted future surpluses are expected to be large enough to re-
pay outstanding debt, the household optimality condition for investment in govern-
ment bonds is the analogue to the Euler equation (3), namely, c−σ

t = RtβEt

(
c−σ
t+1

)
.

The constraint bt/Rt ≥ 0 further implies that at the household optimum the
transversality condition limk→∞ Etφt,t+kbt+k/Rt+k = 0 holds. Applying (3) and
the law of iterated expectations, the latter can be written as

lim
t→∞ Es (bt+s/Rt+s)

t∏
i=1

1/Rrf
s+i−1 = 0, (5)

where we used that the discount factor satisfies φt,t+k = φt+k−1,t+k · ... · φt,t+1

and that the exogenous state variable is generated by a first-order Markov process.
If beginning-of-period public debt in period t attains a level that is too high to
be repayable (see Section 2.2 for a definition), the government runs into a Ponzi
game, which would be inconsistent with the households’ transversality condition
(5). In this case, households are assumed to ration lending. We assume that they
lend to the maximum amount of debt that is expected to be repayable in t + 1.
This necessarily implies that the government defaults in period t , i.e., can honor
only a fraction of its debt obligations.

Consider for a moment a deterministic finite-horizon framework with a final
period T . Optimizing behavior of households implies not holding assets at the end
of period T , such that bT = 0 [which accords with (5)]. Hence, the government
has to finance its debt obligations in period T by primary surpluses. Rational
households will therefore lend to the government in period T − 1 only up to an
amount that promises a repayment of sT (where sT denotes the primary surplus in
period T ). This implies that credit in period T − 1 will be limited by bT −1 ≤ sT ,
so that the government is effectively credit-rationed in T −1 if it has to issue more
debt to fully repay debt bT −2 that matures in period T − 1. Thus, default becomes
inevitable in T − 1.

The model presented here generalizes this idea to a stochastic infinite-horizon
framework in which the transversality condition (5) takes the place of the condition
bT = 0 of the finite-horizon example. Let �t be the present value of surpluses
(see Section 2.2 for a precise definition), a concept that is commonly applied
to relate future surpluses to initial indebtedness, e.g., in Auerbach et al. (1994).
When outstanding government debt bt−1 in period t exceeds the present value
of surpluses �t , so that (5) will be violated, the government will be effectively
credit-rationed. We assume that households lend the maximum amount that is
expected to be repayable by the government in subsequent periods, implying
that bt = Et�t+1 (which accords with bT −1 = sT in the finite-horizon example
discussed previously). This assumption makes the fraction of nonrepaid debt as
small as possible, because those parts of debt that are rationally expected to be
repayable can still be rolled over. It should be noted that potential wealth effects
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stemming from default are neutralized by lump-sum transfers, so that lenders,
who ex ante demand risk premia to be compensated for partial repayment, will ex
post not be affected by a debt default. Under these assumptions, households are
indifferent between repayment and default in this framework.

Households realize the possibility of partial default on government bonds and
account for the probability of default (of course, because households are atomistic,
individual investors do not take into consideration the influence of their own
behavior on the probability of default). Let 1−δt denote the fraction of government
bonds that is redeemed and δt the default rate. The household flow budget constraint
then reads

ct + (bt/Rt ) + Et [φt,t+kdt+1] ≤ (1 − τt )wt lt + (1 − δt ) bt−1 + dt + prt + trt ,

where prt are firms’ profits and labor income wt lt (with the real wage rate wt )
is subject to a proportional tax rate τt ∈ (0, 1). Note that we assume lump-sum
transfers trt ≥ 0 that are paid out by the government in periods when debt is smaller
than a particular threshold that is never associated with default. Specifically, we
assume that the government transfers resources to households over time in an
amount that ensures that the intertemporal budget constraint is always satisfied,
whereas the timing of the transfers is chosen so that transfers do not affect the
determination of the bond price (see Section 2.2 for a discussion). The household
optimum is characterized by the first-order conditions (3),

cσ
t = γ (1 − τt ) wt , (6)

and

c−σ
t = RtβEt

[
c−σ
t+1 (1 − δt+1)

]
(7)

and the transversality conditions (4) and (5). Note that the Euler equation for risky
government debt, (7), differs from the one for risk-free private debt, (3), in that
the pricing of government bonds is affected by the fact that repayment is expected
to be only partial because of possible future default.

Perfectly competitive firms produce the output good yt with a simple linear
technology

yt = at lt , (8)

where labor productivity at is generated by a first-order Markov process with mean
a = 1 and a bounded support [al, ah] with ah > al > 0. Labor demand satisfies

wt = at . (9)

2.2. The Public Sector

The government raises revenues by issuing debt at a price qt = 1/Rt and taxing
labor income, and it purchases an exogenously given amount gt of the final good
in each period. Throughout, we assume government spending to be constant,
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gt = g > 0. The underlying assumption is that political constraints make a certain
amount of government spending inevitable. Although the government is assumed
to be fully committed to its tax and spending policy, it lacks a commitment to
repay debt. The flow budget constraint is given by

btR
−1
t + st = (1 − δt ) bt−1, (10)

where Rt = 1/qt is the gross real interest rate and surpluses st equal tax revenues
net of expenditures,

st = τtwt lt − g − trt , (11)

where the transfers are nonnegative, trt ≥ 0 (discussed later). We assume that the
government does not guarantee to fully service debt and does not preclude that
public debt might evolve on a path that implies a Ponzi scheme. As a simple and
most transparent way to implement a fiscal policy of this kind, we assume that the
government keeps the tax rate constant, τt = τ . If this implies that debt exceeds
the present value of future surpluses, lenders will not roll over debt completely;
i.e., they will not supply unlimited credit to the government.

As mentioned previously, we are interested in analyzing sovereign default risk
premia for governments that do not commit to full debt repayment. Full debt
repayment can be guaranteed if the government is able to permanently adjust tax
revenues positively in reaction to the volume of outstanding debt, as shown by
Bohn (1998). If governments credibly followed a tax rule of this type, and if in
addition there were no limits on the size of tax adjustments, default would be
known not to occur and hence risk premia on government bonds could not be
explained. Hence, we focus on governments that lack this type of commitment.
We use the assumptions of constant government spending and tax rates as a
simple way to implement the idea that governments may not be willing or flexible
enough, probably because of political pressures, to adjust spending quickly enough
to eliminate the risk that deteriorating business cycle conditions will engender
unstable debt dynamics.

We define the government’s maximum debt repayment capacity �t as the present
value of surpluses net of transfers,

�t = Et

∞∑
k=0

φt,t+k (τwt+klt+k − g) . (12)

The use of the stochastic discount factor φt,t+k for discounting ensures that differ-
ent time profiles of surpluses are made comparable using the household investor’s
utility-based valuation of payment streams and thus takes the household investor’s
attitude toward risk into account.

Note our assumption that nonnegative transfers (which are introduced to neu-
tralize wealth effects) are neglected in the computation of the maximum debt
repayment capacity (12). Thus, using �t as our measure of the maximum debt
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repayment capacity takes into account the possibility that the government will re-
duce future transfer promises to increase its net revenues. In this sense, bt−1 = �t

is the upper limit for initial debt that can in principle be repaid without default. We
assume that households take the debt repayment capacity �t into account when
they lend to the government. The government will fully serve debt obligations if
bt−1 ≤ �t . As long as this is the case, no government default occurs. Default,
however, becomes inevitable if the current stock of debt exceeds the repayment
capacity:

bt−1 > �t. (13)

If this is the case, the government is not able to generate enough current and future
surpluses to enable full repayment of outstanding debt.

In the case where (13) is satisfied, current outstanding debt cannot be repaid
(even when transfers are not paid out). As mentioned previously, households then
lend bt = Et�t+1, so that end-of-period debt is expected to be repayable by the
government in t + 1. The government is then unable to fully honor its obligations
and redeems as much as possible of its outstanding debt. As a consequence,
repayment will only be partial. The nonrepayment or default rate δt for the case
(13) satisfies [see (10)]

1 − δt = �t/bt−1, (14)

where we use that �t = (τwt lt − g)+Et�t+1 [see (12)]. In the numerical solutions
that follow, we verify that 1− δt is positive in all periods for the parameterizations
we consider. The price of debt, 1/Rt , then reflects the probability of default in
t + 1 in the form of the expected size of the default rate δt+1 [see (7)].

Regardless of default, the household’s transversality condition (5) requires that
the intertemporal government budget constraint is satisfied in all states and periods,
i.e., that current outstanding public debt always equals the present value of future
surpluses st . Given that fiscal policy behaves in a mechanical way, we therefore
assume that the government transfers back residual resources in a lump-sum
way, similarly to Aiyagari et al. (2002). Specifically, we assume that whenever the
present value of surpluses exceeds outstanding debt, the households acquire claims
on transfer payments, so that the intertemporal budget constraint is always satisfied
as an equality. We further assume that these claims are paid out to households not
immediately, but only when the initial level of debt bt−1 equals or falls below a
lower bound b that is associated with a negligible default probability (e.g., b < 0).
This assumption allows us to examine the effects of default risk on the bond price
without interference with the transfer scheme. To be more precise, if j is the
index for periods when transfers are actually paid, then in period j the sum of
all present-valued claims that have been accumulated since the period of the last
transfer payment are transferred to the households. Our bond price analysis then
focuses on episodes t �= j where the evolution of debt is not affected by transfer
payouts.8 The assumption that transfers are not paid out immediately allows
isolating bond price effects from adjustments in the intertemporal distribution
of resources between the public and the private sector, which are necessary to
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satisfy the households’ transversality condition. In the present paper, we focus
on the determination of bond prices for a given realization of state variables in
situations where the government’s refinancing needs preclude transfer payments.

2.3. Equilibrium

In equilibrium, prices adjust to clear markets for goods, labor, and assets and the
net stock of risk-free private debt dt is zero in the aggregate. Households’ initial
asset endowments are assumed to be positive; i.e., the government is initially
indebted. An equilibrium is a set of sequences {ct , lt ∈ [0, 1], yt , wt , bt ≥ 0,
δt ∈ [0, 1], Rrf

t , Rt, st }∞t=0 satisfying (3)–(6), (7), (8), (9), (11), (12), and

yt = ct + gt , (15)

bt =
{

(bt−1 − st ) Rt if �t ≥ bt−1

Et�t+1 if �t < bt−1,
(16)

δt =
{

0 if �t ≥ bt−1

1 − �t/bt−1 if �t < bt−1,
(17)

a fiscal policy τ ∈ [0, 1], and g > 0, given {at }∞t=0, and initial debt b−1 > 0.
The equilibrium allocation is not directly affected by public debt and the (ex-

pected) default rate. These properties are due to the assumptions that the current
labor income tax rate does not depend on debt and that default does not lead to
resource losses. Of course, the price of government bonds will depend on the
expected default rate, which can be seen from the asset pricing equation (7). This
reflection of the probability of future default in the interest rate on government
bonds is our main object of study.

The equilibrium sequences of consumption, working time, output, the wage
rate, the risk-free rate, and government surpluses {ct , lt , yt , wt , Rrf

t , st }∞t=0 are
determined for given τ , g, and {at }∞t=0 by (6), (8), (9), (11), and (15), which can
be summarized by

ct = c (at , τ ) := [γ (1 − τ) at ]
1/σ , (18)

lt = l (at , τ, g) := [c (at , τ ) + g] /at , (19)

st = s (at , τ, g) := τc (at , τ ) − (1 − τt )g, ∀t �= j, (20)

and sj = τc
(
aj , τ

) − (1 − τj )g − trj ,

Rrf
t = c (at , τ )−σ β−1/Et [c (at+1, τ )−σ ], (21)

as well as wt = at and yt = at l (at , τ, g), where transfers trt are only nonzero if
t = j .

Although the equilibrium sequences {ct , lt , yt , wt , st }∞t=0 are not affected by
sovereign default, these variables are of course correlated with the default rate δt

due to changes in the productivity level at .
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To determine the bond prices, we need to compute expectations about future
defaults. We substitute out the stochastic discount factor in (12), using φt,t+1 =
βc−σ

t+1/c
−σ
t , to get �t = Et

∑∞
k=0 βk(c−σ

t+k/c
−σ
t ) (τwt+klt+k − g), and rewrite it

using (18) and (20):

�t = γ (1 − τ) atEt

∞∑
k=0

βkc(at+k)
−σ [τ (c (at+k, τ ) + g) − g] . (22)

The expected default rate, the public debt, and the bond price have to be determined
simultaneously using the equilibrium conditions (7), (16), and (17). To identify
these solutions, we have to consider the probabilities of the two distinct cases
�t ≥ bt−1 and �t < bt−1.

Let a∗
t be the productivity level that leads to a debt repayment capacity that

exactly equals beginning-of-period debt bt−1,

a∗
t : �

(
a∗

t

) = bt−1. (23)

Then a∗
t is the minimum productivity level that allows full debt repayment and

thus precludes default; we will refer to this as the productivity threshold. Further,
let πt (at+1) = π (at+1|at ) be the probability of a particular value at+1 conditional
on at . Then the probabilities of default and of nondefault in t + 1 conditional on
the information in t are

prob (�t+1 < bt |at , bt ) =
∫ a∗

t+1

al

πt (at+1) dat+1,

prob (�t+1 ≥ bt |at , bt ) =
∫ ah

a∗
t+1

πt (at+1) dat+1.

These probabilities can be used to rewrite the asset pricing equation (7), which
includes the expectation term Et

[
c−σ
t+1 (1 − δt+1)

]
, where we account for the pos-

sibility that consumption and the default rate are not independent. According to
the assumptions in Section 2.2, the default rate δt+1 equals zero if �t+1 ≥ bt and
δt+1 = 1 − �t+1/bt if �t+1 < bt . Hence, the term Et

[
c−σ
t+1 (1 − δt+1)

]
satisfies

Et

[
c−σ
t+1 (1 − δt+1)

] =
∫ a∗

t+1

al

πt (at+1)
[
c−σ
t+1 · (�t+1/bt )

]
dat+1

+
∫ ah

a∗
t+1

πt (at+1)
[
c−σ
t+1 · (1 − 0)

]
dat+1.
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Using the solutions (18) and (20), the asset pricing equation (7) can thus be written
as

1/Rt = β

c−σ
t

[
b−1

t

∫ a∗
t+1

al

πt (at+1)
[
c−σ
t+1�t+1

]
dat+1

+
∫ ah

a∗
t+1

πt (at+1)
[
c−σ
t+1

]
dat+1

]
. (24)

Risk premia can then be computed as follows (further details can be found in
Appendix A.2): At the beginning of period t , bt−1 is known and the stochastic
productivity level at is realized. We get solutions {ct ,st } from (18) and (20). Then
we can compute the debt repayment capacity using (22), where the conditional
expectation in (22) is calculated using a discrete transition probability matrix
for productivity. If �t < bt−1, the government defaults. For �t ≥ bt−1, the
government does not default in period t . The bond price 1/Rt , the end-of-period
debt bt , and the productivity threshold a∗

t+1 then simultaneously solve (24), the
updated version of (23) that reads bt = �

(
a∗

t+1

)
, and the government’s flow

budget identity
bt/Rt = (1 − δt )bt−1 − st . (25)

We then compute the default risk premium Rt − Rrf
t [using (21)].

3. RESULTS

In the first part of this section, we apply a simplified version of the model with uni-
formly distributed productivity values to analytically examine the determination
of bond prices. In the second part, we apply a less restrictive version to quantify
the relation between debt-to-GDP ratios and interest rate spreads. Throughout the
analysis, we restrict our attention to periods t �= j when transfers are not paid
out to households, which allows us to abstract from the impact of the particular
transfer scheme on bond prices. We then examine the price of bonds issued in
periods t �= j for the case where the government does not default in the same
period t , i.e., for δt = 0, and where debt is issued bt > 0 such that default is
possible in the subsequent period.

3.1. Determination of Bond Market Equilibrium

To be able to derive analytical results, we apply a simplified version of the model.
We assume that at is a serially uncorrelated random draw from the uniform
distribution with support [al, ah], where al and ah are positive constants. To
further simplify the derivation of analytical results, we assume in this section that
σ = 1 and that only the first-order terms of the maximum debt capacity (22) are
nonnegligible.

With these assumptions, consumption, surpluses, and the debt repayment
capacity for all periods t �= j are linear functions of the current exogenous

https://doi.org/10.1017/S1365100514000431 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000431


392 FALKO JUESSEN ET AL.

state at :

c (at ) = γ (1 − τ) at = θ2at , (26)

s (at ) = (1 − τ) γ τat − (1 − τ) g = θ3at − θ4, (27)

�̃ (at ) = s (at ) + (1 − τ) at

β

1 − β
[γ τ − (1/a) g] = s (at ) + θ1at , (28)

where �̃ (at ) is the expression for the debt repayment capacity � under the set
of simplifying assumptions made in this section. In each line the second equality
sign defines the composite parameters θ1,2,3,4 > 0. End-of-period debt satisfies
bt = �̃

(
a∗

t+1

)
[see (23)] and the government budget constraint (25) demands

that 1/Rt = (bt−1 − st ) /bt = (bt−1 − θ3at + θ4) /�̃
(
a∗

t+1

)
. The asset pricing

equation (24) can then be written as

1/Rt = βat

⎧⎪⎪⎨⎪⎪⎩
�̃

(
a∗

t+1

)−1
[
(θ1 + θ3)

∫ a∗
t+1

al
π (at+1) dat+1

−θ4
∫ a∗

t+1
al

π (at+1) (1/at+1) dat+1

]
+ ∫ ah

a∗
t+1

π (at+1) (1/at+1) dat+1

⎫⎪⎪⎬⎪⎪⎭ .

With uniformly distributed productivity levels, this simplifies to

1/Rt = β
at

ah − al

[
(θ1 + θ3)

(
a∗

t+1 − al

) − θ4
(
log a∗

t+1 − log al

)
�̃

(
a∗

t+1

)
+ (

log ah − log a∗
t+1

) ]
. (29)

Thus, condition (29), which can be interpreted as a credit supply condition, de-
scribes the bond price 1/Rt = qt as a function of end-of-period debt bt = �̃

(
a∗

t+1

)
for a given exogenous state at .

The government’s demand for credit is described by the period budget constraint
(25), which reads bt/Rt = (bt−1 − st ) . Using (27), it can be written as

1/Rt = (bt−1 − θ3at + θ4) /bt

⇔ 1/Rt = (bt−1 − θ3at + θ4) /�
(
a∗

t+1

)
. (30)

Credit supply (29) and credit demand (30) provide two conditions that determine
the price 1/Rt and the quantity of debt bt = �̃

(
a∗

t+1

)
issued in period t . The bond

price can then be determined uniquely, which is summarized in the following
proposition.

PROPOSITION 1. Suppose that productivity is uniformly distributed with at ∈
[al, ah], that σ = 1, and that credit demand exceeds a level below which debt is
risk-free, bt−1 − st > �̃ (al) /Rrf

t . Then there exists a unique equilibrium if credit
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FIGURE 1. Bond market equilibrium (uniformly distributed productivity shocks).

demand satisfies bt−1 − st ≤ �0,t , where �0,t ≡ �̃ (at ) − st + (1 − τ) g(atβ −
1/Rrf

t ).

Proof. See Appendix A.1.

To illustrate the results summarized in Proposition 1, we plot credit supply (29)
and credit demand (30), as well as the threshold �0,t beyond which credit demand
is too high to be supported by an equilibrium bond price. For this, we apply
some example parameter values. With the uniform distribution for productivity
assumed in this section, the graphical exercise is meant to be merely illustrative
and serves to highlight the determination of equilibrium bond prices in a tractable
environment. Specifically, we apply the following parameter values: As in Section
3.2, the discount factor is set to β = 0.97. The uniform distribution for the
productivity level is characterized by al = 0.01 and ah = 1.99. We set γ = 0.354
to match a working time in steady state, l(a) = 1/3. The average government
share is set to g/y(a) = 0.20, and the average tax rate is τ = 0.35. In the next
section, we consider a parameterization intended to match certain characteristics
of European data in the context of a more realistic specification of the process
governing productivity.

For these parameter values, Figure 1 shows credit supply (29) (solid line) and
demand (30) (dashed line), where both sides of (29) and (30) are multiplied by
next-period debt, bt = �̃

(
a∗

t+1

)
, so that their left-hand sides give the market

value of issued debt qtbt (= bt/Rt ). We assume that the current productivity
level at equals its unconditional mean of 1. The dotted line further shows the
threshold �0,t . For the beginning-of-period debt-to-GDP ratio determining credit
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demand by the government [see (30)], we assume that bt−1/yt = 0.8, which is
an arbitrary example value in this context because of the extreme assumption of
uniformly distributed productivity. Figure 1 shows the amount of revenues raised
by issuing debt qtbt for all possible realizations of a∗

t+1 (over the entire support
of the productivity distribution). The intersection of credit demand and supply
determines the (future) productivity threshold a∗

t+1 [and thus qtbt = qt �̃
(
a∗

t+1

)
].

Consider first credit demand, 1/Rt = (bt−1 − st )/bt . It implies that end-of-
period debt is proportional to the interest rate for a given stock of initial debt bt−1

and the exogenous state at . This reflects the fact that the government has to issue
more bonds bt if the price qt is lower, or the interest rate Rt = 1/qt is higher.
In Figure 1, where credit demand (dashed line) is multiplied by next period debt,
bt = �̃

(
a∗

t+1

)
, the market value of debt qtbt = bt−1 − st is a horizontal line, as

the current productivity level and initial debt are given. Either a higher beginning-
of-period debt level bt−1 or a lower current productivity level at (leading to lower
current surpluses) implies larger financing needs of the government, and thus an
increased credit demand by the government. In Figure 1 this would lead to a
parallel upward shift of the dashed horizontal line corresponding to (30).

Credit supply (29) also implies a positive relation between bt and Rt , because
future surpluses that suffice to repay debt become less likely for higher thresholds
a∗

t+1 (= �̃−1 (bt )). This tends to reduce the expected return from bonds (because
it increases the probability of default) and induces investors to demand a higher
risk premium as a compensation. Yet, with higher end-of-period debt levels the
risk premium and, thus, the interest rate increase more than proportionally. The
solid line in Figure 1 shows credit supply in terms of the market value qtbt . Debt
is repaid up to the amount that equals the present value of surpluses. In turn, the
repayment rate is large enough (haircuts are small enough) such that the relation
between (compensating) interest rates and debt leads to a unique equilibrium (see
Proposition 1).9

3.2. Quantitative Results

In this section, we relax the simplifications made in the previous section and solve
the model numerically for a more realistic parameterization. In particular, we
replace the assumption of uniformly distributed productivity shocks (which was
only used for analytical tractability earlier) with a more conventional assumption
of normally distributed innovations to a first-order Markov process governing
productivity. The debt capacity �t is computed numerically, without relying on
local approximation. Details on the computation are described in Appendix A.2.
In a first step, we calculate the pricing curves implied by the model. These curves
show the relation between the model’s state variables, initial debt and productivity,
and the implied equilibrium interest rate premium on government bonds. Then we
compare the quantitative model predictions with observed data on sovereign bond
spreads for various countries.
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TABLE 1. Summary of parameter values

Eurozone
Parameter average Greece Portugal Spain Italy Belgium

g/y(a) (government share) 0.205 0.172 0.196 0.183 0.192 0.224
τ (tax rate) 0.250 0.208 0.225 0.219 0.283 0.298
Implied output volatility 0.028 0.033 0.031 0.025 0.017 0.015

For the quantitative analysis, we consider different calibrations of the model.
As a point of departure, we calibrate the model for the average member country
of the European Monetary Union. In addition, we calibrate the model for Greece,
Portugal, and Spain, which are countries that currently face substantial fiscal
stress. Finally, we use a parameterization intended to capture the fiscal stance
of Italy and Belgium, which are interesting cases to compare because spreads
for these countries are relatively low although their debt-to-GDP ratio is quite
high. Although model periods are typically interpreted as quarters in the business
cycle literature, we deviate from this assumption and interpret one period as a
year, which facilitates computing theoretical predictions for government bonds
with one-year maturity (without considering multiperiod bonds). Throughout the
quantitative analysis, we set the discount rate at β = 0.97 to match a standard
average value for a risk-free annual real interest rate.10 The mean working time
share is l(a) = 1/3.11 The level of relative risk aversion is set to σ = 2.12

Table 1 shows the country-specific values for the tax rates and government
expenditure shares. These are sample averages of annual data from Eurostat’s
national accounts, where the sample period is 1995–2010 because of the limited
availability of tax data. The government share is measured as the ratio of gov-
ernment consumption to GDP, and the tax rate is measured as total tax revenues
over GDP (in both cases, referring to total government at all federal levels).13 For
all calibrations, we assume that productivity follows a first-order Markov process
with an autocorrelation of 0.9 and normally distributed innovations. We choose the
innovation variance so that the realized standard deviation of HP-filtered log output
from stochastically simulated model runs conforms with the standard deviation
of HP-filtered log real annual GDP for the countries that we consider (using an
HP-filter smoothing parameter 100; annual real GDP is available from 1960 to
2011 from the European Commission’s AMECO data base14).

Figure 2 shows the model’s implied equilibrium relation between the interest
rate spread of risky government bonds over the riskless interest rate, Rt −Rrf

t , and
the beginning-of-period ratio of debt to output for a given productivity level.15

Note that these spreads refer to states of the economy where the government does
not default on its debt. In the figure, the solid lines display risk premia when the
current state is at the mean productivity level (at = a = 1), whereas the dashed
and dotted lines correspond to lower productivity levels that indicate moderate or
deep recessions, respectively (the dashed line is for at = 0.975 and the dotted
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FIGURE 2. Model-predicted interest rate spreads for various countries.

line is for at = 0.95). When productivity declines, government surpluses and
thus the debt capacity decline. Both effects shift the equilibrium bond pricing rule
to the left. To facilitate a direct comparison of the various calibrations, we use
the same scaling for the axes for the various specifications, the exceptions being
the specifications for Italy and Belgium (discussed later). Note that no model
parameter is specifically chosen to let the model match observations related to the
level or the price of public debt.

First, Figure 2 shows that risk premia are generally indistinguishable from zero
for low debt-to-GDP ratios. This can hold even for debt-to-GDP ratios exceeding
100% if surpluses are sufficiently high, as is the case for the EU average or for
Belgium and Italy. Second, above certain thresholds that depend on the country-
specific fiscal parameters, risk premia tend to rise sharply with higher debt-to-
GDP ratios, and in a convex way. Both model characteristics are compatible with
the recent history of interest rate spreads on government debt in the Eurozone.
Empirically, spreads were close to nonexistent prior to the 2008 recession, but then
increased steeply when the shortfall in government revenues let public deficits and
debt levels soar (a more detailed discussion of the empirical evidence on risk
spreads follows). It is noteworthy that this qualitative pattern can be generated by
the model: The flat part of the pricing curve is explained as the near-absence of
default risk in situations where debt levels are far away from the government’s
repayment capacity. The convexity of the increase in the risk premium is explained
as the interaction of debt levels approaching the repayment capacity with the
expected amount of repayment in the case of default. Third, and unsurprisingly,
there exist levels of initial indebtedness that lead to practically zero risk premia
in normal times (productivity at its mean, solid lines), although triggering strong
increases in spreads in a recession (dashed and dotted lines) because of the decrease
in government revenues.
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FIGURE 3. Empirical interest rate spreads on government bonds.

For a country with the average Eurozone member’s parameter values (concern-
ing taxes, spending, and output volatility), the level of initial debt above which
noticeable risk spreads begin to emerge is rather high (about 130% debt-to-GDP).
By contrast, in line with empirical evidence, our model predicts that risk premia
begin to rise much earlier (i.e., at lower levels of debt-to-GDP) in those countries
that recently have been in serious fiscal trouble, such as Greece, Spain, and Portu-
gal. Thus, the model, although admittedly stylized, is in principle able to explain
(based on the parameters concerning tax revenues and government spending as
well as the level of output volatility) why some countries experience sharply rising
interest rates on government debt. In this sense, the main implications of the model
are broadly in line with recent experiences of some Eurozone countries. On the
other hand, according to our model, countries such as Belgium or Italy should
not be in noteworthy fiscal difficulties at observed debt-to-GDP ratios, because in
these countries the level of taxation is particularly high (see Table 1).

The comparison between the model predictions and recent European fiscal
history can be pushed a bit further by looking at Figure 3, which shows empirical
evidence concerning the relation between government debt-to-GDP ratios on the
horizontal and interest rate spreads on government bonds on the vertical axis.
The data are from the OECD Economic Outlook database and are quarterly from
2005q1 to 2012q1. The spread is calculated as the difference between the yield
to maturity on long-term (typically 10-year) government bonds of the country
shown in each panel and the corresponding German rate (which amounts to the
common practice of considering the German government bond rate as pertain-
ing to a relatively safe asset), expressed in basis points. Note that the empirical
patterns displayed in Figure 3 are measured over different states of the business
cycle, which renders a direct comparison with the theoretical pricing curves in
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Figure 2 impossible (they are drawn for constant values of productivity each).
However, with this caveat in mind, some interesting conclusions can be drawn.
Most notably, the data do seem to imply a convex relation between debt-to-GDP
ratios and interest rate spreads. Thus, the evidence is compatible with this key
prediction of the model, although the model tends to imply a steeper rise in
spreads than found in the data.

Further, some observations are roughly in line with the model’s predictions. In
particular, the rise in spreads on Greek debt for debt ratios higher than 100% is well
accounted for by our model. Similarly, the model is able to explain that Portuguese
spreads begun to emerge at a lower debt-to-GDP ratio of around 80%. The case of
Spain is more difficult. Empirically, Spain experiences large risk premia already
at relatively low debt ratios, around 70% of GDP, whereas the model suggests that
this should not be the case for values much below 100% of GDP (see the fourth
panel in Figure 2). One possible explanation is that investors expect the Spanish
government to eventually guarantee parts of the debt of the country’s banking
sector, which would imply that observed debt figures understate the dimension of
the fiscal problem. In the case of Belgium, the model predictions are in line with
observations in so far as empirical spreads are much lower in Belgium than in
Portugal or Spain despite similar debt-to-GDP ratios, the reason being Belgium’s
high level of taxation. Yet the model implies that Belgian spreads are practically
zero for debt-to-GDP ratios below 200%, whereas in reality they are relatively
small but clearly different from zero. The same is true in the case of Italy, for which,
according to our model, default risk should not be an issue for debt-to-GDP ratios
lower than 2.5 times GDP, given Italy’s exceptionally high historical level of
taxation. However, Italy has experienced nonnegligible spreads in the recent past.
This discrepancy between model prediction and empirical evidence might be due
to the fact that markets doubt Italy’s commitment to Eurozone membership and
thus reflect convertibility risk, or could point out that investors are not convinced
that the government will repay its debt as long as it is solvent.

4. CONCLUSION

This paper shows that risk premia on government bonds can be rationalized in a
simple macroeconomic framework with lenders rationing lending when outstand-
ing public debt exceeds a government’s debt repayment capacity, i.e., the present
value of primary surpluses. A government that does not commit to repay debt is
then unable to fully roll over debt. As a consequence, default occurs when the state
of the economy worsens sufficiently so that the buildup of public debt exceeds the
present value of future surpluses. The default risk premium on government bonds
reflects the probability of this event and the expected rate of partial repayment
in case of default. We assume that households provide the maximum volume of
credit to the government compatible with expected full repayment tomorrow. The
model predicts that above a critical debt-to-GDP ratio, risk premia begin to rise
steeply, because market participants expect that further adverse macroeconomic
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shocks may lead to a situation where the government’s debt repayment capacity is
exceeded. The critical debt-to-GDP ratio depends on fiscal parameters, for which
we apply values that accord with average European Monetary Union member
countries as well as with countries that have recently faced severe refinancing
problems, such as Greece, Portugal, and Spain. The quantitative predictions of the
model are broadly in line with the experiences of those countries most affected by
the recent debt crisis. In particular, the model can replicate the critical range of
indebtedness, the convex relation between interest rate spreads and debt-to-GDP
(though it overstates its slope), and the observed nonresponsiveness of interest
rates to changes in debt-to-GDP ratios that relate to precrisis years.

NOTES

1. Mendoza and Yue (2012) endogenize the effects of default on income via costs of working
capital. D’Erasmo and Mendoza (2013) analyze the incentive of governments to use domestic default
as a redistribution device.

2. We view the assumption of domestically held debt (instead of external debt) as more suited to
discussing the experience of Eurozone countries. Reinhart and Rogoff (2008) emphasize the empirical
importance of domestic debt.

3. This approach is similar to that of Bi (2012) and Bi and Leeper (2012), where default also
depends on whether current outstanding debt exceeds a “fiscal limit,” which consists of the discounted
sum of future maximum surpluses.

4. To be more precise, we assume that tax rates are constant, which would actually be an optimal
choice under commitment in an economy that was identical to the one considered here, except for
public debt being fully state-contingent rather than partially state-contingent due to default.

5. Without such an assumption or Uribe’s (2006) fiscal closing rules, default rates can only be
determined in the initial period, as shown in Schabert (2010).

6. The working paper version of our paper, which is available upon request, contains a discussion
of a scenario leading to multiple equilibria.

7. This assumption is analogous to the fiscal policy specification in Uribe (2006) and in the fiscal
theory of the price level [see Sims (1994) and Woodford (1994)]. In contrast to these studies, in our
purely real model the price level is irrelevant.

8. If, in contrast, transfers were paid out immediately in each period where they originated – that
is, in each period where the government had more resources than needed to repay its debt – the transfer
payout would always restore the level of newly issued debt to the present value of surpluses. In this
situation, the next negative shock would inevitably trigger default. Because innovations are mean-zero
i.i.d, there would be a 50% default probability in every period, and the incidence of default would be
i.i.d. itself [see Uribe (2006)].

9. Note that if bt−1 > �̃ (at ) + (1 − τ) g(atβ − 1/Rrf
t ), there exists no bond market equilibrium.

The possibility of multiple bond price equilibria has recently rekindled the interest of macroeconomists;
see Lorenzoni and Werning (2013). In the working paper version, we showed that multiple bond market
equilibria can arise under a scenario where it is assumed that a default event triggers investors to stop
lending to the government. These results are available upon request.

10. The annual yield on German one-year government bonds (from the Bundesbank; see
http://www.bundesbank.de) has been 2.91%, when deflated with the growth rate of the GDP defla-
tor (from AMECO; see http://ec.europa.eu/economy finance/db indicators/ameco/index en.htm) and
averaged over the longest precrisis period available (1974–2008).

11. This is achieved by setting the utility parameter γ as γ = (({1− [g/y(a)]} · l(a)))/(1− τ), where
the government share and the tax rate take the country-specific values given in Table 1.
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12. In our model, the quantitative effect of risk aversion is relatively small. The reason is that
larger degrees of risk aversion, on one hand, tend to lead to a higher premium because of the un-
certainty of payoffs for a given consumption sequence (in accordance with the logic of standard
asset pricing theory), and, on the other hand, tend to lead to less volatile consumption sequences at
equilibrium, which tends to reduce the risk premium. We find that both effects are of similar size,
so that the total effect of changes in σ on bond prices is relatively small. This holds in particular
compared to the size of the price effect of the default probability, which is the primary focus of our
analysis.

13. See http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search database.
14. See http://ec.europa.eu/economy finance/db indicators/ameco/index en.htm.
15. Appendix A.2 presents details on the computation of equilibrium bond prices.
16. As an alternative to discretization, one can solve the integrals in the asset pricing equation (24)

using numerical integration.
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APPENDIX

A.1. PROOF OF PROPOSITION 1

To lighten the notation in this section, we drop the time index and define b = bt , b−1 = bt−1,
a = at , a′ = at+1, and a∗ = a∗

t+1. For a∗ → al , the right-hand side of (29) is given by

aβ log ah−log al

ah−al
, which is the inverse of the risk-free rate Rrf = 1/

[
aβ log(ah/al )

ah−al

]
. Now combine

credit supply (29) with credit demand 1/R = (b−1 − θ3a + θ4) /�̃ (a∗) to get the following
condition for a∗:

b−1 − (θ3a − θ4) = κ
[
(θ1 + θ3) (a∗ − al) − θ4 (log a∗ − log al)

+ �̃ (a∗) (log ah − log a∗)
]
, (A.1)

where κ = β a
ah−al

. To examine the solution(s) for a∗, we define F(a∗) as

F(a∗) ≡ κ
[
(θ1 + θ3) (a∗ − al) − θ4 (log a∗ − log al) + �̃ (a∗) (log ah − log a∗)

]
− [b−1 − (θ3a − θ4)]

and solve for F(a∗) = 0. At the lower bound of the support, F(a∗) is given by F(al) =
1

Rrf �̃ (al) − [b−1 − (θ3a − θ4)], implying that F(al) < 0 if credit demand is sufficiently
high:

b−1 − (θ3a − θ4) >
1

Rrf
�̃ (al) . (A.2)

At the upper bound of the support, F(ah) satisfies F(ah) =
βa

[
(ι · θ1 + θ3) − log ah−log al

ah−al
θ4

]
+ θ3a − θ4 − b−1, implying that F(ah) ≥ 0 if

credit demand does not exceed a particular threshold,

[b−1 − (θ3a − θ4)] ≤ aβ (1 − τ)

[
β (γ τ − g)

1 − β
+ γ τ

]
− 1

Rrf
(1 − τ) g, (A.3)

where we used θ1 = (1 − τ) β

1−β
(γ τ − g), θ3 = (1 − τ) γ τ , θ4 = (1 − τ) g, and 1/Rrf =

aβ log(ah/al )

ah−al
. Next, we examine the slope of F(a∗), which is given by

F ′(a∗) = κ�̃ ′ (a∗)
[−� + (log ah − log a∗)

]
, (A.4)

where �̃ ′ (a∗) > 0 [see (28)}. At the upper bound, the derivative of F(a∗) equals zero
F ′(ah) = 0. Otherwise, the derivative is strictly positive, F ′(a∗) > 0 ∀a∗ < ah. Hence, there
exists a unique bond market equilibrium if (A.2) and (A.3) are satisfied, where the latter can
be written as b−1−(θ3a − θ4) ≤ βa(θ1+θ3− log ah−log al

ah−al
θ4), or using �̃ (a) = θ1a+θ3a−θ4

as

b−1 ≤ �̃ (a) + (1 − τ) g(aβ − 1/Rrf).

If the latter is violated, F(ah) < 0 and there exists no equilibrium. �
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A.2. COMPUTATION OF EQUILIBRIUM BOND PRICES

We consider a discrete-valued version of the problem.16 We use Tauchen’s (1986) algo-
rithm to approximate the first-order Markov process for productivity with a discrete-valued
Markov chain. We provide the size of the interval, Ia = [a1, an], and the number of grid
points, n (we use n = 801). Given the autocorrelation ρ, the interval Ia is chosen to include
±4 standard deviations of the productivity process. Tauchen’s algorithm then delivers the
exogenous state space of the model S = {a1, a2, ..., an} , ai < ai+1, i = 1, 2, ..., n− 1, and
the associated transition probability matrix P = (

pij

)
, whose row i and column j element

is the probability of moving from state ai state to state aj .
We calculate the debt repayment capacity �t = Et

∑∞
k=0 βk(c−σ

t+k/c
−σ
t )st+k using sim-

ulation techniques. Specifically, we draw time series of productivity realizations for a
sample length of 1,000 (conditional on the starting value at ) and then determine the
associated sequences of consumption and surpluses. These series are used to approxi-
mate the infinite sum of future discounted surpluses. We further approximate the condi-
tional expectation by repeating this simulation 10,000 times and taking the mean over all
repetitions.

For a given combination of initial debt bt−1 and current productivity level
at , the equilibrium interest rate spread on government bonds is determined as
follows:

• For a given current productivity level at , current consumption, ct = c (at ) , surpluses,
st = s (at ) , and the maximum debt repayment capacity of the current period, �t =
� (at ), are computed with (18), (20), and (22). The risk-free rate is determined
using Rrf

t = c−σ
t /

(
βEtc

−σ
t+1

)
, where the conditional expectation Etc

−σ
t+1 is computed

as Etc(at+1)
−σ = ∑n

j=1 pij · c
(
aj

)−σ
and i denotes the index number for today’s

stochastic state, at .

• Then we check whether the government defaults in period t or not. If �t < bt−1,

the government defaults, end-of-period debt equals zero, bt = 0, and there is no
borrowing. If �t > bt−1, the government does not default in period t and the bond
market equilibrium price is determined as follows:

– The bond market equilibrium consists of a price 1/Rt and end-of-period debt
bt . With the integrals in (24) replaced by sums over the finite number of states,
the asset pricing equation reads

bt−1 − st

bt

= β

c−σ
t

⎧⎪⎨⎪⎩
b−1

t

∑a∗
t+1

at+1=a1 πt (at+1)
[
c (at+1)

−σ � (at+1)
]

+ ∑an

at+1=a∗
t+1

πt (at+1)
[
c (at+1)

−σ
]

⎫⎪⎬⎪⎭ . (A.5)

Use the updated version of (23) , bt = �
(
a∗

t+1

)
, to replace bt in (A.5):

bt−1 − st

= �
(
a∗

t+1

)
β

c−1
t

⎧⎪⎨⎪⎩
�

(
a∗

t+1

)−1 ∑a∗
t+1

at+1=a1 πt (at+1)
[
c (at+1)

−σ � (at+1)
]

+ ∑an

at+1=a∗
t+1

πt (at+1)
[
c (at+1)

−σ
]

⎫⎪⎬⎪⎭ .

(A.6)
Equation (A.6) is then solved for the unknown productivity threshold in the
next period, a∗

t+1.
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– Given the solution for a∗
t+1, the next period’s debt level bt and the asset price

1/Rt are determined by bt = �
(
a∗

t+1

)
and

1

Rt

= β

c−σ
t

⎧⎪⎨⎪⎩
�

(
a∗

t+1

)−1 ∑a∗
t+1

at+1=a1 πt (at+1)
[
c (at+1)

−σ � (at+1)
]

+ ∑an

at+1=a∗
t+1

πt (at+1)
[
c (at+1)

−σ
]

⎫⎪⎬⎪⎭ .

– The risk premium on government bonds for given states bt−1 and at is calculated
as Rt − Rrf

t .
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