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Abstract

The problem of finding optimal values in complex parameter optimization problems has often been solved with success
by evolutionary algorithms~EAs!. In many cases, these algorithms are employed as black-box methods over impre-
cisely known domains. Such problems arise frequently in engineering design. The principal barrier to the general use
of EAs for those problems is the huge number of function evaluations that is often required. This makes EAs an
impractical approach when the function evaluation depends on numerically heavy design analysis tools, for example,
finite elements methods. This paper presents the use of kriging interpolation as a function approximation method for
the construction of an internal model of the fitness landscape. This model is intended to guide the search process with
a reduced number of fitness function evaluations.
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1. INTRODUCTION

Evolutionary algorithms~EAs! are recognized as a general
approach for solving difficult multidimensional parameter
optimization problems. These algorithms have, in the last
years, been used with success in many branches of engi-
neering design, such as vibration isolation~Keane, 1994,
1995!, structural acoustics~Ratle & Berry, 1998!, and ac-
tive noise and vibration control~Baek & Elliott, 1995!.
However, a problem frequently faced with evolutionary
optimization methods is the large number of fitness func-
tion evaluations required, since the computational complex-
ity of this function is often a more than significant factor
~Ratle & Berry, 1998!. An optimization method making a
more parsimonious use of fitness function evaluations is
clearly preferable.

It is somewhat surprising that EAs make a rather limited
use of the information obtained in optimization runs. Al-
though these algorithms use function values to guide fur-
ther search steps, no attention is paid to emergent structures
between the sample points. One exception is found in evo-
lution strategies and evolutionary programming, where in-
dividuals may contain information relative to the local

variation structure of the fitness landscape~Bäck, 1996!.
Function approximations have long been used in optimal
structural design for dealing with computationally expen-
sive problems. An interesting review of approximation meth-
ods is given by Barthelemy and Haftka~1993!. Another
approach known asmeta-modelingwas proposed by Sar-
tori and Smith~1997! for sensitivity analysis in capital val-
uation problems using polynomial regressions. It has also
been proposed to use neural networks for learning a func-
tion equivalent to a complex problem, and then to optimize
the network’s response instead of the problem itself~Zim-
merman, 1999!. There is, however, no known optimization
approach that makes an explicit use of a global model for
extracting information structures beyond fitness values at
discrete sampled points, and updating this information on–
line as knowledge is gained during the run.

The main idea developed in this paper is an optimization
methodology for building a statistical model of the fitness
landscape from a small number of samples of the fitness
function, and using this model to guide further search steps.
Although it may seem to be an odd approach, the interest in
using statistical tools for modeling deterministic computer
experiments has been shown by Sacks et al.~1989!. The
samples required to build up the model are obtained during
one generation of a simple EA. This statistical model is
then exploited as an auxiliary fitness function to get the
maximum amount of information out of the initial data
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points. Once a convergence criteria is satisfied, the algo-
rithm turns back to the true fitness landscape for updating
the model with fresher samples, expected to be closer to the
global optimum. Great care must be taken in the choice of a
suitable modeling technique. As a matter of efficiency for
numerical optimization, the selected model must have some
characteristics:

1. A small computational complexity compared to the
real function;

2. An adequate representation of the global trends;

3. Considerations for local fluctuations around the data
points, in order to detect emerging local optima.

4. A minimal number of initial hypotheses on the mor-
phology of the landscape.

From the various existing techniques, kriging interpola-
tion, a general tool developed in the framework of linear
geostatistics, is chosen since it retains the required features.
The paper is organized as follows. Section 2 is a brief in-
troduction to EAs for function optimization. Section 3
presents the theoretical foundations of kriging. Section 4
details the implementation of kriging for evolutionary op-
timization, and, finally, Section 5 presents a series of com-
putational experiments over a test suite of four problems.

2. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are a class of optimization meth-
ods inspired from the natural evolution of species. Using
this paradigm, solutions are represented by apopulationof
individuals. Each individual is coded by a string, thege-
nome, notedx, which contains all the information describ-
ing a solution. To every genome corresponds afitness value
figuring the quality of this solution. Fitness is usually either
the function to be optimized, or a scaled version of it.

The algorithm initially creates a population ofm individ-
uals by assigning random values to the elements of the
genomes. These individuals constitute the first generation.
Subsequent generations are created by applying evolution-
ary operators:selectionof parents,crossoveror recombina-
tion of the genomes to create an offspring, andmutationof
the offsprings. New generations are created until a stopping
criteria is satisfied. In most cases, this criteria is a fixed
number of generations or function evaluations. The basic
scheme is as follows:

Algorithm 1. An elementary evolutionary algorithm.

Begin:
Initialize the population
while: stopping criterion not satisfied

Select individuals according to fitness
Recombine them
Mutate these individuals

end: generation loop
End: evolutionary algorithm

The selection is usually a biased random process, giving
a higher probability of reproduction to better individuals.
A simple and robust procedure is thetournament, where a
small number of individuals are randomly picked out, and
the best one among them is kept. Many other selection
operators exist, as described in Hancock~1994! or Bäck
~1996!. The crossover operator is intended to perform an
exploitationof promising regions by the creation of new
points based on a recombination of existing genomes. For
real-valued variables, crossover operators usually take a
weighted sum of the values from two parents, as proposed
by Michalewicz~1994!. Mutation of real-valued variables
consists of adding a random noise of a known distribution
to all the variables. The mutation operator actually per-
forms a randomexplorationof the search space, allowing
the population to escape from local optima.

3. THEORY OF KRIGING

Kriging is a general tool for modeling experimental data in
multidimensional spaces. The method emerged in mining
geostatistics for the estimation of geophysical resources using
as few samples as possible, because of the cost of the sam-
ples. Delineating regions of significant economical interest
from waste requires identifying not only the average values
of ore content, but also its structures of variation~Mather-
on, 1965!. The analogy with function optimization appears
at this point, since a valuable model is expected to guide the
optimization toward optima with few or no needs for fur-
ther samples. The original theory of kriging was formulated
for one-, two-, or three-dimensional problems, reflecting
physical phenomena. In the function optimization context,
it is generalized to anL-dimensional problem. Under the
theory of kriging, a phenomenaZ~x! is represented on a
regionS of the space by a linear combinationU~x! of N
nonuniformly distributed samplesx i, i 5 1 . . .N ~Matheron,
1973!:

U~x! 5 (
i51

N

l i Z~x i !, x i 5 x1
i , . . . ,xL

i . ~1!

The best linear unbiased estimator~BLUE! theory pro-
vides optimal weightsl i in such a way that first, the ex-
pected values ofU~x! andZ~x! are the same for allx in S,
and second, the estimation error is minimal.

3.1. Construction of the BLUE

Before proceeding, the underlying hypothesis should be
stated. The general case considers the function as a station-
ary phenomena: all its statistical moments are assumed to
be constant overS. Under this hypothesis, the expected
value ofZ is a constant, and only stationary fluctuations are
allowed. For many cases, this hypothesis is too restrictive,
and the order-2 stationarity is employed, where all the sta-
tistical moments of order 2 and above are assumed con-
stant. Under order-2 stationarity, the expected value is
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represented by adrift functionnoteda~x!. In the next sec-
tion, kriging is presented under the stationarity hypothesis,
and then order-2 stationarity is introduced.

3.1.1. Conditions on the linear estimator

The unbiasedness condition is verified as long as the
expected values ofZ andU are equal:

E$U~x i !% 5 E$Z~x i !% 5 m. ~2!

A linear relation between thel i ’s follows from Eq.~2!:

E$U~x i !% 5 EH(
i51

N

l i Z~x i !J
5 (

i51

N

l i E$Z~x i !% ~3!

? (
i51

N

l i 5 1.

The minimization of estimation error cannot be enforced
exactly, since the actual error is unknown, but an estimate
of this error, theestimation variances2~x! is computed as
follows:

s2~x! 5 EHFZ~x! 2 (
i51

N

l i Z~x i !G2J
5 E$@Z~x!# 2% 2 (

i51

N

2l i E$@Z~x!Z~x i !#%

1 (
i51

N

(
j51

N

l i l j E$Z~x i !Z~x j !%. ~4!

The minimum ofs2~x! is found where its first derivative
with respect to each of thel i ’s is zero. A set of equations
follows:

m2 E$@Z~x!Z~x i !#% 1 (
j51

N

l j E$Z~x i !Z~x j !% 5 0,

i 5 1 . . .N, ~5!

wherem is the Lagrange multiplier associated with the un-
biasedness constraint~Trochu, 1993!.

3.1.2. Kriging as the BLUE

The N equations defined by Eq.~5! depend onN 1 1
unknowns: thel j ’s and the termm. Introducing the no-bias
condition, a linear system ofN 1 1 equation is defined.
Solving the system gives the optimall i ’s. Whenever exper-
imental data show a global trend, the phenomenon is better
modeled by the sum of a drift and a stationary fluctuation:

U~x! 5 a~x! 1 b~x! ≅ Z~x!. ~6!

The termb~x! represents the stationary fluctuation, and
a~x! is the drift built up from a basis ofM arbitrary func-
tions, fj ~x!:

a~x! 5 E$Z~x!% 5 (
j51

M

aj fj ~x!. ~7!

In the presence of a drift, the no-bias conditions are stated
as follows:

(
i51

N

l i fj ~x i ! 5 fj ~x!, j 5 1 . . .M, ;x [ S. ~8!

Introducing these conditions, the linear kriging system is
defined by

3
K11 J K1N f1~x1! J fM ~x1!

I L I I L I
KN1 J KNN f1~xN! J fM ~xN!

f1~x1! J f1~xN! 0 J 0
I L I I L I

fM ~x1! J fM ~xN! 0 J 0

45
l1

I
lN

a1

I
aM

6
5 5

K1

I
KN

f1~x!

I
fM ~x!

6 . ~9!

Kij is the covariance between the sample pointsx i and
x j , that is, E$Z~x i !Z~x j !% , and Ki is the covariance be-
tween the sample pointx i and any pointx. Solving the
system gives the optimall i ’s at the pointx.

3.2. Dual formulation of kriging

The primal formulation given by Eq.~9! depends on the
covariance between the samplesx i and the pointx where
the estimation is sought. By the way, thel i ’s also depend
on that point. Independent coefficients are obtained with
the dual formulation, which is calculated as follows. Since
the matrix in Eq.~9! is symmetric, the inverse system has the
form

H l

aJ 5 F B A
AT C GH K

f J . ~10!

Expressing the basic linear estimator@Eq. ~1!# as a func-
tion of the inverse kriging system we have

U~x! 5 $Z~x1! . . .Z~xN!%B5
K1

I
KN 6

1 $Z~x1! . . .Z~xN!%AH f1~x!

I
fM ~x!

J . ~11!
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By the symmetry ofA andB, a new set of coefficientsai

andbj is defined such that

U~x! 5 $b1. . .bN %5
K1

I
KN 6 1 $a1. . .aM %5 f1~x!

I
fM ~x! 6 . ~12!

These coefficients are found by substituting$Z~x1! . . .
Z~xN!,0 . . . 0%T for the right-hand side of Eq.~10!. Since the
right-hand half of the matrix in Eq.~10! is not explicitly
used, the submatricesA andC are left untouched, and the
reinversion gives the dual formulation

3
K11 J K1N f1~x1! J fM ~x1!

I L I I L I
KN1 J KNN f1~xN! J fM ~xN!

f1~x1! J f1~xN! 0 J 0
I L I I L I

fM ~x1! J fM ~xN! 0 J 0

45
b1

I
bN

a1

I
aM

6
5 5

Z~x1!

I
Z~xN!

0
I
0

6 . ~13!

3.3. Covariance and variograms

Equation 13 shows that kriging requires the choice of a
covariance function and a drift basis. The former is often
the most difficult step, and requires knowledge of the un-
derlying physics. For that purpose, two approaches are ame-
nable. The first is the use of an arbitrarily defined theoretical
function. As long as the matrix in Eq.~13! remains positive
definite, any function is suitable. In this case the function is
a shape function, since it has no more relationship with an
actual covariance. Kriging in this case is considered anin-
terpolator. The other approach is the estimation of an ex-
perimental covariance from the samples. Kriging is then
considered anestimator, and the model reproduces the vari-
ance structure ofZ~x!. Unfortunately, a covariance cannot
usually be inferred from experimental data, and does not
even exist in some cases~Journel & Huijbregts, 1978!. For
this purpose, thevariogram is defined:

2g~x i,x j ! 5 E$@Z~x i ! 2 Z~x j !# 2%. ~14!

The variogram is estimated from a set of data points.
Under strict stationarity, it depends only on the scalar dis-
tanceh between two points:

2g~h! 5 E$@Z~x! 2 Z~x 1 h!# 2%, ;x [ S. ~15!

Adding a scalarh to the vectorial quantityx means that
the direction ofh is not significant. In this case, the vario-

gram is said to beisotropic. However, real-world phenom-
ena often show different behaviors with respect to each of
the variables. In these cases, an oriented variogramg~h! 5
g~h1, h2, . . . ,hN! is defined, depending on the vectorial dis-
tanceh. Such a variogram is said to beorthotropic. In pres-
ence of a drift~order-2 stationarity!, the variogram is
computed from the stationary fluctuation:

2g~h! 5 E$@Z~x! 2 a~x! 2 Z~x 1 h! 1 a~x 1 h!# 2%,

;x [ S. ~16!

Typical shapes of a variogram and a covariance are shown
on Figure 1. The variogram is usually strictly increasing,
although exceptions are found for oscillatory phenomena.
Whenever the function is stationary, it presents a ceiling
value g` at a distanceh*, the distance of influence. Ab-
sence of a ceiling tells that the stationarity assumption is
wrong. It can be shown~Journel & Huijbregts, 1978! that a
covariance may be calculated from an experimental vario-
gram using the relation

K~h! 5 g` 2 g~h!. ~17!

3.4. Nested structures

Samplings from a physical phenomena often present differ-
ent properties at different scales. The typical case is in gold
ore estimation, where a point sample always has either 100%
or 0% gold content, depending on whether it was taken
from a nugget or from the surrounding material. A mapping
from point samples would be totally useless, but samples
averaged over a nonzero volume always have something
between 0 and 100% ore content, and give a more useful
mapping. Mathematically speaking, although the covari-
ance between two very close points is high, it drops to
nearly zero when the distance is increased by a small amount.
The variogramg0~h! of the point samples has a sharp slope
at h 5 0 and reaches a ceiling rapidly, whereas the vario-
gram from nonzero volume samples is smoother. As long as
order-2 statistics are concerned, the theory of nested struc-

Fig. 1. Typical behavior of a variogram and a covariance.
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tures~Journel & Huijbregts, 1978! states that a general var-
iogram can be built up as the sum of variograms observed
at different scales:

g~h! 5 g0~h! 1 g1~h! 1 . . . 1 gi ~h!. ~18!

The limit case is a variogram with a discontinuity ath 5
0, thenugget effectin reference to its physical signification:

g~h! 5 H 0 if h 5 0
C0 1 g1~h! else ~19!

The constantC0 is the nugget effect parameter, the am-
plitude of the discontinuity, andg1~h! is a continuous func-
tion with a null value at the origin. Kriging, as presented up
to this point, is an exact interpolator passing through all the
data points. Using a nugget effect, the model does not pass
through the points anymore, but tends toward the average
behavior. The nugget effect is enforced by adding a con-
stant to theN first diagonal elements of Eq.~13!. In the case
C0 r`, kriging reduces to a least-square regression on the
drift basis. This phenomenon can be used by an optimiza-
tion algorithm, by focusing on the global behavior during
the first generations and taking into account the local fluc-
tuations only in later stages.

4. IMPLEMENTATION

This section presents practical details of useful forms of
kriging concerning theoretical covariance functions, exper-
imental variograms, and models of drift basis. An optimi-
zation algorithm using fitness landscape approximation is
then introduced.

4.1. Theoretical covariance functions

Four models are proposed. Two of them rely on thedis-
tance of influenceintroduced by Trochu~1993! for func-
tional interpolation. It reflects the fact that the actual
covariance between two distant points is often small enough
to be considered null. The general covarianceK~h! might
be designed in such a way thatK~h! 5 0 if h . h*. An
interesting feature of using a finite influence is that the
kriging matrix becomes sparse, making possible the use of
sparse system solvers.

Pure nugget effect:This model is the limit case where
local fluctuations are considered insignificant. The
model is useful for noisy data and when a global esti-
mator is required:

K~h! 5 H 1 if h 5 0
0 else ~20!

Linear model: This model vanishes linearly betweenh5
0 andh5 h*. Combined with a linear drift, it is strictly
equivalent to a linear interpolation of the data points:

K~h! 5 H 12 h0h* if h , h*

0 else
~21!

Cubic covariance:This model ensures the continuity of
U~x! and its first derivatives by enforcing the nullity
of ]K0]h ath5 0 andh5 h*. Two other conditions are
K~0! 5 1 andK~h* ! 5 0. Solving for these four con-
ditions over a cubic polynomial gives

K~h! 5 H 12 3~h0h* !2 1 2~h0h* !3 if h , h*

0 else
~22!

Gaussian covariance:This model has an infinite influ-
ence and is infinitely differentiable, which make it in-
teresting for its robustness:

K~h! 5 e~2h202s 2 !. ~23!

The influence is controlled by the parameters. This model
is strictly equivalent to the Radial Basis Functions found in
the Support Vector Machines literature~Schölkopf et al.,
1998!.

4.2. Estimation of an experimental variogram

In this section, the estimation of a variogram function from
the 1

2
_N~N 2 1! variogram samples available by taking pair-

wiseN samples ofZ~x! is discussed.

4.2.1. Extracting the stationary fluctuation: Variogram
of the residuals

In the general case whereZ~x! is nonstationary, a trans-
formed function must be found before computingg~h!.
Should the drift function be knowna priori, the stationary
part would be deduced directly. A drift functiona~x! can be
estimated by solving the kriging system under the hypoth-
esis of pure nugget covariance. Then, the residualsZ~x! 2
a~x! give an approximation of the stationary part ofZ~x!,
as long as the drift basis contains enough degrees of free-
dom. The main drawback of this approach is that the system
is solved twice, but it allows the use of arbitrary samples.

4.2.2. Polynomial regression of variogram data

A simple method for estimating a model from scattered
samples is the least square regression over a function basis.
An estimateg '~h! of g~h! can be expressed by a sum ofk
functionsgj ~h!, j 5 1 . . .k, depending onk coefficientspj :

g '~h! 5 (
j50

k

pj gj ~h!. ~24!

A least-square optimal set ofpj ’s is found by minimizing
the expected sum of squared error over theN samples:

E$~g '~h! 2 g~h!!2% 5
1

N (
i51

N S(
j50

k

pj gj ~hi ! 2 g~hi !D2

. ~25!
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Equating to zero the first derivatives of Eq.~25! with
respect to thepj ’s gives a linear system whose solution
corresponds to the optimal set of weights. Usinggj ~h! 5 h j

as a function basis gives the normal least-squares system,
which is severely ill conditioned even for low orders, since
it contains small and large terms~Gerald & Whitley, 1990!.
A better approach is the use of an orthogonal set of constant
order polynomials, such as the Bézier-Bernstein polynomi-
als, well known in computer-aided design for their flexibil-
ity and low computing cost~Farin, 1990!. Using this basis,
all the terms have the same order of magnitude, giving a
better-conditioned matrix. Bézier-Bernstein polynomials are
primarily intended for drawing parametric curves accord-
ing to a variable number ofcontrol points. These points
define the Bézier polygon, for which the curve is consid-
ered an approximation. For estimating a variogram, a one-
dimensional curve is drawn with the distancehas a parameter
normalized between 0 and 1. Least-square optimal coeffi-
cients are substituted to control points. Thekth order poly-
nomialP~h! is a weighted sum of the Bernstein polynomials
Bj,k~h!:

P~h! 5 (
j50

k

pj Bj,k~h! ~26!

Bj,k~h! 5 S k
j D~12 h!k2jh j. ~27!

The expected squared error is obtained by introducing
Eq. ~26! into Eq. ~25!, and optimal weights are found by
minimizing this error function analytically.

4.3. Drift function basis

Polynomial drift bases are common in linear geostatistics
~Journel & Huijbregts, 1978!. In the function optimization
framework, the choice of basis for multidimensional spaces
is restricted by the explosion in the number of required
samples. A complete basis of orderk comprises terms de-
pending on all of the possible subsets of variables of size 1
to k:

a~x! 5 a0 1 (
i51

L

ai xi 1 (
i51

L

(
j5i

L

aij xi xj 1 (
i51

L

(
j5i

L

(
k5j

L

aijk xi xj xk

1 . . . . ~28!

The sum of linear terms containsL terms or, equivalently

speaking,SL

1 D terms, the quadratic sum,SL 1 1

2 D terms, and

the kth order sum shall be made ofSL 1 k 2 1

k D terms. From

the additive properties of binomial coefficients~Graham,
1994!, the sum of all the terms up to orderk is equal to

(
m50

k S L 1 m2 1
m D 5 S L 1 k

k D. ~29!

A simple alternative is thediagonalbasis, which keeps
the terms depending on only one dimension:

a~x! 5 a0 1 (
i51

L

(
j51

k

aij ~xi !
j. ~30!

The diagonal basis needs 11 kL coefficients, a quantity
linear in L for any k, and the size of the complete basis is
proportional to a polynomial of orderk. Table 1 presents
the number of coefficients of diagonal and complete basis
of order 1 to 4 in 2-, 10-, and 20-dimensional spaces. Since
a sample size at least equivalent to the number of drift
coefficients is required, the use of a complete basis rapidly
becomes impractical.

4.4. Optimization algorithm

The proposed optimization1 fitness modeling algorithm is
based on the real-coded EA presented in Section 2. The
algorithm maintains two populations, a genetic population
G, subject to genetic evolution, and a model populationM ,
the long term memory. In the first generation,G is initial-
ized similarly to the basic EA. Fitness is evaluated using
the true function,M is initialized as a copy ofG, and a first
kriging model is built up fromM . This model is exploited
as a surrogate fitness function for several generations until
a stopping criterion is satisfied. Then, in the next genera-
tion, some points inG are evaluated and added toM ac-
cording to a given sampling scheme, and the kriging model
is updated using these new points. The process is repeated
as long as the global stopping criterion is not satisfied. To
simplify the analysis, the model update criterion will be
simply a fixed number of generations. The complete proce-
dure is as follows:

Algorithm 2. Evolutionary optimization algorithm with fit-
ness landscape approximation.

Begin:
Initialize the populationG
Evaluate fitness
CopyG into M and build a fitness landscape model
fitness functionR model

Table 1. Number of undetermined coefficients as a function of
the dimensionality and polynomial order, for a diagonal and
complete basis

Order, diagonal basis Order, complete basis

Dimensions 1 2 3 4 1 2 3 4

2 3 5 7 9 3 6 10 15
10 11 21 31 41 11 66 286 1001
20 21 41 61 81 21 231 1771 10,626
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while: Global stopping criterion not satisfied
if: Criterion for model update is satisfied

fitness functionR original function
Evaluate some points inG according to the sam-

pling scheme
Add these points toM and update the fitness model
fitness functionR new model

end: if
Evaluate the population inG with the model
Select individuals inG according to fitness
Recombine them
Mutate these individuals

end: generation loop
End: Algorithm

4.5. Sampling schemes

Using this algorithm, the model is updated afterg genera-
tions have been evaluated with a given model. An impor-
tant issue is how new samples should be taken from the true
fitness function at every update, and how these new sam-
ples should replace the old ones. This task might be han-
dled in many different ways, but two approaches are

considered in this paper. The first strategy, calledrebuild
from scratch, consists of evaluatingm new individuals, that
is, the complete generation, and replacing all the old sam-
ples with them. The model is therefore completely rebuilt
from scratch every time. It is expected that the first model
is at best a global approximation, while the subsequent ones
will be more precise in some limited regions. The other
approach, calledincremental growth, consists of evaluating
with the true fitness function thenbest best points in the
current population, and possiblynrand random points. These
points are added into the model. However, to keep the model
relatively cheap to evaluate, its size is limited. If the size
exceeds the limit value, some points are randomly deleted
before the new points are included.

5. COMPUTATIONAL EXPERIMENTS

The fitness landscape approximation algorithm has been
tested over a set of four analytic functions with various
properties. Numerous benchmark problems have been de-
vised in the past; interesting cases are found in Michalewicz
~1994!, Bäck ~1996!, or Floudas and Pardalos~1996!. The
four chosen functions are presented in Figure 2. Computa-

Fig. 2. The four test functions: Quadratic Problemf1 ~top left!, Rastrigin’s Multimodal Functionf2 ~top right!, Keane’s Constrained
Multimodal Functionf3 ~bottom left!, and the Step Functionf4 ~bottom right!.
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tional experiments for testing the effect of various param-
eters are presented:

• Population size, with the rebuild-from-scratch strategy;

• Influence of the drift basis order;

• Covariance functions, theoreticalversusexperimental;

• Constraint handling;

• Sampling strategies: the basic approaches, and the pa-
rameters:g, nbest, andnrand.

Results are always represented by the fitness of the best-
so-far individual found averaged over five runs, as a func-
tion of the number of real fitness evaluations. Although it is
clearly not true for the analytical functions considered in
this article, it is assumed that the cost of evaluating the
model is insignificant compared to that of the real fitness
function. The basic EA taken as a reference makes use of
real-valued coding, Gaussian mutation with autoadaptive
variance, and tournament selection. To keep this article con-
cise, not all the parameters are tested for all the test func-
tions; only a selection of the most significant results is
presented. The four test cases are described as follows.

Function f1: Quadratic. This first problem is a simple
quadratic form:

Minimize f1~x! 5 2
12xTAx 1 bx 1 c,

subject to2100# xi # 100.
~31!

Although deterministic algorithms can solve this prob-
lem faster than an EA, the interest is to show how a simple
problem can be solved efficiently if the optimizer is al-
lowed to build up an internal model.

Function f2: Rastrigin’s Multimodal. The Rastrigin’s
function is considered a difficult case since it consists of a
large number of valleys hiding the minima. The problem is
scaleable to anL-dimensions space, and is defined by

Minimize f2~x! 5 10L 1 (
i51

L

~xi
2 2 10 cos~2pxi !!,

subject to22 # xi # 2.
~32!

It is observed from Figure 2 that the function possesses a
strong periodical structure hiding a quadratic shape. The
absence of a direct relationship between the local fitness
landscape and global behavior makes the problem difficult
unless the periodical structure is identified and taken into
account in the fitness landscape estimation.

Problem f3: Keane’s Constrained Multimodal. This
case was proposed by Keane~1994! for the study of EAs on
constrained problems when the solution lies close to the
edge of the feasible domain. The problem is as follows:

Maximize f3~x! 5 * (
i51

L

cos4~xi ! 2 2 )
i51

L

cos2~xi !

!(
i51

L

ixi
2 *,

subject to 0# xi # 10

and )
i51

L

xi . 0.75, (
i51

L

xi , 7.5L.

~33!

This function also has a variable dimensionality. The
constrained global optimum lies on the surface) i51

L xi 5
0.75. Solutions for the two-dimensional problem are found
analytically to be 0.67367 at~x1, x2! 5 ~1.3932, 0! for the
unconstrained version, and 0.36498 at~x1, x2! 5 ~1.60086,
0.46850! with constraints. The two-dimensional case has
been successfully solved using a dynamic penalty function
~Smith & Coit, 1997!:

f3
' ~x! 5 f3~x! 2

t

tmax

pen~x! ~34!

pen~x! 5 H 12
4

3 )
i51

L

xi if )
i51

L

xi , 0.75

0 otherwise.
~35!

The timet corresponds to the current generation andtmax

is the maximum number of generations. The functionf3
'

allows a free exploration of the space during the first gen-
erations, with a penalty increasing in later stages to push
the population back into the feasible domain.

Problem f4: Step. This last case, adapted from DeJong
~1975!, consists of an assembly of flat plateaus with a
minimum value of zero in the square region20.5 # xi #
0.5 ; i :

Minimize f4~x! 5 (
i51

L

{xi 1 0.5} 2

subject to25 # xi # 5.
~36!

The problem cannot be solved by a local search algo-
rithm, since the gradient value is zero everywhere. The only
way for an optimizer to solve such a problem is to have
someglobal viewof the fitness landscape. Since the mini-
mum is a large region rather than a point, the case is well
suited to a landscape approximation approach; the object is
just to point out this region.

5.1. Population size with the rebuild-from-scratch
strategy

The problem of choosing a suitable population size is stud-
ied for two cases: a very simple problem, the two-dimensional
quadratic surface~ f1!, and multidimensional cases: the step
function~ f4! with 20 and 100 dimensions.The problems have
been solved using the parameters described in Table 2, ex-
cept for the population size.

Thef12 2D problem being exactly defined by six points,
the global minima is theoretically obtainable within six fit-
ness evaluations. Since the sampling strategy requires that
a final generation with the true fitness be calculated before
terminating, in order to make sure the optimal solution re-
ally belongs to the fitness landscape, the algorithm can theo-
retically terminate after 12 evaluations. Results presented
in Figure 3 show that the solution is not obtained within the
limit of 12 evaluations with a population of 6. However,
using a population of 20, the minimum is always reached in
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40 evaluations, which is twice the population size. This
suggests a lower bound on population size for an efficient
use of the EA.

For the step function, the quadratic diagonal drift em-
ployed requires 41 samples in 20 dimensions, and 201 in
100 dimensions. Results are presented in Figure 4 for the
20-dimensional case with a population of 50. In this case,
the kriging algorithm points out the optimal region after
two generations with the true fitness landscape, which rep-
resents the maximum efficiency. On the 100-dimensional
problem, the influence of population size is greater. Results
shown in Figure 5 present three cases. The first makes use
of an insufficient sampling with 150 points, the second one
a critically sized population of 201, and the third one, 250
points. In all cases, the algorithm settles down to a constant
fitness value at the second generation and does not improve
anymore. However, only the larger sampling ensures the
settling to the best fitness value, whereas the insufficient
and critical samples make the algorithm converge to a sub-
optimal value.

5.2. Choosing a suitable drift basis order

The influence of the drift basis is illustrated for two cases:
the 2-dimensional quadratic problem, in Figure 6 and the
10-dimensional Rastrigin’s problem in Figure 7. Both prob-
lems have a quadratic general trend. In the two cases, it is
observed that the best results are obtained when the appro-
priate basis is employed~quadratic!. This points out the fact
that there is room fora priori knowledge of the physics of
the problem, in order to obtain the best possible optimiza-
tion results. Whenever the nature of the problem is ignored,
the algorithm takes a longer time, or converges to subopti-
mal solutions.

5.3. Covariance functions: Theoreticalversus
experimental

Figure 8 presents the effect of various covariance functions
for the two-dimensional Rastrigin’s problem. A simple EA
is compared with reconstruction algorithms using either a

Table 2. Optimization parameters for all the test problems

Problem

Quadratic Rastrigin Keane Step

Dimensions 2 2 10 2 20 20 100

Population size 20 50 200 50 300 50 250
Max. evaluations 400 1000 5000 2500 60,000 600 3000
Tournament size 2 2 3 2 4 2 2
Elitism 1 10 20 1 10 5 15
Pmut 103 104 1040 102 1020 1040 10200
Pcross 1 1 1 1 1 1 1
Drift 2C 2D 2D 3C 3D 2D 2D
Covariance nugget experimental cubic nugget
Sampling rebuild~if not specified!

2C: Quadratic complete drift, 2D: quad. diagonal., 3C: cubic comp., 3D: cubic diag.,Pmut: probability of mutation per variable,
Pcross: probability of crossover per individual

Fig. 3. Influence of population size with the 2-D functionf1. Fig. 4. Influence of population size with the 20-D step functionf4.
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theoretical covariance or an experimental variogram. Since
the difficulty of this case lies in the numerical precision of
the solution rather than on the rough identification of the
attractor, results are presented on a logarithmic scale of
fitness value. As would be expected from the periodic struc-
ture of this function, theoretical covariance models, either
linear or cubic, give only poor results compared to a simple
EA, since these models cannot reproduce the covariance
structure of the true landscape. Using an experimental var-
iogram estimated from an order-4 Bézier polynomial al-
lows us to find a fitness value of about 0.04 in roughly 400
fitness function evaluations compared to 800 for the basic
EA. However, in the long run, the precision of the model is
still insufficient to outperform the solution quality obtained
without fitness approximation. For this problem, it is also
clear from Figure 9 that the use of an isotropic variogram is
not appropriate; better results are obtained when a different
variogram is calculated for each of the dimensions.

Fig. 5. Influence of population size with the 100-D step functionf4.

Fig. 6. Drift basis for the 2-D quadratic functionf1.

Fig. 7. Drift basis for the 10-D Rastrigin’s functionf2.

Fig. 8. Covariance functions for the 2-D Rastrigin’s functionf2.

Fig. 9. Influence of an orthotropic variogram, 2-D Rastrigin’s function.
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For the 100-dimensional step function, opposite results
are obtained. In this case, the best thing to do is to keep the
model simple and global, since only a rough estimate of the
optimal region is required, due to the discrete nature of this
problem. It is seen from Figure 10 that a pure nugget effect
covariance outperforms the other models in terms of solu-
tion quality. The 20-dimensional Keane’s function also
presents a different optimal covariance function. In this case
~Fig. 11!, the best results are obtained with the cubic co-
variance, while the linear covariance makes the algorithm
converge to a suboptimal value.

5.4. Constraint handling

The fitness approximation algorithm has been tested on the
Keane’s problem to study the effect of a dynamically vary-
ing landscape. Results are presented in Figure 12 for the
unconstrained problem with the functionf3 and in Fig-
ure 13 for the constrained version usingf3

'. In both cases,
using an approximated landscape built from a cubic covari-
ance~theoretical! allows the solution to be found in about a

quarter of the number of function evaluations required by
the basic EA, with the parameters of Table 2.

The problem has also been studied in a 20-dimensional
space. This case has long been considered a difficult prob-
lem for which no standard method gave satisfactory results
~Michalewicz & Schoenauer, 1996!. Some good solutions
have been found by the same authors using specialized evo-
lutionary operators intended to explore only the surface
defining the edge of feasible domain. A similar approach is
considered together with a fitness landscape reconstruction
algorithm, using fitness function samples taken exclusively
from the boundary of the feasible domain. This procedure
gave the results presented in Figure 14, where a certain
gain is obtained with the use of a landscape approximation.

5.5. Sampling strategies

The last important point to be discussed is how the model
should be updated. Three parameters are studied, the num-
ber of generations between updates,g, the number of best
individuals,nbest, reevaluated with the true function, and

Fig. 10. Covariance models for the 100-D step function.

Fig. 11. Covariance models for Keane’s 20-D constrained functionf3.

Fig. 12. Optimization results for the unconstrained 2-D Keane’s func-
tion f3.

Fig. 13. Constrained 2-D Keane’s functionf3 with dynamic penalty
function.
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the number of random evaluations,nrand. These parameters
have been studied for the 10-dimensional Rastrigin prob-
lem. Experiments were conducted with the parameters of
Table 2, except, of course, for the sampling strategies. In all
the cases, the model size was limited to 500 points. The
influence of the number of best individuals evaluated, with
no random evaluations, and an update every four genera-
tions is illustrated in Figure 15. It is observed that there is a
minima of fitness value obtained with the evaluation of 10
individuals, that is, 5% of the population size. From other
experiments not presented in this article, this 5% value seems
to be a rather robust choice.

It would make sensea priori, for multimodal functions,
to reevaluate some random individuals to prevent conver-
gence to a local optima. However, the results of Figure 16
show that there is no benefit from doing so: The best results
are obtained when only the 10 best and no random individ-
uals are evaluated with the true function. The interval be-
tween model update is studied in Figure 17. These results
show that there is no point in letting the algorithm run on a
given model for more than one generation: optimal results

are obtained when the model is evaluated with 5% of the
current population every generation. Finally, the rebuild-
from-scratch sampling strategy has been compared with the
incremental model growth on the 10-dimensional Rastrigin
function. In this case, the results of Figure 18 indicate that
the progressive update of the model population gives the
best results. It should be recognized, however, that this lat-
ter strategy relies on many parameters; a setting with the
wrong parameters can severely worsen the results, as shown
in Figures 15, 16, and 17.

6. CONCLUSION

This article presented the use of kriging interpolation for
improving the utilization of available information by evo-
lutionary optimization methods. The estimation of an ap-
proximated fitness landscape is an efficient way to reduce
the computational cost of an optimization problem when
the original fitness function is at the same time too difficult
for local search methods and numerically too heavy for
standard heuristic methods like EAs. The results presented

Fig. 14. Constrained 20-D Keane’s functionf3 using boundary operators.

Fig. 15. Number of best individuals evaluated, 10-D Rastrigin’s function.

Fig. 16. Influence of the evaluation of random individuals, Rastrigin’s
10-D function.

Fig. 17. Number of generations between model updates, Rastrigin’s 10-D
function.
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for various classes of problems suggest that building an
internal model of fitness landscape is a very efficient ap-
proach for problems where only a rough estimate of the
best solution is required. In the cases where a high numer-
ical precision is expected, things get a bit more complex.
On the one hand, for very simple problems, the gain ob-
tained through the estimation of a fitness model is mar-
ginal, since the solution will be found quickly by lighter
methods. On the other hand, for highly rugged, multimodal,
and multidimensional landscapes, it becomes impractical to
build a global model of the whole space. This suggests that
there is a specific niche for global function approximation
algorithms over the spectra of problem complexity, whereas
a local or midrange approximation might work better in
other cases.

The quality of optimization results were in many cases
somehow sensitive to modeling parameters. A promising
approach seems to be the use of an experimentally esti-
mated correlation structure between the samples. Real-
world problems seldom present a completely random
structure. For complex multimodal problems where some
structure is present in the fitness landscape, variogram es-
timation methods are likely to give interesting results. The
problem of scaling up to high-dimensional spaces is one of
the points that is still unresolved.

Some aspects have not been addressed in this article. All
the problems considered were defined in a real-valued search
space. Since EAs are well known to be robust for many
different data representations~binary strings, integers, trees,
etc.! the generalization of the fitness landscape reconstruc-
tion approach to other space metrics is an important issue.
The comparison with other estimation paradigms, such as
neural networks or support vector machines, is also an im-
portant research issue that is left for further investigations.
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