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Abstract

The problem of finding optimal values in complex parameter optimization problems has often been solved with success
by evolutionary algorithm$EAs). In many cases, these algorithms are employed as black-box methods over impre-
cisely known domains. Such problems arise frequently in engineering design. The principal barrier to the general use
of EAs for those problems is the huge number of function evaluations that is often required. This makes EAs an
impractical approach when the function evaluation depends on numerically heavy design analysis tools, for example,
finite elements methods. This paper presents the use of kriging interpolation as a function approximation method for
the construction of an internal model of the fitness landscape. This model is intended to guide the search process with
a reduced number of fitness function evaluations.

Keywords: Evolutionary optimization; Fitness landscape; Function approximation

1. INTRODUCTION variation structure of the fitness landscajigick, 1996.
Function approximations have long been used in optimal
Evolutionary algorithmgEAs) are recognized as a general structural design for dealing with computationally expen-
approach for solving difficult multidimensional parameter sive problems. An interesting review of approximation meth-
optimization problems. These algorithms have, in the lasbds is given by Barthelemy and Haftka993. Another
years, been used with success in many branches of engipproach known ameta-modelingvas proposed by Sar-
neering design, such as vibration isolatidfeane, 1994, tori and Smith(1997) for sensitivity analysis in capital val-
1995, structural acousticéRatle & Berry, 1998, and ac-  uation problems using polynomial regressions. It has also
tive noise and vibration contralBaek & Elliott, 1995.  been proposed to use neural networks for learning a func-
However, a problem frequently faced with evolutionary tion equivalent to a complex problem, and then to optimize
optimization methods is the large number of fitness functhe network’s response instead of the problem it&&ifm-
tion evaluations required, since the computational complexmerman, 1999 There is, however, no known optimization
ity of this function is often a more than significant factor approach that makes an explicit use of a global model for
(Ratle & Berry, 1998. An optimization method making a extracting information structures beyond fitness values at
more parsimonious use of fitness function evaluations igliscrete sampled points, and updating this information on—
clearly preferable. line as knowledge is gained during the run.

It is somewhat surprising that EAs make a rather limited The main idea developed in this paper is an optimization
use of the information obtained in optimization runs. Al- methodology for building a statistical model of the fitness
though these algorithms use function values to guide furtandscape from a small number of samples of the fitness
ther search steps, no attention is paid to emergent structur@snction, and using this model to guide further search steps.
between the sample points. One exception is found in evoAlthough it may seem to be an odd approach, the interest in
lution strategies and evolutionary programming, where in-using statistical tools for modeling deterministic computer
dividuals may contain information relative to the local experiments has been shown by Sacks eti89. The

samples required to build up the model are obtained during
. . . » __one generation of a simple EA. This statistical model is
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points. Once a convergence criteria is satisfied, the algo- The selection is usually a biased random process, giving
rithm turns back to the true fitness landscape for updating higher probability of reproduction to better individuals.
the model with fresher samples, expected to be closer to th& simple and robust procedure is ttmurnamentwhere a
global optimum. Great care must be taken in the choice of amall number of individuals are randomly picked out, and
suitable modeling technique. As a matter of efficiency forthe best one among them is kept. Many other selection
numerical optimization, the selected model must have someperators exist, as described in Hancd&k94 or Back
characteristics: (1996. The crossover operator is intended to perform an
exploitationof promising regions by the creation of new
1. A small computational complexity compared to the points based on a recombination of existing genomes. For
real function; real-valued variables, crossover operators usually take a
weighted sum of the values from two parents, as proposed
by Michalewicz(1994). Mutation of real-valued variables
%onsists of adding a random noise of a known distribution
to all the variables. The mutation operator actually per-
4. A minimal number of initial hypotheses on the mor- forms a randonexplorationof the search space, allowing
phology of the landscape. the population to escape from local optima.

2. An adequate representation of the global trends;

3. Considerations for local fluctuations around the dat
points, in order to detect emerging local optima.

From the various existing techniques, kriging interpola-
tion, a general tool developed in the framework of linear3: THEORY OF KRIGING

geostatistic_s, is cho_sen since it retains th_e reqqired fe_atu_reﬁriging is a general tool for modeling experimental data in
The paper is organized as follows. Section 2 is a brief inyiidimensional spaces. The method emerged in mining
troduction to EAs for function optimization. Section 3 yeqstatistics for the estimation of geophysical resources using
presents the theoretical foundations of kriging. Section ‘gs few samples as possible, because of the cost of the sam-
details the implementation of kriging for evolutionary op- pjes. Delineating regions of significant economical interest
timization, and, finally, Section 5 presents a series of cOMyom waste requires identifying not only the average values
putational experiments over a test suite of four problems. ,¢ e content, but also its structures of variatidfiather-
on, 1965. The analogy with function optimization appears

2. EVOLUTIONARY ALGORITHMS at this_ poi_nt, since avalqable model is expected to guide the

. _ o optimization toward optima with few or no needs for fur-
Evolutionary algorithms are a class of optimization meth-ther samples. The original theory of kriging was formulated
ods inspired from the natural evolution of species. Usingfor one-, two-, or three-dimensional problems, reflecting
this paradigm, solutions are represented ipppulationof  physical phenomena. In the function optimization context,
individuals Each individual is coded by a string, tlye- it is generalized to ah-dimensional problem. Under the
nome notedx, which contains all the information describ- theory of kriging, a phenomena(x) is represented on a
ing a solution. To every genome correspondisreess value  region S of the space by a linear combinatiah(x) of N

figuring the quality of this solution. Fitness is usually either nonuniformly distributed sampleg, i = 1...N (Matheron,
the function to be optimized, or a scaled version of it. 1973:

The algorithm initially creates a population @findivid-

uals by assigning random values to the elements of the N _ o :

genomes. These individuals constitute the first generation. U(x) = i:E:LAi Z(x, X=X, XL @
Subsequent generations are created by applying evolution-

ary operatorsselectiorof parentsgrossoveior recombina- The best linear unbiased estimat®_UE) theory pro-

tion of the genomes to create an offspring, andtationof  vides optimal weights\; in such a way that first, the ex-
the offsprings. New generations are created until a stoppingected values ofl (x) andZ(x) are the same for al in S,
criteria is satisfied. In most cases, this criteria is a fixedand second, the estimation error is minimal.

number of generations or function evaluations. The basic

heme i follows:
scheme 1s as Tollows 3.1. Construction of the BLUE

Algorithm 1. An elementary evolutionary algorithm. Before proceeding, the underlying hypothesis should be

Begin: stated. The general case considers the function as a station-
Initialize the population ary phenomena: all its statistical moments are assumed to
while: stopping criterion not satisfied be constant ovesS. Under this hypothesis, the expected

Select individuals according to fitness value ofZ is a constant, and only stationary fluctuations are

Recombine them allowed. For many cases, this hypothesis is too restrictive,

Mutate these individuals and the order-2 stationarity is employed, where all the sta-
end: generation loop tistical moments of order 2 and above are assumed con-

End: evolutionary algorithm stant. Under order-2 stationarity, the expected value is
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represented by drift function noteda(x). In the next sec-
tion, kriging is presented under the stationarity hypothesis
and then order-2 stationarity is introduced.

3.1.1. Conditions on the linear estimator

a(x) = E{Z(x)} = %aj i (x).
fo

39

(7

In the presence of a drift, the no-bias conditions are stated

as follows:

The unbiasedness condition is verified as long as the

expected values &t andU are equal:
E{UKX)} = E{Z(x')} =m. 2

A linear relation between thg;’s follows from Eq.(2):

N
E{UX)} = E{__Zl)n Z(Xi)}

- S NEE) ®
N

I
=

The minimization of estimation error cannot be enforced

exactly, since the actual error is unknown, but an estimate

of this error, theestimation variancer%(x) is computed as
follows:

N 2
o?(x) = E{[Z(x) - >\ Z(xi)] }
i=1

N
= E{[z(01%} = 2 24 E{[Z(0Z(x )]}
£33 N EZOOZOD) (4)
i=1lj=

The minimum ofo-2(x) is found where its first derivative
with respect to each of thg’s is zero. A set of equations
follows:

N
m—E{[Z00Z(x)]} + 2 L E{Z(X)Z(x)} =0,

j=1
i=1..N, (5

wheremis the Lagrange multiplier associated with the un-
biasedness constraifitrochu, 1993.

3.1.2. Kriging as the BLUE

The N equations defined by Ed5) depend onN + 1
unknowns: the\;’s and the termm. Introducing the no-bias
condition, a linear system dfl + 1 equation is defined.
Solving the system gives the optimgls. Whenever exper-

N
SAfix)=f(x), j=1..M, VxES
i=1

®

Introducing these conditions, the linear kriging system is

defined by
[ Kix Kin fi(x1) fu(x®) ] Aq
K1 Knn f1(xV) fn (xV) /\_N
fl(Xl) fl(XN) 0 0 a;
L fu(x1) fu (xN) 0 0 |\am
Ky
Kn

L [ 9
fm (X)

Kj; is the covariance between the sample pokitand
x1, that is, E{Z(x")Z(x')}, and K; is the covariance be-
tween the sample point' and any pointx. Solving the
system gives the optimal;’s at the pointx.

3.2. Dual formulation of kriging

The primal formulation given by Eq9) depends on the
covariance between the samplésand the poinx where
the estimation is sought. By the way, thgs also depend
on that point. Independent coefficients are obtained with
the dual formulation, which is calculated as follows. Since
the matrix in Eq(9) is symmetric, the inverse system has the

()[R

Expressing the basic linear estimaf&q. (1)] as a func-
tion of the inverse kriging system we have

(10)

imental data show a global trend, the phenomenon is better K,

modeled by the sum of a drift and a stationary fluctuation:
U(x) = a(x) + b(x) OZ(x). (6)

The termb(x) represents the stationary fluctuation, and
a(x) is the drift built up from a basis df1 arbitrary func-
tions, f. (X):
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By the symmetry oA andB, a new set of coefficients;
andb; is defined such that

Ky f1(x)
+{a;...an}
N i (%)

U(x) = {by...by} (12

These coefficients are found by substitutifig(x*)...
Z(xM),0...0 T for the right-hand side of E¢10). Since the
right-hand half of the matrix in Eq(10) is not explicitly
used, the submatrice’s andC are left untouched, and the

A. Ratle
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reinversion gives the dual formulation

Fig. 1. Typical behavior of a variogram and a covariance.

[ Kp Kin fi(x1) fu(x*) ] o}
KN; KNE fu(x™) fn (™) 1] by gram is said to bésotropic. However, real-world phenom-
fl(f( ) fl(’.( ) 9 9 & ena often show different behaviors with respect to each of
: : : : : the variables. In these cases, an oriented variogrém =
L fm(xh) fux™) | 0 0 J(aw y(hy, h,,...,hy) is defined, depending on the vectorial dis-
Z(xb) tanceh. Such a variogram is said to bethotropic. In pres-
: ence of a drift(order-2 stationarity, the variogram is
Z(xM) computed from the stationary fluctuation:
=\ @ (13
0
: 2y(h) = E{[Z(x) — a(x) = Z(x + h) + a(x + h)]?},
0 Vx €S (16)

Typical shapes of a variogram and a covariance are shown
on Figure 1. The variogram is usually strictly increasing,
Equation 13 shows that kriging requires the choice of a@lthough exceptions are found for oscillatory phenomena.
covariance function and a drift basis. The former is oftenWWhenever the function is stationary, it presents a ceiling
the most difficult step, and requires knowledge of the un-value y” at a distancé”, the distance of influenceAb-
der|ying physics_ For that purpose, two approaches are ameéence of a Ceiling tells that the stationarity assumption is
nable. The firstis the use of an arbitrarily defined theoreticalvrong. It can be show@Journel & Huijbregts, 1978hat a
function. As long as the matrix in EGL3) remains positive ~covariance may be calculated from an experimental vario-
definite, any function is suitable. In this case the function isgram using the relation
a shape functionsince it has no more relationship with an
actual covariance. Kriging in this case is consideredhan
terpolator. The other approach is the estimation of an ex-
perimental covariance from the samples. Kriging is then3.4. Nested structures

considered arstimator and the model reproduces the vari—S i ¢ hvsical ph ft ¢ diff
ance structure oZ(x). Unfortunately, a covariance cannot amplings from a physical pnénomena often present difier-

usually be inferred from experimental data, and does nofnt properties at different scales. The typical case is in gold

even exist in some casédournel & Huijbregts, 1978 For ore estimation, where a point sample always has either 100%
this purpose, theariogramis defined: ' or 0% gold content, depending on whether it was taken

from a nugget or from the surrounding material. A mapping
from point samples would be totally useless, but samples
averaged over a nonzero volume always have something
The variogram is estimated from a set of data pointsbetween 0 and 100% ore content, and give a more useful
Under strict stationarity, it depends only on the scalar dis/mapping. Mathematically speaking, although the covari-
tanceh between two points: ance between two very close points is high, it drops to
nearly zero when the distance is increased by a small amount.
The variogramy,(h) of the point samples has a sharp slope
ath = 0 and reaches a ceiling rapidly, whereas the vario-
Adding a scalah to the vectorial quantitx means that gram from nonzero volume samples is smoother. As long as
the direction ofh is not significant. In this case, the vario- order-2 statistics are concerned, the theory of nested struc-

3.3. Covariance and variograms

K(h) =y* —y(h). 17

2y (X, x7) = E{[Z(X') — Z(x)]?}. 19

2y(h) = E{[Z(x) — Z(x + h)]?}, VXES. (15
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tures(Journel & Huijbregts, 1978states that a general var-
iogram can be built up as the sum of variograms observed

at different scales:
y(h) = yo(h) + ya(h) + ... + ¥i(h). (18

The limit case is a variogram with a discontinuityhet

0, thenugget effedin reference to its physical signification:

0 ifh=0

v = { Co+72(h) else (19

The constanC, is the nugget effect parameter, the am-
plitude of the discontinuity, angl,(h) is a continuous func-
tion with a null value at the origin. Kriging, as presented up

41

_(1-hh* ifh<h®
K(h) = { 0 else 2D

Cubic covariance: This model ensures the continuity of
U(x) and its first derivatives by enforcing the nullity
of 9K/oh ath = 0 andh = h*. Two other conditions are
K(0) = 1 andK(h*) = 0. Solving for these four con-
ditions over a cubic polynomial gives

1= 3(h/h*)2 + 2(h/h*)®  if h < h*
K(h) = { 0 else (22

Gaussian covarianceThis model has an infinite influ-
ence and is infinitely differentiable, which make it in-
teresting for its robustness:

to this point, is an exact interpolator passing through all the

data points. Using a nugget effect, the model does not pass

K(h) = e-h72s%), (23)

through the points anymore, but tends toward the average
behavior. The nugget effect is enforced by adding a con- The influence is controlled by the parameteiThis model

stant to theN first diagonal elements of E¢13). In the case

is strictly equivalent to the Radial Basis Functions found in

Co — o, kriging reduces to a least-square regression on théhe Support Vector Machines literatu¢(8cholkopf et al.,
drift basis. This phenomenon can be used by an optimizat998§.

tion algorithm, by focusing on the global behavior during

the first generations and taking into account the local fluc-

tuations only in later stages.

4. IMPLEMENTATION

4.2. Estimation of an experimental variogram

In this section, the estimation of a variogram function from
thesN(N — 1) variogram samples available by taking pair-
wise N samples o (x) is discussed.

This section presents practical details of useful forms of
kriging concerning theoretical covariance functions, exper4.2.1. Extracting the stationary fluctuation: Variogram
imental variograms, and models of drift basis. An optimi- of the residuals

zation algorithm using fitness landscape approximation is |n the general case wheB&x) is nonstationary, a trans-

then introduced.

4.1. Theoretical covariance functions

Four models are proposed. Two of them rely on the
tance of influencentroduced by Trochy1993 for func-

formed function must be found before computingh).
Should the drift function be knowa priori, the stationary
part would be deduced directly. A drift functi@ix) can be
estimated by solving the kriging system under the hypoth-
esis of pure nugget covariance. Then, the residrats —
a(x) give an approximation of the stationary part4fx),

tional interpolation. It reflects the fact that the actual as |Ong as the drift basis contains enough degrees of free-
covariance between two distant points is often small enouglom. The main drawback of this approach is that the system

to be considered null. The general covariakdd) might
be designed in such a way thigth) = 0 if h > h*. An

is solved twice, but it allows the use of arbitrary samples.

interesting feature of using a finite influence is that the4.2.2. Polynomial regression of variogram data
kriging matrix becomes sparse, making possible the use of p simple method for estimating a model from scattered

sparse system solvers.

Pure nugget effect: This model is the limit case where
local fluctuations are considered insignificant. The
model is useful for noisy data and when a global esti-

mator is required:

1 ifh=0
K(h) = { 0 else (20

Linear model: This model vanishes linearly betweks

0 andh = h*. Combined with a linear drift, it is strictly
equivalent to a linear interpolation of the data points:
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samples is the least square regression over a function basis.

An estimatey’(h) of y(h) can be expressed by a sumkof

functionsg; (h), j = 1.. .k, depending ork coefficientsp;:

k
y'(h) =X pgh). (24
j=o

Aleast-square optimal set pf's is found by minimizing
the expected sum of squared error overthgamples:

N k 2
E{(y'(h) —y(h)?} = 2(_20pjgj(hi)_7(hi)>- (29
i<

1
N =
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Equating to zero the first derivatives of E®5) with

A. Ratle

Table 1. Number of undetermined coefficients as a function of

respect to they’s gives a linear system whose solution the dimensionality and polynomial order, for a diagonal and

corresponds to the optimal set of weights. Usip(d) = h!

as a function basis gives the normal least-squares syster,
which is severely ill conditioned even for low orders, since

it contains small and large terniGerald & Whitley, 1990.

Abetter approach is the use of an orthogonal set of constant

complete basis

Order, diagonal basis Order, complete basis

Dimensions 1 2 3 4 1 2 3 4

order polynomials, such as the Bézier-Bernstein polynomi- 131 251 371 491 131 666 2126 1(1)31
als, well known in computer-aided design for their flexibil- 5 21 41 61 81 21 231 1771 10.626

ity and low computing costFarin, 1990. Using this basis,

all the terms have the same order of magnitude, giving a

better-conditioned matrix. Bézier-Bernstein polynomials are
primarily intended for drawing parametric curves accord-

ing to a variable number ofontrol points These points

define the Bézier polygon, for which the curve is consid-
ered an approximation. For estimating a variogram, a one-

dimensional curve is drawn with the distaricas a parameter

normalized between 0 and 1. Least-square optimal coeffi-

cients are substituted to control points. Tkik order poly-

nomialP(h) is a weighted sum of the Bernstein polynomials

B k(h):
k
P(h) = 2) p; Bj,k(h) (26)
j=
k o
B,«(h) = (i )(17 h< . 27)

A simple alternative is theliagonalbasis, which keeps
the terms depending on only one dimension:

Lk
a(x) = ag+ >, > a;(x)h

i=1j=1

(30

The diagonal basis needs+lkL coefficients, a quantity
linear inL for anyk, and the size of the complete basis is
proportional to a polynomial of ordde. Table 1 presents
the number of coefficients of diagonal and complete basis
of order 1 to 4 in 2-, 10-, and 20-dimensional spaces. Since
a sample size at least equivalent to the number of drift
coefficients is required, the use of a complete basis rapidly
becomes impractical.

The expected squared error is obtained by introducing
Eq. (26) into Eq. (25, and optimal weights are found by 4 4 Optimization algorithm

minimizing this error function analytically.

4.3. Drift function basis

The proposed optimization fithess modeling algorithm is
based on the real-coded EA presented in Section 2. The
algorithm maintains two populations, a genetic population

Polynomial drift bases are common in linear geostatistic>, subject to genetic evolution, and a model populatibn

(Journel & Huijbregts, 1978 In the function optimization

the long term memory. In the first generatida,is initial-

framework, the choice of basis for multidimensional spacedzed similarly to the basic EA. Fitness is evaluated using
is restricted by the explosion in the number of requiredthe true functionM is initialized as a copy o6, and a first

samples. A complete basis of ordecomprises terms de-

kriging model is built up fromM. This model is exploited

pending on all of the possible subsets of variables of size &S a surrogate fitness function for several generations until

to k:

L
2 aijk X Xj Xk
i k=j

L LoL L
ax) =ap+ X ax + X D ayxX + X
~ / P

i=1j=i i=1j

+ ... (28)
The sum of linear terms contaihgerms or, equivalently
speaking(i) terms, the quadratic suré','?) terms, and

the kth order sum shall be made é%“;fl) terms. From

the additive properties of binomial coefficient&raham,
1994, the sum of all the terms up to ordkis equal to

>

=)= ()

(29
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a stopping criterion is satisfied. Then, in the next genera-
tion, some points irG are evaluated and added tb ac-
cording to a given sampling scheme, and the kriging model
is updated using these new points. The process is repeated
as long as the global stopping criterion is not satisfied. To
simplify the analysis, the model update criterion will be
simply a fixed number of generations. The complete proce-
dure is as follows:

Algorithm 2. Evolutionary optimization algorithm with fit-
ness landscape approximation.

Begin:
Initialize the populatiorG
Evaluate fitness
Copy G into M and build a fitness landscape model
fitness function— model
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while: Global stopping criterion not satisfied considered in this paper. The first strategy, calteduild
if: Criterion for model update is satisfied from scratch consists of evaluating new individuals, that
fithess function— original function is, the complete generation, and replacing all the old sam-
Evaluate some points is according to the sam- ples with them. The model is therefore completely rebuilt
pling scheme from scratch every time. It is expected that the first model
Add these points td1 and update the fithess model is at best a global approximation, while the subsequent ones
fithess function— new model will be more precise in some limited regions. The other
end: if approach, callechcremental growthconsists of evaluating
Evaluate the population iG with the model with the true fitness function tha,. best points in the
Select individuals irG according to fitness current population, and possiky,,q random points. These
Recombine them points are added into the model. However, to keep the model
Mutate these individuals relatively cheap to evaluate, its size is limited. If the size
end: generation loop exceeds the limit value, some points are randomly deleted
End: Algorithm before the new points are included.
4.5. Sampling schemes 5. COMPUTATIONAL EXPERIMENTS

Using this algorithm, the model is updated aftegenera- The fitness landscape approximation algorithm has been
tions have been evaluated with a given model. An importested over a set of four analytic functions with various
tant issue is how new samples should be taken from the trugroperties. Numerous benchmark problems have been de-
fithess function at every update, and how these new samvised in the past; interesting cases are found in Michalewicz
ples should replace the old ones. This task might be han:1994), Back (1996, or Floudas and Pardal¢$996. The

dled in many different ways, but two approaches arefour chosen functions are presented in Figure 2. Computa-
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Fig. 2. The four test functions: Quadratic Problépitop left), Rastrigin’s Multimodal Functiof, (top right), Keane’s Constrained
Multimodal Functionf; (bottom lef), and the Step Functiofy (bottom righ).

https://doi.org/10.1017/50890060401151024 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060401151024

44

tional experiments for testing the effect of various param-

eters are presented:

Influence of the drift basis order;

Constraint handling;

rametersy, Nyesp, ANAN, 41g-

Covariance functions, theoretioarsusexperimental;

A. Ratle

This function also has a variable dimensionality. The
constrained global optimum lies on the surfddb , x; =

Population size, with the rebuild-from-scratch strategy;0-75- Solutions for the two-dimensional problem are found

analytically to be 0.67367 dix,, x,) = (1.3932, 0 for the
unconstrained version, and 0.36498 s, x,) = (1.60086,
0.46850 with constraints. The two-dimensional case has

Sampling strategies: the basic approaches, and the pR&en successfully solved using a dynamic penalty function

(Smith & Coit, 1997:

Results are always represented by the fithess of the best- t

so-far individual found averaged over five runs, as a func-
tion of the number of real fitness evaluations. Although itis
clearly not true for the analytical functions considered in
this article, it is assumed that the cost of evaluating the
model is insignificant compared to that of the real fitness

fg,,(X) = fS(X) - t per(X) (34)
4 L L
pen(x) = { 1-3lIx if [[x <075 -
0 otherwise.

function. The basic EA taken as a reference makes use of

real-valued coding, Gaussian mutation with autoadaptive Tne timet corresponds to the current generation gpg
variance, and tournament selection. To keep this article cong the maximum number of generations. The functign
cise, not all the parameters are tested for all the test funcyjows a free exploration of the space during the first gen-

tions; only a selection of the most sign_ificant results iserations, with a penalty increasing in later stages to push
presented. The four test cases are described as follows. e population back into the feasible domain.

Function f,: Quadratic. This first problem is a simple

quadratic form:

Minimize f;(x) = ixTAx + bx + c,
subject to—100= x; = 100.

Although deterministic algorithms can solve this prob-
lem faster than an EA, the interest is to show how a simple ;
problem can be solved efficiently if the optimizer is al-

lowed to build up an internal model.

Function f,: Rastrigin’'s Multimodal. The Rastrigin’s

(31

Problem f,: Step. This last case, adapted from DeJong
(19795, consists of an assembly of flat plateaus with a
minimum value of zero in the square regieiD.5= x; =
0.5Vi:

Minimize fa(x) = 3, | + 0.5 (36)

subjectto-5=x; = 5.

The problem cannot be solved by a local search algo-

function is considered a difficult case since it consists of alithm, since the gradient value is zero everywhere. The only
large number of valleys hiding the minima. The problem isway for an optimizer to solve such a problem is to have
scaleable to ah-dimensions space, and is defined by

L
Minimize f5(x) = 10L + >, (x2 — 10 cog2mX;)),

i=1
subjectto—2=x; = 2.

(32

someglobal viewof the fitness landscape. Since the mini-
mum is a large region rather than a point, the case is well
suited to a landscape approximation approach; the object is
just to point out this region.

Itis observed from Figure 2 that the function possesses 8.1. Population size with the rebuild-from-scratch

strong periodical structure hiding a quadratic shape. The

strategy

absence of a direct relationship between the local fithess ] ] ) o
landscape and global behavior makes the problem difficulff "€ Problem of ?hOOS'ng a suitable population size is stud-
unless the periodical structure is identified and taken intd®d fortwo cases: avery simple problem, the two-dimensional

account in the fitness landscape estimation.

Problem f;: Keane’s Constrained Multimodal. This
case was proposed by Kead®94) for the study of EAs on

quadratic surfacéf,), and multidimensional cases: the step
function( f,) with 20 and 100 dimensions. The problems have
been solved using the parameters described in Table 2, ex-

constrained problems when the solution lies close to th&€Pt for the population size.

edge of the feasible domain. The problem is as follows:

> cost(x) — 2] cof(x)
i=1 i=

i=1
L
ix?
i=1

L L
and [[ x >0.75, > x; < 7.5L.

i=1 i=1

Maximizefs(x) =

subjectto 0= x; =10
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Thef, — 2D problem being exactly defined by six points,
the global minima is theoretically obtainable within six fit-
ness evaluations. Since the sampling strategy requires that
a final generation with the true fitness be calculated before
terminating, in order to make sure the optimal solution re-
ally belongs to the fitness landscape, the algorithm can theo-
retically terminate after 12 evaluations. Results presented
in Figure 3 show that the solution is not obtained within the
limit of 12 evaluations with a population of 6. However,
using a population of 20, the minimum is always reached in
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Table 2. Optimization parameters for all the test problems

Problem

Quadratic Rastrigin Keane Step
Dimensions 2 2 10 2 20 20 100
Population size 20 50 200 50 300 50 250
Max. evaluations 400 1000 5000 2500 60,000 600 3000
Tournament size 2 2 3 2 4 2 2
Elitism 1 10 20 1 10 5 15
Pt 1/3 14 1/40 12 1/20 1/40 1/200
Peross 1 1 1 1 1 1 1
Drift 2C 2D 2D 3C 3D 2D 2D
Covariance nugget experimental cubic nugget
Sampling rebuildif not specified

2C: Quadratic complete drift, 2D: quad. diagonal., 3C: cubic comp., 3D: cubic digg:,probability of mutation per variable,
P.ross Probability of crossover per individual

40 evaluations, which is twice the population size. This5.2. Choosing a suitable drift basis order

suggests a lower bound on population size for an efficien . . L
99 pop tI'he influence of the drift basis is illustrated for two cases:

use of the EA. the 2-dimensional quadratic problem, in Figure 6 and the

For the step function, the quadratic diagonal drift emflO-dimensionaI Rastrigin’s problem in Figure 7. Both prob-

ployed requires 41 samples in 20 dimensions, and 201 IPem:s have a quadratic general trend. In the two cases, it is

100 Q|men§|ons. ResuIFs are presepted In Figure 4 for thgbserved that the best results are obtained when the appro-
20-dimensional case with a population of 50. In this case

the kriging algorithm points out the optimal region after priate basis is employdduadrati¢. This points out the fact

that there is room foa priori knowledge of the physics of

two generations with the true fitness landscape, which re ['he problem, in order to obtain the best possible optimiza-

resents the maximum efficiency. On the 100-dimensiona L
. . o ion results. Whenever the nature of the problem is ignored,
problem, the influence of population size is greater. Result

shown in Figure 5 present three cases. The first makes usec algorl_thm takes a longer time, or converges to subopti-
. e . . . mal solutions.
of an insufficient sampling with 150 points, the second one
a critically sized population of 201, and the third one, 250
points. In all cases, the algorithm settles down to a consta
fitness value at the second generation and does not impro
anymore. However, only the larger sampling ensures the
settling to the best fitness value, whereas the insufficienFigure 8 presents the effect of various covariance functions

and critical samples make the algorithm converge to a subfor the two-dimensional Rastrigin’s problem. A simple EA

%3. Covariance functions: Theoreticalversus
experimental

optimal value. is compared with reconstruction algorithms using either a
1500 | Basic EA —— | 60 | Basic EA —— |
Kriging, with pop. size =6 - i Kriging, population 50 -
Kriging, with pop. size =20 - |
50 1
1000 r ! :
3 : g 40f E
© ©
o @ 30 ]
173 [%]
£ s0l , ¢
E E 20+ 1
10 t 1
0r 1 ol
0 100 200 300 400 0 200 400 600 800
function evaluations function evaluations
Fig. 3. Influence of population size with the 2-D functidpn Fig. 4. Influence of population size with the 20-D step functign
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500 —
Basic EA ——
) Kriging, Undersized pop. (150) -
400 L' Kriging, Critical pop. (201) -+ J
I Kriging, Oversized pop. (250) x
g 800 ]
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> [
2 ¥
2 200 i 1
£
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Fig. 5. Influence of population size with the 100-D step functign
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Fig. 6. Drift basis for the 2-D quadratic functiof.
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Fig. 7. Drift basis for the 10-D Rastrigin’s functiof3.
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Fig. 8. Covariance functions for the 2-D Rastrigin’s functifyn

theoretical covariance or an experimental variogram. Since
the difficulty of this case lies in the numerical precision of
the solution rather than on the rough identification of the
attractor, results are presented on a logarithmic scale of
fitness value. As would be expected from the periodic struc-
ture of this function, theoretical covariance models, either
linear or cubic, give only poor results compared to a simple
EA, since these models cannot reproduce the covariance
structure of the true landscape. Using an experimental var-
iogram estimated from an order-4 Bézier polynomial al-
lows us to find a fitness value of about 0.04 in roughly 400
fitness function evaluations compared to 800 for the basic
EA. However, in the long run, the precision of the model is
still insufficient to outperform the solution quality obtained
without fithess approximation. For this problem, it is also
clear from Figure 9 that the use of an isotropic variogram is
not appropriate; better results are obtained when a different
variogram is calculated for each of the dimensions.

10

Isotropic
* Orthotropic -+
1 ] B

q’ ‘\
= kN
a ) s
> .
@ 0.1 ¢ ]
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g o ! .
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0.001 ‘
0 500 1000
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Fig. 9. Influence of an orthotropic variogram, 2-D Rastrigin’s function.
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Fig. 12. Optimization results for the unconstrained 2-D Keane’s func-
Fig. 10. Covariance models for the 100-D step function. tion fs.

For the 100-dimensional step function, opposite resultguarter of the number of function evaluations required by
are obtained. In this case, the best thing to do is to keep thie basic EA, with the parameters of Table 2.
model simple and global, since only a rough estimate of the The problem has also been studied in a 20-dimensional
optimal region is required, due to the discrete nature of thispace. This case has long been considered a difficult prob-
problem. It is seen from Figure 10 that a pure nugget effectem for which no standard method gave satisfactory results
covariance outperforms the other models in terms of solu¢Michalewicz & Schoenauer, 1996Some good solutions
tion quality. The 20-dimensional Keane’s function also have been found by the same authors using specialized evo-
presents a different optimal covariance function. In this caséutionary operators intended to explore only the surface
(Fig. 11), the best results are obtained with the cubic co-defining the edge of feasible domain. A similar approach is
variance, while the linear covariance makes the algorithntonsidered together with a fithess landscape reconstruction
converge to a suboptimal value. algorithm, using fitness function samples taken exclusively
from the boundary of the feasible domain. This procedure
gave the results presented in Figure 14, where a certain
gain is obtained with the use of a landscape approximation.
The fitness approximation algorithm has been tested on the
Keane’s problem to study the effect of a dynamically vary-
ing landscape. Results are presented in Figure 12 for th
unconstrained problem with the functidg and in Fig- The last important point to be discussed is how the model
ure 13 for the constrained version usif¥g In both cases, should be updated. Three parameters are studied, the num-
using an approximated landscape built from a cubic covariber of generations between updatgsthe number of best
ance(theoretical allows the solution to be found in about a individuals, n, .., reevaluated with the true function, and

5.4. Constraint handling

%.5. Sampling strategies

0.85 0.7
08 p
””””” 0.6 1
0.75 1
[0} B
o Lo 4
2 0.7 1 (_3 05
>
o 0.65 g §
3 £ 047 1
£ 06 ] & T .
055 | 03 Optimal soluton ~ + |
Basic EA -
05 Linear covariance | 0.2 Kriging, cubic covariance -----
0.45 ‘ ‘ Cubic covariance —— “0 1000 . 2000
0 10000 20000 30000 40000 50000 60000 function evaluations

function evaluations . . . . .
Fig. 13. Constrained 2-D Keane's functiofy with dynamic penalty

Fig. 11. Covariance models for Keane’s 20-D constrained function function.
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Fig. 16. Influence of the evaluation of random individuals, Rastrigin’s

Fig. 14. Constrained 20-D Keane’s functidgusing boundary operators. 10-p function.

the number of random evaluatioms,,,4. These parameters are obtained when the model is evaluated with 5% of the
have been studied for the 10-dimensional Rastrigin probeurrent population every generation. Finally, the rebuild-
lem. Experiments were conducted with the parameters ofrom-scratch sampling strategy has been compared with the
Table 2, except, of course, for the sampling strategies. In alhcremental model growth on the 10-dimensional Rastrigin
the cases, the model size was limited to 500 points. Théunction. In this case, the results of Figure 18 indicate that
influence of the number of best individuals evaluated, withthe progressive update of the model population gives the
no random evaluations, and an update every four generdest results. It should be recognized, however, that this lat-
tions is illustrated in Figure 15. It is observed that there is d@er strategy relies on many parameters; a setting with the
minima of fithess value obtained with the evaluation of 10wrong parameters can severely worsen the results, as shown
individuals, that is, 5% of the population size. From otherin Figures 15, 16, and 17.
experiments not presented in this article, this 5% value seems
to be a rather robust ch0|c.:e.' . ' 6. CONCLUSION

It would make sensa priori, for multimodal functions,
to reevaluate some random individuals to prevent converThis article presented the use of kriging interpolation for
gence to a local optima. However, the results of Figure 16mproving the utilization of available information by evo-
show that there is no benefit from doing so: The best resulttutionary optimization methods. The estimation of an ap-
are obtained when only the 10 best and no random individproximated fitness landscape is an efficient way to reduce
uals are evaluated with the true function. The interval bethe computational cost of an optimization problem when
tween model update is studied in Figure 17. These resultthe original fitness function is at the same time too difficult
show that there is no point in letting the algorithm run on afor local search methods and numerically too heavy for
given model for more than one generation: optimal resultstandard heuristic methods like EAs. The results presented

50 50
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Fig. 17. Number of generations between model updates, Rastrigin’s 10-D

Fig. 15. Number of best individuals evaluated, 10-D Rastrigin’s function. function.
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