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We prove new upper bounds for the number of representations of an arbitrary
rational number as a sum of three unit fractions. In particular, for fixed m there are
at most Oε(n3/5+ε) solutions of m/n = 1/a1 + 1/a2 + 1/a3. This improves upon a
result of Browning and Elsholtz (2011) and extends a result of Elsholtz and
Tao (2013) who proved this when m = 4 and n is a prime. Moreover, there exists an
algorithm finding all solutions in expected running time Oε(nε(n3/m2)1/5), for any
ε > 0. We also improve a bound on the maximum number of representations of a
rational number as a sum of k unit fractions. Furthermore, we also improve lower
bounds. In particular, we prove that for given m ∈ N in every reduced residue class
e mod f there exist infinitely many primes p such that the number of solutions of the
equation m/p = 1/a1 + 1/a2 + 1/a3 is �f,m exp((5 log 2/(12 lcm(m, f)) + of,m(1))
log p/log log p). Previously, the best known lower bound of this type was of order
(log p)0.549.
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1. Introduction

We consider the problem of finding upper bounds for the number of solutions in
positive integers a1, a2 and a3 of equations of the form

m

n
=

1
a1

+
1
a2

+
1
a3

(1.1)

where m,n ∈ N are fixed. In the case when m = 4 we call equation (1.1) Erdős-
Straus equation. The Erdős-Straus conjecture states that this equation has at least
one solution for any n > 1 (see [12,16: D11] for classical results concerning the
Erdős-Straus equation and several related problems, as well as [15] for a survey of
the work of Erdős on Egyptian fractions). Also the more general equation

m

n
=

k∑
i=1

1
ai

(1.2)
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for m,n ∈ N fixed and a1, . . . , ak ∈ N received some attention. Browning and
Elsholtz [5] found upper bounds for the number of solutions of (1.2). For the spe-
cial case m = n = 1 they were able to improve a result of Sándor [27] and proved
that there are at most c

(5/24+ε)2k

0 representations of 1 as a sum of k unit fractions,
for any ε > 0 and sufficiently large k. Here c0 = limn→∞ u2−n

n = 1.264 . . . where
u1 = 1 and un+1 = un(un + 1). On the other hand, Konyagin [21] proved a lower
bound of order exp(exp(((log 2)(log 3)/3 + o(1))k/log k)) for the number of these
representations with distinct denominators. While the Erdős-Straus conjecture is
about representing certain rational numbers as a sum of just three unit fractions,
Martin [24] worked on representations of positive rationals as sums of many unit
fractions. In particular, he proved that every positive rational number r has a repre-
sentation of the form r =

∑
s∈S 1/s, where the set S contains a positive proportion

of the integers less than any sufficiently large real number x.
Chen et.al. [7] dealt with representations of 1 as a sum of k distinct unit frac-

tions where the denominators satisfy certain restrictions (like all of them being
odd). Several results on representations of rational numbers as a sum of unit frac-
tions with restrictions on the denominators can be found in the work of Graham
[13–15]. Elsholtz [11] proved a lower bound of similar order as the one of Konyagin
for the number of representations of 1 as a sum of k distinct unit fractions with
odd denominators.

For sums of k unit fractions we adopt the notation of [5] and define fk(m,n) to
be the number of solutions (a1, a2, . . . , ak) ∈ Nk of equation (1.2) with a1 � a2 �
. . . � ak, that is,

fk(m,n) =
∣∣∣∣
{

(a1, a2, . . . , ak) ∈ Nk :
m

n
=

1
a1

+
1
a2

+ · · · + 1
ak

, a1 � a2 . . . � ak

}∣∣∣∣ .
Concerning equation (1.1) with m = 4 the results of Elsholtz and Tao [12] show
that the number of solutions f3(4, n) is related to some divisor questions and is on
average a power of log n (at least when n is prime). It even seems possible that
for fixed m ∈ N and any ε > 0 the number of representations of m

n as a sum of
k unit fractions is bounded by Ok,ε(nε). More details on this are informally and
heuristically discussed in § 3. For general m and n the best known upper bound on
the number of solutions of (1.1) is due to Browning and Elsholtz [5, theorem 2] who
proved an upper bound of order Oε(nε(n/m)2/3). In the case of the Erdős-Straus
equation with n = p prime Elsholtz and Tao [12, proposition 1.7] have improved
this bound to Oε(p3/5+ε). It is known that this type of question is easier to study
when the denominator is prime.

Our main result will be the following theorem which provides an upper bound
on the number of solutions of equation (1.1).

Theorem 1.1. For any m,n ∈ N and any ε > 0 there are at most Oε(nε(n3/m2)1/5)
solutions of the equation

m

n
=

1
a1

+
1
a2

+
1
a3

in positive integers a1, a2 and a3.
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Note that this improves upon the bound of Browning and Elsholtz in the range
m � n1/4. As a corollary, we get that the Elsholtz-Tao bound for the number of
solutions of the Erdős-Straus equation is true for arbitrary denominators n ∈ N.

Corollary 1.2. The Erdős-Straus equation

4
n

=
1
a1

+
1
a2

+
1
a3

has at most Oε(n3/5+ε) solutions in positive integers a1, a2 and a3.

We also prove the following algorithmic version of theorem 1.1 with a matching
upper bound for the expected running time1.

Corollary 1.3. There exists an algorithm with an expected running time of order
Oε(nε(n3/m2)1/5), for any ε > 0, which lists all representations of the rational num-
ber m/n as a sum of three unit fractions. Furthermore, all representations of m/n

as a sum of k > 3 unit fractions may be found in expected time Oε,k(n2k−3(8/5+ε)−1),
for any ε > 0.

For sums of k unit fractions, we will prove the following result.

Theorem 1.4. We have

f4(m,n) �ε nε

(
n4/3

m2/3
+

n28/17

m8/5

)

and for any k � 5

fk(m,n) �ε (kn)ε

(
k4/3n2

m

)28/17·2k−5

.

Keeping in mind that 28/17 = 1.64705 . . ., theorem 1.4 may be compared with the
following bounds from [5, theorem 3]:

f4(m,n) �ε nε

(
n4/3

m2/3
+
( n

m

)5/3
)

,

fk(m,n) �ε (kn)ε

(
k4/3n2

m

)5/3·2k−5

, for k � 5.

A well studied special case of theorem 1.4 concerns representations of 1 as a sum
of k unit fractions. Browning and Elsholtz [5] mention several related problems
which are studied in the literature and can be improved using better upper bounds
on fk(m,n). We summarize these results in the following corollary.

1For a definition of expected running time see the proof of this corollary at the end of § 5.
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Corollary 1.5.

(1) For any ε > 0, we have that

fk(1, 1) �ε k7/51·2k−1+ε.

(2) Let un be the sequence recursively defined by u0 = 1 and un+1 = un(un + 1)
and set c0 = limn→∞ u2−n

n . Then for ε > 0 and k � k(ε) we have

fk(1, 1) < c
(7/17+ε)2k−1

0 .

(3) For ε > 0 and k � k(ε) the number S(k) of positive integer solutions of the
equation

1 =
k∑

i=1

1
ai

+
1∏k

i=1 ai

is bounded from above by c
(7/17+ε)2k

0 .

Proof. The first assertion is an immediate consequence of theorem 1.4. For the
proof of the second statement we refer the reader to the proof of theorem 4 in [5].
The only change necessary is plugging in the bound from theorem 1.4 instead of [5,
theorem 3] for the last 5 lines of the proof which amounts to just exchanging one
exponent. The last statement follows from the first one and the observation that
S(k) � fk+1(1, 1). �

We note that the number of solutions of the equation 1 =
∑k

i=1 1/ai + 1/
∏k

i=1 ai

has applications to problems considered in [4].
Finally, we deal with lower bounds. In [12, theorem 1.8] it is shown that we have

f3(4, n) � exp
(

(log 3 + o(1))
log n

log log n

)

for infinitely many n ∈ N and that

f3(4, n) � exp
((

log 3
2

+ o(1)
)

log log n

)

for all integers n in a subset of the positive integers with density 1. The following
theorem gives an improvement of these bounds which also give a limitation on
improving the upper bounds for the number of solution of the Erdős-Straus equation
and in the general case. For comparison we note that log 3 = 1.09861 . . ., (log 3)/2 =
0.54930 . . . and log 6 = 1.79175 . . ..

Theorem 1.6. For given m ∈ N there are infinitely many n ∈ N such that

f3(m,n) � exp
(

(log 6 + om(1))
log n

log log n

)
.
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Furthermore, for given m ∈ N, there exists a subset M1 of the integers with
density one, such that for any n ∈ M1

f3(m,n) � exp((log 3 + om(1)) log log n) · log log n

� (log n)log 3+om(1).

For the special case m = 4 and for integers n in a set M2 ⊂ N with density one,
the last bound may be improved to

f3(4, n) � exp((log 6 + o(1)) log log n).

Remark 1.7. Previous proofs of lower bounds of similar type as the ones in
theorem 1.6 constructed solutions from factorizations of n. We get our improvement
from additionally taking into account factorizations of a lot of shifts of n. Hence our
proof also shows that there are many values a1 admitting many pairs (a2, a3). Here,
depending on which of the three lower bounds in theorem 1.6 we consider, ‘many’
may either mean exp((C + om(1))log n/log log n) or exp((C̃ + om(1)) log log n), for
suitable positive constants C and C̃ .

We may ask if a lower bound on f3(m,n) of the first type in theorem 1.6 does not
only hold for infinitely many positive integers n but also for infinitely many prime
denominators p. In [12] there was no lower bound of this type, but it was proved
that f3(4, p) � (log p)0.549 for almost all primes. We note that this result implies,
using Dirichlet’s theorem on primes, the following corollary.

Corollary 1.8. For every reduced residue class e mod f , that is, gcd(e, f) =
1, there are infinitely many primes p such that f3(4, p) � (log p)0.549, and
p ≡ e mod f .

Here we improve this corollary considerably.

Theorem 1.9. For every m ∈ N and every reduced residue class e mod f there are
infinitely many primes p ≡ e mod f such that

f3(m, p) �f,m exp
((

5 log 2
12 lcm(m, f)

+ of,m(1)
)

log p

log log p

)
.

Here of,m(1) denotes a quantity depending on f and m which goes to zero as p
tends to infinity.

Using results of Harman [19,20] one might be able to improve the factor 5/12 in
the exponent to 0.4736.

2. Notation

As usual N denotes the set of positive integers and P the set of primes in N.
We denote the greatest common divisor and the least common multiple of n ele-
ments ai ∈ N by gcd(a1, a2, . . . , an) and lcm(a1, a2, . . . , an) or (a1, a2, . . . , an) and
[a1, a2, . . . , an] for short. For integers d, n ∈ N we write d|n if d divides n. We
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use the symbols O, o, � and � within the contexts of the well known Landau
and Vinogradov notations where dependence of the implied constant on certain
variables is indicated by a subscript. For any prime p ∈ P we define the function
νp : N → N ∪ {0} to be the p-adic valuation, that is, νp(n) = a if and only if pa is the
highest power of p dividing n. By τ(n) and ω(n), as usual, we denote the number of
divisors and the number of distinct prime divisors of n. By τ(n,m), we denote the
number of divisors of n coprime to m and τ(n, k,m), ω(n, k,m) denote the number
of divisors (resp. distinct prime divisors) of n in the residue class k mod m, where
(k,m) = 1. Finally, for two coprime integers a and b we denote by orda(b) the least
positive integer l, such that bl ≡ 1 mod a.

3. Heuristics on fk(m, n)

We now informally discuss why f3(m,n) = Oε(nε) can be expected. In fact, as far as
we are aware, this was first observed by Roger Heath-Brown (private communication
with the first author in 1994). Let us first recall (see e.g. [28, p. 201: theorem 3])
that a fraction m/n with gcd(m,n) = 1 is a sum of two unit fractions 1/a1 + 1/a2

if and only if there exist two distinct, positive and coprime divisors d1 and d2 of
n such that d1 + d2 ≡ 0 mod m. We may deduce an upper bound of Oε(nε) for the
number of representations of m/n as a sum of two unit fractions. Indeed from

m

n
=

1
a1

+
1
a2

, (3.1)

by setting d = (a1, a2) and a′
i = ai/d for i ∈ {1, 2}, we see that

ma′
1a

′
2d = n(a′

1 + a′
2).

This implies that a′
1, a

′
2 are divisors of n, d divides n(a′

1 + a′
2) < 2n2 and any

solution (a1, a2) of (3.1) uniquely corresponds to a triple (a′
1, a

′
2, d). The number∑

a′
1,a′

2|n τ(n(a′
1 + a′

2)) of such triples is bounded by Oε(nε) (see lemma A below).
Studying m/n = 1/a1 + 1/a2 + 1/a3 with a1 � a2 � a3 one observes that

1
a1

<
m

n
� 3

a1

from which n/m < a1 � 3n/m follows. In view of

m

n
− 1

a1
=

ma1 − n

na1
=

1
a2

+
1
a3

(3.2)

there are at most O(n/m) choices for a1, and for given a1 there are at most d(na1) =
Oε(nε) divisors of na1. This shows that f3(m,n) = Oε(n1+ε/m) is a trivial upper
bound. The real question is for how many values of a1 there can be at least one
solution. For increasing a1, even if na1 contains many divisors, the congruence
d1 + d2 ≡ 0 mod ma1 − n should become, on average, more difficult to satisfy if
ma1 − n � nε. Therefore we expect that the number of a1 contributing at least
one solution is Oε(nε), so that f3(m,n) = Oε(n2ε). Moreover equation (3.2) implies
that for any given a1, the number of solutions is about d̃(m,n, a1). Here d̃(m,n, a1)
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counts the number of pairs of coprime divisors d1, d2 of na1, with d1 + d2 ≡ 0 mod
ma1 − n. Therefore f3(m,n) should be approximately

∑
a1

d̃(m,n, a1).
Similarly, a completely trivial upper bound on f4(m,n) is as follows. With a1 �

a2 � a3 � a4 it follows that n/m < a1 � 4n/m and hence

ma1 − n

na1
=

m

n
− 1

a1
=

1
a2

+
1
a3

+
1
a4

� 3
a2

.

From those bounds, we easily deduce that a2 � 12n2/m. With

m

n
− 1

a1
− 1

a2
=

ma1a2 − na2 − na1

na1a2
=

1
a3

+
1
a4

,

with similar arguments as above, we deduce that f4(m,n) = Oε(n3+ε/m2). For
fixed m the fact that our bound on f4(m,n) in theorem 1.4 above is better
than O(n2) shows that for most pairs (a1, a2) and moreover, for most choices
of a2 ∈ [n/m, 12n2/m] there is no solution of m/n = 1/a1 + 1/a2 + 1/a3 + 1/a4.
Here again, as soon as ma1a2 − na2 − na1 � nε one should not expect to have two
divisors d1, d2 of na1a2 such that d1 + d2 ≡ 0 mod ma1a2 − na2 − na1. From this
reasoning, also fk(m,n) = Oε,k(nε), for k � 4 seems to us a reasonable expectation.

The papers [5,12] studied parametric solutions of the Diophantine equation (1.1).
The reason why the result in [12] is superior in the case of n being a prime is that
here a full parametric solution (e.g. [26]) is much easier to work with. However, in
this paper, we develop parametric solutions of (1.1) and (1.2) from scratch. Some
simplified version of this has been used in [10,12: § 11], but there the focus was to
generate solutions with many parameters. Here we need to do kind of the opposite,
namely to show that every solution comes from a number of parametric families.

The method we introduce should theoretically work for any Diophantine equation
as it expresses a k-tuple of integers in a standard form. In practice, it might work
favourably if there is some inhomogeneous part as in

n = a1a2a3 − a1 − a2.

For prime values of n in equation (1.1) there are several discussions of parametric
solutions in the literature, for example, by Rosati [26] and Aigner [1], see also
Mordell’s book [25, Chapter 30]. For composite values n there is no satisfactory
treatment in the literature, and § 5 below may be the most detailed study to date.

4. Patterns and relative greatest common divisors

Consider a solution (a1, a2, . . . , ak) ∈ Nk with a1 � a2 � . . . � ak of equation (1.2)
and set ni = (ai, n), ai = niti for i ∈ {1, 2, . . . , k}. We can thus rewrite equation
(1.2) as

m

n
=

k∑
i=1

1
niti

. (4.1)

Later, when working on upper bounds for the number of solutions of equation (4.1)
for k ∈ {3, 4}, we will fix a choice of (n1, n2, . . . , nk) ∈ Nk. For given m,n ∈ N we
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call such a choice the pattern of a solution of this equation. Note that for solutions
corresponding to a given pattern (n1, n2, . . . , nk) we have that (n/ni, ti) = 1 for all
i ∈ {1, 2, . . . , k}. As ni|n the number of distinct patterns is Ok(nε) only.

Also, when dealing with equations of type (4.1) for k ∈ {3, 4} we will make heavy
use of the concept of relative greatest common divisors as described by Elsholtz
in [9] (for some ad hoc definition see also [10]). Relative greatest common divisors
are a useful tool when studying divisibility relations among the ti in (4.1).

Let I = {1, 2, . . . , k} be the index set. Then we define the relative greatest
common divisors of the positive integers t1, t2, . . . , tk recursively as follows:

xI = gcd(t1, t2, . . . , tk)

and for any {i1, i2, . . . i|J|} = J ⊆ I, J 
= ∅ we set

xJ =
gcd(ti1 , ti2 , . . . , ti|J|)∏

J ′⊆I
J�J′

xJ ′
.

For k ∈ {3, 4}, we will later identify the elements xJ with J ⊆ I with the elements
xi, xij and xijk where {i, j, k} = {1, 2, 3} in the case when k = 3 and with the
elements xi, xij , xijk and xijkl with {i, j, k, l} = {1, 2, 3, 4} when k = 4. With the
relative greatest common divisors defined as above we have that

ti =
∏

J⊆I
i∈J

xJ .

A further very useful property of relative greatest common divisors is that
(xJ , xK) = 1 if J � K and K � J . We prove this property as the following lemma
(see also [9, p. 2]).

Lemma 4.1. Let t1, t2, . . . , tk ∈ N, J,K ⊆ {1, 2, . . . , k}, J,K 
= ∅ and define the cor-
responding relative greatest common divisors xJ and xK as above. If J � K and
K � J then (xJ , xK) = 1.

Proof. By assumption J � K and K � J and thus we have that J � J ∪ K
and K � J ∪ K. We suppose that d = (xJ , xK) > 1 and choose an arbitrary
prime divisor p|d. Set L = J ∪ K, J = {j1, j2, . . . , j|J|}, K = {k1, k2, . . . , k|K|},
L = {l1, l2, . . . , l|L|} and write

xJ =
(tj1 , tj2 , . . . , tj|J|)⎛

⎜⎜⎝∏J ′⊆I
J�J′

L�J′

xJ ′

⎞
⎟⎟⎠ · xL ·

(∏
J ′⊆I
L�J′

xJ ′

) ,

xK =
(tk1 , tk2 , . . . , tk|K|)⎛

⎜⎜⎝∏K′⊆I
K�K′

L�K′

xK′

⎞
⎟⎟⎠ · xL ·

(∏
K′⊆I
L�K′

xK′

) .
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Figure 1. A visualization of relative greatest common divisors using Venn diagrams. On the
left-hand side one sees the general case of three positive integers t1, t2 and t3 and on the
right-hand side the situation when t1 = 90, t2 = 126 and t3 = 616. Empty sets correspond
to empty products and we set the corresponding relative greatest common divisor to 1.

With xL = (tl1 , tl2 , . . . , tl|L|)/
∏

L′⊆I
L�L′

xL′ this simplifies to

xJ =
(tj1 , tj2 , . . . , tj|J|)⎛

⎜⎜⎝∏J ′⊆I
J�J ′

L�J′

xJ ′

⎞
⎟⎟⎠ · (tl1 , tl2 , . . . , tl|L|)

, xK =
(tk1 , tk2 , . . . , tk|K|)⎛

⎜⎜⎝∏K′⊆I
K�K′

L�K′

xK′

⎞
⎟⎟⎠ · (tl1 , tl2 , . . . , tl|L|)

.

(4.2)
Let pα be the highest power of p dividing the greatest common divisor of the terms
(tj1 , tj2 , . . . , tj|J|) and (tk1 , tk1 , . . . , tk|K|). Thus pα is also the highest power of p
such that

pα|((tj1 , tj2 , . . . , tj|J|), (tk1 , tk1 , . . . , tk|K|)) = (tl1 , tl2 , . . . , tl|L|).

By definition of the greatest common divisor, without loss of generality, we may
suppose that νp((tj1 , tj2 , . . . , tj|J|)) = α. From equation (4.2), we finally see that
νp(xJ) = 0, a contradiction to p|d. �

Relative greatest common divisors may be nicely visualized via Venn diagrams
(especially when k � 3). We identify positive integers with the multiset of its prime
divisors, that is, each prime p dividing n occurs with multiplicity νp(n) in the
multiset. Given the Venn diagram of the multisets corresponding to the integers
t1, . . . , tk, each area of intersection in the diagram uniquely corresponds to a relative
greatest common divisor xJ , J ⊆ {1, . . . , k}. Figure 1 shows the situation for relative
greatest common divisors of three positive integers t1, t2 and t3.

As mentioned in the beginning of this section relative greatest common divisors
were systematically described in [9]. Nonetheless concepts of a similar type date
back at least as far as Dedekind [8] who called the relative greatest common divisors
of the integers t1, . . . , tk the cores (Kerne) of the system (t1, . . . , tk). Dedekind
described the construction of these cores explicitly for systems with three and four
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elements and developed some theory to describe the cores of systems with more
than four elements.

Decompositions similar to relative greatest common divisors also occur when we
look for generalizations of the formula

[t1, t2] =
t1t2

(t1, t2)
, (4.3)

where [t1, t2] denotes the least common multiple of the integers t1 and t2. A gener-
alization of formula (4.3) to least common multiples and greatest common divisors
of k integers t1, . . . , tk was found by V.-A. Lebesgue [22, p. 350], who proved that

[t1, t2, . . . , tk] =

∏
1�i�k
i odd

Gi∏
1�j�k
j even

Gj
,

where the variables Gi denote the product of the greatest common divisors of all
choices of subsets of i integers in the set {t1, t2, . . . , tk}.

5. Sums of three unit fractions

In this section, we deal with equation (4.1) for k = 3, i.e. with equations of the form

m

n
=

1
n1t1

+
1

n2t2
+

1
n3t3

, (5.1)

where n1t1 � n2t2 � n3t3, ni|n and (n/ni, ti) = 1 for i ∈ {1, 2, 3}. In the following
we use the concept of relative greatest common divisors introduced in the previous
section to get a suitable parametrization of the solutions of (5.1) corresponding to
a fixed pattern (n1, n2, n3) ∈ N3.

Writing the variables ti in terms of relative greatest common divisors, equation
(5.1) takes the form

m

n
=

1
n1x1x12x13x123

+
1

n2x2x12x23x123
+

1
n3x3x13x23x123

(5.2)

and multiplying out yields

mx1x2x3x12x13x23x123 =
n

n1
x2x3x23 +

n

n2
x1x3x13 +

n

n3
x1x2x12. (5.3)

The first thing we observe is that we have xi = 1 for all i ∈ {1, 2, 3}. This follows
from lemma 4.1 and equation (5.3) together with the fact that xi|n/ni is possible
only if xi = 1 by definition of ni. We thus can work with the following simplified
version of equation (5.3)

mx12x13x23x123 =
n

n1
x23 +

n

n2
x13 +

n

n3
x12. (5.4)

Next, we introduce the parameters dij which are defined as dij = (n/ni, n/nj).
Again we have that (xij , dij) = 1 by definition of the ni and we note that for given
m,n and a fixed pattern (n1, n2, n3) also the parameters dij are fixed.
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In what follows, we apply methods developed by Elsholtz and Tao [12, §§ 2 and 3].
The strategy is to derive a system of equations from (5.4) and to make use of divisor
relations therein. With the observation of coprimality of dij and xij , and using
divisibility relations implied by equation (5.4) we may define the following three
positive integers

w =
n

n1d13
x23 + n

n3d13
x12

x13
, y =

n
n1d12

x23 + n
n2d12

x13

x12
and z =

n
n2d23

x13 + n
n3d23

x12

x23
.

Later we make use of the product of w and z which is given by

wz =
n

n1d13

n

n2d23
+

x12

x13x23

(
n2

n1n3d13d23
x23 +

n2

n2n3d13d23
x13 +

n2

n2
3d13d23

x12

)

=
n

n1d13

n

n2d23
+

nx12

n3d13d23x13x23

(
n

n1
x23 +

n

n2
x13 +

n

n3
x12

)

=
n

n1d13

n

n2d23
+

nm

n3d13d23
x2

12x123,

where we used equation (5.4) to get the last equality. We collect the equations just
derived in the following list

mx12x13x23x123 =
n

n1
x23 +

n

n2
x13 +

n

n3
x12 (5.5)

yx12 =
n

n1d12
x23 +

n

n2d12
x13 (5.6)

zx23 =
n

n2d23
x13 +

n

n3d23
x12 (5.7)

mx13x23x123 = d12y +
n

n3
(5.8)

mx12x13x123 = d23z +
n

n1
(5.9)

wz =
n

n1d13

n

n2d23
+

nm

n3d13d23
x2

12x123. (5.10)

For proving theorem 1.1 the classical divisor bound will play a crucial role. We will
use it in the following form (see [18, theorem 315]).

Lemma A. Let d : N → N be the divisor function, that is, d(n) =
∑

d|n 1. Then for
every ε > 0 we have

d(n) �ε nε.

We now have all the tools we need to prove theorem 1.1.

Proof of theorem 1.1. Consider a solution of equation (5.1) for a fixed pat-
tern (n1, n2, n3). By assumption we have n1t1 � n2t2 � n3t3 and using the
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parametrization of the ti we introduced in equation (5.2) this implies

x13 � n2

n1
x23 and x12 � n3

n2
x13.

Using these inequalities in equations (5.6) and (5.7) yields

yx12 � 2
n

n1d12
x23 and zx23 � 2

n

n2d23
x13.

Dividing by x23 and x13 respectively and multiplying the last two inequalities we
arrive at

yx12

x23

zx23

x13
� 4

n2

n1n2d12d23
.

We now intend to obtain a lower bound for n1n2d12d23. Let n =
∏

p∈P pνp(n) be
the prime factorization of n. Then n1 =

∏
p∈P pνp(n1) and n2 =

∏
p∈P pνp(n2) where

0 � νp(n1), νp(n2) � νp(n) for all p ∈ P. Since

d12 =
(

n

n1
,

n

n2

)
=
∏
p∈P

pνp(n)−max(νp(n1),νp(n2))

we have

n1n2d12 =
∏
p∈P

pνp(n1)+νp(n2)+νp(n)−max(νp(n1),νp(n2))

�
∏
p∈P

pνp(n1)+νp(n2)+νp(n)−νp(n1)−νp(n2) = n.

This shows that n1n2d12d23 � n and thus

yx12

x23

zx23

x13
� n.

By assumption we have that n1t1 is the smallest denominator in equation (5.1).
This implies that

m

n
� 3

n1t1
and thus t1 � 3n

mn1
� n

m
.

The bound in theorem 1.1 can finally be derived from the following inequality

y · z · x12x13 · (x12x123)2 =
yx12

x23

zx23

x13
(x12x13x123)2 � n3

m2
. (5.11)

This implies that at least one of the factors y, z, x12x13 and x12x123 is bounded by
O((n3/m2)1/5).

If this is the case for y then by lemma A and equation (5.8) we have at most
Oε(nε) choices for the parameters x13, x23 and x123 for every choice of y. The
parameter x12 is then uniquely determined by (5.5).
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Similarly, if z is the bounded parameter use lemma A and equation (5.9) to see
that there are at most Oε(nε) choices for the parameters x12, x13 and x123 for every
choice of z. Again the remaining parameter x23 is uniquely determined by (5.5).

Suppose that x12x13 � (n3/m2)1/5. By lemma A for every fixed choice of x12x13

we may choose the factors x12 and x13 in at most Oε(nε) ways. For each of those
choices lemma A and equation (5.7) imply that there are at most Oε(nε) choices for
the parameter x23. As before the remaining parameter x123 is then fixed by (5.5).

Finally, we need to consider the case when x12x123 is the bounded factor. As in
the previous case for any fixed choice of x12x123 we have at most Oε(nε) choices
for the factors x12 and x123. Since equation (5.1) has no solutions for m > 3n we
have that m � n and using equation (5.10) we see that for any fixed choice of x12

and x123 we have at most Oε(nε) choices for the parameters w and z. With z, x12

and x123 fixed, x13 is uniquely determined by (5.9). The last parameter x23 is again
uniquely determined by (5.5).

In any case, we have a bounded number of applications of the divisor bound from
lemma A, say it was applied at most l times. Furthermore, the largest denominator
on the right-hand side of equation (5.1) is bounded by O(n4) (see also the proof of
corollary 1.3 below), thus there exists a fixed positive constant c, such that the size
of integers to which we apply the divisor bound is bounded by O(nc). Setting ε̃ = clε
we hence have at most Oε̃(nε̃(n3/m2)1/5) choices for the parameters x12, x13, x23

and x123 which uniquely determine a solution of (5.1) if n1, n2 and n3 are fixed.
Note that this bound is independent of the concrete choice of the parameters ni

and again by lemma A we have at most Oε(n3ε) choices for the pattern (n1, n2, n3).
Theorem 1.1 now follows by redefining the choice of ε. �

Finally, we prove corollary 1.3.

Proof of corollary 1.3. The proof of theorem 1.1 suggests an algorithm for com-
puting all decompositions of a rational number m/n as a sum of three unit
fractions. The running time of this algorithm depends on the quality of algo-
rithms used for integer factorization. In [23] a probabilistic algorithm is analysed
which finds all prime factors of a given integer in expected running time exp((1 +
o(1))

√
log n log log n) for n → ∞, which is clearly Oε(nε). Lenstra and Pomer-

ance [23, § 12] point out, that here the term probabilistic means that the algorithm
is allowed to call a random number generator which outputs 0 or 1 each with prob-
ability 1/2. The term expected running time refers to averaging over the output of
the random number generator only and not over the input n. Hence the expected
running time is also valid for each individual n.

As a consequence, using an algorithm of this type, all decompositions of m/n
as a sum of three unit fractions can be found by carrying out the following steps.
Factorize the integer n and compute all possible patterns (n1, n2, n3). For any of
these Oε(nε) patterns it follows from the calculations in the proof of theorem 1.1,
that the implied constant in inequality (5.11) may be chosen as C := (36/n2

1d23). For
all choices of integers y, z, x12x13 and x12x123 ∈ [1, C1/5(n3/m2)1/5] we determine
the integers x12, x13, x23 and x123 via factoring x12x13, x12x123 and a small number
of integers mentioned in formulae (5.5)-(5.10). All in all, this leads to an algorithm
of expected running time Oε(nε(n3/m2)1/5).
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As for representations of the form

m

n
=

k∑
i=1

1
ai

(5.12)

with k > 3 we enumerate all possible choices for the denominators ai, 1 � i � k − 3,
and apply our algorithm for finding representations as sum of three unit fractions
to determine all choices for the remaining three denominators, that is, we solve

m

n
−

k−3∑
i=1

1
ai

=
1

ak−2
+

1
ak−1

+
1
ak

. (5.13)

We suppose the denominators ai in equation (5.12) are given in increasing order
and prove upper bounds for the size of ai, 1 � i � k. In particular, we use an
induction argument to show that ai � αin

2i−1
where the finite sequence (αi)1�i�k

is recursively defined by α1 = k and αi = (k − i + 1)
∏

j<i αj for 2 � i � k. For
i = 1 this bound follows easily from the following inequality

m

n
=

1
a1

+ · · · + 1
ak

� k

a1

which leads to a1 � kn
m � kn. If we suppose the bound holds for ai, with a similar

argument we get

m

n
− 1

a1
− · · · − 1

ai
=

1
ai+1

+ · · · + 1
ak

� (k − i)
ai+1

.

The last inequality together with the induction hypothesis for j < i + 1 implies

ai+1 � (k − i)
n
∏

j<i+1 aj

m
∏

j<i+1 aj − n
∑

j<i+1

∏
l<i+1

l �=j

al

� (k − i)n
∏

j<i+1
aj � αi+1n

2i

.

By definition αi is a polynomial in k of degree 2i with leading coefficient 1. Fur-
thermore, the denominator of the rational number on the left-hand side of equation
(5.13) is of size at most n

∏k−3
i=1 ai �k n2k−3

. By the aforementioned result, we
can compute all decompositions as a sum of three unit fractions of this number
in time Oε,k(n2k−3(3/5+ε)). We have to compute these representations for at most∏k−3

i=1 ai �k n2k−3−1 rational numbers which leads to an upper bound of

Oε,k(n2k−3(8/5+ε)−1)

for the running time. �

Remark 5.1. The procedure for computing representations as a sum of k unit
fractions as described in the proof of corollary 1.3 could lead to a speedup for cal-
culations similar to those in [2]. In the calculations above the size of the numerator
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of the rational number on the left hand side of equation (5.13), which we denote by
m′/n′, was not taken into account. We note that also the proof of the upper bound
for f3(m,n) by Browning and Elsholtz [5, theorem 2] may be similarly turned into
an algorithm of running time Oε(nε(n/m)2/3). In practice one would check dynam-
ically if m′ � (n′)1/4 before computing the representations as a sum of three unit
fractions of m′

n′ . If this is the case, the algorithm described in the first part of the
proof of corollary 1.3 should be applied, if m′ � (n′)1/4 the method of [5] should
be used.

6. Sums of k unit fractions

In this section, we will prove theorem 1.4. Browning and Elsholtz used an induction
argument on their bound for the quantity f3(m,n) to get bounds for fk(m,n) for
k � 4. Using their arguments directly on our result from theorem 1.1 would lead to
worse upper bounds than those of Browning and Elsholtz. The reason is that our
bound for f3(m,n) is weaker than the one in [5] when m is large.

As in [5, § 4] the proof of theorem 1.4 will be based on the observation that from
equation (4.1) it follows that

fk(m,n) �
∑

n/m<n1t1�kn/m

fk−1(mn1t1 − n, n1t1n),

which, after introducing the parameter u = mn1t1 − n, becomes

fk(m,n) �
∑

0<u�(k−1)n
m|u+n

fk−1

(
u,

n(u + n)
m

)
. (6.1)

The improvement in theorem 1.4 stems from extending the method of Browning
and Elsholtz by applying the following new idea. In the case of k = 4 we do not
consider the sum on the right-hand side of (6.1) as a whole but we split the sum
into two parts. In the first part we collect the values of u where 0 < u � nδ for some
0 < δ < 1 which will be chosen later. This sum will be small since it contains few
summands.

The second part will consist of all summands where u > nδ. This corresponds to
n1t1 > (n + nδ)/m which will force n2t2 and n3t3 to be small.

The following lemma B is [5, theorem 2].

Lemma B. For any ε > 0, we have

f3(m,n) �ε nε
( n

m

)2/3

.

In the proof of theorem 1.4 below we make use of lemma B rather than theorem 1.1.
Furthermore, we will use a lifting procedure which was first used by Browning and
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Elsholtz [5] to lift upper bounds of the form

f5(m,n) �ε nε

(
n2

m

)c

(6.2)

to upper bounds for fk(m,n) for k > 5. For possible future use we write this proce-
dure up in the following lemma and work through the original proof by Browning
and Elsholtz with an arbitrary exponent c > 1 in (6.2).

Lemma C. Suppose that there exists c > 1 such that

f5(m,n) �ε nε

(
n2

m

)c

.

Then for any k � 5 we have

fk(m,n) �ε (kn)ε

(
k4/3n2

m

)c2k−5

.

Proof. We will inductively show that for k � 5 there exists Θk depending on k such
that we have

fk(m,n) �ε (kn)ε

(
kΘkn2

m

)c2k−5

(6.3)

and we note that this is certainly true for k = 5 by assumption. The proof works
in three steps.

1. Establish an upper bound where the implied constant is allowed to depend on
k.

For k � 5 we want to have a bound of the form

fk(m,n) �k,ε nε

(
n2

m

)c2k−5

(6.4)

where the implied constant is allowed to depend on k. An upper bound of this
type may easily be achieved via (6.1). Indeed this bound holds true for k = 5 by
assumption and assuming its existence for fk(m,n) we find for fk+1(m,n)

fk+1(m,n) �
∑

0<u�kn
m|u+n

fk

(
u,

n(u + n)
m

)
�k,ε nε

(
n2

m

)c2k−4 ∞∑
u=1

1
uc2k−5

�k,ε nε

(
n2

m

)c2k−4

,

where we used that c > 1.
2. Use inequality (6.1) and split the sum into two parts.
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For the upper bound where the implied constant is independent of k we again
suppose it to be true for fk(m,n) with k � 5 and inductively prove it to hold for
fk+1(m,n). Using inequalities (6.1) and (6.3) we get

fk+1(m,n) �
∑

0<u�kn
m|u+n

fk

(
u,

n(u + n)
m

)

�
∑

0<u�(L−1)n
m|u+n

fk

(
u,

n(u + n)
m

)
+

∑
(L−1)n<u�kn

m|u+n

fk

(
u,

n(u + n)
m

)

� (kn)εkΘkc2k−5
(

n2

m

)c2k−4

×
⎛
⎝ ∑

0<u�(L−1)n

1
uc2k−5 Lc2k−4

+
∑

(L−1)n<u�kn

1
uc2k−5 (k + 1)c2k−4

⎞
⎠ .

Since c2k−5 > 1 the infinite sums over 1

uc2k−5 converge. For the first sum, we use
that the sum is bounded by a constant for the second sum we use the following
more accurate bound

∑
(L−1)n<u�kn

1
uc2k−5 �

∞∑
u=L

1
uc2k−5 �

∫ ∞

L

1
uc2k−5 du � L1−c2k−5

.

Together with the fact that (a + b)α � aα + bα for a, b > 0 and α > 1 this shows
that

fk+1(m,n)

�ε ((k + 1)n)ε(k + 1)Θkc2k−5
(

n2

m

)c2k−4 (
Lc2k−4

+
(

k + 1
L1/2−(c2k−4)−1

)c2k−4)

�ε ((k + 1)n)ε(k + 1)Θkc2k−5
(

n2

m

)c2k−4 (
L +

k + 1
L1/2−(c2k−4)−1

)c2k−4

.

3. Optimizing for L and determining an upper bound for Θk.
By the bound we derived in step 1 we may suppose that k �

max{(log(2/3(cε)−1))/log 2 + 4, ((1 +
√

5)/2)1/ε − 1}. With L = (k + 1)2/3 we get

fk+1(m,n)

�ε ((k + 1)n)ε(k + 1)Θkc2k−5
(

n2

m

)c2k−4

(k + 1)2/3·c2k−4
(
1 + L(c2k−4)−1

)c2k−4

�ε (k + 1)ε(1+c2k−3)nε(k + 1)c2k−4(Θk/2+2/3)

(
n2

m

)c2k−4

.
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With Θk+1 = Θk/2 + 2/3 and an appropriate choice of ε this implies

fk+1 �ε ((k + 1)n)ε

(
(k + 1)Θk+1n2

m

)c2(k+1)−5

Since for Θ5 � 4/3 the sequence recursively defined by Θk+1 = Θk/2 + 2/3 mono-
tonically increases towards its limit 4/3 we eventually get for any k � 5:

fk(m,n) �ε (kn)ε

(
k4/3n2

m

)c2k−5

. �

Proof of theorem 1.4. In the following δ < 1 is a fixed constant to be chosen at the
end of the proof. We start with proving bounds on f4(m,n) and we write f4(m,n) =
f

(1)
4 (m,n) + f

(2)
4 (m,n). Here f

(1)
4 (m,n) counts those solutions to equation (4.1)

with n1t1 � (n + nδ)/m and f
(2)
4 (m,n) those with n1t1 > (n + nδ)/m. From (6.1),

we have that

f4(m,n) = f
(1)
4 (m,n) + f

(2)
4 (m,n) �

∑
0<u�nδ

m|u+n

f3

(
u,

n(u + n)
m

)
+ f

(2)
4 (m,n)

= S1 + f
(2)
4 (m,n).

We use the following estimate (uniform in a ∈ Z)

∑
n�x

n≡a mod q

n−Θ =
x1−Θ

(1 + Θ)q
+ OΘ(1). (6.5)

To bound the sum S1 we use (6.5) and lemma B to get

S1 �ε nε

(
n2

m

)2/3 ∑
0<u�nδ

m|u+n

1
u2/3

�ε nε

(
n2

m

)2/3(
nδ/3

m
+ 1
)

. (6.6)

Next, we prove that

f
(2)
4 (m,n) �ε nε n(12−4δ)/5

m8/5
.

Since there are at most Oε(nε) distinct patterns (n1, n2, n3, n4) it suffices to prove
this bound for all solutions counted by f

(2)
4 (m,n) corresponding to a fixed pat-

tern. To get an upper bound for the contribution of f
(2)
4 (m,n) we thus suppose

that (n1, n2, n3, n4) is fixed and note that the fact that 4n/m � n1t1 > (n + nδ)/m
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implies the following upper bound for n2t2:

3
n2t2

� mn1t1 − n

nn1t1
� mnδ

4n2
.

Therefore we have

n2t2 � n2−δ

m
. (6.7)

We use again relative greatest common divisors and write a representation of m/n
as a sum of four unit fractions as

m

n
=

1
n1x1x12x13x14x123x124x134x1234

+
1

n2x2x12x23x24x123x124x234x1234

+
1

n3x3x13x23x34x123x134x234x1234
+

1
n4x4x14x24x34x124x134x234x1234

.

It is again easy to see that x1 = x2 = x3 = x4 = 1 and multiplying out the last
equation yields

mx12x13x14x23x24x34x123x124x134x234x1234

=
n

n1
x23x24x34x234 +

n

n2
x13x14x34x134 +

n

n3
x12x14x24x124 +

n

n4
x12x13x23x123.

(6.8)

From equation (6.8) we see that the quantity

z34 =
(n/n3)x12x14x24x124 + (n/n4)x12x13x23x123

x34

is an integer and we use

z34x34 =
n

n3
x12x14x24x124 +

n

n4
x12x13x23x123. (6.9)

By (6.7) and 4n/m � n1t1 > (n + nδ)/m we have

(t1t2)4 = (x12x13x14x123x124x134x1234)4(x12x23x24x123x124x234x1234)4 � n12−4δ

m8
,

(6.10)
and we write

(x12x13x14x123x124x134x1234)4(x12x23x24x123x124x234x1234)4 =

(x12x13x14x23x24x123x124x1234)(x12x13x23x24x123x124x134x234x1234)×
(x12x14x23x24x123x124x134x234x1234)(x12x13x14x24x123x124x134x234x1234)×
(x4

12x13x14x23x
4
123x

4
124x134x234x

4
1234).

(6.11)

We show that each of the five factors in brackets on the right-hand side of the last
equation corresponds to at most Oε(nε) solutions of (6.8), where ε is an arbitrarily
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small positive number. First we note that all factors are of polynomial size in n and
by lemma A, given one of these factors, we have Oε(nε) choices for all the xij , xijk

and x1234 appearing as sub-factors.
Given positive integer constants C0, C1, C2 and C3 of size polynomial in n, we

count the number of integer solutions (A,B) of the equation

C0AB = C1A + C2B + C3. (6.12)

Rewriting this equation in the form

(C0A − C2)(C0B − C1) = C0C3 + C1C2

we see that the number of solutions (A,B) is bounded by Oε(nε). For the second to
the fifth factor on the right-hand side of (6.11) exactly two parameters are missing
to uniquely determine a solution of (6.8). All of these factors miss the parameter
x34. The second one additionally misses x14, the third one x13, the fourth one x23

and the last one x24. In all of these cases equation (6.8) provides an instance of
(6.12) where the variables A and B correspond to the two missing parameters (the
term containing both missing parameters on the right-hand side of (6.8) may be
shifted to the left-hand side).

In the first factor on the right-hand side of (6.11) three parameters are missing.
From equation (6.9) we see that we have at most Oε(nε) choices for the parameter
x34. To see the same bound for the parameters x134 and x234 we use again that
equations of type (6.12) can be factorized.

Since by (6.10) at least one of the factors on the right-hand side of (6.11) is
O(n(12−4δ)/5/m8/5) we have that

f
(2)
4 (m,n) �ε nε n(12−4δ)/5

m8/5
. (6.13)

Again we note that in the considerations above the divisor bound from lemma A was
applied a bounded number of times and the bound in (6.13) follows upon redefining
the choice of ε. Choosing δ = 16/17 in (6.6) and (6.13) we get

f4(m,n) � nε

(
n4/3

m2/3
+

n28/17

m8/5

)
. (6.14)

To bound f5(m,n) we again use (6.1) and (6.5) and get

f5(m,n) � nε
∑

0<u�4n
m|u+n

((
n2

m

)4/3 1
u2/3

+
(

n2

m

)28/17 1
u8/5

)
� nε

(
n2

m

)28/17

.

(6.15)
Setting c = 28/17 in lemma C yields the bound in theorem 1.4. �

7. Lower bounds

Proof of theorem 1.6. To prove the first bound we are going to extend an idea used
in the proof of [5, theorem 1]. As before, we use highly composite denominators
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n ∈ N, but here we show that there are many values a1 with many corresponding
pairs (a2, a3) giving a solution of

m

n
=

1
a1

+
1
a2

+
1
a3

.

To prove our lower bound for f3(m,n) we consider the set

N =

{
mn′ : n′ =

r∏
i=1

pi

}
,

where pi is the i-th prime. In choosing the denominators n ∈ N we reduce the
problem to finding many solutions of the equation

1
n′ =

1
a1

+
1
a2

+
1
a3

.

We set a1 = n′ + d, where d is any divisor of n′, and are left with

1
n′ −

1
n′ + d

=
1

n′(n′/d + 1)
=

1
a2

+
1
a3

.

For two divisors d1 and d2 of n′ with (d1, d2) = 1 we have

1
n′(n′/d + 1)

=
1

n′((n′/d + 1)/d1)(d1 + d2)
+

1
n′((n′/d + 1)/d2)(d1 + d2)

. (7.1)

We note that for two pairs of divisors d1, d2 and d′1, d
′
2 with (d1, d2) = 1 and

(d′1, d
′
2) = 1 it follows that

n′(n′/d + 1)
d1

(d1 + d2) =
n′(n′/d + 1)

d′1
(d′1 + d′2) ⇔

d1

d2
=

d′1
d′2

.

Since d1 and d2 as well as d′1 and d′2 are coprime we get d1 = d′1 and d2 = d′2. This
implies that each pair (d1, d2) with d1 < d2 gives a unique solution of equation
(7.1). Furthermore, for any choice of d, d1, d2 it follows that

n′ + d <
n′(n′/d + 1)

d2
(d1 + d2),

which altogether implies that by counting all possible choices for d, d1, d2 we get a
lower bound for twice the value of f3(1, n′).
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Choosing n′ as in the construction of the set N , we have 2ω(n′) choices for the
divisor d and using the binomial theorem there are

ω(n′)∑
i=0

(
ω(n′)

i

) ω(n′)−i∑
j=0

(
ω(n′) − i

j

)
=

ω(n′)∑
i=0

(
ω(n′)

i

)
2ω(n′)−i = 3ω(n′)

choices for the divisors d1 and d2. As a consequence of the prime number theorem
it is known that ω(n′) ∼ log n′/log log n′ and hence, for n ∈ N

f3(m,n) = f3(1, n′) � 1
2
2ω(n′)3ω(n′) � exp

(
(log 6 + o(1))

log n′

log log n′

)

� exp
(

(log 6 + om(1))
log n

log log n

)
.

For the second bound we modify the idea used in the proof of [12, theorem 1.8].
For fixed m ∈ N, as a consequence of the Turán-Kubilius inequality (see e.g. [29,
p. 434]) we get that the set

M1 =
⋂

k�m
(k,m)=1

{
n ∈ N : ω(n, k,m) =

(
1

ϕ(m)
+ o(1)

)
log log n

}

is a set with density one, that is, limx→∞ |{n ∈ M1 : n � x}|/x = 1.
For any n ∈ M1 we write m/n = m′/n′ with (m′, n′) = 1 and note that

ω(n, k,m) = ω(n′, k,m) for all k with (k,m) = 1. By construction of the set M1

and since n′ is coprime to m′, we find (1/ϕ(m) + o(1)) log log n prime divisors p of
n′ in the residue class −n′ mod m′. For any of these prime divisors we have

m′

n′ − 1
(n′ + p)/m′ =

p

n′(n′ + p)/m′ =
1

n′(n′/p + 1)/m′

where (n′/p + 1)/m′ is an integer. Again, by construction of the set M1, for the
number of prime factors of n′ we have

ω(n′) � ω(n) − ω(m) = (1 + om(1)) log log n.

For two coprime divisors d1 and d2 of n′ we construct decompositions of
1/(n′(n′/p + 1)/m′) as a sum of two unit fractions as in (7.1). As above we see
that for any prime divisor p of n′ in the residue class −n′ mod m′ there are at least
3ω(n′) such decompositions and all of them are distinct.

Altogether this implies that for any n ∈ M1

f(m,n) �
(

1
ϕ(m)

+ o(1)
)

3ω(n′) · log log n �
(

1
ϕ(m)

+ o(1)
)

3ω(n)−ω(m) · log log n

� exp((log 3 + om(1)) log log n) · log log n.
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Finally, we prove the improved lower bound on f3(4, n). To do so, we set

M2 =

⎛
⎝ ⋂

i∈{1,3}
{n ∈ N :

τ(n, 4)
4

� τ(n, i, 4)}
⎞
⎠∩

∩ {n ∈ N : ω(n) = (1 + o(1)) log log n} ∩ {n ∈ N : τ(n) � (log n)log 2+o(1)}.
The first two sets with i = 1 and i = 3 in the intersection in the definition of M2

have density 1 by [17, theorem 5]. For the third and the fourth set this is true by
the Turán-Kubilius inequality (again see e.g. [29, p. 434]). Hence the set M2 has
density 1 and we investigate what happens for n in a certain residue class modulo
4.

If n ≡ 0 mod 4, then 4/n = 1/(n/4) and for any divisor d of n/4 we have

1
n/4

− 1
n/4 + d

=
1

(n/4)(n/(4d) + 1)
.

Since ω(n/4) � ω(n) − 1, with the same arguments as above, we conclude that the
number of representations of 1/(n/4)(n/(4d) + 1) as a sum of two unit fractions is
at least of order 3ω(n/4) = 3(1+o(1)) log log n. From τ(n) =

∏
p|n(νp(n) + 1) we easily

deduce that τ(n/4) � (1/3)τ(n). Altogether, we thus get

f3(4, n) � 1
3
τ (n) 3ω(n/4) � exp((log 6 + o(1)) log log n).

If n ≡ 2 mod 4, then n/2 is odd and the same is true for all τ(n/2) = (1/2)τ(n)
divisors of n/2. We have 4/n = 2/(n/2) and for any divisor d of n/2

2
n/2

− 1
n/2 + d/2

=
1

(n/2)((n/(2d) + 1)/2)
.

As above we get

f3(4, n) � τ
(n

2

)
3ω(n)−1 � exp((log 6 + o(1)) log log n).

Finally, if n ≡ r mod 4 for r ∈ {1, 3}, we have τ(n, 4) = τ(n) and by construction
of the set M2, we have more than τ(n)/4 divisors d of n in the residue class
−r mod 4. Again, for any of these divisors we have

4
n
− 1

(n + d)/4
=

1
n((n/d + 1)/4)

.

Applying the arguments used previously one more time, we find

f3(4, n) � τ(n)
4

3ω(n) � exp((log 6 + o(1)) log log n)

also in this case. �

Remark 7.1. The difference in the constants in the exponential functions of the
lower bounds on f(m,n) and f(4, n) for sets of integers with density one in
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theorem 1.6 is basically due to cancellation effects when dealing with general m. In
particular, we deal with m/n = m′/n′, where (m′, n′) = 1, and we would need to
have good control of the number of divisors of n′ in the residue class −n′ mod m′

to get the log 6 exponent also in the general case. However, if we do not ask about
a lower bound holding for a set of density one within the positive integers, but for
a set of integers of density one within the set S of positive integers coprime to a
given m ∈ N, we may achieve the log 6 exponent. To do so we replace the set M1

with

M′
1 =

⎛
⎜⎜⎝ ⋂

1�i�m
(i,m)=1

{n ∈ N : τ(n, i,m) � τ(n)
2ϕ(m)

}

⎞
⎟⎟⎠∩

∩ {n ∈ N : ω(n) = (1 + o(1)) log log n} ∩ {n ∈ N : τ(n) � (log n)log 2+o(1)} ∩ S.

Now we may use results from [17, theorem 5] as well as Turán-Kubilius like pre-
viously and get that M′

1 has density one in S. Instead of constructing the first
denominator via shifts in prime factors of n we may use arbitrary divisors of n in
this case, which leads to the improvement mentioned above.

Proof of theorem 1.9. We consider solutions corresponding to the pattern (1, p, p).
In equation (1.1) we suppose that a1 is the denominator with (a1, p) = 1 and we
write a1 = t1, a2 = pt2 and a3 = pt3. We use the parametrization via relative great-
est common divisors of the ti and applying lemma 4.1 it is easy to see, that
x1 = x2 = x3 = 1 in this case. Hence we are looking for infinitely many primes
p ≡ e mod f such that for given m ∈ N the equation

m

p
=

1
x12x13x123

+
1

px12x23x123
+

1
px13x23x123

(7.2)

has many solutions. Multiplying equation (7.2) by the common denominator we get

mx12x13x23x123 = px23 + x13 + x12.

Setting x12 + x13 = kx23, M = lcm(m, f) and x12 = M/m we deduce that

M

(
kx23 − M

m

)
x123 = p + k.

The residue class (f − e) ≡ −e mod f splits into the residue classes (f − e) +
if mod M , for 0 � i � m/(m, f) − 1. Note, that gcd(f,m/(m, f)) = 1 hence the
integers i · f for 0 � i � m/(m, f) − 1 are a full system of residues modulo
m/(m, f). In particular there exists a 0 � j � m/(m, f) − 1 such that (f − e) +
jf ≡ 1 mod m/(m, f). We set k = (f − e) + jf and with (e, f) = 1 we altogether
see that (M,k) = 1.

Now let Q =
∏r

i=1 qi where qi is the i-th prime with qi ≡ −M/m mod k and
qi > M . Note that gcd(M,Q) = 1.

With r = �log t/(ϕ(k)C log log t)� we find that Q is of order t1/C+of,m(1). We now
use Linnik’s theorem on primes in arithmetic progressions. As the modulus is very
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smooth we can use an exponent of C = 12/5 + o(1), due to Chang [6, corollary 11].
Hence we may find a prime p of order MCt1+of,m(1) with

p ≡ −k mod QM.

This congruence implies that p + k is divisible by the primes q1, . . . , qr and together
with k = (f − e) + jf , we deduce that p ≡ e mod f and p + k ≡ 0 mod M .

Let l ∈ N0 and S be a subset of size l ordk(−M/m) + 1 of the prime fac-
tors of Q. Hence x23 = (

∏
q∈S q + M/m)/k is an integer and we set x123 =

(p + k)/(M
∏

q∈S q). We observe that any of these choices leads to a different solu-
tion of (7.2). To see this we look at the denominator a2 = px12x23x123 of the second
fraction on the right-hand side of this equation. Suppose that two sets S and S′

would lead to the same denominator a2. With x12 = M/m this would imply the
existence of x23 
= x′

23 such that

p
M

m
x23

p + k

M(kx23 − M/m)
= p

M

m
x′

23

p + k

M(kx′
23 − M/m)

from which we derive that

x23

x′
23

=
kx23 − M/m

kx′
23 − M/m

=

∏
q∈S q∏

q′∈S′ q′
.

If q ∈ S would divide x23 then q would also divide M/m, which is impossible by
construction of Q. We hence have that

∏
q∈S q/

∏
q′∈S′ q′ = 1 and thus S = S′.

To count the number of solutions we get with the above construction, we make
use of a formula which can be found in [3, theorem 1], for example, and which states

∑
i�0

(
n

iu

)
=

1
u

u−1∑
j=0

(1 + ξj
u)n, (7.3)

where ξu = exp(2πi/u). Note that for the term corresponding to j = 0 in the sum
on the right-hand side of (7.3) we get 2n while for all other j we have |1 + ξj

u| < 2.
Hence we deduce ∑

i�0

(
n

iu

)
=

2n

u
(1 + ou(1)).

The number of choices of the parameter x23 is

∑
i�0

(
r

i ordk(−M/m) + 1

)
=
∑
i�0

r

i ordk(−M/m) + 1

(
r − 1

i ordk(−M/m)

)

�
∑
i�0

(
r − 1

i ordk(−M/m)

)

=
2r−1

ordk(−M/m)
(1 + of,m(1)).
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Plugging in r = �log t/(ϕ(k)C log log t)� and using that p � MCt1+of,m(1) we get a
lower bound of

f3(m, p) �f,m exp
((

log 2
Cϕ(k)

+ of,m(1)
)

log t

log log t

)

�f,m exp
((

5 log 2
12 lcm(m, f)

+ of,m(1)
)

log p

log log p

)
.

(7.4)

�

Remark 7.2. The best-known exponent for Linnik’s theorem takes care of the
worst case modulus and is 5 by work of Xylouris [30]. Chang’s result [6, corollary
11] considers smooth moduli (as in our situation) and allows for the better expo-
nent 12/5 + o(1). Harman investigated, in connection with constructing Carmichael
numbers, what happens if one is allowed to avoid a small set of exceptional mod-
uli. In this situation, he improved the exponent to 1/0.4736 (see [20, theorem 1.2]
and [19] for some more explanation). As in our situation, we choose the modulus
MQ, and hence can avoid ‘bad’ factors, it seems possible that theorem 1.9 can also
be proved with a factor of 0.4736 instead of 5/12 = 0.4166 . . . in the exponent of
the lower bound on f3(m, p).

Remark 7.3. If we consider the case m = 4, f = 4 and e ∈ {1, 3} in theorem 1.9,
we can explicitly compute k in the first line of (7.4). We simply have k = 3 if e = 1
and k = 1 if e = 3 hence we arrive at the lower bounds

f3(4, p) � exp
(

(0.1444 + o(1))
log p

log log p

)

if e = 1 and

f3(4, p) � exp
(

(0.2888 + o(1))
log p

log log p

)
if e = 3.
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29 G. Tenenbaum. Introduction à la théorie analytique et probabiliste des nombres, 3rd edn
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