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HIGHER DEFORMATIONS OF LIE ALGEBRA
REPRESENTATIONS II

MATTHEW WESTAWAY

Abstract. Steinberg’s tensor product theorem shows that for semisimple

algebraic groups, the study of irreducible representations of higher Frobenius

kernels reduces to the study of irreducible representations of the first Frobenius

kernel. In the preceding paper in this series, deforming the distribution algebra

of a higher Frobenius kernel yielded a family of deformations called higher

reduced enveloping algebras. In this paper, we prove that the Steinberg

decomposition can be similarly deformed, allowing us to reduce representation

theoretic questions about these algebras to questions about reduced enveloping

algebras. We use this to derive structural results about modules over these

algebras. Separately, we also show that many of the results in the preceding

paper hold without an assumption of reductivity.

§1. Introduction

Let G be a semisimple algebraic group over an algebraically closed field K of characteristic

p > 0. We denote by Gr the rth Frobenius kernel of G. It was shown by Steinberg in 1963

[15] that in order to understand the irreducible Gr-modules for r > 1, it is sufficient to

understand the irreducible G1-modules. This result can be interpreted in the following way:

considering irreducible modules only up to isomorphism, there is a bijection

Ψ0 : Irr(Dist(Gr+1))→ Irr(Dist(Gr))× Irr(Dist(G1)),

recalling here that the category of Gr-modules is equivalent to the category of Dist(Gr)-

modules, where Dist(Gr) is the distribution algebra of Gr. In particular, this bijection

sends the irreducible Dist(Gr+1)-module Lr+1(λ+ µpr), where λ ∈Xr and µ ∈X1, to the

pair (Lr(λ), L1(µ)). Here, Xr is the set of dominant weights λ of some maximal torus T

of G which satisfy that 06 〈λ, αν〉< pr for all simple coroots αν of G with respect to T .

In the previous paper in this series [17], we constructed, for each r ∈ N, a higher

universal enveloping algebra U [r](G) and, for each χ ∈ Lie(G)∗ = g∗, a reduced higher

universal enveloping algebra U
[r]
χ (G), with the key property that U

[r]
0 (G)∼= Dist(Gr+1).

Every irreducible U [r](G)-module is a U
[r]
χ (G)-module for some χ, and in [17] it was shown

that, under certain restrictions, there is a well-defined map

Ψχ : Irr(U [r]
χ (G))→ Irr(Dist(Gr))× Irr(Uχ(g)),

which, when χ= 0, gives the Steinberg decomposition.

In this paper, we remove the restrictions and furthermore show that this map is always

a bijection (Theorem 4.2, Corollary 4.7). This then allows us to derive various structural

results about the irreducible U
[r]
χ (G)-modules. In particular, given an irreducible Dist(Gr)-

module P , one can construct teenage Verma modules Zrχ(P, λ), which behave as the baby
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Verma modules Zχ(λ) do (Proposition 4.11). This allows us to classify all irreducible

U
[r]
χ (G)-modules when χ is regular in Theorem 4.14.

The main techniques that allow us to prove these results come from the work of Schneider

and Witherspoon on Clifford theory for Hopf algebras. In fact, the Hopf algebraic approach

also allows us to reprove many of the results from [17] for affine algebraic groups which

are not necessarily reductive. In particular, we show that U [r](G) is a crossed product of

Dist(Gr) with U(g)(r) in Proposition 3.3, and that U [r](G) has a Poincaré–Birkhoff–Witt

basis in Corollary 3.4. This is the content of Section 3.

It is in Section 4 where we study the representation theory of the higher universal

enveloping algebras. Specifically, in Section 4.1, we prove the main result—that the map

Ψχ mentioned above is well-defined and a bijection. Then, in Section 4.2, we construct the

teenage Verma modules Zrχ(P, λ) and prove some preliminary results about them. Finally, in

Section 4.3, we see some consequences of the results proved in the previous two subsections.

We conclude in Section 5 with a discussion of the Azumaya locus of the algebras U [r](G).

In particular, we start by discussing the Azumaya locus of a not-necessarily-prime algebra

R with affine center Z, over which R is module-finite. The reader should note that the

prime case has previously been studied by Brown and Goodearl in [1]. We see that, under

certain conditions, the Azumaya locus coincides with the pseudo-Azumaya locus, which is

defined in Section 5.1 and uses the representation theory of R. In Section 5.2, we see how

the pseudo-Azumaya locus of the algebra U [r](G) connects to the Azumaya locus of the

corresponding U(g).

§2. Notation

Let A be an associative K-algebra, where K is an algebraically closed field of characteristic

p > 0. From now on, we shall write Irr(A) for the category of irreducible left A-modules. In

all instances in this paper, elements of the set Irr(A) shall be finite-dimensional. Given a

vector space V , we shall write V (r) for the vector space with the same underlying abelian

group as V but whose scalar multiplication is given by the map K× V →K× V → V , which

is a composition of the map (λ, v) 7→ (λp
−r
, v) with the scalar multiplication map on V . In

particular, we denote by A(r) the algebra with underlying ring A but underlying vector

space A(r).

When G is a reductive algebraic group over an algebraically closed field K of characteristic

p > 0, we assign a maximal torus T and Borel subgroup B such that T ⊂B ⊂G. We also

let Φ denote the root system of G with respect to T , let Π be a choice of simple roots, and

let Φ+ be the corresponding set of positive roots. We further define g = Lie(G), b = Lie(B),

and h = Lie(T ). For α ∈ Φ, we define gα to be the corresponding root space of g and we set

n+ =
⊕

α∈Φ+ gα and n− =
⊕

α∈Φ+ g−α.

The character group of T will be denoted by X(T ) = Hom(T,Gm) and the cocharacter

group of T will be denoted by Y (T ) = Hom(Gm, T ). We shall denote by 〈·, ·〉 :X(T )×
Y (T )→ Z the standard bilinear form as in [6, II.1.3].

The Lie algebra g has basis consisting of eα for α ∈ Φ and ht for 16 t6 d, where

d= dim(h), as in [6, II.1.11].

§3. Poincaré–Birkhoff–Witt for higher universal enveloping algebras

Let G be an affine algebraic group over the algebraically closed field K, with coordinate

algebra K[G]. Let us recall the construction of the distribution algebra of G and of the

higher universal enveloping algebras of G.
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For n ∈ N, we define the vector space Distn(G) to consist of all linear maps δ : K[G]→K,

which vanish on In+1, where I is the augmentation ideal of K[G]. We further define Dist+
n (G)

to be the subspace of all δ ∈Distn(G) with δ(1) = 0. The distribution algebra of G is then

defined to be the algebra

Dist(G) =
⋃
n∈N

Distn(G),

with multiplication defined as follows: if δ ∈Distn(G), µ ∈Distm(G), then δµ is the map

K[G]
∆−→K[G]⊗K[G]

δ⊗µ−−→K⊗K ∼−→K,

where ∆ is the comultiplication map on K[G]. In particular, one can show that δµ ∈
Distn+m(G) and [δ, µ] ∈Distn+m−1(G). The algebra has the structure of a cocommutative

Hopf algebra.

For r ∈ N, we can define (as in [17]) the rth higher universal enveloping algebra U [r](G)

as follows:

U [r](G) :=
T (Dist+

pr+1−1
(G))

Qr
,

where Qr is the ideal generated by the two relations

(i) δ ⊗ µ= δµ if δ ∈Dist+
i (G), µ ∈Dist+

j (G) with i+ j < pr+1; and,

(ii) δ ⊗ µ− µ⊗ δ = [δ, µ] if δ ∈Dist+
i (G), µ ∈Dist+

j (G) with i+ j 6 pr+1,

and T (Dist+
pr+1−1

(G)) is the tensor algebra of Dist+
pr+1−1

(G). This algebra also has the

structure of a cocommutative Hopf algebra.

In order to construct a Poincaré–Birkhoff–Witt basis of U [r](G), we need to use a couple

of Hopf algebraic notions. For a Hopf algebra H, we define the set of primitive elements

P (H) := {x ∈H |∆(x) = x⊗ 1 + 1⊗ x} and the set of group-like elements G(H) := {x ∈
H |∆(x) = x⊗ x}. Given an element x ∈ P (H), a sequence x(0), x(1), x(2), . . . , x(k) ∈H is

said to be a sequence of divided powers of x if (i) x(0) = 1; (ii) x(1) = x; and (iii) ∆(x(l)) =∑l
i=0 x

(i) ⊗ x(l−i) for all l > 0.

Suppose that x1, . . . , xn is a basis for the Lie algebra g = Lie(G). For each 16 i6 n, there

exists an infinite sequence of divided powers x
(0)
i , x

(1)
i , x

(2)
i , . . . of xi in the cocommutative

Hopf algebra Dist(G). It is well known (see [16]) that the distribution algebra Dist(Gr) has

basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n | 06 ai < pr for all 16 i6 n},

while the vector space Distk(G) has basis{
x

(a1)
1 x

(a2)
2 . . . x(an)

n

∣∣∣∣∣
n∑
i=1

ai 6 k

}
.

One can also observe that x
(k)
i ∈Distk(G) for all 16 i6 n and k ∈ N.

In particular, there is an inclusion of vector spaces Dist+
pr−1(G) ↪→Dist(Gr)⊂Dist(G),

which clearly satisfies the necessary conditions to employ the universal property of U [r−1](G)

and obtain an algebra homomorphism

πr−1 : U [r−1](G)→Dist(Gr).

From the basis description of Dist(Gr) above, this map is surjective.
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It is straightforward to see that for δ ∈Dist+
pr−1(G), the equality πr−1(δ)p = πr−1(δp)

holds. Hence, letting Rr−1 be the ideal of U [r−1](G) generated by δ⊗p − δp for δ ∈
Dist+

pr−1(G), there is a surjective algebra homomorphism

πr−1 : U [r−1](G)/Rr−1�Dist(Gr).

Lemma 3.1. The algebra U [r−1](G) is spanned by the set{
x

(a1)
1 ⊗ (x

(pr−1)
1 )⊗b1 ⊗ x(a2)

2 ⊗ (x
(pr−1)
2 )⊗b2 ⊗ · · · ⊗ x(an)

n ⊗ (x
(pr−1)
n )⊗bn

with 06 ai < pr−1, bi > 0, 16 i6 n

}
.

Proof. That these elements generate U [r−1](G) is obvious from the given basis of

Distpr−1(G). Hence, using a filtration argument, all that remains is to make the following

observations:

(i) For 16 i6 n, if 06 s, t6 pr−1, then x
(s)
i ⊗ x

(t)
i −

(
s+t
s

)
x

(s+t)
i lies in the K-span of the

set x(a1)
1 ⊗ x(a2)

2 ⊗ · · · ⊗ x(an)
n | 06 aj < pr−1, 16 j 6 n, and

n∑
j=1

aj < s+ t

.
Note here that

(
s+t
s

)
= 0 if s+ t> pr−1 and s, t < pr−1.

(ii) For 06 s, t6 pr−1, and 16 i6 j 6 n, the commutator x
(t)
j ⊗ x

(s)
i − x

(s)
i ⊗ x

(t)
j lies in

the K-span of the set
x

(a1)
1 ⊗ (x

(pr−1)
1 )⊗b1 ⊗ x(a2)

2 ⊗ (x
(pr−1)
2 )⊗b2 ⊗ · · · ⊗ x(an)

n ⊗ (x
(pr−1)
n )⊗bn

with 06 ak < pr−1, bk > 0, 16 k 6 n, and

n∑
k=1

(ak + bkp
r−1)< s+ t

.
These observations follow from the defining relations of U [r−1](G) and calculations with

the divided power basis of Dist(Gr) = K[Gr]
∗.

Corollary 3.2. The algebra U [r−1](G)/Rr−1 is spanned by the set{
x

(a1)
1 ⊗ (x

(pr−1)
1 )⊗b1 ⊗ x(a2)

2 ⊗ (x
(pr−1)
2 )⊗b2 ⊗ · · · ⊗ x(an)

n ⊗ (x
(pr−1)
n )⊗bn

with 06 ai < pr−1, 06 bi < p, 16 i6 n

}
.

Proof. This follows from the above lemma since, for δ ∈Distpr−1(G), δp ∈Distpr−1(G)

by [17, Lemma 3.2.1].

Hence, dim(U [r−1](G)/Rr−1)6 pr dim(g). However, we know that U [r−1](G)/Rr−1 surjects

onto Dist(Gr), which has dimension pr dim(g). Thus, U [r−1](G)/Rr−1
∼= Dist(Gr).

In particular, the universal property of the algebra U [r−1](G)/Rr−1 gives an algebra

homomorphism Dist(Gr)→ U [r](G). Composing with πr then gives an algebra homomor-

phism Dist(Gr)→Dist(Gr+1), which, by considering the effect on the basis, is clearly

injective. Hence, there is an inclusion Dist(Gr) ↪→ U [r](G) of algebras.
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The above results show that Dist(Gr) is a Hopf subalgebra of U [r](G) since the coalgebra

structure on U [r](G) is extended from the coalgebra structure on Distpr+1−1(G)⊆Dist(Gr)

using the universal property given in [17, Proposition 3.1.1], and similarly for the antipode.

In fact, the given bases of Dist(Gr) and of Distk(G) show that, as in [17, Lemma 7.1.1(1)],

Dist(Gr) is normal in U [r](G).

More generally, the results of [17, Section 4] all hold for an arbitrary affine algebraic

group G—with one notable difference. Namely, we may no longer assume that G has an

Fp-form, and so we must use the standard Frobenius morphism rather than the geometric

Frobenius morphism throughout. The reader can check that the only meaningful change

this induces is to turn Υr,s into a Hopf algebra homomorphism from U [r](G) to U [r−s](G)(s)

instead of U [r−s](G). Other than this, the only place in which the reductivity of G is used

in that section is to show that Υr,s is surjective, which now follows from Lemma 3.1. Hence,

the whole of [17, Lemma 7.1.1] holds for an arbitrary affine algebraic group.

In particular, Dist(Gr)⊂ U [r](G) is a U(g)(r)-Galois extension with Dist(Gr) =

U [r](G)coU(g)(r) .

Proposition 3.3. The U(g)(r)-extension Dist(Gr)⊂ U [r](G) is U(g)(r)-cleft.

Proof. We need to show that there is a convolution-invertible right U(g)(r)-comodule

map γ : U(g)(r)→ U [r](G). Since U(g)(r) has basis {xa11 x
a2
2 . . . xann | ai > 0, 16 i6 n}, we

simply need to define γ(xa11 x
a2
2 . . . xann ) for all a1, a2, . . . , an > 0.

As such, we define

γ(xa11 x
a2
2 . . . xann ) = (x

(pr)
1 )⊗a1 ⊗ (x

(pr)
2 )⊗a2 ⊗ · · · ⊗ (x(pr)

n )⊗an ∈ U [r](G)

for all a1, a2, . . . , an > 0.

To show that γ is a U(g)(r)-comodule map, we need to show that, for y ∈ U(g)(r),∑
γ(y)(1) ⊗ γ(y)(2) =

∑
γ(y(1))⊗ y(2),

where we use Sweedler’s Σ-notation and we write γ(y)(2) for Υr,r(γ(y)(2)).

It is enough to show this for basis elements. Note that, if y = xa11 x
a2
2 . . . xann with

a1, a2, . . . , an > 0, then

∆(y) = (x1 ⊗ 1 + 1⊗ x1)a1(x2 ⊗ 1 + 1⊗ x2)a2 . . . (xn ⊗ 1 + 1⊗ xn)an

=
∑

bi+ci=ai

(
a1

b1

)(
a2

b2

)
· · ·
(
an
bn

)
xb11 x

b2
2 . . . xbnn ⊗ x

c1
1 x

c2
2 . . . xcnn .

Furthermore, writing ∆U(g)(r) for the U(g)(r)-comodule map of the comodule U [r](G),

∆U(g)(r)((x
(pr)
1 )⊗a1 ⊗ (x

(pr)
2 )⊗a2 ⊗ · · · ⊗ (x(pr)

n )⊗an)

= ∆U(g)(r)(x
(pr)
1 )⊗a1 ⊗∆U(g)(r)(x

(pr)
2 )⊗a2 ⊗ · · · ⊗∆U(g)(r)(x

(pr)
n )⊗an ,

while, for any 16 i6 n,

∆U(g)(r)(x
(pr)
i ) =

pr∑
j=0

x
(j)
i ⊗ x

(pr−j)
i = x

(pr)
i ⊗ 1 + 1⊗ xi

since x
(s)
i = 0 for all 0< s < pr.
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Hence,
∑
γ(y)(1) ⊗ γ(y)(2) equals

∑
bi+ci=ai

(
a1

b1

)(
a2

b2

)
· · ·
(
an
bn

)
((x

(pr)
1 )⊗b1 ⊗ (x

(pr)
2 )⊗b2 ⊗ · · · ⊗ (x(pr)

n )⊗bn)⊗ (xc11 x
c2
2 . . . xcnn )

and
∑
γ(y(1))⊗ y(2) equals

∑
bi+ci=ai

(
a1

b1

)(
a2

b2

)
· · ·
(
an
bn

)
((x

(pr)
1 )⊗b1 ⊗ (x

(pr)
2 )⊗b2 ⊗ · · · ⊗ (x(pr)

n )⊗bn)⊗ (xc11 x
c2
2 . . . xcnn ).

Thus, γ is a U(g)(r)-comodule map. Furthermore, γ is convolution-invertible (with

convolution inverse Sγ) since U [r](G) is a Hopf algebra.

By [10, Theorem 8.2.4], Dist(Gr)⊂ U [r](G) has the normal basis property. Hence,

U [r](G)∼= Dist(Gr)⊗ U(g)(r) as left Dist(Gr)-modules and right U(g)(r)-comodules. In

particular, [10, Corollary 8.2.5] shows that

U [r](G)∼= Dist(Gr)#σU(g)(r),

a crossed product of Dist(Gr) with U(g)(r).

Corollary 3.4. U [r](G) has basis{
x

(a1)
1 x

(a2)
2 . . . x(an)

n (x
(pr)
1 )b1(x

(pr)
2 )b2 . . . (x(pr)

n )bn
∣∣∣ 06 ai < pr, 06 bi, 16 i6 n

}
.

(Note that in this corollary, we suppress the ⊗-symbol when we write the multiplication

in U [r](G). We shall do similarly throughout this paper when no confusion is likely.)

Now that we know a basis for U [r](G), we can obtain the following corollary. The idea

for this proof is due to Lewis Topley.

Corollary 3.5. Let G be an affine algebraic group. For δ ∈Dist+
pr(G), δ⊗p − δp is

central in U [r](G).

Proof. If G is an affine algebraic group, then there is an inclusion Dist(G)⊆Dist(GLm)

for some m ∈ N, which restricts to an inclusion Distk(G)⊆Distk(GLm) for all k ∈ N. In

particular, the inclusion Dist+
pr+1−1

(G) ↪→Dist+
pr+1−1

(GLm) ↪→ U [r](GLm) induces, by the

universal property, an algebra homomorphism

ι : U [r](G)→ U [r](GLm).

Let x1, . . . , xn be a basis of g = Lie(G). This can be extended to a basis x1, . . . , xm2 of

glm = Lie(GLm).

The map ι sends

x
(a1)
1 x

(a2)
2 . . . x(an)

n (x
(pr)
1 )b1(x

(pr)
2 )b2 . . . (x(pr)

n )bn ∈ U [r](G)

to

x
(a1)
1 x

(a2)
2 . . . x(an)

n (x
(pr)
1 )b1(x

(pr)
2 )b2 . . . (x(pr)

n )bn ∈ U [r](GLm).

Hence, by Corollary 3.4, ι is injective.
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In particular, there is an inclusion ι : U [r](G) ↪→ U [r](GLm). Now, for δ ∈Dist+
pr(G),

ι(δ)⊗p − ι(δ)p is central in U [r](GLm) by [17] since GLm is reductive.

Hence, δ⊗p − δp is central in U [r](G).

We can now proceed as in [17, Section 3.4] to obtain a number of corollaries for an

arbitrary algebraic group G. Let Z
[r]
p be the central subalgebra of U [r](G) generated by all

δ⊗p − δp for δ ∈Dist+
pr(G).

Corollary 3.6. The algebra Z
[r]
p is generated by the elements (x

(pr)
i )⊗p − (x

(pr)
i )p for

i= 1, . . . , n. Furthermore, these elements are algebraically independent.

Corollary 3.7. As a Z
[r]
p -module, U [r](G) is free with basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n | 06 a1, . . . , an < pr+1}.

Corollary 3.8. The center Z [r](G) := Z(U [r](G)) of U [r](G) is a finitely generated

algebra over K. As a Z(U [r](G))-module, U [r](G) is finitely generated.

Corollary 3.9. Let M be an irreducible U [r](G)-module. Then M is finite-

dimensional, of dimension less than or equal to p(r+1) dim(g).

Similarly, the requirement in [17, Section 5.1] that G be reductive can be removed. In

particular, for an arbitrary affine algebraic group G and χ ∈ (g∗)(r), we can define the

algebra

U [r]
χ (G) :=

U [r](G)

〈δ⊗p − δp − χ(δ)p | δ ∈Dist+
pr(G)〉

.

Recall here that χ extends to Dist+
pr(G) through the map Υr,r : U [r](G)→ U(g)(r) defined

in [17, Section 4]—the reader should note that this map is obtained from the Frobenius

map Dist(G)→Dist(G(r)). We saw earlier that all the properties of this map given in [17]

for reductive groups also hold for affine algebraic groups. We then obtain the following

corollaries.

Corollary 3.10. Every irreducible U [r](G)-module is a U
[r]
χ (G)-module for some

χ ∈ (g∗)(r).

Corollary 3.11. Given χ ∈ (g∗)(r) and g ∈G, there is an isomorphism U
[r]
χ (G)∼=

U
[r]
g·χ(G), where G is acting on (g∗)(r) through the coadjoint action precomposed with the

rth Frobenius morphism.

Furthermore, it is a straightforward consequence of Corollary 3.4 that U
[r]
χ (G) has basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n | 06 ai < pr+1 for all 16 i6 n}.

Hence, U
[r]
χ (G) is a finite-dimensional algebra of dimension p(r+1) dim(g).

§4. Representation theory of U [r](G)

4.1 Steinberg decomposition

For the rest of this paper, we assume that G is a connected reductive algebraic group

over K. We shall furthermore assume that the quotient group X(T )/prX(T ) has a system
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of representatives X ′r(T ), which lies inside Xr(T ). Recall that the definition of Xr(T ) is

Xr(T ) := {λ ∈X(T ) | 06 〈λ, αν〉< pr for all α ∈Π}.

This assumption holds if, for example, G is semisimple and simply connected. The reader

should consult [6, II.3.16] to see how Steinberg’s tensor product theorem works for reductive

algebraic groups satisfying this assumption. In particular, this assumption guarantees

that every irreducible Dist(Gr)-module extends to a Dist(Gr+1)-module (and hence to a

U [r](G)-module).

Observe that in this section, our algebraic group G has an Fp-form, and so we shall

generally use the geometric Frobenius morphism rather than the standard Frobenius

morphism. In particular, the homomorphisms Υr,s map from U [r](G) to U [r−s](G) without

requiring a twist of the K-structure.

In [17], it is shown by two different methods that every irreducible U [r](G)-module M

is isomorphic as U [r](G)-modules (and hence Dist(Gr)-modules) to P ⊗HomGr(P, M) for

some unique (up to isomorphism) irreducible P ∈ Irr(Dist(Gr)). The first method uses the

fact that each irreducible Dist(Gr)-module P can be extended to a U [r](G)-module, together

with the Hopf algebra structure of U [r](G), to equip HomGr(P, M) with the structure of

a U(g)-module and P ⊗HomGr(P, M) with the structure of a left U [r](G)-module. The

second method introduces the algebra

E := EndU [r](G)(U
[r](G)⊗Dist(Gr) P )op,

and shows that HomGr(P, M) has the structure of a left E-module. Lemma 7.1.3 in [17]

then gives a U [r](G)-module structure to P ⊗HomGr(P, M), and Theorem 7.1.4 shows that

it is compatible with the module structure on M .

In understanding the structure of E, the following lemma was proved in [17] as

Lemma 7.1.5. We repeat the lemma here since we are now in a position to explain the

isomorphism in more detail.

Lemma 4.1. Let P ∈ Irr(Dist(Gr)) and E = EndU [r](G)(U
[r](G)⊗Dist(Gr) P )op. Then

E ∼= U(g).

Remark 1. We can describe this isomorphism a little more explicitly. The isomorphism

U(g)∼= K#U(g) sends z ∈ U(g) to 1#z ∈K#U(g). We now need to consider the isomor-

phism K#U(g)∼= E from Schneider [14].

Note that the stability of the Dist(Gr)-module P comes immediately from the fact that

P can be extended to a U [r](G)-module, by [14, Remark 3.2.3]. Let q : U [r](G)⊗D P → P

be the Dist(Gr)-linear map defining this U [r](G)-module structure, denoting the algebra

Dist(Gr) by D here and throughout this paper. By [14, Theorem 3.6], there is a right

U(g)-collinear map J ′ : U(g)→ E given by

J ′(h)(1⊗ z) :=
∑

ri(h)⊗ q(li(h)⊗ z),

where h ∈ U(g), z ∈ P , and ri(h), li(h) ∈ U [r](G) are such that
∑
ri(h)⊗D li(h) is the

inverse image of 1⊗ h under the canonical isomorphism

can : U [r](G)⊗D U [r](G)→ U [r](G)⊗ U(g).

By [14, Remark 1.1(4)], the inverse of the map can sends x⊗ y→
∑
xS(y(1))⊗ y(2),

where y is the image of y ∈ U [r](G) under the projection Υr,r : U [r](G)� U(g).
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Now fix a U(g)-comodule map γ : U(g)→ U [r](G) such that Υr,r ◦ γ = IdU(g) and S ◦ γ =

γ ◦ S, where Υr,r : U [r](G)� U(g) is as defined in [17, Section 4]. The proof of Proposi-

tion 3.3 illustrates a way to do this. We hence describe the isomorphism J := J ′S : U(g)→ E

as follows:

x 7→
(

1⊗D z 7→
∑

γ(x)(1) ⊗D q(S(γ(x)(2))⊗ z)
)

for x ∈ U(g) and z ∈ P .

This remark in fact shows that the two methods from [17], discussed above, are deeply

related. In particular, if we compose the isomorphism U(g)
∼−→ E with the E-action on

HomGr(P, M) from the second method, then we recover the U(g)-action on HomGr(P, M)

used in the first method. In this paper, we prefer to work with the second method since the

actions of E = U(g) and U [r](G) are easier to compute with in this case. This shall be most

beneficial in Lemma 4.6 and in Section 5, where the actions of central elements in U [r](G)

and U(g) are explored.

We define ΓP to be the category of irreducible left U [r](G)-modules, which decompose as

Dist(Gr)-modules into a direct sum of copies of (Dist(Gr)-modules isomorphic to) P . This

is a full subcategory of the category of irreducible left U [r](G)-modules. Furthermore, set

mod(U(g)) to be the category of finite-dimensional left U(g)-modules.

We shall examine the functor

ΨP : ΓP →mod(E) = mod(U(g)),

which sends M ∈ ΓP to HomGr(P, M).

The following theorem should also be compared with [18, Theorem 3.1].

Theorem 4.2. There is an equivalence of categories between ΓP and Irr(E). In

particular, this equivalence is obtained from the maps

ΨP : ΓP → Irr(E), ΨP (M) = HomGr(P, M);

ΦP : Irr(E)→ ΓP , ΦP (N) = P ⊗K N.

Proof. We maintain the convention D = Dist(Gr) to make formulas clearer.

If M ∈ ΓP , then [17, Lemma 7.1.3 and Theorem 7.1.4] show that

ΨP (M) = HomD(P, M) = HomU [r](G)(U
[r](G)⊗D P, M)

is a left E-module; that P ⊗K ΨP (M) is a left U [r](G)-module; that P ⊗K ΨP (M) is

isomorphic to (U [r](G)⊗D P )⊗E ΨP (M) as U [r](G)-modules; and that

ηM : (U [r](G)⊗D P )⊗E ΨP (M)→M, ηM (a⊗D z ⊗E φ) = φ(a⊗D z)

is an isomorphism of U [r](G)-modules.

Note that ΨP (M) is an irreducible E-module since if ΨP (M) contains a proper nontrivial

submodule U , then

P ⊗K U ∼= (U [r](G)⊗D P )⊗E U

is a proper nontrivial U [r](G)-submodule of the irreducible U [r](G)-module

M ∼= (U [r](G)⊗D P )⊗E ΨP (M)∼= P ⊗K ΨP (M).
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Now, suppose N is an irreducible left E-module. It was proved in [17, Lemma 7.1.3] that

ΦP (N) := P ⊗K N ∼= (U [r](G)⊗D P )⊗E N

is a left U [r](G)-module, and furthermore that the structure is such that ΦP (N) is a direct

sum of copies of P as a Dist(Gr)-module.

We now wish to show that HomD(P, ΦP (N))∼=N as left E-modules. Define

σN :N →HomD(P, ΦP (N)) by σN (n)(z) = z ⊗ n ∈ P ⊗K N.

Since

HomD(P, ΦP (N))∼= HomU [r](G)(U
[r](G)⊗D P, ΦP (N))

as left E-modules and

P ⊗K N ∼= (U [r](G)⊗D P )⊗E N

as left U [r](G)-modules, we can also write this map as

σN :N →HomU [r](G)(U
[r](G)⊗D P, (U [r](G)⊗D P )⊗E N),

σN (n)(a⊗D z) = (a⊗D z)⊗E n

for n ∈N , z ∈ P and a ∈ U [r](G).

It is easy to see that σN (n) is a U [r](G)-module homomorphism from U [r](G)⊗D P to

(U [r](G)⊗D P )⊗E N , and also that σN is a linear map. We show that σN is E-linear. It is

enough to show that for f ∈ E, n ∈N , z ∈ P , and a ∈ U [r](G), we have that

(f · σN (n))(a⊗D z) = σN (f · n)(a⊗D z).

Note that

(f · σN (n))(a⊗D z) = σN (n)(f(a⊗D z)) = f(a⊗D z)⊗E n,

while

σN (f · n)(a⊗D z) = (a⊗D z)⊗E (f · n).

Since the right E-module structure on U [r](G)⊗D P comes from the evaluation map, the

result holds from the definition of the tensor product.

Hence, σN is an E-module homomorphism. It is clear that σN is injective from the

description σN (n)(z) = z ⊗ n ∈ P ⊗K N for n ∈N , z ∈ P . Furthermore, by above,

ΦP (N)∼=
k⊕
i=1

P

as Dist(Gr)-modules. Now, k = dim(N) as dim(ΦP (N)) = dim(P ) dim(N) and

dim(
⊕k

i=1P ) = k dim(P ). Hence,

HomD(P, ΦP (N))∼= HomD

(
P,

k⊕
i=1

P

)
= Kk

since HomD(P, P ) = K. Thus, dim(N) = k = dim(HomD(P, ΦP (N))). Together with the

injectivity, this proves that σN is an isomorphism of E-modules.
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Furthermore, ΦP (N) is an irreducible U [r](G)-module since if it contains a proper

nontrivial submodule L, then

HomD(P, L)∼= HomU [r](G)(U
[r](G)⊗D P, L)

is a proper nontrivial E-submodule of

N ∼= HomU [r](G)(U
[r](G)⊗D P, ΦP (N))∼= HomD(P, ΦP (N)),

contradicting the irreducibility of N .

In conclusion, we have shown that the maps ΨP and ΦP are well defined; that for

any irreducible U [r](G)-module M , ΦP (ΨP (M))∼=M as U [r](G)-modules; and that for any

irreducible E-module N , ΨP (ΦP (N))∼=N as E-modules. It is then straightforward to see

that this bijection is in fact an equivalence of categories.

Remark 2. This proof in fact shows that for any E-module N , not necessarily

irreducible, it is true that N ∼= HomGr(P, P ⊗K N)∼= HomGr(P, (U
[r](G)⊗D P )⊗E N) as

E-modules.

For each K-algebra R we consider in this section, we denote by Irr(R) the set of

isomorphism classes of irreducible R-modules.

Corollary 4.3. There is a bijection

Ψ : Irr(U [r](G))→ Irr(Dist(Gr))× Irr(U(g)),

which sends M to (P,HomGr(P, M)), where P is the unique (up to isomorphism) irreducible

Dist(Gr)-submodule of M . The reverse map sends (P, N) to the U [r](G)-module (U [r](G)

⊗D P )⊗U(g) N = P ⊗K N .

We are now in a position to give the deferred proof of Proposition 7.1.7 from [17].

Proposition 4.4. Suppose that G is a reductive algebraic group over an algebraically

closed field K of positive characteristic p, and let χ ∈ g∗. Let M be an irreducible U
[r]
χ (G)-

module and P an irreducible Dist(Gr)-module such that M ∼= P ⊗HomDist(Gr)(P, M) as

Dist(Gr)-modules. Then HomDist(Gr)(P, M) is an irreducible Uχ(g)-module.

Proof. All that remains is to show that for x ∈ g, xp − x[p] acts on HomD(P, M) as

χ(x)p. Given δ ∈Dist+
pr(G), we know that δ⊗p − δp is central in U [r](G). Hence, the map

ρ(δ⊗p − δp) : U [r](G)⊗D P → U [r](G)⊗D P

given by left multiplication by δ⊗p − δp is a U [r](G)-module endomorphism of U [r](G)⊗D P ,

and so lies inside E. However, as we know that M is a U
[r]
χ (G)-module, ρ(δ⊗p − δp) ∈ E

acts on HomD(P, M) as multiplication by χ(δ)p.

Hence, to show that HomD(P, M) is a Uχ(g)-module, we just need that, for α ∈ Φ,

epα maps to ρ((e
(pr)
α )⊗p) and, for 16 t6 d, hpt − ht maps to ρ(

(
ht
pr

)⊗p − (htpr)) under the

isomorphism U(g)∼= E.

This isomorphism was described in Remark 1. In particular, we know that epα = (e
(pr)
α )⊗p

and hpt − ht =
(
ht
pr

)⊗p − (htpr) for α ∈ Φ and 16 t6 d.
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Observe that

∆((e(pr)
α )⊗p) = ∆(e(pr)

α )⊗p =

pr∑
i=0

(e(i)
α )⊗p ⊗ (e(pr−i)

α )⊗p = (e(pr)
α )⊗p ⊗ 1 + 1⊗ (e(pr)

α )⊗p

since (e
(i)
α )⊗p = 0 for all 0< i < pr, while

∆

((
ht
pr

)⊗p
−
(

ht
pr

))
= ∆

((
ht
pr

))⊗p
−∆

((
ht
pr

))

=

pr∑
i=0

(
ht
i

)⊗p
⊗
(

ht
pr − i

)⊗p
−

pr∑
i=0

(
ht
i

)
⊗
(

ht
pr − i

)

=

((
ht
pr

)⊗p
−
(

ht
pr

))
⊗ 1 + 1⊗

((
ht
pr

)⊗p
−
(

ht
pr

))

since
(
ht
i

)⊗p
=
(
ht
i

)
for all 0< i < pr.

Hence, J ′(epα)(1⊗ z) = 1⊗ q((e(pr)
α )⊗p ⊗ z)− (e

(pr)
α )⊗p ⊗ q(1⊗ z). However, the U [r](G)-

module structure on P comes through the map U [r](G)�Dist(Gr+1), so q((e
(pr)
α )⊗p ⊗ z)

= 0. Thus, J ′(epα)(1⊗ z) =−(e
(pr)
α )⊗p ⊗ z.

Similarly, J ′(hpt − ht)(1⊗ z) =−(
(
ht
pr

)⊗p − (htpr))⊗ z.
By [14, Remark 3.8], the algebra homomorphism J : U(g)→ E is defined as J = J ′S.

Hence, we conclude that J(epα) = ρ((e
(pr)
α )⊗p) for α ∈ Φ, and J(hpt − ht) = ρ(

(
ht
pr

)⊗p − (htpr))
for 16 t6 d (using for the latter that

(
ht
i

)⊗p
=
(
ht
i

)
for i < pr). The result follows.

Corollary 4.5. Suppose that G is a connected reductive algebraic group over an

algebraically closed field K of positive characteristic p > 0. Suppose further that g and p

are such that Premet’s theorem holds (see [11]). Let M be an irreducible U
[r]
χ (G)-module

and N an irreducible Dist(Gr)-module such that M ∼=N ⊗HomDist(Gr)(N,M) as Dist(Gr)-

modules. Then pdim(G·χ)/2 divides dim HomDist(Gr)(N,M).

Lemma 4.6. Let P ∈ Irr(Dist(Gr)) and N ∈ Irr(U(g)) with p-character χ ∈ g∗ (so N ∈
Irr(Uχ(g))). Then the following results hold:

(1)

(U [r](G)⊗D P )⊗U(g) N

is a left U
[r]
χ (G)-module;

(2) U
[r]
χ (G)⊗D P is a right Uχ(g)-module; and

(3) as U
[r]
χ (G)-modules,

(U [r](G)⊗D P )⊗U(g) N ∼= (U [r]
χ (G)⊗D P )⊗Uχ(g) N.

Proof. (1) To show that (U [r](G)⊗D P )⊗U(g) N is a left U
[r]
χ (G)-module, it is enough

to show that δ⊗p − δp − χ(δ)p acts on it by zero multiplication for all δ ∈Dist+
pr(G). Set

δ ∈Dist+
pr(G), and let x= Υr,r(δ) ∈ g.

Let u ∈ U [r](G), z ∈ P and n ∈N . Then

(δ⊗p − δp − χ(δ)p) · (u⊗D z)⊗U(g) n = (u⊗D z) · (xp − x[p] − χ(x)p)⊗U(g) n

= (u⊗D z)⊗U(g) (xp − x[p] − χ(x)p) · n= 0.
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(2) To show that U
[r]
χ (G)⊗D P is a right Uχ(g)-module, first note that Dist(Gr) is a

subalgebra of U
[r]
χ (G), so the tensor product makes sense. We will show that U

[r]
χ (G)⊗D P

is a right E-module, on which the left multiplication by δ⊗p − δp − χ(δ)p is zero for all

δ ∈Dist+
pr(G).

Let f ∈ EndU [r](G)(U
[r](G)⊗D P )op. We want a linear map T̃f : U

[r]
χ (G)⊗D P → U

[r]
χ (G)

⊗D P . By the universal property of the tensor product, it is enough to give a linear map

Tf : U
[r]
χ (G)× P → U [r](G)⊗D P , which is Dist(Gr)-balanced.

Define Tf (u, z) = f(u⊗D z) for u ∈ U [r](G) and z ∈ P , where f(u⊗D z) is the image of

f(u⊗D z) under the map U [r](G)⊗D P � U
[r]
χ (G)⊗D P . First, we must see that this is well

defined. Suppose u= v ∈ U [r]
χ (G). Hence, u− v ∈ I E U [r](G), where I is the ideal generated

by δ⊗p − δp − χ(δ)p for δ ∈Dist+
pr(G). So f((u− v)⊗D z) ∈ I ⊗D P , so f((u− v)⊗D z) = 0.

Furthermore, for d ∈Dist(Gr),

Tf (u · d, z) = Tf (ud, z) = f(ud⊗D z) = f(u⊗D dz) = Tf (u, d · z).

Hence, we obtain a linear map T̃f : U
[r]
χ (G)⊗D P → U

[r]
χ (G)⊗D P . It is straightforward

to see that T̃f T̃g = T̃fg, so U
[r]
χ (G)⊗D P is a right E-module. One may then check that the

action of left multiplication by δ⊗p − δp − χ(δ)p is zero for all δ ∈Dist+
pr(G).

Hence U
[r]
χ (G)⊗D P is a right Uχ(g)-module.

(3) All that remains is to show the isomorphism (U [r](G)⊗D P )⊗U(g) N ∼= (U
[r]
χ (G)

⊗D P )⊗Uχ(g) N .

Define the map F : (U [r](G)⊗D P )×N → (U
[r]
χ (G)⊗D P )⊗Uχ(g) N by sending the ele-

ments (u⊗D z, n) to (u⊗D z)⊗Uχ(g) n, where u= u+ I. It is easy to see that this map is

a well-defined U
[r]
χ (G)-module homomorphism. It is also U(g)-balanced:

F ((u⊗D z) · f, n) = f(u⊗D z)⊗Uχ(g) n= (u⊗D z)⊗Uχ(g) f · n= F (u⊗D z, f · n),

where u ∈ U [r](G), z ∈ P , n ∈N , f ∈ E ∼= U(g), and f = f + J ∈ E/J , where J is the

ideal in E generated by left multiplications by the elements δ⊗p − δp − χ(δ)p for δ ∈
Dist+

pr(G). Hence, there is a U
[r]
χ (G)-module homomorphism F̃ : (U [r](G)⊗D P )⊗U(g) N →

(U
[r]
χ (G)⊗D P )⊗Uχ(g) N .

Furthermore, we define H : (U
[r]
χ (G)⊗D P )×N → (U [r](G)⊗D P )⊗U(g) N by sending

the elements (u⊗D z, n) to (u⊗D z)⊗U(g) n. This map is well defined since (U [r](G)

⊗D P )⊗U(g) N is a U
[r]
χ (G)-module and a homomorphism of U

[r]
χ (G)-modules. It is also

Uχ(g)-balanced:

H((u⊗D z) · f, n) = f(u⊗D z)⊗Uχ(g) n= (u⊗D z)⊗Uχ(g) f · n= F ((u⊗D z), f · n),

where u ∈ U [r](G), z ∈ P , n ∈N , f ∈ E ∼= U(g), and f = f + J ∈ E/J . This gives a U
[r]
χ (G)-

module homomorphism H̃ : (U
[r]
χ (G)⊗D P )⊗Uχ(g) N → (U [r](G)⊗D P )⊗U(g) N .

It is straightforward to see that F̃ and H̃ are inverse to each other. The result follows.

Corollary 4.7. There is a bijection

Ψχ : Irr(U [r]
χ (G))→ Irr(Dist(Gr))× Irr(Uχ(g)),

which sends M to (P,HomGr(P, M)), where P is the unique (up to isomorphism) irreducible

Dist(Gr)-submodule of M . The inverse map sends (P, N) to (U
[r]
χ (G)⊗Dist(Gr) P )⊗Uχ(g)

N ∼= P ⊗K N .
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4.2 Teenage Verma modules

We can use the previous section to deduce some structural results about irreducible

U
[r]
χ (G)-modules. We start by defining the following vector subspace of U [r](G), using the

[[·]] notation from [17]:

Û [r](B) := K-span

 ∏
α∈Φ+

e[[iα]]
α

d∏
t=1

(
ht
[[kt]]

) ∏
α∈Φ+

e
[[jα]]
−α : 06 iα, kt, 06 jα < pr

.
This vector space is in fact a subalgebra of U [r](G) by the multiplication equations given

in [4]. Furthermore, the Hopf algebra structure on U [r](G) makes Û [r](B) a Hopf subalgebra

of U [r](G).

Clearly, Dist(Gr) is a subalgebra of Û [r](B). It is normal since it is normal in U [r](G),

and Û [r](B) is free as both a left and a right Dist(Gr)-module.

From [17], we know that the map Υr,r : U [r](G)→ U(g) is a surjective Hopf algebra

homomorphism. It is easy to see from the bases that this map restricts to a surjective Hopf

algebra homomorphism Û [r](B)� U(b), with kernel Û [r](B)Dist+(Gr) = Dist+(Gr)Û [r](B).

In particular, Dist(Gr)⊂ Û [r](B) is a U(b)-module extension, with Dist(Gr) = Û [r](B)
coU(b)

.

Lemma 4.8. Let P ∈ Irr(Dist(Gr)). Then End
Û [r](B)

(Û [r](B)⊗D P )∼= U(b).

Proof. This follows as in [17, Lemma 7.1.5] since Û [r](B) is a subalgebra of U [r](G).

It is straightforward to see that [17, proof of Theorem 7.1.4] and the proof of Theorem 4.2

above hold similarly in this context. In other words, we have the following proposition.

Proposition 4.9. There is a bijection

Ψ̂ : Irr(Û [r](B))→ Irr(Dist(Gr))× Irr(U(b)),

which sends M to (P,HomGr(P, M)), where P is the unique (up to isomorphism) irre-

ducible Dist(Gr)-submodule of M . The inverse map sends (P, N) to the Û [r](B)-module

(Û [r](B)⊗D P )⊗U(b) N = P ⊗K N .

Applying Lemmas 4.4 and 4.6 in this context, we get the following corollary.

Corollary 4.10. The bijection in Proposition 4.9 restricts to a bijection

Ψ̂χ : Irr(Û
[r]
χ (B))→ Irr(Dist(Gr))× Irr(Uχ(b)).

Assume from now on that χ(n+) = 0. It is well known (see, for example, [8]) that,

if N ∈ Irr(Uχ(b)), then N = Kλ for some λ ∈ Λχ, where Kλ denotes the 1-dimensional

b-module on which n+ acts trivially and h ∈ h acts through multiplication by λ(h). Recall

here that

Λχ := {λ ∈ h∗ | λ(h)p − λ(h) = χ(h)p for all h ∈ h}.

Hence, there is a bijection,

Ψ̂ : Irr(Û
[r]
χ (B))→ Irr(Dist(Gr))× Λχ.
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In other words, every irreducible Dist(Gr)-module P can be extended to an irreducible

Û
[r]
χ (B)-module, and there is one such way to do this for each λ ∈ Λχ. For each λ ∈ Λχ, we

can hence define the U
[r]
χ (G)-module

U [r]
χ (G)⊗

Û
[r]
χ (B)

(P ⊗K Kλ) = U [r]
χ (G)⊗

Û
[r]
χ (B)

(Û
[r]
χ (B)⊗D P )⊗Uχ(b) Kλ

?
= (U [r]

χ (G)⊗
Û

[r]
χ (B)

Û
[r]
χ (B)⊗D P )⊗Uχ(b) Kλ

= (U [r]
χ (G)⊗D P )⊗Uχ(b) Kλ

= (U [r]
χ (G)⊗D P )⊗Uχ(g) Uχ(g)⊗Uχ(b) Kλ

= (U [r]
χ (G)⊗D P )⊗Uχ(g) Zχ(λ)

= P ⊗K Zχ(λ).

Here, equality (?) follows from an easy check.

We call this U
[r]
χ (G)-module the teenage Verma module Zrχ(P, λ). Note that

dim(Zrχ(P, λ)) = pdim(n−) dim(P ). Frobenius reciprocity then gives the following proposi-

tion, proving both conjectures from [17, Section 6.5].

Proposition 4.11. Every irreducible U
[r]
χ (G)-module is a quotient of a teenage Verma

module Zrχ(P, λ) for some P ∈ Irr(Dist(Gr)) and λ ∈ Λχ.

Despite the fact that baby Verma modules and teenage Verma modules need not be

irreducible, the following lemma shows that the correspondence in Corollary 4.7 can be

extended to these modules.

Lemma 4.12. For P ∈ Irr(Dist(Gr)) and λ ∈ Λχ, HomGr(P, Z
r
χ(P, λ))∼= Zχ(λ) as left

Uχ(g)-modules.

Proof. This follows directly from Remark 2.

We also obtain the following structural result.

Proposition 4.13. Suppose M ∈ Irr(U
[r]
χ (G)), P ∈ Irr(Dist(Gr)), and N ∈ Irr(Uχ(g))

such that Ψχ(M) = (P, N). Then M is an irreducible quotient of Zrχ(P, λ) if and only if N

is an irreducible quotient of Zχ(λ).

Proof. ( =⇒ ) By the definition of Ψχ and Lemma 4.12, N = HomGr(P, M) and Zχ(λ) =

HomGr(P, Z
r
χ(P, λ)). Let π : Zrχ(P, λ)→M be the given surjection. We then define the map

η : Zχ(λ)→N by defining the map η : HomGr(P, Z
r
χ(P, λ))→HomGr(P, M) as η(f)(z) =

πf(z) for f ∈HomGr(P, Z
r
χ(P, λ)) and z ∈ P . It is straightforward to check that this is an

E-module homomorphism, hence a U(g)-module homomorphism and hence a Uχ(g)-module

homomorphism. It is surjective as N is irreducible.

(⇐= ) By the definitions of Ψχ and Zrχ(P, λ), M = (U
[r]
χ (G)⊗D P )⊗Uχ(g) N and

Zrχ(P, λ) = (U
[r]
χ (G)⊗D P )⊗Uχ(g) Zχ(λ). The result then follows from the functoriality of

the tensor product and the irreducibility of M .
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4.3 Consequences

From now on, let us make the following assumptions (see [7, Chapter 6] for more details):

(H1) The derived group of G is simply connected.

(H2) The prime p is good for G.

(H3) There is a nondegenerate G-invariant bilinear form on g.

In particular, (H3) gives rise to an isomorphism of G-modules g→ g∗. This allows us to

transfer properties of elements of g to properties of elements of g∗. For example, we say

that χ ∈ g∗ is semisimple if the corresponding element x ∈ g is semisimple (in fact, this is

equivalent to the requirement that g · χ(n+ ⊕ n−) = 0 for some g ∈G, under the coadjoint

action). Similarly, we say that χ ∈ g∗ is nilpotent if the corresponding element x ∈ g is

nilpotent (this is equivalent to the requirement that g · χ(b) = 0 for some g ∈G, under the

coadjoint action).

Furthermore, we say that x ∈ g is regular if dim(CG(x)) = dim(h), where CG(x) := {g ∈
G | g · x= x}. We hence say that χ ∈ g∗ is regular if the corresponding x ∈ g is regular—

this is equivalent to the requirement that dim(CG(χ)) = dim(h), where CG(χ) := {g ∈G |
g · χ= χ}.

With these definitions in mind, we get the following proposition.

Theorem 4.14. Let M be an irreducible U
[r]
χ (G)-module, for χ ∈ g∗, and let P be the

unique (up to isomorphism) irreducible Dist(Gr)-submodule of M . The following results

hold.

(1) There exists λ ∈ Λχ such that M is an irreducible quotient of Zrχ(P, λ).

(2) If χ is regular, then there exist P ∈ Irr(Dist(Gr)) and λ ∈ Λχ such that M ∼= Zrχ(P, λ).

(3) If χ is regular semisimple, then Zrχ(P, λ)∼= Zrχ(P̃ , µ) if and only if P ∼= P̃ and λ= µ.

(4) If χ is regular nilpotent and χ(e−α) 6= 0 for all α ∈Π, then Zrχ(P, λ)∼= Zrχ(P̃ , µ) if and

only if P ∼= P̃ and λ ∈W•µ, where W is the Weyl group of Φ and • represents the dot

action.

Proof. (1) By the above, there exist Q ∈ Irr(Dist(Gr)) and λ ∈ Λχ such that M is an

irreducible quotient of Zrχ(Q, λ). Frobenius reciprocity then shows that

Hom
U

[r]
χ (G)

(Zrχ(Q, λ), M)∼= Hom
Û

[r]
χ (B)

(Q⊗K Kλ, M).

In particular, as M 6= 0, the Dist(Gr)-module Q⊂ Zrχ(Q, λ) is not in the kernel of the

surjection π : Zrχ(Q, λ)�M . Hence, the surjection restricts to a Dist(Gr)-isomorphism Q→
π(Q), so Q is an irreducible Dist(Gr)-submodule of M . As a result, Q∼= P , and we can say

that M is an irreducible quotient of Zrχ(P, λ) for some λ ∈ Λχ.

(2) The bijection Ψχ sends M to the pair (P, N) for some N ∈ Irr(Uχ(g)), and dim(M) =

dim(P ) dim(N). Since χ is regular, dim(N) = pdim(n−).

However, by (1), M is an irreducible quotient of Zrχ(P, λ) for some λ ∈ Λχ. Furthermore,

dim(Zrχ(P, λ)) = pdim(n−) dim(P ). Hence, M ∼= Zrχ(P, λ).

(3) Suppose Zrχ(P, λ)∼= Zrχ(P̃ , µ). The U
[r]
χ (G)-module Zrχ(P, λ) is an irreducible module

containing P , while Zrχ(P̃ , µ) is an irreducible U
[r]
χ (G)-module containing P̃ . Since each

irreducible U
[r]
χ (G)-module contains a unique irreducible Dist(Gr)-submodule, we obtain

that P and P̃ are isomorphic Dist(Gr)-modules.
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Hence,

HomGr(P, Z
r
χ(P, λ))∼= HomGr(P̃ , Z

r
χ(P̃ , µ)),

and so

Zχ(λ)∼= Zχ(µ).

By [8, B.10], λ= µ.

(4) As in (3), if Zrχ(P, λ)∼= Zrχ(P̃ , µ), then Zχ(λ)∼= Zχ(µ). Hence, by [7, Proposition 10.5],

λ ∈W•µ+ pX.

Since all irreducible U [r](G)-modules have finite dimension, we can determine the

maximal dimension of an irreducible U [r](G)-module, sup{dim(M) |M ∈ Irr(U [r](G))}.

Corollary 4.15. The maximal dimension of an irreducible U [r](G)-module is

p(r+1) dim(n−), and it is attained.

Proof. Since every irreducible U [r](G)-module is an irreducible quotient of Zrχ(P, λ) for

some χ ∈ g∗, λ ∈ Λχ and irreducible Dist(Gr)-module P , and since the dimension of Zrχ(P, λ)

depends only on P , the maximal dimension of an irreducible U [r](G)-module is at most

max
P∈Irr(Dist(Gr))

{dim(Zrχ(P, λ))}= max
P∈Irr(Dist(Gr))

{(pdim(n−) dim(P ))}.

The maximal dimension of an irreducible Dist(Gr)-module is pr dim(n−), coming from the

Steinberg weight St. In particular, if we choose P = Lr(St) and χ regular, then Zrχ(P, λ) is

an irreducible U [r](G)-module of dimension p(r+1) dim(n−), and the result follows.

Recall further that, given x ∈ g, there exist xs, xn ∈ g such that x= xs + xn, xs is

semisimple in g, xn is nilpotent in g, and [xs, xn] = 0. We call x= xs + xn a Jordan

decomposition of x. If, under the G-module isomorphism g→ g∗, x maps to χ, xs maps

to χs, and xn maps to χn, we call χ= χs + χn a Jordan decomposition of χ.

Given χ ∈ g∗, we define cg(χ) := {y ∈ g | χ([g, y]) = 0}. Under our assumptions, CG(χs)

is a Levi subgroup of G with Lie algebra cg(χs) (see [3, Lemma 3.2]). Hence, there exists a

parabolic subgroup Pχs of G, which is a semidirect product of CG(χs) with its unipotent

radical UPχs . Letting u = Lie(UPχs ) and p = Lie(Pχs), we get that p = cg(χs)⊕ u. The work

of Friedlander and Parshall in [5] shows that there is a equivalence of categories

mod(Uχ(g))←→mod(Uχ(cg(χs))),

which sends N ∈mod(Uχ(g)) to the fixed point set Nu ∈mod(Uχ(cg(χs))), and sends

V ∈mod(Uχ(cg(χs))) to Uχ(g)⊗Uχ(p) V ∈mod(Uχ(g)), where u acts on V as 0.

Furthermore, letting µ= χ|cg(χs), there is another equivalence of categories

mod(Uµ(cg(χs)))←→mod(Uµn(cg(χs)))

which sends V ∈mod(Uµ(cg(χs))) to V ⊗W ∈mod(Uµn(cg(χs))) and V ∈mod(Uµn(cg(χs)))

to V ⊗W ∗ ∈mod(Uµ(cg(χs))), where W is an irreducible Uµs(cg(χs)/[cg(χs), cg(χs)])-

module (necessarily 1-dimensional) viewed as a g-module.

Both of these equivalences of categories send baby Verma modules to baby Verma

modules.
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Corollary 4.16. Keep the notation from the preceding paragraph. There is a bijection

Ψχ : Irr(U [r]
χ (G))→ Irr(Dist(Gr))× Irr(Uµn(cg(χs))),

which sends M to (P,HomGr(P, M)u ⊗W ∗), where P is the unique (up to isomorphism)

irreducible Dist(Gr)-submodule of M . The inverse map sends (P, V ) to (U
[r]
χ (G)⊗Dist(Gr) P )

⊗Uχ(p) (V ⊗W )∼= P ⊗K (Uχ(g)⊗Uχ(p) (V ⊗W )).

In particular, this result means that to study the irreducible U
[r]
χ (G)-modules, one may

always assume that χ|cg(χs) is nilpotent, and hence that χ vanishes on b ∩ cg(χs).

Recall that we say that χ ∈ g∗ has standard Levi form if χ(b) = 0 and there exists a

subset I ⊆Π with χ(e−α) = 0 if and only if α ∈ Φ+ \ I.

Definition. We say that χ ∈ g∗ has almost standard Levi form if (χ|cg(χs))n has

standard Levi form.

Proposition 4.17. Suppose that χ ∈ g∗ has almost standard Levi form. Let P ∈
Irr(Dist(Gr)) and λ ∈ Λχ. Then the U

[r]
χ (G)-module Zrχ(P, λ) has a unique irreducible

quotient.

Proof. Since µn := (χ|cg(χs))n has standard Levi form, each Zµn(τ) for τ ∈ Λµn has

a unique irreducible quotient. Since there is an equivalence of categories between

mod(Uµn(cg(χs))) and mod(Uχ(g)), which sends baby Verma modules to baby Verma

modules, it follows that each Zχ(λ) has a unique irreducible quotient. The result then

follows from Proposition 4.13.

If χ ∈ g∗ has almost standard Levi form, we shall write Lrχ(P, λ) for the unique irreducible

quotient of Zrχ(P, λ). Proposition 10.8 in [7] gives the following isomorphism condition on

these modules, where WI is the subgroup of the Weyl group generated by simple reflections

corresponding to simple roots in I.

Corollary 4.18. Suppose that χ ∈ g∗ has almost standard Levi form corresponding

to the subset I of the simple roots of cg(χs). Let P, Q ∈ Irr(Dist(Gr)) and λ, λ̃ ∈ Λχ. Then

Lrχ(P, λ)∼= Lrχ(Q, λ̃) if and only if P ∼=Q and λ̃ ∈WI•λ.

§5. The Azumaya locus of U [r](G)

5.1 Azumaya and pseudo-Azumaya loci

Let R be a K-algebra, where K is an algebraically closed field (of arbitrary characteristic),

which is module-finite over its center Z = Z(R). Suppose further that Z is an affine

K-algebra (i.e. Z is finitely generated as a K-algebra). One can observe that these conditions

guarantee the existence of a bound on the dimensions of irreducible R-modules.

These conditions further imply that R is a PI ring, that is, that there exists a (multilinear)

Z-polynomial f such that f(r1, . . . , rk) = 0 for all r1, . . . , rk ∈R. For n ∈ N, we define

the polynomial gn as in [12, Chapter 1.4] (see Proposition 1.4.10 in particular). This is

an n2-normal polynomial (n2-normal meaning gn is linear and alternating in its first n2

variables). We then say that R has PI-degree m if R satisfies all multilinear identities

of Mm(Z) (that is to say, all multilinear Z-polynomials that vanish on Mm(Z)) and

gm(R) := {gm(r1, . . . , rk) | r1, . . . , rk ∈R} is not the zero set. If R has PI-degree m, then

gm(r1, . . . , rk) ∈ Z for all r1, . . . , rk ∈R.
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We define, as in [12], the following sets:

Specm(R) := {P ∈ Spec(R) | gm(R) 6⊆ P}, Specm(Z) := {Q ∈ Spec(Z) | gm(R) 6⊆Q},

where Spec(R) is defined to be the set of prime ideals in R. One can check that if R has

PI-degree m and P is a prime ideal of R, PI-degree(R)> PI-degree(R/P ) and this inequality

is an equality precisely when P ∈ Specm(R).

Given a central subalgebra C of R, we say, as in [13, Definition 5.3.23], that R is

Azumaya over C if

(i) R is a faithful and finitely generated projective C-module; and

(ii) the canonical map R⊗C Rop→ EndC(R), which sends a⊗ b to the map x 7→ axb, is a

K-algebra isomorphism.

If C = Z, we will simply call R an Azumaya algebra. We furthermore say that R is

Azumaya over C of constant rank t if RI is a free module of rank t over CI for all

prime ideals I of C [13, Definition 2.12.21]. By [13, Remark 1.8.36], we observe that if R is

Azumaya over C of constant rank t, then for each prime ideal I of C, RI is also Azumaya

over CI of constant rank t.

Given a prime idealQ in Z, we define RQ to be the localization of R at the multiplicatively

closed central subset Z \Q. In other words, RQ := {rs−1 | r ∈R, s ∈ Z \Q}, where r1s
−1
1 =

r2s
−1
2 if and only if there exists s ∈ Z \Q such that s(r1s2 − r2s1) = 0. We denote by ZQ

the usual localization of R \Q in Z. By [12], ZQ ⊆ Z(RQ) with equality if Z \Q is regular

in R (i.e. for any s ∈ Z \Q, r ∈R, sr = 0 implies r = 0).

Note that [13, Theorem 5.3.24] implies that if RQ is Azumaya over ZQ, then ZQ = Z(RQ).

The following lemma follows from [13, Section 5.3].

Lemma 5.1. RQ is Azumaya over ZQ if and only if ZQ = Z(RQ) and RQ is Azumaya

over its center. Either of these conditions is satisfied if, for example, Z \Q is regular in R

and RQ is Azumaya over its center.

The Azumaya locus AR of R is hence defined to be the set of maximal ideals m in Z

such that Rm is an Azumaya algebra over Zm. If R is prime, this is precisely the definition

of Azumaya locus given in [1].

We shall further define the pseudo-Azumaya locus of R, PAR, as

PAR := {annZ(M) |M an irreducible left R-module of maximal dimension}.

The next theorems shall show how the Azumaya and pseudo-Azumaya loci are connected.

Theorem 5.2. Let R be a K-algebra, where K is an algebraically closed field, which

is module-finite over its center Z = Z(R), and assume that Z is affine. Let J(R) be the

Jacobson radical of R. Then the following results hold.

(1) The ring R/J(R) has PI-degree d, where d is the maximal dimension of an irreducible

(left) R-module.

(2) If R has PI-degree m, then m= d if and only if there exists a primitive ideal A in

Specm(R).

Proof. (1) Observe that for an irreducible R-module M with annihilator A= annR(M),

R/A is a finite-dimensional, simple algebra over Z/m, where m =A ∩ Z. This holds
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because M is a faithful R/A-module, so R/A embeds in EndK(M). In particular, R/A∼=
MnA(K) by the algebraically closed nature of the field K, for some nA ∈ N. Hence, every

irreducible R/A-module has dimension nA. In particular,

d= max
ACR primitive

{nA}.

Furthermore, Kaplansky’s theorem tells us that, for a primitive ideal A of R, the

PI-degree of R/A is also nA. Hence, for any primitive ideal A,

PI-degree(R/A) = nA 6 d.

In particular, this says that if f is a multilinear identity of Md(Z), then f(R) is a subset of

all primitive ideals of R. Thus R/J(R) satisfies all the multilinear identities of Md(Z).

Also, if M is an irreducible R-module of maximal dimension, then PI-degree

(R/annR(M)) = d. Hence gd(R) 6⊆ annR(M), and thus gd(R) 6⊆ J(R). So gd(R/J(R)) 6= 0.

This precisely says that R/J(R) has PI-degree d.

(2) We know that PI-degree(R/annR(M)) = d when M is an irreducible left R-module

of maximal dimension. Thus, when m= d, PI-degree(R) = PI-degree(R/annR(M)) and so

annR(M) ∈ Specm(R).

On the other hand, if there exists a primitive ideal A ∈ Specm(R), then

m= PI-degree(R) = PI-degree(R/A)6 PI-degree(R/J(R))6 PI-degree(R)

and the result follows.

If R has PI-degree d, the maximal dimension of an irreducible (left) R-module, then the

pseudo-Azumaya locus PAR is an open subset of Maxspec(Z). Using similar techniques to

those used in the proof of Theorem 5.2, the proof of this fact when R is prime (found, for

example, in [2, Proposition III.1.1 and Lemma III.1.5]) easily generalizes to this case.

Note that the assumptions of Theorem 5.2 guarantee that R is a Jacobson ring, that

is, that every prime ideal is an intersection of primitive ideals. In particular, J(R) is the

intersection of all prime ideals in R. Hence, if R is a prime ring, then R has PI-degree

d and the Azumaya and pseudo-Azumaya loci coincide by the following theorem (noting

that, over a prime ring, if Rm is an Azumaya algebra then it must be of constant rank as

Z(Rm) = Zm is local for all maximal ideals m of Z—see also [9, Chapter 13.7]). Note that

Brown and Goodearl have already shown the prime case in [1], using similar techniques.

Theorem 5.3. Let R be a K-algebra, where K is an algebraically closed field, which

is module-finite over its center Z = Z(R), and assume that Z is affine. Suppose that R

has PI-degree d, where d is the maximum dimension of an irreducible (left) R-module.

Furthermore, let M be an irreducible (left) R-module, A= annR(M), and m = annZ(M).

Then dim(M) = d if and only if Rm is an Azumaya algebra of constant rank d2.

Note that, since Z is affine, m is a maximal ideal of Z.

Proof. ( =⇒ ) Suppose that M is an irreducible (left) R-module of dimension d. Then

R/A∼=Md(K) and so PI-degree(R/A) = d= PI-degree(R).

In particular, this means that A ∈ Specd(R) and so gd(R) 6⊆A. Thus, gd(R) ∩ (Z \m) 6= ∅,
and hence gd(R) contains an invertible element of Zm, so an invertible element of Rm.

Thus gd(Rm) 6= {0}. Furthermore, any homogeneous multilinear polynomial identity of R is

a polynomial identity of Rm, and so PI-degree(Rm) = PI-degree(R).
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Also, 1 ∈ gd(Rm)Rm since gd(Rm) contains an element of Z \m. So by a version of the

Artin–Procesi theorem (see [13]), Rm is Azumaya over its center of constant rank d2.

(⇐= ) Suppose that Rm is Azumaya of constant rank d2 over its center. In particular, the

Artin–Procesi theorem from [13] tells us that Rm has PI-degree d and that 1 ∈ gd(Rm)Rm.

Note that it is always true that R/mR∼=Rm/mRm. Furthermore, Rm/mRm satisfies all

multilinear identities of Rm, and if gd(Rm)⊆mRm, then 1 ∈ gd(Rm)Rm ⊆mRm. But then

mRm =Rm, which is a contradiction. So Rm/mRm has PI-degree d, and so R/mR has

PI-degree d. This precisely says that mR ∈ Specd(R), and so m ∈ Specd(Z).

Since m is a maximal ideal of Z, Theorem 1.9.21 of [12] says that mR is a maximal ideal

of R, and so A= mR. In particular, R/mR∼=Md(K) as in the proof of Theorem 5.2. Since

M is an irreducible R/mR-module, the result follows.

Observe that, by Schur’s lemma, if M is an irreducible R-module, then each u ∈ Z acts

on M by scalar multiplication. In particular, there exists a central character ζM : Z→K,

where ζM (u) is defined by u ·m= ζM (u)m for all m ∈M . Thus,

PAR = {ker(ζM ) |M an irreducible R-module of maximal dimension}.

5.2 Pseudo-Azumaya loci for higher universal enveloping algebras

From now on, we once again suppose K has characteristic p > 0.

We now shall explore the pseudo-Azumaya locus for the higher universal enveloping

algebras. Suppose that G is a connected reductive algebraic group over K. We then take

Z
[r]
p to be the (central) subalgebra of U [r](G) generated by the elements δ⊗p − δp for δ ∈

Dist+
pr(G). The work of [17] shows that

Z [r]
p = K

[
(e(pr)
α )⊗p,

(
ht
pr

)⊗p
−
(

ht
pr

) ∣∣∣∣∣ α ∈ Φ, 16 t6 d

]
.

Furthermore, from [17], it is known that U [r](G) is an affine K-algebra and that it is a

free Z
[r]
p -module of finite rank p(r+1) dim(g). Since Z

[r]
p is Noetherian and finitely generated,

the Artin–Tate lemma gives that the center of U [r](G), which we shall denote by Z [r](G), is

an affine Z
[r]
p -algebra and an affine K-algebra. This implies that Z

[r]
p , Z [r](G), and U [r](G)

are Noetherian PI rings and that U [r](G) is a Jacobson ring.

For the remainder of this section, we shall use the convention that for an irreducible

U(g)-module N , the corresponding central character is ζN : Z(g) := Z(U(g))→K while for

an irreducible U [r](G)-module M , the corresponding central character is ζ
[r]
M : Z [r](G)→K.

In order to understand how these maps interact, we need to consider some homomorphisms

between the centers.

Recall from [17] that there exists a surjective algebra homomorphism Υ : U [r](G)→ U(g).

This map clearly maps centers to centers; so it gives an algebra homomorphism Υ := Υr,r :

Z [r](G)→ Z(g). In particular, [17] shows that Υ((e
(pr)
α )⊗p) = epα for α ∈ Φ and Υ(

(
ht
pr

)⊗p −(
ht
pr

)
) = hpt − ht for 16 t6 d. Hence, Υ further restricts to an algebra homomorphism

Υ : Z [r]
p → Zp,

which is now clearly an isomorphism.

There is another map between centers which is worth considering. Let P be an irreducible

Dist(Gr)-module, and let us consider the induced module U [r](G)⊗D P , where, as always,
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D denotes Dist(Gr). The action of U [r](G) on U [r](G)⊗D P is by left multiplication, so in

particular, u ∈ Z [r](G) acts on U [r](G)⊗D P by the U [r](G)-module endomorphism

ρ(u) : U [r](G)⊗D P → U [r](G)⊗D P,

which is left multiplication by u. Clearly, ρ(u) is a central element of E :=

EndU [r](G)(U
[r](G)⊗D P )op. Recall from Proposition 4.1 that U(g) is isomorphic to E, and

let τ : E→ U(g) be the isomorphism. Hence, there is a homomorphism of algebras

ΩP : Z [r](G)→ Z(g)

given by the composition of τ and ρ.

We can furthermore observe that the proof of Proposition 4.4 shows that

ΩP ((e(pr)
α )⊗p) = epα

for α ∈ Φ and

ΩP

((
ht
pr

)⊗p
−
(

ht
pr

))
= hpt − ht

for 16 t6 d. In particular, Υ|
Z

[r]
p

= ΩP |Z[r]
p

, and so ΩP restricts to an isomorphism

Z
[r]
p → Zp.

The following conditions for the map ΩP to be surjective or injective are easy to prove.

Lemma 5.4. The homomorphism ΩP is surjective if and only if every central element

of E is left multiplication by some central element of U [r](G).

Lemma 5.5. The homomorphism ΩP is injective if and only if, for u ∈ Z [r](G), u⊗D
z = 0 ∈ U [r](G)⊗D P for all z ∈ P implies that u= 0. Equivalently, ΩP is injective if and

only if U [r](G)⊗D P is a faithful Z [r](G)-module.

Let us see how the homomorphisms ΩP interact with the central characters of irreducible

U [r](G)-modules.

Proposition 5.6. Let M be an irreducible U [r](G)-module with Ψ(M) = (P, N) for

P ∈ Irr(Dist(Gr)) and N ∈ Irr(U(g)). Then the following diagram commutes:

Z [r](G)
ζ
[r]
M //

ΩP
��

K

Z(g)

ζN

77

Proof. Recall here that M ∼= (U [r](G)⊗D P )⊗U(g) N . Now, let u ∈ Z [r](G), v ∈ U [r](G),

z ∈ P , and n ∈N . Then

u · (v ⊗D z)⊗U(g) n = ρ(u)(v ⊗D z)⊗U(g) n= (v ⊗D z) · τ(ρ(u))⊗U(g) n

= (v ⊗D z)⊗U(g) ΩP (u) · n= ζN (ΩP (u))(v ⊗D z)⊗U(g) n.

Corollary 5.7. Let M be an irreducible U [r](G)-module with Ψ(M) = (P, N) for P ∈
Irr(Dist(Gr)) and N ∈ Irr(U(g)). Then

ker ζ
[r]
M = Ω−1

P (ker ζN ).
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Recall now from Corollary 4.15 that if M is an irreducible U [r](G)-module corresponding

to the pair (P, N) ∈ Irr(Dist(Gr))× Irr(U(g)), then dim(M) = dim(P ) dim(N). Hence, an

irreducible U [r](G)-module M is of maximal dimension if and only if the corresponding

modules P and N are of maximal dimension.

From now on, fix P as the rth Steinberg module Str of G and hence an irreducible

Dist(Gr)-module of maximal dimension. As in Section 4.1, let ΓP be the category of

irreducible U [r](G)-modules which contain P as an irreducible Dist(Gr)-submodule. Let

MaxΓP denote the full subcategory of ΓP whose objects are the irreducible U [r](G)-modules

of maximal dimension in ΓP , and let MaxIrr(U(g)) similarly denote the full subcategory

of Irr(U(g)) consisting of irreducible U(g)-modules of maximal dimension. The inverse

equivalences of categories ΨP : ΓP → Irr(U(g)) and ΦP : Irr(U(g))→ ΓP then restrict to

inverse equivalences of categories

ΨP : MaxΓP →MaxIrr(U(g)) and ΦP : MaxIrr(U(g))→MaxΓP .

We have already seen that, for M ∈MaxΓP , ker(ζ
[r]
M ) = Ω−1

P (ker(ζΨP (M))). We hence have

that

PAU [r](G) = {ker(ζ
[r]
M ) |M ∈MaxIrr(U [r](G))}= {ker(ζ

[r]
M ) |M ∈MaxΓP }

= {Ω−1
P (ker(ζΨP (M))) |M ∈MaxΓP }= {Ω−1

P (ker(ζN )) |N ∈MaxIrr(U(g))}.

Proposition 5.8. Let P be the rth Steinberg module Str of G. There is a surjective

morphism Ω∗P : PAU(g)→PAU [r](G), which sends ker(ζN ) to Ω−1
P (ker(ζN )).

Proof. ΩP : Z [r](G)→ Z(g) is a homomorphism of commutative algebras, so it induces

a morphism

Ω∗P : Spec(Z(g))→ Spec(Z [r](G)).

This morphism sends I ∈ Spec(Z(g)) to Ω−1
P (I) ∈ Spec(Z [r](G)), so by the above restricts

to a map Ω∗P : PAU(g)→PAU [r](G). It is surjective by the above discussion.

Corollary 5.9. Let P be the rth Steinberg module Str of G. If ΩP is surjective, then

Ω∗P is a bijection.

If we instead take P to be an arbitrary irreducible Dist(Gr)-module, then ΨP and ΦP

still restrict to inverse equivalences of categories between MaxΓP and MaxIrr(U(g)), and

we still get the equality

{ker(ζ
[r]
M ) |M ∈MaxΓP }= {Ω−1

P (ker(ζN )) |N ∈MaxIrr(U(g))},

but the left-hand side may no longer be equal to PAU [r](G). For example, if P is the trivial 1-

dimensional Dist(Gr)-module, then ΦP lifts an irreducible U(g)-module N to the irreducible

U [r](G)-module N along the natural quotient U [r](G) 7→ U [r](G)/U [r](G)Dist+(Gr) = U(g).

Hence, if N is an irreducible U(g)-module of maximum dimension, then ker(ζN ) is in

the pseudo-Azumaya locus of U(g) (and hence the Azumaya locus since U(g) is prime),

but Ω∗P (ker(ζN )) = ker(ζ
[r]
N ). In particular, Ω∗P (ker(ζN )) will contain Z ∩ U [r](G)Dist+(Gr),

suggesting that it is not the central annihilator of an irreducible U [r](G)-module of

maximum dimension.
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