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Abstract

Oscillating two-stream instability (OTSI) of a high amplitude laser or a plasma wave is inves-
tigated in plasmas with strongly coupled ions. It is shown that in some parameter regime, the
pressure of strongly coupled ions becomes negative, which leads to enhance the bunching of
ion and concomitant destabilization of OTSI. Applications of these results to ion accelerator
and inertial confinement fusion experiments are discussed.

Introduction

In inertial confinement fusion (ICF) and laser-driven ion accelerator, high power laser inter-
acts with a solid target (Snavely et al., 2000; Lindl et al., 2014). When the laser beam comes
into contact with the outer surface of this target, plasma is created due to ionization of target
atoms by the electric field of the laser. This plasma expands outward from the surface. The
density of this laser produced plasma is spatially inhomogeneous. Laser plasma instabilities
(LPI) occur at different density region in this inhomogeneous plasma (Rosenbluth, 1972;
Weaver et al., 2007), for example, parametric decay instability (PDI) occurs at the region
where laser frequency (ω0) is greater than local plasma frequency (ωpe), while oscillating two-
stream instability (OTSI) occurs in the denser region where ω0 is ≤ωpe (Chen, 1985; Liu and
Tripathi, 1995).

In direct drive experiments (Craxton et al., 2015), this interaction occurs in the outer
corona which is made of carbon and hydrogen ions. While in indirect drive experiments
(Lindl et al., 2004), these instabilities occur in the low Z H/He plasma and high Z Au blow-off
plasma in the vicinity of hohlraum wall. In the blow-off plasma near the Au hohlraum wall,
the ion species is mostly due to high Z Au ions. The typical density of these ions is in the range
ni≤ 1021 cm−3 (ncr≈ 1022 cm−3 for λlaser≈ 351 nm, ncr is the critical density), the ion temper-
ature Ti is typically in the range 5–50 eV and Z≈ 10− 20 (for Au ions). Under these condi-
tions, Sharma et al. (2016) have shown the ratio of typical electrostatic potential energy to
typical kinetic energy of Au ions is >1, that is, Gi = (Z2e2/aiTi) . 1; where Γi is the ion cou-
pling parameter and ai ( = (3/4πni)

1/3) is the mean distance between ions. Thus the high Z Au
ions may become strongly coupled. These instabilities can also occur in plasma relevant to
laser-driven ion accelerator near the target surface (Wilks et al., 2001; Esirkepov et al.,
2014). In this process, a thin target foil (hydrogen, carbon or aluminum) is irradiated by an
intense laser pulse. The laser prepulse creates a preplasma on the target’s front side, where
the density of plasma is near critical density (Esirkepov et al., 2014). The main pulse interacts
with the plasma and accelerates a part of target electrons, mainly in the forward direction. The
electrons so accelerated create charge separation. The charge separation provides a strong elec-
tric field by which the target ions are accelerated. This ion acceleration mechanism is called as
target normal sheath acceleration (Wilks et al., 2001). The typical target ions can be hydrogen,
carbon, oxygen or aluminum. In this case, the plasma density is close to the critical density ncr,
Z is ≈ 5–10 (for Al ion) and the temperature of the ions is in the range 10–100 eV, hence the
ions may become strongly coupled in the preplasma. For example, with ion density in the range
ni≈ 1021 cm−3, the mean particle distance ai is ≈ 6 × 10−8 cm. Then for Al ions with tempera-
ture Ti≈ 30 eV and Z = 9, the ion coupling parameter, Gi = (Z2e2/aiTi)≈ 7. The electrons are
still weakly coupled due to smaller charge and higher temperature, as for Te≈ 50− 500 eV and
Z = 1, Γe <1.

Extensive studies related to LPI have been done by various authors in the weakly coupled
plasma. Kirkwood et al. (1996) have reported experimental results on stimulated Raman scat-
tering (SRS) and stimulated Brillouin Scattering (SBS) from Xe plasma embedded with
C5H12impurities. Fernandez et al. (1996) have observed the dependence of SRS on ion acoustic
damping in hohlraum plasmas. Yadav et al. (2003) have studied SBS of a laser in a high-Z
plasma channel embedded with light ions. Satya et al. (1985) obtained the analytical reduc-
tions of the low-frequency dispersion relation of the field- plasma system, including results
on the OTSI. Kumar and Malik (2006) studied the effect of negative ions on OTSI of laser-
driven plasma beat wave in homogeneous plasma. All the above-mentioned studies of plasma
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instabilities containing high Z ions have been done in the weakly
coupled plasma, that is, Γi,e <1. In addition, other types of insta-
bilities have been studied in different types of plasma models
(Malik and Singh, 2011; Singh et al., 2013; Malik et al., 2015a;
2015b; Tyagi et al., 2018).

In recent years, a great deal of attention has been focused on
different plasma instabilities in strongly coupled plasma also.
Janaki et al. (2011) studied Jeans instability in a viscoelastic grav-
itational fluid. Das and Kaw (2014) have studied the suppression
of Rayleigh Taylor instability in strongly coupled plasmas. Sharma
et al. (2016) studied the parametric instabilities (stimulated
Brillouin scattering, PDI, and Langmuir decay instability) in
laser plasmas with strongly correlated/coupled ions. In this
paper, we study the OTSI of a high power laser in plasma
where ions are strongly coupled. OTSI is an important non-linear
process in a high power laser–plasma interaction near the critical
layer (Fried et al., 1976; Nicholson, 1981; Mulser et al., 1984). In
this process, a laser or a long wavelength plasma wave decays into
a low-frequency mode and two Langmuir wave sidebands. In uni-
form plasma, the low-frequency mode turns out to be purely
growing with time and the growth rate is less than or comparable
with the ion plasma frequency. OTSI of a laser in two ion species
plasma was shown by Yadav et al. (2004). Malik (2007) investi-
gated OTSI in a negative ion containing plasma with hot and
cold positive ions and found that the effects of charge number
and mass of the ions are significant on the instability. But OTSI
in strongly coupled plasma has not been studied yet.

In the strongly coupled regime, the ion fluid behaves like a
strongly coupled visco-elastic fluid (Frenkel, 1946; Boon and Yip,
1980). In our paper, we take into account these strong coupling
effects via generalized hydrodynamic (GHD) equation for ions
(Berkovsky, 1992; Kaw and Sen, 1998; Murillo, 1998). In this equa-
tion, the strong coupling effects are parameterized by a typical
relaxation time τm(Γi). For τm = 0 there are no memory effects
and the GHD equation reduces to the standard Navier Stokes equa-
tion for viscous medium. On the other hand in the limit τm→∞
memory effects persist and the medium acquires solid like elastic
properties. In the range 0 < τm <∞, the medium has viscous as
well solid like elastic properties that is, viscoelastic fluid. Electrons
are still weakly correlated. It should also be noted that in this
parameter regime, the electrons and the ions, both are well within
the non-degenerate regime. This phenomenon is of relevance to
studies of plasma heating, ICF and laser-driven ion accelerator.

The paper is organized as follows in the section Governing
equations the governing equations for strongly coupled ions and
weakly coupled electrons are discussed. In the section
Oscillating two-stream instability the effects of the strong correla-
tion of ions on OTSI has been studied. The last section summa-
rizes the conclusion.

Governing equations

In our model, we consider strongly coupled ions. These ions could
be either the high Z Au ions in the blow-off plasma near the
vicinity of hohlraum or the Al ions in the preplasma of the target
front in laser-driven ion accelerator. The dynamics of the strongly
coupled ions is described by GHD equation given by

d �vi(�r, t)
dt

+ ∇Pi(�r, t)
nimi

+ Ze∇w(�r, t)
mi

=�t
−1 dt′

�
dr′hi(�r − �r ′

, t − t′)�vi(�r
′
, t′)

, (1)

where d/dt = (∂/∂t + �vi · ∇), �vi is the ion fluid velocity, Pi is the
ion pressure, mi is mass of the ion, ni is ion density, w is the elec-
trostatic potential, Z = qi/e, qi is the charge on multiple charged
Au or Al ion, e is the electronic charge and ηi is a non-local
ion viscoelastic operator (as defined in the section Oscillating
two-stream instability). The continuity equation for ions is
given by

∂ni
∂t

+∇ · (ni�vi) = 0. (2)

Eqs. (1) and (2) will be used to calculate the ion susceptibility
with strong correlation effects. The electron fluid is weakly cou-
pled which is governed by following a set of equations

∂ne
∂t

+ ∇ · (ne�ve) = 0, (3)

neme
d�ve
dt

= ene∇w− ene
�ve × �B

c
−∇Pe, (4)

where d/dt = (∂/∂t + �ve · ∇), �B is magnetic field, me is mass of
electron, Peis the electron pressure and ne, �ve are electron number
density and velocity, respectively. These equations are supple-
mented with the set of Maxwell’s equations.

∇ · �E = 4pe(Zni − ne),∇ × �E =

− 1
c
∂�B
∂t

,∇ × �B = 4p
c
�J + 1

c
∂�E
∂t

,∇ · �B = 0,
(5)

where �J = e(Zni�vi − ne�ve) is the net plasma current density.

Oscillating two-stream instability

In OTSI a long wavelength laser pump wave excites short wave-
length electrostatic waves and a low-frequency mode which is a
purely growing density perturbation. The physics of this instabil-
ity is as follows (Chen, 1985). Consider a quasi-neutral density
perturbation in plasma as shown in Figure 1. In case when
pump frequency ω0 is less than ωpe, which is the resonant fre-
quency of cold electron fluid, electrons move opposite to the
direction of laser electric field. Since ions do not respond on
the high-frequency time scale, an electric field is created due to
the charge separation. The ponderomotive force (Fp

�
) due to this

electric field creates a bunching of ions which causes OTSI. The
pressure gradient of electrons and ions oppose the tendency of
bunching which results in the threshold of OTSI. We will show
later, that the ion pressure gets modified due to the strong cou-
pling effects. It decreases with Γi and in certain parameter regime
(Γi >4) it becomes negative. Ion bunch collapse under this nega-
tive pressure as shown in Figure 1 thereby leading to significant
enhancement of ion bunching and destabilization OTSI.

Consider a laser pump (v0, �k0) decays into two sideband
waves (va,b, �k) and one low frequency (v, �k) mode density per-
turbation where va,b = v+ v0 and �k0 ≈ 0. Here (v, �k) may
not be an eigenmode of the system; it could be a driven mode.
However, the sidebands are the Langmuir eigenmodes within a
slight frequency mismatch due to nonlinear coupling. The dipole
laser pump field is taken to be coherent given by �E0 = ẑA0e−iv0t
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with ω0≈ ωpe. The electrostatic potentials are

wl = Ae−i(vt−�k·�r), (6)

wa,b = Aa,be
−i(va,bt−�k·�r). (7)

The perturbed equation of motion for electron fluid is

ne0me
∂�ve1
∂t

+ �ve1 · ∇�ve1
( )

= −ene0(�E0 − ∇w) − ∇Pe1. (8)

The perturbed electron continuity equation is

∂ne1
∂t

+ ne0∇ · �ve1 +∇ · 1
2
ne1�ve1

( )
= 0, (9)

where �ve1,Pe1, ne1,w are the perturbed electron velocity, pressure,
density, and the electric potential, respectively, and ne0 is the equi-
librium electron density. Here the electrons will contribute to
both, the high-frequency part and the low-frequency part. The
high-frequency part corresponds to the laser (ω0) and sidebands
(ωa, ωb) where electrons move independently of ions and the low-
frequency part corresponds to the low-frequency mode (ω)where
the electrons move along with ions in quasi-neutral manner.
Hence for the electrons the quantities �ve1, Pe1, ne1, and w each
contains a high-frequency part (�ve0, �vea,b, Pea,b, wa,b, and nea,b)
and a low-frequency part (�vel, Pel, wl , and nel).

To the lowest order of Eq. (8), the motion in response to high-
frequency laser electric field E0 is

∂�ve0
∂t

= − e�E0

me
(10)

This gives the electron oscillatory velocity �ve0 = e�E0

meiv0
.

For the high-frequency sidebands, the equation of motion for
electron fluid is-

me
∂�vea,b
∂t

= e∇wa,b −
∇Pea,b
ne0

, (11)

where �vea,b, nea,b, wa,b, and Pea,b correspond to the high-frequency
part at va,b, �k. The oscillatory velocities of electrons correspond to
sideband waves (neglecting the pressure term) will be

�vea,b = − e�k
meva,b

wa.b. (12)

In the low-frequency part, the sidebands, and the pump wave beat
and produce a low-frequency ponderomotive force �Fp on elec-
trons as ω = ωa,b ± ω0. Hence the equation of motion for low-
frequency electrons along with the ponderomotive force is given
by

me
∂�vel
∂t

+ �ve0 · i�k�vea + �v
∗
e0 · i�k�veb

( )
= e∇wl −

i�knelTe

ne0
, (13)

where �vel, nel, and wl correspond to low-frequency part and Te is
the electron temperature. The ponderomotive force �Fp can be
defined as

�Fp = e∇wp = −(me/2)∇(�ve0 · �vea + �v
∗
e0 · �veb). (14)

This gives the ponderomotive potential

wp =
�k · �ve0
2va

wa +
�k · �v∗

e0

2vb
wb. (15)

Using Eqs. (14) and (15) in Eq. (13) we get

me
∂�vel
∂t

= e∇(wl + wp)−
i�knelTe

ne0
. (16)

The low-frequency part of Eq. (9) gives

∂nel
∂t

+ ne0i�k · �vel = 0. (17)

Using Eqs. (16) and (17) we can find the low-frequency electron
density perturbation which is due to the ponderomotive and self-
consistent potential wp and wl

nel = k2

4pe
xe(wl + wp), (18)

where χe is the low-frequency electron susceptibility at ω, k.
For ω≪ kvth (vth = (2Te/me)

1/2 is electron thermal speed),

Fig. 1. Physical mechanism of OTSI in weakly and strongly coupled plasma.
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xe ≈ 2v2
pe/k

2v2th = v2
pi/k

2C2
s0 (where ωpi = ((4πni0Z

2e2)/mi)
1/2is

ion plasma frequency and CS0 = (ZTe/mi)
1/2). The equation of

motion of strongly coupled ion fluid is obtained by linearizing
Eq. (1) as

∂�vi1(�r, t)
∂t

+∇Pi1(�r, t)
ni0mi

+ Ze∇wl(�r, t)
mi

=�t
−1 dt′

�
dr′hi(�r − �r′, t − t′)�vi1(�r′, t′)

, (19)

where�vi1, Pi1,wl are the perturbed ion velocity, pressure and the elec-
tric potential, respectively, andni0 equilibrium iondensity. The quan-
tity ηi may be identified as a nonlocal viscoelastic operator
(Berkovsky, 1992; Kaw and Sen, 1998) which accounts for memory
effects and for the short-range order that begins to develop in the
plasma as a result of the growing correlation between the ions with
increasing values ofΓi. If thememory function is regarded as a simple
exponential function with τm as the relaxation time, then the Fourier
transform of ηi can be expressed as (Kaw and Sen, 1998)

hi(v, k) =
hk2 + h

3
+ z

( )
�k(�k·)

mini0(1− ivtm)
, (20)

where ω and k are the frequency and the wave number of the low-
frequency mode, η, ζ are shear and bulk viscosities. Combining
Eqs. (19) and (20) we can express the GHD equation as

1+ tm
∂

∂t

[ ]
mini0

∂�vi1
dt

+ Zeni0∇wl +∇Pi1
[ ]

= h∇ · ∇�vi1 + z+ h

3

( )
∇(∇ · �vi1).

(21)

Linearizing the ion continuity equation given by Eq. (2)

∂ni1
∂t

+ ni0i�k · �vi1 = 0. (22)

The ion density perturbation ni1 can be obtained by using Eq. (22) to
eliminate the perturbed velocity in Eq. (21) which gives

ni1 = − k2

4pZe
xiwl, (23)

where χi is the ion susceptibility such that

xi = − v2
pi

v2 − gimik2v
2
thi +

ivh
∗
k2a2iv pi

(1− ivtm)
[ ] , (24)

where γi = Cpi/Cvi is an adiabatic index, vthi = (2Ti/mi)
1/2 is the

ion thermal velocity, mi(Gi) = (1/Ti)(∂Pi/∂ni)Ti
= 1+ u(Gi)/3 +

(Gi/9)∂u(Gi)/∂Gi is compressibility (Ichimaru et al., 1987) and u
(Γi) is the normalized excess internal energy. For weakly coupled
plasma (Γi <1), u(Gi) ≈ − 		

3
√

/2 G3/2
i and for 1≤ Γi≤ 200, Slattery

et al. (1980; 1982) have given the empirical relation-
u(Gi) = −0.89Gi + 0.95G1/4

i + 0.19G−1/4
i − 0.81. For weak cou-

pling (Γi≈ 0) the value of μi = 1. As we increase Γi the value of μi
decreases, goes to 0 for Γcr≈ 3 and becomes negative for Γi >Γcr.
Here τm and η* are given by

tm = h
∗

v pil
2
i

a2i

1− gimi +
4
15

u(Gi)
(25a)

h∗ =
4h
3

+ z

( )
mini0v pia2i

(25b)

where λi and ai are the Debye length and mean interparticle dis-
tance for ions, respectively. The dependence of η∗ on Γi is more
complicated and cannot be expressed in a simple closed form.
Numerically calculated values using codes (Ichimaru et al.,
1987) show that it is of order unity (≈1.12) for values of Γi

close to 1, goes to a minimum value (≈0.06) for Γi≈ 10 and
then monotonically increases for higher values of Γi.

Poisson’s equation for the low-frequency part is given by

k2wl = 4pe(Zni1 − nel). (26)

Substituting the value of nel and ni1 from Eqs. (18) and (23) in Eq.
(26) we get

1wl = −xewp, (27)

where ε = 1 + χi + χe.

Using Eq. (9), the continuity equation for sidebands is given by

∂nea
∂t

+ ne0i�k · �vea + i�k · 1
2
nel�v

∗
e0

( )
= 0, (28)

∂neb
∂t

+ ne0i�k · �veb + i�k · 1
2
nel�ve0

( )
= 0. (29)

Using Eqs. (11), (28) and (vj, �k) (29), the linear density perturba-
tions at the sidebands are given by

nLej =
k2

4pe
xejwj, j = a, b, (30)

where χej is the electron susceptibility at sideband. One may write
xej = −(v2

pe + (3/2)k2v2th)/v2
j . The non-linear density perturba-

tions at (va,b, �k) due to the conjunction of density perturbation
nel with oscillatory velocity ve0 from Eqs. (28) and (29) are

nNLea =
�k · �v∗

e0

2va
nel =

�k · �v∗
e0

2va

k2(1+ xi)xewp

4pe1
, (31)

nNLeb =
�k · �ve0
2vb

nel =
�k · �ve0
2vb

k2(1+ xi)xewp

4pe1
. (32)

The Poisson’s equation for high-frequency sidebands is

k2wa,b = −4pe(nLea,b + nNLea,b). (33)

Using Eqs. (30)–(32) in Eq. (33), we obtain

1jwj = −4penNLej /k
2, j = a, b, (34)
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where 1j = 1+ xej = 1− (v2
pe + (3/2)k2v2th)/v2

j . Using Eqs. (27),
(31) and (32) in Eq. (34) we get

wa =
�k · �v∗

e0

2va1a
(1+ xi)wl, (35)

wb =
�k · �ve0
2vb1b

(1+ xi)wl. (36)

Using Eqs. (15), (35) and (36) in Eq. (27), we finally obtain the
dispersion relation for OTSI as

1 = −xe(1+ xi)
|�k · �ve0|

2

4
1

v2
a1a

+ 1
v2
b1b

( )
. (37)

Define a frequency mismatch D = v0 − (v2
pe + (3/2)k2v2th)1/2 and

substituting the value εa,b and ωa,b in Eq. (37), we can write the
dispersion relation as

1 = −xe(1+ xi)
|�k · �ve0|

2

4
D

v0(D
2 − v2)

. (38)

Now using Eq. (38) we will study OTSI in two limits that is,
kinetic limit where ωτm > 1 and the hydrodynamic limit where
ωτm < 1. Here ω represents the frequency of the ion or the low-
frequency mode. We first consider the kinetic regime.

Kinetic regime

In this regime ωτm > 1, we can write χe and χi from Eq. (24) as follows

xe = v2
pi/k

2C2
s0, xi = − v2

pi

v2 − gimik2v
2
thi −

h
∗
v pik2a2i
tm

[ ] (39)

Using Eq. (25a) we can write Eq. (39) -

xi = − v2
pi

v2 − (1+ 4
15

u(Gi))k2v2thi
[ ] (40)

On substituting these values in Eq. (38) we get a biquadratic equation
of ω

(v2 − D2) v2 − 1+ 4
15

u(Gi)
( )

k2v2thi −
v2

pi

1+ v2
pi

k2C2
s0

( )
⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

= L v2 − 1+ 4
15

u(Gi)
( )

k2v2thi − v2
pi

( )
D,

(41)

which can be simplified as

v4 − v2(v2
ac + D2 + LD)+ LD v2

pi + 1+ 4
15

u(Gi)
( )

k2v2thi

( )

+ D2v2
ac = 0,

(42)

where

L = |ve0|2
4C2

s0

v2
pi/v0

1+ v2
pi

k2C2
s0

( ) and

v2
ac = 1+ 4

15
u(Gi)

( )
k2v2thi +

v2
pi

1+ v2
pi

k2C2
s0

( ) ,

if we normalized ω by ωpi Eq. (42) will be

v′4 − v′2(v′2
ac + D′2 + L′D′)

+ L′D′ 1+ 1+ 4
15

u(Gi)
( )

Ti

ZTe
k2l2e

( )
+ D′2v′2

ac = 0,
(43)

where

v′ = v

v pi
,

v′2
ac = 1+ 4

15
u(Gi)

( )
Ti

ZTe
k2l2e +

1

1+ 1

k2l2e

( ) ,

L′ = |ve0|2
4C2

s0

v pi/v0

1+ 1

k2l2e

( ) ,

D′ = D

v pi
= v0

v pi
− v2

pe

v2
pi
+ mi

Zme

3
2
k2l2e

( )1/2

.

The two roots of Equation (43) are

v′2 = 1
2

[
(v′2

ac + D′2 + L′D′) −
																																																																														
(v′2

ac + D′2 + L′D′)2 − 4 L′D′ 1+ 1+ 4
15

u(Gi)
( )

Ti

ZTe
k2l2e

( )
+ D′2v′2

ac

( )√ ]
. (44)
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Instability occurs when Δ
′
<0 and

|D′| ,
L′ 1+ 1+ 4

15
u(Gi)

( )
Ti

ZTe
k2l2e

( )
v′2
ac

.

If the two conditions given above are satisfied then the value ofω
′2will

be negative which gives two imaginary roots, out of which one grows
with time. This root corresponds to OTSI. Thus the growth rate of
OTSI in the kinetic regime is

In the limit Γi→ 0 the growth rate in Eq. (45) reduces to the standard
growth rate ofOTSI (Ramachandran and Tripathi, 1997). In Figure 2,
we have plotted the growth rate (γ) as a function of k forΓi≈ 0 (for the
weak coupling limit) and forΓi = 2.5 and 5. The parameters which we
have used in Figure 2 are as follows. Since OTSI takes place near the
critical density (ncr) region where ω0≈ωpe, we take ni ≈1021 cm−3

(ne≈ ncr ≈ 1022 cm−3 for laser 351 nm), Te≈ 100 − 150 eV, Ti ≈
45 − 100 eV, laser intensity(I) is1014W/cm2 and Z = 5− 10 for Al
ion plasma.

In the plot, we can see the growth rate increases with Γi. For
example at k≈ 0.6 × 106 cm−1, the enhancement in the growth
rate for Γi = 2.5 is about 25% and for Γi = 5 is about 40%. In
Figure 3, we plot the growth rate (γ) as a function of normalized
pump frequency (ω0/ωpe) for k = 0.5 × 106 cm−1 with different
Γi≈ 0, 2.5 and 5. OTSI will occur only when ω0≈ ωpe. For higher
values of ω0, at which Δ

′
becomes positive, OTSI will vanish. Next,

we give a posterior justification for the kinetic regime condition
γτm >1. For particular values of plasma parameters ωpi, λi and
ion coupling parameter Γi, τm can be obtained from Eq. (25a).

So in Fig. 2 for Γi = 2.5, τm≈ 1.8 × 10−11 s while the typical growth
rate γ≈ 0.45 × 1013 s−1 and hence γτm≈ 80. Similarly for Γi = 5,
τm≈ 2.7 × 10−12 s and γτm≈ 15. Thus in Figure 2 and Figure 3,
OTSI is indeed in the kinetic regime for Γi = 2.5 as well as for Γi = 5.
It should be noted that since γ→ 0 as k→ 0, the growth rate must be
chosen sufficiently away from zero for the kinetic regime to be valid.

Hydrodynamic regime

In this regime where ωτm <1, χe and χi from Eq. (24) will be as
follows

xe = v2
pi/k

2C2
s0, . . . xi = − v2

pi

[v2 − gimik2v
2
thi]

. (46)

On substituting these values in Eq. (38), the biquadratic equation
which we obtain is

v′4 − v′2(v′2
ac + D′2 + L′D′)+ L′D′

1+ gimi
Ti

ZTe
k2l2e

( )
+ D′2v′2

ac = 0,
(47)

where

v′ = v

v pi
,

v′2
ac = gimi

Ti

ZTe
k2l2e +

1

1+ 1

k2l2e

( ) ,

L′ = |ve0|2
4C2

s0

v pi/v0

1+ 1

k2l2e

( ) ,

D′ = D

v pi
= v0

v pi
− v2

pe

v2
pi
+ mi

Zme

3
2
k2l2e

( )1/2

.

Two roots of Eq. (47) are-

For instability Δ
′
must be negative and

|D′| ,
L′ 1+ gimi

Ti

ZTe
k2l2e

( )
v′2
ac

.

For the above two conditions, the value of ω
′2 will be negative

which further gives two imaginary roots and hence one of the
roots of Eq. (48) gives the growth rate of OTSI in the hydrody-
namic regime such that

g

v pi
= 1

2
(v′2

ac + D′2 + L′D′) −
																																																																													
(v′2

ac + D′2 + L′D′)
2 − 4 L′D′(1+ 1+ 4

15
u(Gi)

( )
Ti

ZTe
k2l2e ) + D′2v′2

ac

( )√{ }]1/2

.

⎡
⎣ (45)

v′2 = 1
2

[
(v′2

ac + D′2 + L′D′) −
																																																																		
v′2
ac + D′2 + L′D′( )2−4 L′D′ 1+ gimi

Ti

ZTe
k2l2e

( )
+ D′2v′2

ac

( )√ ]
. (48)

g

v pi
=

[
1
2

{
(v′2

ac + D′2 + L′D′) −
																																																																								
v′2
ac + D′2 + L′D′( )2−4 L′D′(1+ 1+ gimi

Ti

ZTe
k2l2e

( )
+ D′2v′2

ac

( )√ }]1/2

. (49)
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The growth rate in Eq. (49) reduces to the standard growth rate of
OTSI in the limit Γi→ 0. In Figure 4 we have plotted the growth rate
(γ) as a function of k for Γi = 9 and Γi = 14, where the laser intensity
(I) is 1014W/cm2, ne≈ 1022 cm−3, Te≈ 75 eV, Ti = 20− 25 eV, Z =
10–11 (for Al ion) and ω0≈ωpe. The curve Γi≈ 0 shows the growth
rate in weakly coupled plasma.

The plot shows a large increment in the growth rate of OTSI
(by almost 200%) for k = 1 × 106cm−1 and Γi = 14. For Γi = 9 the
enhancement in the growth rate at k = 1 × 106 cm−1 is about
160%. Thus the destabilization effect of strongly coupled ions is
much severe in the hydrodynamic limit than in the kinetic
limit. To give a posterior justification for the hydrodynamic
regime condition γτm <1, we find for Γi = 9, τm≈ 0.3 × 10−13 s
while the typical growth rate γ≈ 0.6 × 1013 s−1 and hence γτm≈
0.1, similarly for Γi = 14, τm≈ 0.9 × 10−14 s and γτm≈ 0.06.
Hence in Figure 4, OTSI is in the hydrodynamic regime for Γi = 9
as well as for Γi = 14.

Summary and discussions

In this paper, we have studied the OTSI in the presence of
strongly coupled ions. The situation involving strongly coupled
ions is likely to arise in a number of cases. For example in the
case of Au blow of plasma near the hohlraum wall in the indirect
drive experiments in ICF scheme, the gold ions may become
strongly coupled due to large electronic charge. In case of the
direct drive approach, the carbon ions of the ablator material in
the coronal plasma may become strongly coupled. Similarly, in
the case of laser-driven ion accelerator, a pre-plasma of C or Al
ions is formed on the target’s front side, where the density of
plasma is near critical density. In this region, C or Al ions may
become strongly coupled. Typically in these situations, the ion
correlation factor Γi can be as high as 2–15. In this regime, the
ion behaves as strongly coupled viscoelastic fluid. The strong cou-
pling effects are included here via GHD equation. It is shown that
in a typical parameter regime of OTSI, these strong correlation
effects modify the compressibility μi(Γi). This can be integrated
once to give the ion pressure Pi as a function of Γi given by the
expression Pi = (0.73− 0.3Gi + 0.31G1/4

i + 0.07G−1/4
i )niTi. As

can be seen from this expression with increasing Γi ion pressure
decreases and for Γi >4 it becomes negative. We have examined
the effects of strong correlation in the two regimes that is, the
kinetic regime (valid for ωτm >1) and the hydrodynamic regime
(valid for ωτm <1). Our results show that these strong correlation
effects lead to significant enhancement of the growth rate of
OTSI. This destabilization is caused by enhancing bunching of
ions due to its negative pressure as shown in Figure 1.

It should be noted that extreme compression also leads to
plasma electrons and ions correlation. Strong correlations gener-
ated due to high compression cannot be described by GHD the-
ory (Avinash, 2015). These effects may also become significant in
laser fusion targets and ion acceleration which will be the subject
of future publication.
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