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CORRELATED RANDOM WALK
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ABSTRACT. Random walk on a d-dimensional lattice is investigated such that, at any stage,
the probabilities of the step being in the various possible directions depend upon the direction
of the previous step. The motion may be characterized by a generating function which is here
derived. The generating function is then used to obtain some general properties of the walk.
Certain special cases are considered in greater detail. The existence of recurrent points is
investigated in particular, and the probability of returning to the origin after 2n steps. This
latter function is evaluated asymptotically for the cases d = 1 and d = an even integer.

1. Introduction. We shall consider random walk on a d-dimensional rectangular
lattice with a correlation between the directions of successive steps. Let m denote
the general lattice point (m1, m2,..., md) and Ef the unit vector parallel to the positive
direction of the ith axis. Then a step in the wane is to be strictly of the type m -> m ± Et.
The random walk process is denned as follows.

The walker starts from the origin and, for the first step, all of the 2d possible directions
are equally likely. At any later stage the probability distribution is to be as follows:

p = the probability that the walker will continue in the same direction and sense as
in the previous step,

q = the probability that he will move in exactly the opposite sense, and
r = the probability that he will take any one of the directions orthogonal to his

previous step.
Thenp + q + 2(d-l)r = 1.
Processes of this sort do not seem to have been studied except for the case d = 1

(cf. (3) and (4)). Goldstein (3) has considered the distribution in the one-dimensional
case and has obtained formulae for the moments as well as an asymptotic estimate of
the distribution function in terms of hypergeometric functions. He has, moreover,
computed some interesting numerical tables in which the accuracy of this asymptotic
formula is checked for a number of values of p — q.

We shall denote by Pn(m) the probability of arriving at the lattice point m on the
nth. step and shall begin by deriving a generating function for this probability.
Subsequently our chief interest will be in Pn(O), the probability of returning to the
origin (not necessarily for the first time) at the nth step. We shall study it, for simplicity,
only for the special case p = r. This greatly simplifies the form of the generating
function for Pn(m), though it is fairly clear intuitively that the limitation will not
affect the general character of the motion very fundamentally. Various aspects of the
motion in other special cases—some of which appear to have some biological interest—
will be discussed in a subsequent paper. We shall write p — q = S, and, in the special
case referred to, shall denote Pn{O) by Rn d(8) to make clear exactly on what it depends.
The quantity Rn d(0) was studied by Polya(5), who showed that, for large n,

Rn,d{0) = 0(n^). (1-1)
41-2
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I t followed that (cf. (1), p. 244) for d = 1,2, every lattice point is a recurrent point,
i.e. a point through which the walker will, with probabiKty 1, pass an infinite number
of times, while for rf>2no recurrent points exist at all. We shall show that, when
d = 1 or an even integer, Polya's result remains valid (except for the trivial case
S = — 1, i.e. p = r = 0, q = 1). Indeed, we shall prove that, for these values of d,

(1-2)

We shall derive the generating function for Pn(ra) in § 2, and this will be used in §4 to
derive information about the function iJTC d(8). In § 3 we digress a little from this main
line of development to consider in more detail the motion in one dimension. There
seems to be little doubt that (1*2) holds for every d, but the method of proof used for
d > 1 (cf. §§4 and 5) depends on a ^rf-fold integration and does not apply to odd d.

2. The generating function. Let Q±i(m, n) denote the probabilities that the nth step
will bring the walker from m + E^ to m, respectively. Then clearly

Pn(tn)= £ [G,(m,») + QLi(m>n)]. (2-1)
i = l

For all i (1 < i ̂  d) we define

Q±i(m,0) = l i f m = O (i.e. if mx = m2 = ... = md = 0), |
= 0 otherwise. J

Also, from the conditions of the walk,

Q±i(m, 1) = ^ if m = ± E, respectively,)

= 0 otherwise J

We can now write down the following recurrence relations (i=l,2,...,d)

Gt(m,») = pQt{m-Ei,n-l) + qQ_4{m-Ei,n-l)

+ rS [Q , (m-E i > n - l ) + GLi(m-E<>»-l)]> (2-4)

and an analogous relation for (^(m, n). We write

Bi(x,2) = S £ Qi{m,n)zf>...x%dzn, (2-5)
mi,m,, . . .= — oon=o

and a similar definition for -B_{(x, z) where x represents the set (x1; x2,..., zd).
Multiply equation (2-4) by xfixfx... xd

ldzn and sum over the entire range

— co<mi<ao,n = 0,1,...,

bearing in mind conditions (2-2) and (2-3). This leads to the equations

B*~~k = ZXi{pBi + qB~* + r - 5 { B * + B-^' (2>6)

M xi
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where, for simplicity of notation, we have omitted the arguments of the functions. We
shall write <j

A(x,z)= 2[5<(x,2) + -B_i(x,z)], (2-8)

and it is clear from (2-1) that the coefficients in the expansion of A(x, z) will give us
the distribution P{m,n). To solve (2-6) and (2-7) we begin by rewriting them:

~ qxy zB_x - rx1 zB2 - rxxzB_2 - ... = ^ ,

TZ
( 2 9 )

etc.

Let Ad denote the determinant of order 2d whose elements are the coefficients of
the B±i's in (2-9), and let D±i denote the determinant obtained from Ad by replacing
the column of coefficients of B±i, respectively, by l's. Then, by Cramer's rule,

and so S
di=l

(2-10)

(2-11)

It remains to compute the various determinants involved. For this purpose it is
convenient to make the following definitions:

gj-ite+sr1), (2-12)
8=p-q, (2-13)

l+x\-28xiz -x\-

(2-14)

(2-15)

l+x?-28x,-z 0

# , =

= 2(1-*&«), (2-16)

(2-17)

(2-18)

(2-19)
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To compute Ad we first multiply each (2i)th row by aj| and subtract from the previous
row. We then subtract each column of even order from the previous column. The
resulting determinant is

l+x\-28xlz -x\

0

0

1_£

rz

0

0

-28zx2

+ -

0
rz

— x\-\-8x2z .(2-20)

' We expand this determinant by the Laplace rule in terms of the minors of order 2
-obtained by selecting all pairs of columns in each row-pair 2i — 1, 2i. When allowance
is made for the zero terms and the signs of the remaining terms are allocated appro-
priately it is seen that Ad reduces to the d-rowed determinant

F2 G2 ... G2

Fd ,

x flt, . . . G,

G,

by (2-17),
Ga Gd

G2

G3

0
0

0

- A ,

A3

6
o

o
0
0 (2-21)

by subtracting successive columns. To evaluate the determinant in (2-21) we add
successively (AJAj) x the first row to the second, (A3/A2) x the resulting second row
to the third, etc. This leads to

0- A i 0
A2(l+K2) 0 -A a

(2-22)
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We now proceed to compute Ct. Consider, to fix the ideas, the case i = 1:

\—pxxz 1 — rxxz

643

xx xx

-rx2z 1 1— px2z
rz qz
Xn Xn

while

rz

1

1

1

-qxxz ...

X1

— rxoz

1
rd

Interchange the first two columns of Dx and then combine with D_x to give

1 — Sxxz 1 — rxxz ...

0 j \—px2z ... (2-23)

0 1

We now perform on Cx the same operations as were used on Ad and obtain, after
a little reduction Hx Gx ... Gx

^ o JFo • • • wo

G3 ...

H* ... F,

Now, by (2-15) and (2-16), Ht = (8/r)Gi +2(1-S2),

and so Cx = (S/r) Xx + 2(1 - S2) Yx (say), where

Q1 Gx ... Gx

fl".

Gd

d

i=2

and Gx ...
G2

(2-24)

(2-25)

(2-26)

(2-27)

(2-28)
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In Fx we subtract the (d — 1 )th column from the dth, the (d — 2)th from the (d — 1 )th,...,
and finally the 2nd column from the 3rd. We operate on the resulting determinant as
before by adding (Aa/AJ x the first row to the second, (A3/A2) x the resulting second
row to the third, etc. This leads finally to

y^a + ̂ -A^n^. (2-29)
i=2

From (2-26), (2-27) and (2-29) we get

11 A,- = (SGJKrPL,) + 2( 1 - Sh*)!^ + 2(1 - *%») [K^ - Z ^ / A J , (2-30)
i=i

I t is clear from the symmetry that a similar formula must hold for the other Gi and so

S Ci/fl A, = (8/r)Kd +2(1-8*z*)La. (2-31)

I t follows that

4(x,a) = i

In the special case p = r, Gt = 1 - S2zz (i = 1,2,..., d), (2-33)
and so „ .

) = ^ ^ i . (2-34)
l - 2 p z S £(

i=l

3. One-dimensional motion, (a) The motion is given by

OT=-oon=o
1 / IX71

When 8 = 0 (uncorrelated walk), Pn{m) is simply the coefficient of xm in — I x + -1 ,
and A (x, z) reduces to

I t is easily verified, by considering [dAldS]3=0, that

I t follows that, for small 1^1,

has the same sign as (m2 — n)Slt i.e. the introduction of a small positive correlation
increases the probability that the walker will be at distances from the origin between
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v} and n and decreases the probability that he will be nearer than w* to the origin. The
effect of a small negative correlation is in the exactly opposite direction.

(6) Moments of distribution. Let

and /4fl>= S Pn(m){m(m-l). . .(m-i+l)}, (3-4)
m=—n

then /471' = /ip? = 0, and /4re) = 0 for all odd i.
It follows from (2-1) that

S ^s* P tvn \ ivntvyt 1 \ tvn i -L 1 ^\ o»wi—î fl f^^'>"^\n f^»^i\
7 t JT^AIIVJ Wib{/ft/ — X j . . . \llv — t ~\~ i. ft Ju & — ^—'. L^l \*^j "li* \ )

m=—nn=0 ^

P u t a ; = l . Then £ ^ z " = J/^z) (say) = |4-j • (3-6)

It is easily seen, after some algebraic manipulation, that

i\

where a, b are the roots of the quadratic equation

" J = 0. (3-8)

In particular M2(z) = - —

- 2 ^ - 1 1 1 + J 1 2J 1
2 ) 2 " t " ( l 5 ) 2 l & ' V '

Since /i^' = /i$ = 0, it follows that the scatter cr2 is given by

Again it follows from (3-7) that, for large n and even i,

Hence by a well-known theorem originally due to Markoff (cf. (2)) the distribution for
large n is asymptotically Gaussian with zero mean and standard deviation (cf. (3))

One immediate apphcation is the estimate, for large n, of the value of m at which
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It turns out that l+

This agrees with the result obtained above for small 8t.
(c) Probability of return. We write

/!» S ^l() ()
n=0

= the part of A (x, z) independent of x.

We define ^o,i(5) = l- (3>15)

The function plfS(
z) is> &a w e have said, simply the absolute term in the Laurent

expansion of A(x, z) as a series of positive and negative powers of x. To evaluate this

we expand A (x, z) in positive powers of Jx + - 1 , remembering that the absolute term

in I x + -1 is zero if i is odd, while if i is even it is

»!/(**!)» = ( - l ) * * 2 * ( ^ . (3-16)

(After a little manipulation this finally gives us

iz*)-i}. (3-17)

Now Rn> x{8) is given by -—. pt s(z) z~n~x dz, where the complex integral is to be taken

round any simple contour encircHng the origin once positively and excluding the
branch points at z = ± 1, ± 8-1. For n^ 1, we have

'while -Rfjl(<$) is clearly zero for odd i. The integral in (3-18) is a well-known integral
representation of a hypergeometric function of 82 (cf. (7), p. 292). In fact, it may be
.verified by direct differentiation that it satisfies the differential equation for

F(-\,-n;$-n;8*).

Being also a polynomial in 52 it must therefore be proportional to this hypergeometric
function.

The constant of proportionality is determined from the case 8 = 0, and we get finally

R2n,1(S) = R2nJ0)(l + 8)-iF(-l-n;$-n;8*). (3-19)

It, can be deduced from the general properties of the hypergeometric function (cf. (6),
p. 298), or may be verified even more easily in this case by expansion and inspection
of the series, that, as n tends to infinity, the hypergeometric function in (3-19) tends
to (1 — 82ft. It follows that, for large n,

R2nil(S)~(l-8)i(l+8)-iR2nJ0). (3-20)

4. Two-dimensional lattice. We shall consider the case p = r and so can describe
the walk in terms of the single parameter 8 where >

q = i(l-38), (4-1)
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and (2-34) may be written

We define p2 ,(2) = Z Rn 2(S)zn, (4-3)
n = 0

with R0>i(S) = 1. (4-4)

To derive p2 3(z) from ̂4 (x, 2) we have to expand (4-2) and isolate the terms independent
•of xv x2. For this, as well as for later applications, we shall need the following lemma.

LEMMA, (a) Rn d(0) is the term independent ofxvx2,...,zdin the multinomial expansion
of (2d)~n {x1 + Xi1 + x2 + X21...+xd + xj1)71.

(b) Rn>d(0) = 0 for all odd n.

(c) i?2re>2(0) = [i?2mjl(0)f = ^ L ^ 2 . (4-5)

(d) For large n, R2n,d(0)~2 (^j * J i _ A+O(n-B)j . (4-6)

(e)Ford^,

•gives a good approximation for all n^ 1.
Proof, (a) and (b) are obvious, (c) and the leading term in (4-6) are due to Polya(5).

/The approximation (4-7) clearly agrees with (4-6) for large n and its validity for small n
can be verified directly by computation. It is, in fact, not needed for what follows but
has been included as having an interest of its own. It remains to prove the expansion
(4-6). Now, by (a),

h+f,...+fd=n

(2n)! ^ *

(:: • = (2n)\/dn x t h e coefficient of z2n i n t h e e x p a n s i o n of [/0(z)]d

where C is any appropriate contour encircling the origin once in the positive direction.
The integrand in (4-8) has maxima at 2 = 0 and z = 00 on the positive real axis and

,a unique minimum along that axis. To obtain an asymptotic evaluation of the integral
for large n we write it .

exp{0(2)dz},
J c

where $(z) = dlogI0(z)-(2n+l)logz, (4-9)

4>\z) = dl&yUz) - (2n+l)lz, (4-10)

and so the minimum is given by the root of the equation

(4-11)
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For large z the left-hand side of (4-ll)~z, and so we expect, for large n, that the root
will lie in the neighbourhood of (2n + l)/d. Since the root x0 (say) is, therefore, large,
we estimate it by the use of an asymptotic expansion of/1(z)//0(z). This can be obtained
directly from the known asymptotic series for 70, Ix (cf. (7), p. 373) or, more simply,
by noting that ifr = i j / / 0 satisfies the Riccati equation

^ = 1 - ^ / 2 - ^ , (4-12)

and l i m ^ - = l . (4-13)
0—»-00

If we substitute 1 + — + - | + ... for iff in (4-12) the a/s can be computed successively.

The asymptotic evaluation of (4-8) is now completely straightforward except that we
have to bear in mind that the saddle-point is duplicated at — x0 because, by (4-10),
<j>'{z) is an odd function of z. The estimate (4-6) follows by a standard argument.

We next write u = \{£,x + £2) and

. . . 1 — uSz .. , _.A™ (415)

=
 1 ieie-2Svl(l + S) __ er*>-28vl(l + t)\

2ismd[ l-ei0Sh l-e-igSh / '

where cos8 = v = \8~i(l + S)u.

If we write A{x, z) = 2 An(x) zn we have from (4-15) that

An{K) = 8*»{Un-28vl(l + S) Un_x}, (4-17)

where Un = Un(v) = sin (n + 1) 0/sin 6, the TchebychefF polynomial of the second kind.
We can easily deduce from the elementary properties of the polynomials Un the

simpler form ^
An(x)=^rd(Un-8Un_2), (4-18)

and so **»,«(*) = I^(F2 B-*Fg n_8) , (4-19)

where V2i represents the result of replacing the powers v2' in U2i by the respective

quantities Mi +/Ji\ »
( ^ ) ^ ) (4-20)

Since U2n, U2n_2 are both even functions oft) there is no need to consider odd powers.
To estimate (4-19) for large n we note that, by (4-6)

nn\ 4»

,2ML_ 2 J L
L i / c% • 1 \ / O « * i O \ / O M I O \ * * " I >(2n+l)(2n + 2) (2n+ l)(2n + 2)(2n + 3)
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where a,... are constants and the series converges asymptotically. If now

U2n(v) = a0v
2n + a1v

2n~2+... (4-22)

t h e n ^ B ~ ^ [ A w ) + i 4 B ' + aZ4B) + . . . ] , (4-23)

where Zt">=- ^ + ^ + . . .
1 (2w+l ) (2 ra + 2 ) ( 2 + i) ( 2 r a 1 ) ( 2 » + i 2 )

1 rw ren re,
= -.\ ... U2n(d1)dd1dd2...ddn, (4-24)w Je»=oJe»_I=o Jet=o

w i t h w = £(<y* + <H). (4-25)

The estimation of V2n is thus reduced to that of the successive LffK The repeated
integration in (4-24) can be effected by the use of the trigonometric representation of
the polynomials involved and it is easily shown by induction that for large n (since

where T$ = cos jd, the Tchebycheff polynomial of the first kind. But it follows from
(4-25) and the definition of Tn(w) that

Tn{w) = |(**» + *-*»), (4-27)

and so, for large n, Tn{w)~\8^n. (4-28)

From (4-26) and (4-28) we see that

tip- «-»{2n(l + *)}-* (1 - *)*~1. (4-29)

Hence, by (4-23), V2n~ {nn(l + S)S"}-1. (4-30)

It follows from (4-19), (4-30) and (4-6) that

(^j (4-31)

One interesting consequence of (3-20), (4-5) and (4-31) is that, for large n,

an (asymptotic) extension of the first equation of (4-5).

5. Space of even dimension d~& 4. The relation (4-15) remains valid except that we

u = -; S ii (5-1)
now define i

and v = %($i + 8-b)u as before. Equation (4-19) still holds but, in this case, the V's
are obtained from the corresponding V's by replacing the terms v® by

j > ( 0 ) (5-2)
respectively.
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It follows from (4-6) that

- 2 ( -

and so, in this case,

and (4-23)]

' ", by (4-29),

~ R2n,d(°) *""( * ~ S)id~X ( 1 + S)~i<Z- (5*4)

Hence R2n_d{8) = Jl^(V2n-8V2n_2)~R2nJ0) (^j \ (5-5)

The maximum possible positive value for 8 is given by 8 = p = r = l/(2d— 1), q = 0.
In that case we have, for even d, '•

for large d. (5-6)

This gives an estimate of the extent to which the value of R2n d may be influenced by
a positive correlation of this sort. There is, of course, no bound in the opposite direction,
and the effect of a negative value of 8 is seen clearly from (5- 5), including the degeneracy
which arises when 8 takes the limiting value — 1.

6. We raise here the possibility of extending to the general case (d > 1, unrestricted
p,q, r) the results obtained in §3 (a). Consider the generating function, as defined
in (2-32),

A(x,z) = 2 ^, Pn(m)xf1x2
n'...xfdzn. (6-1)

Now let n = e1m1 + e2m2 + ... + edmd, where each et is fixed and is equal to + 1. Then
it is clear from the definitions that the value of [i varies in accordance with a one-
dimensional walk. Analytically we can see it by writing x = x{1 = a;|> = ... =xf. Then
£x = £2 = ... = £d = g (say). The expression (2-32) for A(x,z) reduces to that in (3-1),
while the right-hand side of (6-1) becomes

t= — oon = 0

where Tn{/i) is the probability that, at the nth step, m1e1 + m2e2+ ... +mded = ji. Thus
the generating function for Tn(fi) is precisely the one-dimensional function

It is interesting to observe that this function depends only on p — q and not at all on r.
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If we denote by Sn(e1,e2,...,ed;/i;p,q,r) the probability that the nth step will end
on the hyperplane e1m1 + e2m2 +... +edmd = /id we deduce that, for small non-zero
values of | p — q \,

Sn(
ei>e2, •••,ed;/i; p,q,r)-Sn(e1,e2, ...,ed; /i; p',p',r') (6-3)

has the same sign as (fi2 — n) {p — q) without any further restriction on p, q, r, p', r'.
This argument, of course, proves nothing about the probability of ending a walk at any
specific point.
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