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In this paper we investigate the issue of whether a floating currency is the right exchange
rate regime for Canada or whether Canada should consider a currency union with the
United States. In the context of the framework recently proposed by James L. Swofford,
we use a semi-nonparametric flexible functional form—the asymptotically ideal model
(AIM), introduced by William A. Barnett and A. Jonas—and pay explicit attention to the
theoretical regularity conditions of neoclassical microeconomic theory, following the
suggestions of William A. Barnett and William A. Barnett and Meenakshi Pasupathy. Our
results indicate that U.S. dollar deposits are complements to domestic (Canadian)
monetary assets, suggesting that Canada should continue the current exchange rate
regime, allowing the exchange rate to float freely with no intervention in the foreign
exchange market by the Bank of Canada.
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1. INTRODUCTION

The exchange rate for the Canadian dollar has attracted a lot of attention in
recent years. This attention stems from the long swings in the Canadian dollar
per U.S. dollar nominal exchange rate, the recent creation of a single European
currency (the euro) to replace the national currencies of member countries of
the European monetary union [see, for example, Courchene and Harris (2000)
and Grubel (2000)], the trend toward currency unions and dollarization in Latin
America and Eastern Europe, and Japan’s recent interest in exploring alternative
monetary arrangements. The debate in Canada has revolved around exchange rate
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alternatives and particularly around the issue of whether a floating currency is the
right exchange rate regime for Canada or whether the exchange rate between the
Canadian and U.S. currencies should be fixed, as it was from 1962 to 1970—
see, for example, Schembri (2001), Murray and Powell (2002), and Murray et al.
(2003).

A floating exchange rate gives Canada the flexibility to have monetary con-
ditions different from those in the United States. A floating currency acts as a
shock absorber between the two economies, allowing them to respond differently
to external economic shocks (such as fluctuations in world commodity prices)
and domestic policy requirements. The costs of a floating currency come in two
forms. First and most obviously, there are certain transactions costs that are large
when the number of cross-border and financial transactions is large, as is Canada’s
case with the United States. A further cost is the fact that exchange rates fluctuate
wildly in comparison with goods prices (in fact, almost as wildly as stock prices),
although the effects of exchange rate volatility on macroeconomic quantities are
difficult to demonstrate.

In investigating the policy implications of currency substitution, İmrohoroğlu
(1994) used a dynamic equilibrium (money-in-the-utility-function) model of the
Canadian economy and Hansen’s (1982) generalized method of moments (GMM)
estimation procedure to estimate the degree of currency substitution between the
Canadian dollar and the U.S. dollar. He reported an estimate of the elasticity of
currency substitution of 0.3037 and argued that U.S. dollar deposits in Canada
are weak substitutes for the domestic Canadian dollar. More recently, Serletis and
Pinno (2007), using İmrohoroğlu’s (1994) model, recent monetary data adjusted
for take-overs and acquisitions [as discussed in Kottaras (2003)], and an econo-
metric methodology slightly different from the one used by İmrohoroğlu (1994),
argued that the elasticity of currency substitution is lower than that reported by
İmrohoroğlu (1994). Clearly, this has implications for the theory of optimum
currency areas and can be used to evaluate the desirability of a monetary union
between Canada and the United States.

The İmrohoroğlu (1994) and Serletis and Pinno (2007) studies employ the
general equilibrium approach and use a constant-elasticity-of-substitution (CES)
production function that restricts the elasticity of substitution between domestic
currency and foreign currency to be constant over time. Although this assumption
makes the general equilibrium model much easier to compute, it is very restric-
tive. As is well known, the elasticity of substitution between domestic currency
and foreign currency is sensitive to many factors, such as exchange rate regime
changes, financial innovations, and changes in monetary policies, and thus is very
volatile over time. For example, in İmrohoroğlu’s (1994) study, the sample period
is from 1974 to 1990, a very volatile period covering the 1981–1982 recession,
the rapid financial innovation, and the monetary regime change in 1982. Thus, it
is unlikely that the elasticity of substitution between Canadian currency and U.S.
currency is constant over this sample period. In other words, with a restrictive
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CES production function, the estimates of the elasticity of currency substitution
will be inaccurate and may even be misleading.

Moreover, the İmrohoroğlu (1994) study suffers from the problem of assuming
that one of the relevant choice variables for the representative agent is a simple sum
monetary aggregate. In particular, the domestic (Canadian) money measure used
in İmrohoroğlu (1994) is simple sum M1, which is actually a simple sum aggregate
of currency outside banks, personal checking accounts, and current accounts. The
use of a simple-sum monetary aggregate is implicitly based on the assumption
that the components of the monetary aggregate are perfect substitutes to each
other. However, this assumption has been theoretically and empirically shown to
be unrealistic by many studies in the monetary aggregation literature—see, for
example, Barnett (1980) and Serletis and Rangel-Ruiz (2005). The inappropriate
use of simple-sum monetary aggregates may result in inaccurate measures of
the actual quantities of the monetary products, which in turn lead to inaccurate
estimates of the elasticities of currency substitution.

Motivated by these considerations, in this paper we extend the literature by
investigating the issue of whether a floating currency is the right exchange rate
regime for Canada or whether we should consider a currency union with the
United States, using the framework recently proposed by Swofford (2000, 2005).
He focuses on the requirements that economic theory places on optimizing be-
havior for any area to have a common currency and sets forth the microeconomic
foundations for an optimum currency area. In particular, Swofford (2000, 2005)
defines an optimum currency area as a region in which economic agents treat
the same asset or assets as money across countries—that is, there is a common
currency that is a strong substitute for domestic currency. This new definition has
microeconomic content, as it is explicitly based on neoclassical microeconomic
theory and existing aggregation theory. It requires that the common currency be an
asset in the agent’s optimizing function and be a strong substitute to the domestic
currency.

In following Swofford (2000, 2005), we postulate a parametric reciprocal
indirect utility function for the representative economic agent and fit the de-
rived demand functions to observed data. The estimated demand functions
are then used to estimate price and substitution elasticities, which are used
to evaluate whether a currency union should be formed between Canada and
the United States—see Barnett and Serletis (2008) for more details regarding
the demand systems approach to the demand for liquid assets. Although our
methodology, like that of İmrohoroğlu (1994) and Serletis and Pinno (2007),
is far removed from the usual criteria used to establish an optimum currency
area [see, for example, Mundell (1961), McKinnon (1963), and Canzoneri and
Rogers (1990)], we follow Swofford (2000, 2005) and Serletis and Rangel-
Ruiz (2005) and assume that a low degree of currency substitution is consis-
tent with monetary independence and a high one with an optimum currency
area.
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As Varian (1982, p. 945) puts it, the parametric approach to applied demand
analysis “will be satisfactory only when the postulated parametric forms are good
approximations to the true demand functions.” We tackle this problem by using
a semi-nonparametric flexible functional form—the asymptotically ideal model
(AIM), introduced by Barnett and Jonas (1983) and employed and explained in
Barnett and Yue (1988) and Serletis and Shahmoradi (2005, 2008) among others.
Another semi-nonparametric flexible functional form is the Fourier, introduced by
Gallant (1982). The AIM is based on a multivariate Müntz–Szatz series expansion,
whereas the Fourier flexible functional form is based on a Fourier series expansion.
Both functional forms are globally flexible in the sense that they are capable of
approximating the underlying aggregator function at every point in the function’s
domain by increasing the order of the expansion, and thus have more flexibility than
most locally flexible functional forms, which theoretically can attain flexibility
only at a single point or over an infinitesimally small region—see, for example,
Serletis and Shahmoradi (2007).

We approximate the representative agent’s indirect utility function by the AIM
reciprocal indirect utility function and estimate elasticities of substitution between
domestic and foreign currency deposits, consistent with microeconomic utility
maximization principles. We pay explicit attention to the theoretical regularity
conditions (of positivity, monotonicity, and curvature) of the AIM reciprocal in-
direct utility function. We argue that unless economic regularity is attained by
luck, flexible functional forms should always be estimated subject to regularity, as
suggested by Barnett (2002) and Barnett and Pasupathy (2003). In fact, we follow
Gallant and Golub (1984), Serletis and Shahmoradi (2005, 2008), and Feng and
Serletis (2008, 2009) and treat the curvature property as a maintained hypothesis
and build it into the model being estimated.

The rest of the paper is organized as follows. In the next section we briefly dis-
cuss İmrohoroğlu’s (1994) dynamic equilibrium (money-in-the-utility-function)
model of the Canadian economy. We discuss İmrohoroğlu’s (1994) main re-
sult as well as recent empirical evidence by Serletis and Pinno (2007), using
İmrohoroğlu’s (1994) model, recent monetary data, and an econometric metho-
dology slightly different from the one used by İmrohoroğlu (1994). In Section
3, we present the semi-nonparametric approach to applied demand analysis, and
in Section 4, we discuss computational considerations. In Section 5, we estimate
the AIM model, assess the results in terms of their consistency with optimizing
behavior, and explore the economic significance of the results. The last section
summarizes and concludes the paper.

2. THE GMM APPROACH

İmrohoroğlu (1994) considers an economy made up of a large number of infinitely
lived identical agents. At the beginning of each period, the representative domestic
agent decides how much to consume, ct , how much to hold in the form of domestic
balances, mt , and foreign balances, m∗

t , and how much to save in the form of an
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internationally traded bond, b∗
t . He assumes that money services are produced

using a combination of domestic and foreign real balances in a constant elasticity
of substitution (CES) aggregator function,

xt = f (ht , h
∗
t ) =

[
α

(
mt

pt

)−ρ

+ (1 − α)

(
m∗

t

p∗
t

)−ρ
]−1/ρ

, (1)

where 0 < α < 1, −1 < ρ < ∞, ρ �= 0, and ht (= mt/pt ) and h∗
t (= m∗

t /p
∗
t )

denote domestic and foreign real money balances, respectively. In the liquidity
aggregator function (1), the elasticity of substitution is given by 1/(1 + ρ); α and
(1 − α) denote the shares of domestic and foreign real balances (respectively) in
the production of money services. Aggregator functions such as (1) were pioneered
by Chetty (1969) and have been used by Husted and Rush (1984) and Poterba and
Rotemberg (1987), among others.

İmrohoroğlu (1994) assumes that the representative consumer’s preferences are
given by

u
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1 − ψ
, (2)

where xt is the liquidity aggregate given by equation (1). This utility function
exhibits constant relative risk aversion in an aggregate of consumption and
liquidity services. With these preferences and the liquidity aggregator func-
tion (1), the Euler equations for an interior solution are given [see the sec-
ond case presented in İmrohoroğlu (1994) for details regarding the derivations]
by
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where β ∈ (0, 1) is the subjective discount factor, r∗
t denotes the realized real

interest rate on b∗
t , et is the nominal exchange rate (note that purchasing power

parity is not imposed), φ = (1 − ψ)σ , b = −(1 − σ)(1 − ψ)/ρ, and εj,t+1 for
j = 1, 2, 3 are the Euler equation errors.

İmrohoroğlu (1994), using Hansen’s (1982) GMM estimation procedure and
quarterly data (over the period from January, 1974 to June, 1990) estimates the
Euler equations (3)–(5) and reports an estimate of the elasticity of currency substi-
tution, 1/(1+ρ), of 0.3037. Based on this low estimate of the elasticity of currency
substitution, İmrohoroğlu (1994) argues that U.S. dollar deposits in Canada are
weak substitutes for the domestic Canadian dollar.

More recently, Serletis and Pinno (2007), using İmrohoroğlu’s (1994) model
and recent quarterly data (over the period from 1981:1 to 2003:1), report a GMM
estimate of the elasticity of currency substitution of 0.249, a bit lower than the
estimate of 0.3037 reported by İmrohoroğlu (1994). Based on this estimate, Serletis
and Pinno (2007) conclude that “Canada should continue the current exchange
rate regime (allowing the exchange rate to float freely with no intervention in the
foreign exchange market by the Bank of Canada) as well as the current monetary
policy regime (of inflation targeting).”

As noted in the Introduction, the above general equilibrium approach suffers
from two serious problems that may lead to inaccurate or even misleading estimates
of currency substitution. First, as can be seen from equation (1), the specification
of the production function as a CES aggregator function restricts the elasticity
of currency substitution to be constant over time and equal to 1/(1 + ρ). For a
variable that is volatile over time, such as the elasticity of currency substitution,
such a restrictive production function specification is certainly not satisfactory.
Second, in both equations (1) and (2), the use of one domestic monetary aggregate
(mt ), rather than more disaggregated measures, also implies that the substitution
between the different components of mt has been ignored. Again, this will lead
to mismeasured or even misleading estimates of elasticity of currency substi-
tution when substitution between the different components of mt is less than
perfect.
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In what follows, we investigate the robustness of these results to an alternative
modeling procedure, based on the use of recent state-of-the-art advances in mi-
croeconometrics. In particular, we follow Swofford (2000, 2005) and Serletis and
Rangel-Ruiz (2005) in postulating a parametric reciprocal indirect utility function
for the representative economic agent and fitting the derived demand system to
observed data. We treat the curvature property as a maintained hypothesis and
build it into the model being estimated, following Gallant and Golub (1984),
Serletis and Shahmoradi (2005, 2008), and Feng and Serletis (2008, 2009). We
obtain parameter estimates that are consistent with theoretical regularity at every
data point in the sample and present elasticities of substitution between domestic
and foreign currency deposits, which are then used to evaluate whether a currency
union should be formed between Canada and the United States.

3. THE SEMI-NONPARAMETRIC APPROACH

Assuming that financial decisions are weakly separable from consumption deci-
sions, we assume that the representative consumer faces the problem

max
x

f (x) subject to p′x = m, (6)

where f (x) is the direct utility function, which is a continuous, twice differentiable,
positive, nondecreasing, and quasiconcave function—see Diewert (1974). x =
(x1, . . . , x10) is the vector of monetary asset quantities, included in the Bank of
Canada’s M3 monetary aggregate and described in Table 1. p = (p1, . . . , p10) is
the corresponding vector of monetary asset user costs, and m is the expenditure on
the services of monetary assets. Essentially, the utility maximization problem (6)
is just the second stage of the Barnett et al. (1992) two-stage utility maximization
problem, where f (x) serves as a subutility function.

We use quarterly data over the period from 1982:1 to 2006:4. Under the assump-
tion of a representative consumer, all quantities were deflated by the consumer
price index (CANSIM II series V735319) and divided by Canadian population 15
years old and older (CANSIM II series V158980) to give per capita real monetary
assets, that is, x = (x1, . . . , x10). The user costs of the monetary assets have been
calculated, for j = 1, . . . , 10, using

pj = p∗ R − rj

1 + R
, (7)

where rj is the yield on the j th asset, R is the yield on the benchmark asset, and p∗

is the true cost of living index—see Barnett (1978) for more details. In equation
(7), pj denotes the discounted interest foregone by holding a dollar’s worth of the
j th asset.

With regards to the benchmark rate, R, we follow Serletis and Rangel-Ruiz
(2005) and construct a benchmark interest rate series by selecting (in each period)
the highest available interest rate from the interest rates rj , j = 1, . . . , 10, as well
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TABLE 1. Monetary assets used in the monetary aggregates

Monetary aggregate and components CANSIM II series

M1
1. Currency outside banks V37173
2. Personal checking accounts V36844
3. Current accounts V36845

M1+ = M1 and the following assets:
4. Personal chequable savings deposits V36815
5. Nonpersonal chequable notice deposits V36827

M1++ = M1 and the following assets:
6. Personal nonchequable savings deposits V36818
7. Nonpersonal nonchequable notice deposits V36828

M2 = M1++ and the following assets:
8. Personal fixed-term savings deposits V36823

M3 = M2 and the following assets:
9. Nonpersonal term deposits V36830

10. Foreign currency deposits V36876

Source: Serletis and Rangel-Ruiz (2005).

as the rate on Canadian bonds with a term to maturity of over 10 years (CANSIM II
series V122487), the rate on 5-year guaranteed investment certificates (CANSIM
II series V122551), the rate on long-term corporate bonds (CANSIM II series
V122518), and the rate on medium-term corporate bonds (CANSIM II series
V122519).

In the calculation of rj , j = 1, . . . , 10, in (7), we also follow Serletis and
Rangel-Ruiz (2005). In particular, for demand deposits (that is, personal checking
accounts and current accounts) we calculate the implicit rate of return, as in Klein
(1974) and Startz (1979), using the formula

rD = (1 − κ)rA,

where rA is the interest rate on an alternative asset and κ is an estimate of the
maximum required reserve ratio. Here rA is taken to be the interest rate on 3- to
5-year government of Canada bonds and κ is constructed from both the primary
and secondary reserve ratios against demand deposits over the sample period.

The interest rate on personal chequable savings deposits is taken to be the rate
on personal chequable savings deposits from 1974 to September 1982 and the
interest rate on daily interest chequing accounts in excess of $5,000 (DICA 5K+)
from October 1982 to 1999. For the interest rate on personal nonchequable savings
deposits, we use the rate on personal nonchequable savings deposits from 1974 to
December 1986, the rate on DISA 25 from January 1987 to January 1988, and the
average of DISA 25 and DISA 75 over the period from February 1988 to 1999.
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The rate on 90-day personal fixed-term deposits is used as a proxy for the interest
rate on both nonpersonal chequable notice deposits and nonpersonal nonchequable
notice deposits. Finally, the 5-year term deposit rate is used as the interest rate
on personal fixed-term savings deposits, the prime rate as the interest rate on
nonpersonal term deposits, and the 3-month Eurodollar deposit rate in London,
which is closely linked to the wholesale deposit rate in Canada, as a proxy for the
interest rate on foreign currency deposits. All these data series for the construction
of rj , j = 1, . . . , 10, are obtained from Statistics Canada CANSIM II—for more
details, see Serletis and Rangel-Ruiz (2005).

3.1. The Divisia Monetary Aggregator

Because flexible functional forms are parameter-intensive, we need to rationalize
the estimation to a small set of monetary asset demand equations by imposing a
separable structure on preferences. Using the same Canadian monetary assets as
in this study (but over a shorter period), Serletis and Rangel-Ruiz (2005) searched
for all possible separable groupings of assets and used the Divisia monetary
aggregator to construct monetary subaggregates consistent with a representative
economic agent maximizing a separable utility function. They found that the
imposition of the following separable structure on preferences is most reasonable
when the substitution between domestic monetary aggregates and foreign currency
deposits is allowed for

f (x) = f [f1 (x3, x5, x7) , f2 (x1, x2, x4, x6, x8) , x10] , (8)

where the subaggregator functions f1(x3, x5, x7) and f2(x1, x2, x4, x6, x8) provide
subaggregate measures of monetary services and will be thought of as Divisia
quantity indices. Assuming the same separable structure of preferences as in
Serletis and Rangel-Ruiz (2005), we rewrite (8) as

f (x) = f (Q1,Q2, x10) ,

where Q1 = f1(x3, x5, x7) and Q2 = f2(x1, x2, x4, x6, x8).
Compared with the simple sum approach used by the Bank of Canada, the

advantage of the Divisia monetary aggregator is that it allows for less than perfect
substitutability among the relevant monetary components. Corresponding to each
of the two quantity indices, Q1 and Q2, there exist Divisia price indices, which
we denote as P1 and P2. The demand system in the next section is estimated using
data on Q1, Q2, and x10 and the corresponding Divisia price indices for Q1 and
Q2, P1 and P2, and the user cost of x10, p10. The Divisia price indices P1 and P2

are computed making use of Fisher’s weak factor reversal test. The test states that
the product of the values of the price and quantity indices should be equal to the
ratio of total expenditure in the two periods.
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3.2. The AIM Reciprocal Indirect Utility Function

Because the direct utility function specified in the maximization problem (6) sat-
isfies continuity, positiveness, monotonicity (nondecreasing), and quasiconcavity,
it can be completely characterized by a reciprocal indirect utility function—see
Diewert (1974). In this study, we assume that the reciprocal indirect utility function
takes on the AIM [see Barnett and Jones (1983)] with three assets (n = 3),

h(v) = a0 +
K∑

k=1

3∑
i=1

aikv
λ(k)
i +

K∑
k=1

K∑
m=1

⎡
⎣ 3∑

i=1

3∑
j=1

aijkmv
λ(k)
i v

λ(m)
j

⎤
⎦

+
K∑

k=1

K∑
m=1

K∑
g=1

⎡
⎣ 3∑

i=1

3∑
j=1

3∑
h=1

aijhkmgv
λ(k)
i v

λ(m)
j v

λ(g)

h

⎤
⎦ , (9)

where v is the income normalized price vector, that is, v = p/m; h(v) denotes the
reciprocal indirect utility function; λ(z) = 2−z for z = {k,m, g} is the exponent
set; and aik, aijkm, and aijhkmg , for all i, j, h = 1, 2, 3, are the parameters to be
estimated. The number of parameters is reduced by deleting the diagonal elements
of the parameter arrays so that i �= j, j �= h, and i �= h. This does not alter the
span of the model’s approximation.

Diewert (1974) shows that the reciprocal indirect utility function has to sat-
isfy the same regularity conditions as the direct utility function, i.e., continuity,
positiveness, monotonicity (nondecreasing), and quasiconcavity. Once the recip-
rocal indirect utility function, h(v), satisfies these four regularity conditions, its
corresponding direct utility function can be constructed as follows:

f (x) = min
v

{
1

h(v)
: v′x ≤ 1, v ≥ 0

}
.

In other words, f (x) and h(v) are dual to each other only when both of them sat-
isfy continuity, positiveness, monotonicity (nondecreasing), and quasiconcavity.
Clearly, h(v), specified in (9), satisfies continuity automatically by construction.
However, positiveness, monotonicity, and quasiconcavity of the AIM reciprocal
indirect utility function have to be checked empirically.

By applying Diewert’s (1974) modified Roy’s identity,

sj (v) = vj∂h(v)/∂vj

n∑
j=1

vj∂h(v)/∂vj

, (10)

to (9), we obtain the AIM(K) demand system, where sj = pjxj/p′x = vjxj . In
what follows, to simplify the estimation problems and deal with computational
difficulties in the large parameter space, we assume that K = 2 and thus use the
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AIM(2) model—see Serletis (2007) or Serletis and Shahmoradi (2008) for details
regarding the AIM(1), AIM(2), and AIM(3) models.

For K = 2, equation (9) becomes

hK=2(v) = a0 +
2∑

k=1

3∑
i=1

aikv
λ(k)
i +

2∑
k=1

2∑
m=1

⎡
⎣ 3∑

i=1

3∑
j=1

aijkmv
λ(k)
i v

λ(m)
j

⎤
⎦

+
2∑

k=1

2∑
m=1

2∑
g=1

⎡
⎣ 3∑

i=1

3∑
j=1

3∑
h=1

aijhkmgv
λ(k)
i v

λ(m)
j v

λ(g)

h

⎤
⎦ . (11)

To avoid the extensive multiple subscripting in the coefficients aijhkmg , we follow
Barnett and Yue (1988) and reparameterize by stacking the coefficients as they
appear in (11) into a single vector of parameters, b = (b0, . . . , b26)

′, containing
the 27 coefficients in (11), as follows [since z = 1, 2, so that λ(1) = 1/2 and
λ(2) = 1/4, for z = {k,m, g}]:

hK=2(v) = b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3 + b4v

1/4
1 + b5v

1/4
2 + b6v

1/4
3

+ b7v
1/2
1 v

1/2
2 + b8v

1/2
1 v

1/4
2 + b9v

1/4
1 v

1/2
2 + b10v

1/4
1 v

1/4
2 + b11v

1/2
1 v

1/2
3

+ b12v
1/2
1 v

1/4
3 + b13v

1/4
1 v

1/2
3 + b14v

1/4
1 v

1/4
3 + b15v

1/2
2 v

1/2
3

+ b16v
1/2
2 v

1/4
3 + b17v

1/4
2 v

1/2
3 + b18v

1/4
2 v

1/4
3 + b19v

1/2
1 v

1/2
2 v

1/2
3

+ b20v
1/4
1 v

1/2
2 v

1/2
3 + b21v

1/2
1 v

1/4
2 v

1/2
3 + b22v

1/2
1 v

1/2
2 v

1/4
3

+ b23v
1/2
1 v

1/4
2 v

1/4
3 + b24v

1/4
1 v

1/2
2 v

1/4
3 + b25v

1/4
1 v

1/4
2 v

1/2
3

+ b26v
1/4
1 v

1/4
2 v

1/4
3 . (12)

Applying the modified version of Roy’s identity, (10), to (12) we obtain the
AIM(2) demand system,

s1 = (
2b1v

1/2
1 + b4v

1/4
1 + 2b7v

1/2
1 v

1/2
2 + 2b8v

1/2
1 v

1/4
2 + b9v

1/4
1 v

1/2
2

+ b10v
1/4
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1/4
2 + 2b11v

1/2
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1/2
3 + 2b12v
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3 + b13v
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3
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1/2
1 v

1/4
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3
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1/4
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3
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1/2
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1/4
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1/4
2 v

1/4
3

)
/D, (13)

s2 = (
2b2v

1/2
2 + b5v

1/4
2 + 2b7v

1/2
1 v

1/2
2 + b8v

1/2
1 v

1/4
2 + 2b9v
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2
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3
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+ 2b22v
1/2
1 v
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s3 = (
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)
/D, (15)

where D is the sum of the numerators in equations (13)–(15). It is to be noted
that b0 is not estimated and that b3 = 1 − b1 − b2, so that there are 25 free
parameters. Further, we need not estimate s3, because from s1 and s2 we can
compute s3 = 1 − s1 − s2; see Barnett and Yue (1988).

3.3. Elasticities of Substitution

There are five elasticities that can be used to assess the substitutability/
complementarity relationship between monetary assets and classify assets as com-
plements or substitutes—see Blackorby and Russell (1989) and Davis and Gauger
(1996) for more details. These five elasticities are the Hicksian demand elasticity,

ηh
ij = ∂ ln xh

i

∂ ln pj

, (16)

the Allen elasticity of substitution (AES),

σa
ij = σa

ji = ηh
ij

sj

, (17)

the Morishima elasticity of substitution (MES),

σm
ij = ∂ ln

(
xh

i /xh
j

)
∂ ln(pj/pi)

= ηh
ij − ηh

jj = (
σa

ij − σa
jj

)
sj , (18)

the Marshallian demand elasticity,

ηm
ij = ∂ ln xm

i

∂ ln pj

= ηh
ij − sjEi, (19)

and the Mundlak (1968) elasticity of substitution (UES),

σu
ij = ∂ ln

(
xm

i /xm
j

)
∂ ln(pj/pi)

= ηm
ij − ηm

jj = σm
ij + sj (Ej − Ei), (20)
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where Ej denotes the income elasticity of the j th asset. It is to be noted that
in equations (18) and (20), we hold the price of asset i fixed and examine how
changes in the price of asset j affect the quantity ratio xi/xj .

These five elasticities can be classified into two groups, according to whether
utility or expenditure is held constant. In particular, the first three elasticities (the
Hicksian demand elasticity, the Allen elasticity of substitution, and the Morishima
elasticity of substitution) are given under the assumption that utility is held con-
stant, whereas the last two (the Marshallian demand elasticity and the Mundlak
elasticity of substitution) are given under the assumption that expenditure is held
constant. We thus call the first three, the Hicksian demand elasticity and the Allen
and Morishima elasticities of substitution, “net substitution” elasticities, in the
sense that they do not account for income effects (i.e., utility is held constant). In
contrast, we call the last two, the Marshallian demand elasticity and the Mundlak
elasticity of substitution, “gross substitution” elasticities, because they allow for
income effects (i.e., expenditure is held constant).

These five elasticities can also be classified into two groups, depending on
whether the interest is in the impact on quantity levels or on quantity ratios. In
particular, (16), (17), and (19) measure the percentage change in quantity from a
percentage price change, whereas (18) and (20) measure the percentage change
in the quantity ratio from a percentage price change. In fact, Davis and Gauger
(1996) call the first group “one-asset one-price” elasticities of substitution and
the second group “two-asset one-price” elasticities of substitution. It should be
noted that both the AES and Hicksian demand elasticity are “one-asset one-price”
elasticities of substitution. Moreover, the Allen elasticity of substitution, as shown
in (17), is the Hicksian demand elasticity divided by the cost share sj . Due to this
close relationship between the Hicksian demand elasticity and the Allen elasticity
of substitution, reporting both is not necessary.

Although either of the above two groups of elasticity measures can be used to
stratify assets as substitutes or complements, in general they will yield different
stratification sets. Thus, the choice of the appropriate elasticity measure is very
important. In our particular case, we are interested primarily in the substitution
elasticities when the user cost of foreign currency deposits changes. Clearly, when
the user cost of foreign currency deposits changes (holding all other things con-
stant), the household will end up on a different indifference curve; in other words,
utility is no longer constant. This means that the appropriate elasticity measure in
this study should be a gross substitution elasticity (either the Marshallian demand
elasticity or the Mundlak elasticity of substitution) instead of a net substitution
elasticity (such as the Hicksian demand elasticity or the Allen and Morishima
elasticities of substitution). However, many studies in the money demand liter-
ature have ignored this important difference between gross substitution and net
substitution, and report estimates of Hicksian demand elasticities or the Allen and
Morishima elasticities of substitution.

We now turn to the calculation of the five elasticities. Diewert (1974, p. 125)
proved in general that the Allen elasticities of substitution can be computed from
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the formula

σA
ij =

[
n∑

k=1

vkhk

]
hij

hihj

−

n∑
k=1

vkhjk

hj

−

n∑
k=1

vkhik

hi

+

n∑
m=1

n∑
k=1

vkhkmvm

n∑
k=1

vkhk

, (21)

where vk is the income normalized price, vk = pk/m, and h is the reciprocal
indirect utility function, h(v), as defined in (12). It can be easily shown that (21) is
the same formula as that for the Allen elasticities of substitution used in Barnett and
Yue (1988). Barnett and Yue (1988) proved in general that the income elasticities
can be computed from

Ei = ∂si

∂m

m

si

+ 1. (22)

Once the Allen elasticities of substitution, σA
ij , and the income elasticities, Ei ,

are calculated, the other four elasticities—the Hicksian demand elasticity, the
Morishima elasticity of substitution, the Marshallian demand elasticity, and the
Mundlak elasticity of substitution—can be readily obtained using equations (16)
and (18)–(20).

4. SEMI-NONPARAMETRIC ESTIMATION

The demand system (13)–(14) can be written as

st = ψ(vt ,θ) + εt , (23)

with an error term, εt , appended. In (23), s = (s1, s2)
′, ψ(v,θ) = (ψ1(v,θ),

ψ2(v,θ))′,θ is the parameter vector to be estimated, and ψi (v,θ) is given by the
right-hand side of each of (13) and (14).

Autocorrelation in the disturbances in consumer demand systems is a common
result and has mostly been dealt with by assuming a first-order autoregressive
process—see, for example, Ewis and Fisher (1984), Serletis and Robb (1986),
Serletis (1987, 1988), Fisher and Fleissig (1994), Fleissig and Swofford (1996),
Fisher and Flessing (1997), Fleissig (1997), Fleissig and Serletis (2002), and
Drake and Fleissig (2004). We follow this general practice and correct for the
serial correlation problem by allowing the possibility of a first-order autoregressive
process in the error terms of equation (23),

εt = Rεt−1 + ut , (24)

where R = [Rij ] is a matrix of unknown parameters and ut is a nonautocorrelated
vector disturbance term with constant covariance matrix. In this case, estimates of
the parameters can be obtained by using a result developed by Berndt and Savin
(1975). They showed that if one assumes no autocorrelation across equations (i.e.,
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R is diagonal), the autocorrelation coefficients for each equation must be identical,
say ρ. Formally,

R = ρI2, (25)

where I2 is a 2 × 2 identity matrix. Consequently, by writing equation (23) for
period t−1, multiplying by ρ, and subtracting from (23), we can estimate stochastic
budget share equations given by

st = ψ(vt , θ) + ρst−1 − ρψ(vt−1, θ) + ut . (26)

In this paper, we follow Gallant and Golub (1984) and use optimization methods
to estimate (26). Moreover, instead of using a residual-based simple objective
function as Gallant and Golub (1984) do, we specify the objective function as
a log likelihood function. There are two concentrated log likelihood functions
that can be used to estimate the demand system described by (23)–(25) [or more
compactly by (26)]—see Beach and MacKinnon (1979) for more details. The first
is

ln Lc (s | θ, ρ ) = constant − (T − 1)

2
× log

∣∣∣∣∣
T∑

t=2

(ut − ρut−1) (ut − ρut−1)
′
∣∣∣∣∣ ,
(27)

and the second is

ln L (s|θ, ρ) = constant + (n − 1)

2
log(1 − ρ2)

− T

2
× log

∣∣∣∣∣(1 − ρ2)u1u
′
1 +

T∑
t=2

(ut − ρut−1) (ut − ρut−1)
′
∣∣∣∣∣ . (28)

In equation (27), ln Lc(s | θ, ρ) is referred to by Beach and MacKinnon (1979)
as “the conventional concentrated maximum likelihood function,” whereas in
equation (28), ln L(s | θ, ρ) is referred to as “the full concentrated maximum
likelihood function.” Compared with ln Lc(s | θ, ρ), ln L(s | θ, ρ) has two major
advantages. First, it enforces a stationarity condition on the error process. In
particular, it incorporates the term (n − 1)log(1 − ρ2)/2, which goes to minus
infinity as |ρ| → 1, and thus a priori restricts the error process to be stationary.
Second, ln L(s | θ, ρ) makes full use of all available information, as can be seen
from the term (1 − ρ2)u1u

′
1 in the determinant expression in (28), whereas the

conventional concentrated maximum likelihood function ignores the information
contained in the first observation. Although the asymptotic properties are the
same, the estimates from the two log likelihood functions can differ sharply—
see Beach and MacKinnon (1979). Therefore, we choose to use the concentrated
maximum likelihood function, ln L(s | θ, ρ), as our objective function in this
paper.
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In maximizing (28), we use the TOMLAB/NPSOL tool box with MATLAB—
see http://tomlab.biz/products/npsol. NPSOL uses a sequential quadratic program-
ming algorithm and is suitable for both unconstrained and constrained optimization
of smooth (that is, at least twice continuously differentiable) nonlinear functions.
We first run an unconstrained optimization using (28). Because results in nonlinear
optimization are sensitive to the initial parameter values, to achieve global con-
vergence, we randomly generated 500 sets of initial parameter values and chose
the starting θ that led to the highest value of the objective function. We also check
the regularity conditions of positivity, monotonicity, and curvature.

In cases where the curvature conditions are not satisfied at all observations,
we follow Gallant and Golub (1984) and Feng and Serletis (2008, 2009) and use
nonlinear constrained optimization to impose curvature. Curvature requires that
the principal minors of the bordered Hessian determinant |H| alternate in sign—
see, for example, Morey (1986). The principal minors of the bordered Hessian
matrix H are given by

Hi =

∣∣∣∣∣∣∣∣
0 h1 · · · hi

h1 h11 · · · h1i

: : · · · :
hi hi1 · · · hii

∣∣∣∣∣∣∣∣
>0 if i is even and <0 if i is odd,

where hn = ∂h(v)/∂vn and hij = ∂2h(v)/∂vi∂vj .
Thus, our constrained optimization problem becomes

max
{θ,ρ}

ln L (s | θ, ρ )

subject to

Hi > 0 if i is even and <0 if i is odd.

With the constrained optimization method, we can impose the curvature restric-
tions at any arbitrary set of points—at a single data point, over a region of data
points, or fully (at every data point in the sample).

5. EMPIRICAL EVIDENCE

5.1. Economic Regularity

In Table 2 we present a summary of the results from the AIM(2) model in terms of
parameter estimates and theoretical regularity violations when the model is esti-
mated without the curvature conditions imposed and with the curvature conditions
imposed. Clearly, the unconstrained model satisfies positiveness and monotonicity
at all sample observations when curvature is not imposed—see column 1 of Table 2.
However, it violates curvature at all 100 observations when curvature conditions
are not imposed. The theoretical regularity conditions are checked as in Serletis
and Shahmoradi (2005). In particular, positivity is checked by direct computation
of the values of the estimated budget shares, monotonicity is checked by direct
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TABLE 2. AIM(2) parameter estimates

Parameter Unconstrained Curvature imposed

b1 −0.3479 0.6679
b2 −0.4472 3.4861
b4 −0.0912 1.2450
b5 −0.1829 1.7965
β6 −0.6183 2.4915
β7 −21.8467 2.5461
β8 4.2612 42.1125
β9 7.1188 −18.1267
β10 −0.2689 −15.5411
β11 16.8651 0.8558
β12 −3.0665 10.0353
β13 −11.5546 9.9124
β14 3.3167 −10.7386
β15 10.0325 −18.6303
β16 −0.5424 −5.1822
β17 −10.9303 14.6625
β18 3.2894 −6.1592
β19 −42.5618 −40.2815
β20 −30.9353 5.3103
β21 −76.8977 −41.2967
β22 102.0576 7.9679
β23 −1.6300 −28.8517
β24 −22.5227 56.4638
β25 63.7583 −7.8984
β26 −13.2083 13.1700
ρ 0.9939 0.9987

ln L(s | θ, ρ) 701.523 692.100
Positiveness violations 0 0
Monotonicity violations 0 0
Curvature violations 100 0

computation of the values of the first gradient vector of the estimated indirect
utility function, and curvature is checked by performing a Cholesky factorization
of the Slutsky matrix and checking whether the Cholesky values are nonpositive.

The violation of the curvature conditions by the unconstrained model im-
plies that the construction of a corresponding direct utility function from the
unconstrained AIM reciprocal indirect utility function is impossible. This can be
seen from (9), which holds only when all three theoretical regularity conditions
(positiveness, monotonicity, and quasi-concavity) are satisfied. As Barnett (2002,
p. 199) put it, without satisfaction of all three theoretical regularity conditions, “the
second-order conditions for optimizing behavior fail, and duality theory fails. The
resulting first-order conditions, demand functions, and supply functions become
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FIGURE 1. Actual and fitted shares for Q1.

invalid.” The failure of the duality between the unconstrained AIM reciprocal indi-
rect utility function and the direct utility function also implies that the elasticities
of substitution between the assets obtained from the unconstrained model will be
invalid.

Motivated by these issues, we impose the curvature restriction fully (that is, at
every data point in the sample), using methods suggested by Gallant and Golub
(1984)—see also Serletis and Shahmoradi (2005) and Feng and Serletis (2008,
2009) for details regarding the method for imposing the curvature restriction.
In particular, we maximize (28) with the curvature constraint imposed fully and
report the results in column 2 of Table 2. As can be seen in column 2 of Table 2,
(full) imposition of the quasiconcavity constraint has a significant impact on the
model, because we obtain parameter estimates that are consistent with all three
theoretical regularity restrictions (positiveness, monotonicity, and curvature) at
every data point in the sample and also eliminate the serial correlation problem,
although in an atheoretic way.

In Table 2 we also report the log likelihood values for both the unconstrained
and constrained models. By comparing these log likelihood values, we see that the
imposition of the curvature constraint has not had much influence on the flexibility
of the AIM model. In particular, the log likelihood value has been decreased
slightly from 701.523 to 692.100. To see the performance of the constrained AIM
model more closely, we plot the actual and fitted shares in Figures 1 and 2. As
can be seen, the three fitted shares resemble their corresponding actual shares
so well that it is hard to visually distinguish them from each other. Based on
this evidence, we argue that the constrained AIM model used in this paper can
guarantee inference consistent with the theory, without compromising much of
the flexibility of the functional form.
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FIGURE 2. Actual and fitted shares for Q2.
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FIGURE 3. Hicksian own-price elasticities.

5.2. Elasticities

We start by presenting the Hicksian own-price elasticities in Figure 3. These
elasticities are negative at all data points. When the Hicksian own-price elasticities,
ηh

ii , are negative and the income elasticities, Ei , are positive, the Marshallian own-
price elasticities, ηm

ii , must be negative [see equation (18)], which is confirmed by
our empirical results, as can be seen in Figure 4. The negativeness of the own-price
elasticities theoretically validates the use of our AIM reciprocal indirect utility
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FIGURE 4. Marshallian own-price elasticities.

function. It should be noted that, while we report both Hicksian and Marshallian
own-price elasticities, the Marshallian elasticities incorporate both the substitution
and the income effects of a price change. From Figure 4, the Marshallian own-
price elasticity for Q1 is small in absolute value (around −0.4) but rather stable
over time, whereas the other two own-price elasticities are quite large in absolute
value (−0.89 for Q2 and −0.80 for x10) at the beginning of the sample period
but decline in absolute value to −0.49 and −0.31, respectively, at the end of the
sample period. This implies that whereas the sensitivity of Q1 to its own price has
been very stable over time, the sensitivities of Q2 and x10 to their respective prices
have declined.

We then present the income elasticities in Figure 5. The income elasticities are
all positive (Ei > 0), with Q1 being a luxury asset and Q2 being a normal asset. As
can be seen from Figure 5, compared with the stability of the income elasticities of
the other assets, the income elasticity for U.S. dollar deposits is rather volatile over
time due to the high volatility in its user cost, suggesting that U.S. dollar deposits
have been both a luxury and a normal asset over the sample period. Moreover,
the nonzero income elasticities imply that the use of gross substitution elasticities
(the Marshallian demand elasticity and the Mundlak elasticity of substitution) is
appropriate in this study, whereas net substitution elasticities (the Hicksian demand
elasticity and the Allen and Morishima elasticities of substitution) are not.

Although we argue that the Morishima elasticity is not the appropriate measure
of elasticity of substitution in our study, we present the Morishima elasticities
of substitution in Figure 6, for the sake of comparison of the results from this
study with those from previous studies. Clearly, foreign currency is indeed a
Morishima substitute to the two domestic assets. In particular, σm

31, σm
13, σm

32, and

https://doi.org/10.1017/S1365100509080298 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080298


CURRENCY SUBSTITUTION 49

0

0.5

1

1.5

2

2.5

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Q1 Q2 x10
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FIGURE 6. Morishima elasticities of substitution.

σm
23 are all positive through the sample period, with the only exception being

σm
31, which exhibits very slight Morishima complementarity (close to zero) for

the period from July 2003 to January 2005. On average, the four Morishima
elasticities of substitution, σm

31, σm
13, σm

32, and σm
23, are 0.1803, 0.5419, 0.6337, and

0.6054, respectively. These results are roughly comparable to those reported by
Serletis and Rangel-Ruiz (2005) and İmrohoroğlu (1994). In fact, employing a
Fourier indirect utility function with no curvature imposed and a shorter sample
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FIGURE 7. Mundlak and Morishima elasticities of substitution.

period, Serletis and Rangel-Ruiz (2005) find that the six Morishima elasticities
of substitution range from −0.064 to 0.225. Also, as already noted, İmrohoroğlu
(1994) reports an estimate of the elasticity of substitution between the Canadian
dollar and the U.S. dollar of about 0.3. Further, the two elasticities of substitution
between Q2 and U.S. dollar deposits, σm

32 and σm
23, are larger than those between

Q1 and U.S. dollar deposits, σm
31 and σm

13, suggesting that nonpersonal assets are
more (Morishima) substitutable with U.S. dollar deposits than personal assets are.

We now turn to a discussion of the Mundlak elasticities of substitution, which
allow for both substitution and income effects. The Mundlak and Morishima
elasticities, σu

13 and σu
23 and σm

13 and σm
23, are presented in Figure 7. Roughly

speaking, the Mundlak elasticities of substitution and their corresponding Mor-
ishima elasticities of substitution are of comparable magnitude and of similar
time patterns, due to the small term sj (Ej − Ei)—see equation (20). However,
despite this similarity in magnitude and time pattern, the differences between the
Mundlak and Morishima elasticities of substitution are significant, as evidenced in
Figure 7. These differences in magnitude and time pattern imply that the Mundlak
elasticities of substitution cannot be replaced by the Morishima elasticities of
substitution in the assessment of currency substitution, as some previous studies
did.

Let us focus on the Mundlak elasticities of substitution when the user cost of
U.S. dollar deposits changes, σu

13 and σu
23, shown in Figure 7. Let us consider first

the Mundlak elasticity of substitution between Q1 and x10, σu
13, which represents

the percentage change in the ratio of the monetary subaggregate Q1 to x10, Q1/x10,
when the relative price p10/P1 is changed by changing p10 and holding P1 constant.
Clearly, σu

13 is positive over the sample period, with the average being 0.4963,
implying that the demand for Q1 always increases relative to that for x10 when the
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TABLE 3. Average demand elasticities

Marshallian Hicksian
demand elasticities demand elasticities

ηm
11 −0.4273 ηh

11 −0.1821
ηm

12 −1.2463 ηh
12 0.1704

ηm
13 −0.1715 ηh

13 0.0020
ηm

21 −0.0753 ηh
21 0.0232

ηm
22 −0.7189 ηh

22 −0.0921
ηm

23 −0.0084 ηh
23 0.0655

ηm
31 −0.1669 ηh

31 −0.0017
ηm

32 −0.3834 ηh
32 0.5416

ηm
33 −0.6678 ηh

33 −0.5399

rental price of U.S. dollar deposits increases. In other words, Q1 and x10 are always
Mundlak substitutes for each other when p10 changes. Further, as can be seen from
Figure 6, the relative demand for Q1 has declined over the sample period when
the rental price of U.S. dollar deposits, p10, has increased. As for the Mundlak
elasticity of substitution between Q2 and x10, σu

23, it is also positive, with an average
of 0.6594. Therefore, Q2 and x10 are also always Mundlak substitutes when p10

changes. We also find that σu
13 and σu

23 have magnitudes comparable to those of
domestic asset substitution. In particular, σu

13 and σu
23 are on average 0.4963 and

0.6594, compared with σu
21 and σu

12 being 0.3520 and −0.5274, respectively.
Although we found Mundlak substitutability between Q1, Q2, and foreign

currency deposits, x10, when the rental price of foreign currency deposits, p10,
changed, and that the magnitude of the substitutability was comparable to do-
mestic substitution, we need to also examine the Marshallian demand elasticities
before we jump into any conclusions regarding the possibility of a North America
currency union. This is because the two elasticity measures look at the sub-
stitutability/complementarity relation among the monetary assets from different
perspectives. In particular, as we already noted, the Mundlak elasticity of substi-
tution shows the change in the demand for asset i relative to asset j when the price
of asset j changes, whereas the Marshallian demand elasticity shows the change
in the demand for asset i when the price of asset j changes.

We report the Marshallian demand elasticities at the data mean in the first
column of Table 3. Interestingly, instead of finding currency substitution, we find
that the two domestic monetary subaggregates are slight gross complements to
U.S. dollar deposits. In particular, we find that ηm

13 < 0, ηm
23 < 0, ηm

31 < 0, and
ηm

32 < 0 at the data means. This result is consistent with the finding of Serletis and
Rangel-Ruiz (2005) that the three monetary assets are complementary when the
Marshallian elasticity of substitution is used. An examination of the Hicksian cross
elasticities reveals that ηh

13, ηh
31, and ηh

32 are positive and ηh
23 is slightly negative

(see column 2 of Table 3), implying that the two domestic monetary subaggregates
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and U.S. dollar deposits are net Hicksian substitutes. The different signs of the
Marshallian and Hicksian cross elasticities imply that gross complementarities
between the two domestic monetary subaggregates and U.S. dollar deposits are
actually caused by the positive income elasticities. In terms of magnitude, we find
that the two Marshallian demand elasticities when the rental price of x10 changes
(ηm

13 and ηm
23) are very small. In particular, compared with ηm

11 and ηm
12 (−0.4273

and −1.2463, respectively), ηm
13 is much smaller (−0.1715); and compared with

ηm
21 and ηm

22 (−0.0753 and −0.7189, respectively), ηm
23 is much smaller (−0.0084).

Clearly, in terms of Marshallian demand elasticities, U.S. dollar deposits are not
a substitute for the two domestic monetary subaggregates, Q1 and Q2.

We can also calculate the change in the sum of the Q1 and Q2 monetary
subaggregates when there is a 1% change in z, where z = P1, P2, p10, as follows:

φz = 	(Q1 + Q2)

(	z/z)
= ηm

1z × Q1 + ηm
2z × Q2.

In this equation, φz measures the impact on the domestic monetary subaggregates
from a 1% rise in z, z = P1, P2, p10. Several results emerge. First, results (not
shown here but available on request) show that all the three φ’s, φP1 , φP2 , and φp10 ,
are very volatile. The high volatility in the φ’s suggests that the response of the
demand for domestic monetary assets to a 1% rise in rental prices can be very
different over time. Second, compared with the impact on the domestic monetary
subaggregates from a 1% rise in P2, φP2 , the impact on the domestic monetary
subaggregates from a 1% rise in P1 or p10 (that is, φP1 or φp10 ) is very small.
In particular, we find that 1% rise in P2 will decrease the sum of Q1 and Q2 by
296.35; a 1% rise in P1 will decrease the sum of Q1 and Q2 by 44.17; and a 1%
rise in p10 will decrease the sum of Q1 and Q2 by 24.45. In other words, φp10 is
1/12.12 of φP2 and 1/1.81 of φP1 . The small magnitude of the impact of the user
cost of foreign currency deposits on Canadian domestic monetary assets implies
that Canadian monetary policy will be affected by foreign economic variables to
a very small degree, and thus cannot lead to loss of monetary independence onto
instability in the demand for monetary asset demand functions in Canada.

6. CONCLUSION

We have used recent advances in microeconometrics to investigate currency sub-
stitution between Canada and the United States. In doing so, we used the globally
flexible AIM model to approximate the unknown reciprocal indirect utility func-
tion and estimated income and price elasticities as well as the elasticities of
substitution based on the AIM demand system. We also distinguished between
net substitution elasticities (such as the Hicksian demand elasticity and the Allen
and Morishima elasticities of substitution) and gross substitution elasticities (such
as the Marshallian demand elasticity and the Mundlak elasticity of substitution)
and argued that the Marshallian demand elasticity and the Mundlak elasticity
of substitution are the right measures to use to evaluate the issue of currency
substitution in the AIM reciprocal indirect utility function framework.
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Based on a multivariate Müntz–Szatz series expansion, the AIM model is glob-
ally flexible in the sense that it is capable of approximating the underlying ag-
gregator function at every point in the function’s domain by increasing the order
of the expansion, and thus has more flexibility than the CES functional form
used by İmrohoroğlu (1994) and Serletis and Pinno (2007) and locally flexible
functional forms that theoretically can attain flexibility only at a single point or
over an infinitesimally small region. The much greater flexibility of the AIM
model allows it to capture the temporal variation of the elasticity of substitution
between domestic and foreign currency with much better accuracy. In estimating
the AIM demand system, we imposed the curvature condition on the parameters
of the AIM reciprocal indirect utility function, using the nonlinear constrained
optimization approach adopted from Gallant and Golub (1984). We have argued
that inference based on flexible functional forms is virtually worthless unless
all three theoretical regularity conditions (positiveness, monotonicity, and curva-
ture) are satisfied, because violations of theoretical regularity violate the main-
tained hypothesis and invalidate the duality theory that produces the estimated
model.

Our results, based on the Mundlak elasticities of substitution, indicate low
substitutability between monetary assets (a very common result in the literature),
implying that simple-sum monetary aggregates are incorrect or biased. We have
also taken an optimum currency area approach to the problem of whether a floating
currency is the right exchange rate regime for Canada or Canada should consider a
currency union with the United States. Although our methodology is far removed
from the usual criteria used to establish an optimum currency area [see, for exam-
ple, Mundell (1961), McKinnon (1963), and Canzoneri and Rogers (1990)], we
have followed Swofford (2000, 2005) and Serletis and Rangel-Ruiz (2005) and
assumed that a low degree of currency substitution is consistent with monetary
independence and a high one with an optimum currency area.

The results based on the Marshallian demand elasticities show that U.S. dollar
deposits are complements to domestic monetary assets. This is consistent with
Murray and Powell’s (2002, p. 11) conclusion that “there is no evidence that
Canadians have lost faith in their currency and are beginning to adopt the U.S.
dollar.” Based on this evidence, we conclude that Canada should continue the
current exchange rate regime (allowing the exchange rate to float freely with no
intervention in the foreign exchange market by the Bank of Canada) as well as the
current monetary policy regime (of inflation targeting).
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