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Abstract
A behavioral-based strategy for cooperative hunting using drones is proposed in this paper. In this decentralized
scheme, each drone acts as an individual agent computing its guidance strategy toward the target based on the
relative position of its neighbors without the use of direct communication. The algorithm is based on the deviated
pure pursuit methodology, and the emerged behavior mimics a natural hunting formation. Simulations and real-time
experiments with varying conditions were carried out to validate the effectiveness of the proposed hunting scheme.
Videos of the system in action can be seen on: https://youtu.be/g2dODbd6ZLA.

1. Introduction
The study and analysis of pursuit applied to mobile robots has been gaining the attention of the research
community, motivated by the increasing popularity of small robots, especially drones. The need for
surveillance of civil areas has motivated the application of classical war-like pursuit techniques, see
refs. [1–5]. Nevertheless, using a single agent for pursuit has several limitations, such as when the target
has a velocity equal or superior to the pursuer, or a chaotic behavior. A recent alternative to overcome
these limitations is the use of multiple pursuers; see refs. [6–9], where it is possible to increase the
spatial distribution of the agents to allow for a more fault-tolerant system. However, with an increase in
the number of pursuers, the task increases in complexity – as the problem now includes issues such as
collision-free navigation, formation control, task, and roles allocation. Many researchers approach this
complex task in an approach based on collective hunters in nature refs. [6, 7, 10–13].

The algorithms found in the literature can be distributed in four main categories: pursuit, game theory,
swarming, and bioinspired group chasing.

1.1. Pursuit
The pursuit–evasion phenomena have been observed in almost all biological relations and have been
traditionally analyzed mathematically and applied to modern humans. Since the classical and traditional
analyses of Pierre Bourger, in Les courbes de Poursuite (1732), where he describes the interception of
merchant’s vessels by pirates ship, many pursuit techniques have been formalized and implemented.
Classical guidances laws, such as the Deviated Pursuit Guidance (DPP), the proportional navigation
guidance (PNG), and its variations, have been used notably in missile guidance; see refs. [14, 15].

These guidance laws have been extensively explored for ground robots; see refs. [16–18]. In ref.
[16], the authors explored the use of geometric rules to navigate a single agent toward a target with
unknown movements and in the presence of obstacles. They applied two navigation approaches, the
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velocity pursuit guidance (a special case of PNG) and the DPP methodology. In ref. [17], the authors
implemented a controller that keeps a constant line of sight (LOS) from pursuers to the target, using the
principle of parallel navigation to ensure, under some conditions, the rendezvous course. Similarly, in
ref. [18], the authors applied a sliding-mode-based control to keep a constant LOS.

In ref. [2], the author applied PP and PNG guidance algorithms into quadcopters for target intercep-
tion. They compared those techniques against an optimal control trajectory planner, analyzing the time
and energy required to achieve the task. However, results are only presented in simulations. In ref. [5],
the author analyses three missile guidance laws in the case of a partially observable target. They formu-
late a pursuit–evasion game to determine the guarantees of capture under evasive maneuvers, deriving
an optimal controller. However, during the approaching phase, the PP algorithm is used.

The classic guidance navigation approaches have been useful in more applications than the pursuit
problem; for example, in ref. [19] the authors used the PNG scheme in a drone landing on a moving
platform. Their final solution mixed PNG with proportional derivative (PD) algorithms, effectively com-
pleting the task with less oscillation and smaller errors than traditional tracking PD. The proportional
navigation approach has also been used as guidance law in autonomous racing of drones in ref. [20]. In
that case, the authors adapted the PNG algorithm to handle the decoupled dynamics of the quadrotor.

1.2. Differential games
Recently, the research community has been interested in a more complex version of the pursuit problem,
increasing the number of pursuers and evaders. This can be modeled using a differential game, which
uses game theory to model conflict in the context of a dynamic system.

In ref. [21], the authors used a differential game formulation for multi-pursuers chasing a single
evader. In their approach, each agent minimizes the action area of the evader, which is characterized
by the Voronoi cells. Similarly, in ref. [22], a cost function is proposed and computed based on the
relative angle and distance between agents and target. These methodologies guarantee the optimality
input for pursuit. However, the large amount of assumptions and precise knowledge needed about the
whole system makes it infeasible for application in the real world.

1.3. Multi-agents
The benefits of the group work against the individual alone can be observed in many social behaviors
in nature. For example, in ref. [23], the authors completed quantitative analysis of the probability to
survive from predators, feeding, reproducing, and living in a group; similarly, they have discussed how
hierarchical systems emerge.

In ref. [24], the authors analyzed the cooperative chase with lionesses. Although lions commonly
chase alone, they can cooperate – which increases hunting success. The formation of the lions, with
center and wings lions, has inspired our approach.

The attempt to use a group of robots to stalk a moving target started early, basing on the extensive
multi-agents formation theory, and using a feedback controller to haunt tasks and keep formation; see
refs. [7, 25, 26].

Although the hunting task can be performed in argued to be completed in all above cases, all of them
rely on fixed encirclement points around the target and keeping formation, making the system not so
flexible to a dynamical and real-world application. Some improvements to these strategies have been
made in refs. [8, 27], although these propositions do not rely on keeping formation, they require fixed
encirclement points around the target.

These points are virtual and global information, which requires, for instance, the centralization of
information. Nevertheless, the complexity of these algorithms, which require optimization for path plan-
ning, is not scalable (in both cases, only four agents were used) and would be unfeasible to implement
in a bigger group.
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1.4 Bioinspired group chase
Another relevant field to group pursuit is artificial swarming and flocking. This approach considers each
agent as an autonomous entity, following similar rules based on local interaction, resulting in emergent
collective behaviors. This methodology is based on theoretical work as in refs. [28, 29], where the
authors proposed complex collectives behaviors, for flocking and herding, starting from simple local
rules.

Several works consider the agent-based model to represent multi-agent pursuit; in ref. [12], the author
designed an algorithm based on the Vicsek particle model. In ref. [13] the authors modeled a predation
system using agents inspired by swarms of bats. In ref. [30], the authors studied the emergent behavior of
agents with an interaction between pursuers in a discrete environment (two-dimensional square lattice).
The simplicity of the model allowed simulations with large numbers of players (e.g., 10e4). In ref. [31],
the hunting behavior of agents is studied in a more realistic environment using a framework to simulate
a fleet of unmanned aerial vehicles (UAVs) (see ref. [32]). In this methodology, the interaction of each
agent is represented by physical forces in bi- and tri-dimensional space with boundary conditions. The
action of each agent is calculated by the sum of different interaction factors: chase, inter-agent repulsion,
alignment and, short-range collision. The ‘chase’ factor assumes access to information about the position
and velocity vector of the evader, and this allows the agent to predict the future position of the target.
Although the work showed a powerful algorithm to analyze realistic pursuit with robots, they have strong
assumptions and neglected the limited perception of the robot (often using a camera) and the coupled
dynamics between perception and motion (when using drones). Furthermore, results are only validated
in simulations.

In ref. [9], the author proposed a model inspired by wolf pack hunting to design a multi-robot appli-
cation. This involves a hierarchical system containing at least one alpha and one beta agent and a finite
state machine that determines the robot’s motion. Nevertheless, the system relies on a fixed formation
and fixed roles for the agents reducing the flexibility in a more reactive application. In ref. [10], they
are again inspired by strategies observed in a wolf pack. They observed interaction between agents in
a wolf pack which allowed them to encircle the prey and start to attack it. However, the algorithm’s
simplicity does not fully capture the complexity of a coordinated pursuit of a faster prey, which requires
more sophisticated techniques to track and ambush the target.

1.5. Authors’ contribution
Our approach is a cycling hierarchical agent-based methodology to implement behavior for a group of
chasing robots. The bioinspiration lies in allocating dynamically changing roles, and the pursuit itself.
The pursuit behavior is given by the deviated pure pursuit (DPP) technique. Furthermore, our approach
introduces an alternative to conventional approaches based on attraction–repulsion forces to reduce
the recurrent problem of oscillations. In addition, the technique is flexible to the number of pursuers
and robust to abrupt changes in the formation. Moreover, the approach has no explicit communication
between agents and is closer to individual pursuer agents.

Our approach avoids two common problems in multi-robot cooperation: oscillations and the obser-
vation of neighbors. The first is produced by the spring effect caused by the repulsive–attractive forces.
This problem is accentuated in real-world applications where delays, loss of data, or long sample times
are presented. To account for this, the behavior of our system is not controlled by repulsive–attractive
forces. Secondly, we model the observation of neighbors just using bearing-only information, which can
be easily obtained from a single camera. This provides a more realistic observation model simplifying
transfer to real-world applications.

Finally, we provide a numerical validation with different pursuers and experimental results for three
different scenarios.

The paper’s outline is presented as follows. Section 2 introduces the methodology and the dynamics of
the agents. In Section 3, the structure of the pursuit control strategy is described. Numerical validations
that are done describing the performance of the proposed algorithms are shown in Section 4. Flight tests
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Figure 1. The drone formation (left) mimics the behavior of lionesses hunting in group (center and
right).
are carried out to validate the pursuit strategy. Section 5 illustrates the behavior when a drone fleet is
pursuing an intruder drone, before concluding in Section 6.

2. Setup and problem statement
The objective of pursuit is that at least one pursuer intercepts the target. We adopt the terminology target
to describe the target of the pursuit. This is not a fixed target but has different behaviors described in
Section 3. This problem can be stated as follows.

Our multi-agents pursuit–evasion problem involves N pursuers and a single target moving in a hor-
izontal plane. The pursuit takes place inside a bounded workspace W in IR2. We consider different
bounded workspaces in this paper (square and a circle). The final goal for the pursuer team is riT < Rcap,
that is that at least one of the pursuers has a relative distance (riT) toward the target less than a thresh-
old Rcap. The target trajectories are described by PT(t) = [xT(t), yT(t)], where (xT , yT) is its Cartesian
coordinates in W . Similarly, the pursuer paths are described as Pi(t) = [xi(t), yi(t)], where i ∈ 1, 2, ... N.

We aim to validate the approach experimentally in real time; hence, for the safety of our prototypes,
the capture radius in final capture of the intruder (target) drone will not be included in this work, that is,
the interception of the target will occur just in simulations, in the experimental results, the goal will be
to corral the target.

2.1. Agent
The term agent, in this work, is equivalent to the self-propelled particles proposed by Vicsek [31], in
the sense that each individual is autonomous and has a limited range of actuation, and they are driven
by simplistic rules. We extend this definition to include the definition of an agent by Muro in ref. [10].
Therefore, we consider that the agents are homogeneous (neither physically differentiation or a static
hierarchy) and do not use explicit communication and no explicit cooperation. All agents have a common
goal, and they can differentiate between neighbors and target, however, not between individuals.

The aerial drones used in this work are quadcopter vehicles as shown in Fig. 1-left. From the Newton–
Euler approach, the mathematical equations for this vehicle can be written as:

mv̇ = F +R
TFg

η̇ =B(η)� (1)

J�̇ = τ − [�]×
J�

The bold letters represent vectors. F denotes the thrusts generated by the motors, Fg is the gravity
force. η represents the vector of Euler angles, and � represents the angular velocity in the body frame.
m indicates the mass of the drone, v = [u v w]T defines the velocity vector of the aerial robot in the body
system, and R describes the rotation matrix generated in the order yaw-pitch-roll. B(η) represents the
matrix that relates the angular velocity and the derivative of the Euler angles. J is the inertia matrix
of the drone. [�]× represents the skew-symmetric matrix of angular velocity and τ defines the torques
applied to the vehicle.
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Figure 2. Agent performance in the plane x,y. Its perception is limited for a vision field. The longitudinal
velocity vx and lateral vy are defined in the body frame.

As previously mentioned, we focus on pursuing an intruder drone, assuming it is flying at a constant
altitude. We use a nonlinear controller to stabilize the orientation in the axes x,y and the altitude of the
aerial vehicles. The desired altitude will be given by the z position of the intruder drone. The remaining
states for the agents are ψ , x, and y as illustrated in Fig. 2. The goal of this work is not to propose a
control regulation for the desired trajectory, but the collective tracking of a mobile target with unknown
movements in the x − y plane.

From Fig. 2, the kinematics of the vehicle are as follows:

ẋi = vi cosψi, (2a)

ẏi = vi sinψi (2b)

where xi, yi defines the position of the agent in the plane x,y, vi denotes the magnitude of the vector
velocity vi = [vxi , vyi ]

T in the body frame, and ψi represents the yaw angle of the agent i to the horizontal
axis x. The linear and angular velocities define the control inputs such that

vi = fi, (3a)

ψ̇i = fψi (3b)

where fi = [fui , fvi ] signifies the control inputs for the longitudinal and lateral velocities, respectively,
and fψi introduces the control input for the yaw rate.

This motion constraint has an interesting property while considering the frontal camera as a navi-
gation sensor: the drone will displace only in the direction of the field of vision, tightly coupling the
perception to the motion.

For the same reason, this kind of drone motion is commonly observed in first-person-view piloting,
where the only information for the pilot is the frontal camera image. In this case, the remote pilot cancels
the drone’s lateral drift by combining a roll movement while turning the drones heading (yaw).

2.2. Target
The ultimate advantage of using multi-agents in pursuit is the possibility of cooperative ambushing for
intercepting a more agile target. The term “agile” can mean having superior velocity or having more
degrees of freedom. We assume both of these hypotheses in our work.

We consider the target will have a velocity up to twice as large as the pursuers. Furthermore, the
intruder will not be constrained to non-holonomic Eq. (2) but by a simple particle model, which gives
locomotion advantages. This configuration is a well-studied problem in differential games, commonly
called “the homicidal chauffeur,” see ref. [33].
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We consider two strategies regarding the target behavior: (1) predefined trajectories and (2) a reactive
target. First, the trajectories can be defined off-line, for example, by collecting real-flight data, or using
fixed paths, for example, circular or square trajectories. A repulsion model defines the reactive behavior
of the target. Each pursuer and the arena border exert a repulsive force towards the target. Details about
this repulsive force implementation is given in Subsection 3.5.

2.3. Relative engagement
In this work, the pursuer behavior is given by a modified version of a classical guidance law, DPP.
The relative kinematic engagement is a useful way to analyze convergence conditions in a pursuit–
evasion problem. The kinematics equation can be deduced from the geometrical engagement of the
pursuer-target, as represented in Fig. 2.

From Fig. 2, the LOS connecting the pursuer and target is denoted by riT . The bearing angle, defined
between the LOS and the inertial axis-x, is denoted by λiT . The vector vi is the velocity in the body
frame, and ψi represents the heading (yaw) of the pursuer i.

As shown in refs. [14, 34], from the engagement, a relative kinematic model can be obtained.
Considering the relative velocity between, ṙiT = ṖT − Ṗi. The relative velocity can be decomposed along
(v‖) and perpendicular (v⊥) to the LOS:

v‖ = ṙiT = vT cos (αT) − vi cos (αi),

v⊥ = riT λ̇iT = vT sin (αT) − vi sin (αi). (4)

where αT =ψi − λiT and αi =ψT − λiT . This equation represents the velocities of target seen by the
pursuer along the the LOS.

3. Pursuit strategy
In the following, we introduce our group pursuit strategy. Firstly, we will describe the DPP guidance law,
the base method for our proposition. Then, we discuss the hierarchy and the roles in our pursuit method-
ology, relating them with the different offsets in a DPP. Finally, our group pursuit will be explored, and
the details of the implementation, such as collision avoidance, will be given.

3.1. Deviated Pure Pursuit – DPP
As stated in ref. [14], the DPP can be seen as a variation of the classical pure pursuit (PP); it can be
a result of manufacturing flaws or can be intentionally designed in order to point the agent toward a
position ahead of the target, causing a “lead pursuit.” However, if the offset drives the agent toward a
position behind the target, it causes a “lag pursuit.”

The basic principle relies in driving the heading error to a constant offset angle (φi − λiT) → α0.
Considering this principle, the relative kinematics become

ṙiT = vT cos (αT) − vi cos (α0),

riT λ̇iT = vT sin (αT) − vi sin (α0).
(5)

The above equations establishes one necessary condition about the offset angle: |α0|<π/2.
Nevertheless, under this strategy, the capture cannot be guaranteed for all vT > vi.

Our work explores the idea that each agent can assume different offset angles; therefore, each agent
will have different degrees of “lead” and “lag” pursuit. This will cause spreading of the pursuers around
the target, as shown in Fig. 3. In ref. [14], an intuitive law to apply the DPP is given as:

fψi = −Kdpp (ψi − λiT − α0) (6)

where Kdpp defines a positive constant gain.
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Figure 3. Paths of deviated pursuit agents according to different angle offsets α. The agents begin the
trajectory at a fixed position, given by the black dot and keep a constant velocity until reaching the
target.

Figure 4. Three agents pursuit an intruder drone playing different roles.

3.2. Hierarchy
Our system has a mixed hierarchical architecture. The homogeneity of the agents means that all agents
are physical equals, and no identification is required. We define a hierarchy based on the advantage of
information, that is, one agent with better information will lead the group, and this makes a kind of
cycling hierarchy. On the other hand, they play a role in differentiation, where each agent can assume
different behavior depending only on the current relative position of the pursuer to its neighbors and
target.

As shown by Stander, see ref. [24], in natural systems, the central position is commonly related to
dominance. In our system, the central agents have a priority in moving and capturing since they have
a more direct trajectory toward the target. We differentiate roles based purely on agent positioning and
not due to social or biological factors (compared to natural systems). Here, each agent’s trajectory is
determined by computing the DPP angle assumed in the pursuit.

In Fig. 4, each agent has a different angle offset; hence, each agent has a different role. The agent i
(blue) and agent k (green) have consecutively positive and negative offset; therefore, they do not go in
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a straight line to target, rather, they ambush it from left and right, respectively. In ref. [24], the author
identified this pattern in a group of hunting lionesses and called the agents at the extremities as “wings,”
alluding to football players’ roles.

The differentiation in roles has a significant effect on the performance of the pursuit of the target
since the “wings”-agents do not follow a straight line to the target but enclose it depending on the offset
angle. The roles are defined such that the condition for an agent to be considered the “center” is based
on the proximity to the intruder. This allows that an agent very close to the target can execute a terminal
attack independently of the position of its neighbors.

3.3. Pursuit control algorithm
The objective of the control scheme is not to control the position of each agent as it is likely to produce
oscillations, due to the random and fast movements of the intruder. The control scheme’s goal is to
follow a deviate pursuit toward the target, with a given angle offset which will avoid collisions with the
neighbors.

The heading of agent i will be controlled by its angular rate related to the pursuit conditions as shown
in Fig. 4. Each agent has different offset angles (α), causing different trajectories for each agent, aiming
to increase the possibility of capturing the intruder using an ambush strategy. Therefore, rewriting (6)
for the whole system yields

fψi = −Kp

(
λiT + α

N∑
j �=i

δi,j(ξi, ξj)

)
, (7)

δi,j =
{−1, if j is in the left side

1, if j is in right the side
δi,j can be obtained from visual information, for this work we computed it by:

δi,j = rij × riT

‖rij × riT‖ (8)

where rij = [xj − xi, yj − yi, 0]T and riT = [xT − xi, yT − yi, 0]T , correspond to the planar vector of the
positions for neighbor j and to target T , respectively, in the body coordinates of the pursuer i.

From Fig. 4 and Eq. (3a), we can deduce that the longitudinal control input fui varies with respect
to the magnitude of the desired vector velocity vi of the pursuer and also is related with the target and
neighbors distances.

Thus, we propose

fui = umaxσa

(
diT − Rcap

Rcap

) [
Crep, Cwall

]
min

(9)

where umax is the maximal velocity imposed to the agents, diT defines the distance between agent i, and the
target T and Rcap denotes the radius to capture the intruder. 0 ≤ [Crep, Cwall]min ≤ 1 is a safety coefficient
that regulates the linear velocity of the agent i when approaching to agent j (collision avoidance) or
when the agents are close to the limits of the workspace. Similarly, the term σa(...), with a = 1, is set to
saturate the normalized distance error ( diT −Rcap

Rcap
).

The saturation function, σa(.), can be defined as follows:

σa(x) =

⎧⎪⎨
⎪⎩

a, if x> a

x, if a ≥ x ≥ −a

−a, if x<−a

(10)

Please note that controlling the velocity of the pursuers become relevant mainly when physical
integrity of the materials are considered, such as in our experimental validations. However, in the further
numerical simulation, where the collision is not a concern, the velocity of the pursuer is set constant.
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Figure 5. Virtual wall projected when the drones approaching the border of the square workspace.
Virtual agents are projected into the virtual cage.

3.4. Collision avoidance
Most works in artificial flocking use the principle of attraction–repulsion to keep the cohesion of the
group. However, those forces might cause oscillatory responses that could allow for an overdamped
response of the fleet. As a consequence, this will reduce the velocity response of the agents.

We do not use attraction–repulsion principle between pursuers, but use an attraction factor toward
the target, which acts as the point of convergence for all pursuers. For practical safety, a short-range
repulsion was implemented; however, this is not responsible for the hunting formation.

There are two terms representing the collision avoidance (Crep and φrepi
). The first one acts as a brake

coefficient, limiting the velocity input (fui) to zero. The second imposes a boundary in the lateral velocity,
and it will be explained in Section 3.6.

For the longitudinal part, this term can be denoted by:

Crep = [
Crepi,j , Crepi,k , ...

]
min

(11)

Crep defines a term acting in a small rage and only aims to avoid agents collision. When an agent i
detects agent j inside its repulsion area (delimited by the field of vision and a radius rrep), it decreases its
velocity. The coefficient of repulsion takes the minimum value of the individual repulsion from agent i
to all neighbors inside the repulsion area, and it is represented as:

Crepi,j =
⎧⎨
⎩

1, if dij < Rcol + a0

dij − a0

Rcol

, otherwise
(12)

where Rcol means the radius of collision (see Fig. 4) while a0 a constant offset. When the agents are
moving, the distance dij between agents i and j could be smaller than the radius of collision, then the
term a0 will impose a distance where the velocity of the agents will be completely null. This term can
be defined as the shortest distance possible between two agents.

3.5. Virtual wall
Consider the scenario when the drones’ fleet is approaching the workspace boundary (e.g., surveil-
lance area). We implement a virtual repulsion force when an agent is getting closer to the border of its
workspace or even a forbidden area. Along this paper, we consider two shapes for the workspace, square
and circular arena.

For designing the virtual forces, we consider a projection of the agent in the border of the workspace;
see Fig. 5. Since we have one virtual agent for each agent, the break coefficient Cwall is computed in the
same way of the agent’s collision avoidance.
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3.6. Lateral control
We design a controller to eliminate the lateral drift caused by the inertia of the drone. The drift occurs
when an agent changes in its heading while moves forward. In addition, this controller also implements
a lateral short-range force repulsion between two drones or between the drone and a virtual wall.

This controller is proposed as:

fvi =
⎧⎨
⎩

0, if dij < Rcol

δij

Rcol − dij

Rcol

, otherwise
(13)

whereφrepi
= Rcol−dij

Rcol
. The lateral velocity increases linearly when the neighbors invade the collision radius

(dij < Rcol). The function δij was defined in (Eq. (8)) and gives the direction of the velocity in the opposite
side of the collision.

4. Simulations
In order to analyze our proposition, we implemented the framework in MATLAB. The agents were
modeled as a particle with constant velocity and moving in a 2D plane. We use a bounded circular
workspace for these simulations. The sample period (Te) in simulations is 0.01 s. For simulation pur-
poses, the crosses (red) represent the path of the target, while the path of the pursuers is illustrated by
the diamond (blue), the asterisk (black), the circle (green), and the square (yellow). The black arrows
denote the final heading (yaw) of each pursuer. The stop condition in the simulation is that the target is in
a distance less than the capture radius Rcap = 0.3 m of at least one agent. Three scenarios are considered:

• Fixed target and three pursuers, to illustrate the formation pattern in a simple case;
• Escape trajectories, varying number of agents, to show the flexibility of the strategy;
• Swarm of pursuers, to show our approach of these properties to deal with scalability issues,

involving large amount of agents.

Finally, we analyze the effect of the angle offset in the capture rate and on the effect on collisions
between pursuer.

4.1. Fixed target
The first simulation is where the target remains in a fixed position. Figure 6 shows that the patterns of
the pursuers drones is similar to the trajectories executed by a group of hunter animals.

4.2. Escape trajectories
Due to this strategy’s flexibility and decentralized nature, it can be easily transferred between environ-
ments with a different amount of agents. Several simulations were carried out with different numbers of
pursuers (1,2,3 and 4), see Fig. 7. For these simulations, the intruder velocity was set to 10 m/s and for
the pursuers 5 m/s (half of the target speed). For visualization’s sake, the maximum time for simulation
was limited to 4 s. In addition, in this scenario, we propose reactive escape behavior for the target. The
behavior is described in Section 2.2, and all the pursuers and the borders exert a repulsive force toward
the target.

From Fig. 7, in the two firsts cases (A and B), the target was not caught until the end of simulations.
However, in the two lasts cases (C and D), the target was successfully intercepted before the limit of
time, and this shows the importance of the increasing number of pursuers in the success of the chase.
In addition, in Fig. 7, the velocity of the agents is implicitly indicated in the diagram. The positions of
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Figure 6. Trajectories generated for three agents and a fixed target. The pursuers start in the bottom of
the square and they pursuit the target with constant velocity. The deviation offset (α0) for this pursuit is
30 degrees.

(a) (b)

(c) (d)

Figure 7. Snapshots for pursuits with different numbers of agents (1, 2, 3, and 4). The target in all cases
does an escape trajectory based in repulsion forces, with velocity of two times bigger than the pursuers,
that is, vT = 2vi. The end of the target trajectories is signalized by the red circles.
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Figure 8. Case of 15 pursuers and an intruder. The pursuers intercept the target early in their trajectory.

agents are shown at a constant time stamp; therefore, the sparser the trajectory of an agent, the faster it
is. In Fig. 7(a), for example, we can see that the target (red cross) has superior to the single pursuer (blue
diamond).

4.3. Swarm
Although collective hunting is usually employed to small groups of pursuers; our algorithm can easily
be applied to larger groups of agents. In the following simulation (Fig. 8), we illustrate the pursuit
behavior applied to a group of 15 pursuers. The agents demonstrate an emergent flocking pattern, where
each agent computes independent trajectories following the target with no information of the neighbors
distance.

4.4. Effect of the offset angle on the capture
This quantitative evaluation aims to assess the effect of the angle offset (α0) on the total number of suc-
cessful captures. To this end, we subject our strategy to a group pursuit benchmark, previously proposed
in ref. [35]. This benchmark consists of a circular bounded arena. We tested different angle offset values,
incrementally from π/32, measuring the number of captures, as indicated in Fig. 9.

For each benchmark evaluation, 700 pursuit episodes are completed, with a variable target relative
velocity, vT/vi = 0.8, 1.0, ..., 2. More details about the benchmark implementation is given in ref. [35].

Figure 9-left shows the number of captures as function of the amount of pursuers. Figure 9-right
represents the average time taken to capture.

The first value (α0 = 0) is equivalent to the classic PP, where all agents point to the target’s current
position. However, applying this configuration, the cooperative behavior does not emerge; therefore, the
total catches remain practically the same during all the numbers of agents.

Therefore, with the smallest increment of offset (α0 = π/32), the size of the group has an affect on
the total amount of captures. The number of captures tends to increase, culminating in a cumulative
total of 4233 (76%) catches for an offset of π/8. For an angles offset of α0 = 3π/32, our approached
completed all captures during the benchmark for five pursuers onward; therefore, this is as an effective
strategy for chasing a faster target.
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Figure 9. Effects of the offset value in the pursuit.

Figure 10. Effect of the offset value (α0) on the collision between pursuers.

For angle offsets larger than π/8, the capture’s performance tends to decay. This is due to the fact
that large offset values result in very open trajectories toward the target, allowing the target to escape
between two pursues.

4.5. Effect of the offset angle on the collision
We use the same benchmark, to analyze the amount of collisions between two pursuers, that is, rij < Rcol,
where the collision radius Rcol is equal to 0.15 m. The graph on Fig. 10 clearly illustrates the effect of
the offset on collision avoidance. For α0 = 0, collisions tend to grow exponentially, reaching values up
to 395 times higher than using α0 = 3π/32.
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Figure 11. Schema for the control levels for a given agent i.

5. Experimental validation
The proposed pursuit algorithm was also validated in a real-world experiments. We use quadcopter
Parrots – AR Drone 2 for aerial robots. We used Framework libre Air1 an open source framework which
provides a low-level connection to the drones. Opti-Track was used for motion capture to locate each
agent. For experimental validation and security reasons, the final capture does not occur here; instead,
the pursuers must stop at a security distance of d = 1 m. The drones operate in a 6 m × 6 m square
workspace.

5.1. Drone control
In our application, the control of the quadcopters is divided into two levels, as illustrated in Fig. 11.
The lowest level is the control for stabilizing the drone in orientation and altitude. The higher level
is responsible for controlling the pursuers (fψ i, fui, fvi) in desired angles (θid , φid and ψid ). The pursuit
algorithm (the green box) is responsible for the “flocking intelligence” for each individual. Each agent
can perceive the environment (neighbors, obstacles, and target) and gives to the the lower levels the
velocities references (fψ i, fui, fvi).

Therefore, from (1) and using the PD controller in the altitude and the orientation,2 it follows that,
wi → 0, zBi → zBid

, η̇i → 0, and ηi → ηid , where zBid
defines the desired altitude of the aerial vehicle i and

ηid represents its desired orientation. Choosing ηid = 0 the aerial vehicle is stabilized at hover. The goal
is the capture of the target drone, thus from (1) and without loss of generality for x and y (in the body
frame), it follows that

u̇i ≈ −g sin θi

v̇i ≈ g cos θi sin φi

The prototype has an embedded controller for the attitude; thus, η is small enough such that cos�i ≈ 1
and sin�i ≈�i, being �i a generic angle representing θi and φi:

ui = ẋiB vi = ẏiB

u̇i ≈ −gθi v̇i ≈ gφi

where xiB and yiB are the position coordinates in the body frame. From (3a) and (13), it follows that the
following stabilize the lateral dynamics:

v̇i = −kvi vi − fvi (14)
where kvi denotes a positive gain. Notice from (13) that fvi defines a position lateral feedback for avoiding
the obstacles. Thus, it is easy to deduce the desired roll angle as:

φid = −kẏi v − kyi fvi (15)

1https://devel.hds.utc.fr/software/flair.
2Others controllers can be also used for this purpose.
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Table I. Control parameters used in the real-time scenarios

Parameters Scenarios 1 and 3 Scenario 2
α 20◦ 10◦

umax 1.3 1.3
Rcap 1.6 1.6
Field − vision 360◦ 120◦

Rint 5 2
Rcol 1.5 0
a0 1 0

where kẏi = kvi
g

and kyi = 1
g
. Similarly, from (3a) and (9), it follows that

u̇i = −kui (ui − fui ) (16)

with kui denotes a positive gain. Notice here that fui defines the desired velocity of the agent i that will
vary with respect the position of the target T . Therefore,

θdi = kẋi eui (17)

where kẋi = kui
g

and eui = ui − fui . From (3b) and (7), it follows that

ψ̇i = −Kpeψi (18)

where eψi =ψi −ψid .
All control laws and pursuit algorithms are computed on-board each agent, and the ground station

only analyzes the states and retakes the control in manual mode in emergency cases. For improving
experimental validation, a Kalman filter was implemented to estimate states in cases where the agent
does not receive the data; see ref. [36].

Lateral control takes great importance in real-world experiments, as lateral drifts appear when the
agents avoid obstacles which does not happen in simulation.

5.2. Experimental evaluation
Two scenarios are proposed to validate the pursuit algorithms.

1. The intruder drone remains in a fixed position, and three pursuers drones track it.
2. The target, moving with random movements given by a user, is tracked for three pursuers aerial

drones.

5.3. Three pursuers and one static target
The target is placed in the ground at a distance of 6 m from the pursuers. The pursuers are placed in
an initial triangular formation with a distance of approximately 2 m from their closest neighbors. This
experiment aims to reproduce the pattern presented in simulation (see Fig. 6). The parameters used in
this experiment are presented in Table I.

Figure 12 shows the real-world result for this scenario. The agents take on a similar strategy compared
to the hunting pattern described in Figs. 1 and 6. However, the irregularities observed in the pursuer’s
trajectories are caused by the airflow produced by the proximity of the drones and the absence of position
control.

https://doi.org/10.1017/S0263574721001910 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001910


2712 C. de Souza et al.

Figure 12. Real-time performance when three aerial drones pursuit a fixed target. The first image (left)
shows the displacement of the drones in the flight arena. The second one is a picture of the experiment.

Figure 13. Real-time performance when three aerial drones pursuit an aerial intruder drone with
random movements.

https://doi.org/10.1017/S0263574721001910 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001910


Robotica 2713

Figure 14. Inter-distance between pursuers during the experimental test.

5.4. Three pursuers and one faster intruder
An operator manually controls the target, trying to get away from the three pursuers’ drones. The goal
for the pursuers is to track the target, limiting their distances to the target to ensure no collisions. In
addition, to further ensure the safety of our drones, the target flies at a different altitude. We choose
zd = 0.8 m for the intruder and zdi = 1.7 m to the pursuers. The parameters for this flight are also shown
in Table I.

In Fig. 13, some snapshots are shown which illustrate the real-world performance of the drones pur-
suing the faster target. The figure is composed of nine snapshots taken at an interval of 2.75 s. For each
snapshot, the position of each agent was plotted ten times, with a sample time of 0.275 s. The larger
velocity of the target (2 m/s) is highlighted by the distance traveled by it in each snapshot.

The collision avoidance property was implemented in the pursuers and can be seen in Fig. 14,
where the inter-distances are plotted as a function of time. The minimum distance between two pur-
suers throughout the episode was approximately 1 m. However, since the target was piloted manually,
there were no guarantees of a collision-free trajectory.

Observe from these figures that the cooperative hunting pattern emerged during these real-world
experiments. Even facing a complex pursuit with a faster reactive target, the pursuer’s drones could
track and intercept the futures movements of the target. No formation is intended to be kept, instead, the
drones re-arrange between themselves in other to corral the intruder. The roles of positioning (center,
left-, and right-wings) are constantly changing as a function of the relative position of the fleet to the
target.

Moreover, taking into account the size of the virtual arena (6 m × 6 m) and the presence of four
drones flying inside, this approach has demonstrated a robust, practical performance with respects to
the disturbances produced by the airflow of the aerial vehicles.

The flight tests can be seen on https://youtu.be/g2dODbd6ZLA.

6. Conclusion
A decentralized strategy for cooperative group pursuit against a single intruder has been proposed and
validated in this work. Our approach, inspired by lionesses’ hunting behavior, applies the geometrical
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rules of DPP to generate different trajectories for each agent. This strategy avoids using attractive and
repulsive forces for pattern formation, which occasionally results in the system’s oscillations.

Numerical simulations were carried out to demonstrate the efficiency of the proposed chase strategy.
The effect of the angle offset was analyzed quantitatively through a pursuit benchmark. We observed the
emergence of the behavior of collective pursuit through two main metrics, the increase in the number of
target’s capture and the decrease in the amount of collision between pursuers. Furthermore, a proof of
concept with real drones is shown, where we could verify the pursuit behavior in a real-world experiment
with three pursuers and one target.

This preliminary work focused mainly on the formalization of our algorithm and the qualitative
description of the emerging behavior. However, our proposal also proved to be effective in capturing
a faster target, as shown by the group pursuit benchmark described in Section 4. Furthermore, our pro-
posal requires very minimal assumptions; the pursuit algorithm, disregarding the safety layer of collision
avoidance, requires only relative bearing angle information in relation to the target and neighbors. This
minimalism of implementation puts our algorithm in a very advantageous position compared to the pre-
vious ones, such as in refs. [10, 12, 13], which requires more information from the target and neighbors,
such as position or speed in global coordinates.

We believe that a more in-depth theoretical analysis of the collision-free phenomenon observed in
this work is also interesting and reaffirmed from simulations in the pursuit benchmark.

Although these first experimental results indicate the viability of this algorithm, several areas must be
improved to obtain a fleet of autonomous chasing drones. The first one is perception. Pursuers must be
able to extract the bearing angle information using only the embedded sensors, which are commonly the
front camera and the Lidar. However, using a camera-type sensor with limited FOV arouses the interest
of another field of investigation, the effect of limited visual sense on collective behavior. Recently, works,
as in ref. [37], have been dedicated to evaluate the impact of this nonlinearity in the observation, which
could improve our work results.

Acknowledgment. We thank Rhys Newbury (Monash University – Melbourne, Australia) for the valuable effort on the full text
revision.

Authors’ Contributions. C. de Souza Jr. : conceptualization, research, validation, writing – original draft, and software.
P. Castillo : conceptualization, formal analysis, research, validation, writing – review and editing, project administration, and

supervision.
B. Vidolov : research, conceptualization, methodology, and supervision.

Financial Support. This research is supported by the Ministère de l’Education Nationale, de l’Enseignement Supèrieur et de la
Recherche, and National Network of Robotics Platforms (ROBOTEX), from France.

Conflicts of Interest. None.

Ethical Considerations. This study does not contain any studies with human participants or animals performed by any of the
authors.

References
[1] T. Lefebvre and T. Dubot, “Conceptual Design Study of an Anti-drone Drone,” 16th AIAA Aviation Technology, Integration,

and Operations Conference, Washinton, DC, USA (2016) pp. 1–14.
[2] R. L. Allen, Quadrotor Intercept Trajectory Planning and Simulation Thesis (Naval Postgraduate School, Monterey, CA,

USA, 2017).
[3] D. Solinger, P. Ehlert and L. Rothkrantz, Creating a dogfight agent, Technical Report DKS05–01/ICE 10 (Delft University

of Technology, Netherlands, 2005).
[4] D. Hert, Autonomous Predictive Interception of a Flying Target by an Unmanned Aerial Vehicle Thesis (Czech Technical

University in Prague, Prague, Czech Republic, 2018).
[5] J. T. Arneberg, Guidance Laws for Partially-Observable UAV Interception Based on Linear Covariance Analysis Thesis

(Massachusetts Institute of Technology, Massachusetts, USA, 2018).

https://doi.org/10.1017/S0263574721001910 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001910


Robotica 2715

[6] H. Yulan, Z. Qisong and X. Pengfei, “Study on multi-robot cooperation stalking using finite state machine,” Procedia
Engineering 29, 3502–3506 (2012). https://doi.org/10.1016/j.proeng.2012.01.520

[7] H. Yamaguchi, “A Cooperative Hunting Behavior by Multiple Nonholonomic Mobile Robots,” SMC’98 IEEE International
Conference on Systems, Man, and Cybernetics, vol. 4 (1998) pp. 3347–3352.

[8] Z. Wu, Z. Cao, Y. Yu, L. Pang, C. Zhou and E. Chen, “A Multi-robot Cooperative Hunting Approach Based on Dynamic
Prediction of Target Motion,” 2017 IEEE International Conference on Robotics and Biomimetics, Macau, China (2017) pp.
587–592.

[9] A. Weitzenfeld, A. Vallesa and H. Flores, “A Biologically-Inspired Wolf Pack Multiple Robot Hunting Model,” 2006 IEEE
3rd Latin American Robotics Symposium, Santiago, Chile (2006) pp. 120–127.

[10] C. Muro, R. Escobedo, L. Spector and R. Coppinger, “Wolf-pack (canis lupus) hunting strategies emerge from simple rules
in computational simulations,” Behav. Process. 88(3), 192–197 (2011).

[11] D. Shishika, J. K. Yim and D. A. Paley, “Robust lyapunov control design for bioinspired pursuit with autonomous
hovercraft,” IEEE Trans. Control Syst. Technol. 25(2), 509–520 (2016).

[12] L. Angelani, “Collective predation and escape strategies,” Phys. Rev. lett. 109(11), 1–5 (2012).
[13] Y. Lin and N. Abaid, “Collective behavior and predation success in a predator-prey model inspired by hunting bats,” Robotica

88(6), 062724 (2013).
[14] N. A. Shneydor, Missile Guidance and Pursuit: Kinematics, Dynamics and Control (Woodhead Publishing, UK, 1998).
[15] P. Nahin, Chases and Escapes The Mathematic (Princeton University Press, Princeton, NJ, 2007).
[16] F. Belkhouche and B. Belkhouche, “A method for robot navigation toward a moving goal with unknown maneuvers,”

Robotica 23(6), 709–720 (2005).
[17] F. Belkhouche, B. Belkhouche and P. Rastgoufard, “Parallel navigation for reaching a moving goal by a mobile robot,”

Robotica 25(1), 63–74 (2007).
[18] H. Teimoori and A. V. Savkin, “A biologically inspired method for robot navigation in a cluttered environment,” Robotica

28(5), 637–648 (2010).
[19] R. Tan and M. Kumar, “Proportional Navigation (PN) Based Tracking of Ground Targets by Quadrotor UAVs,” ASME 2013

Dynamic Systems and Control Conference, Palo Alto, CA, USA (2013) pp. 157–173.
[20] S. Jung, S. Hwang, H. Shin and D. H. Shim, “Perception, guidance, and navigation for indoor autonomous drone racing

using deep learning,” IEEE Rob. Autom. Lett. 3(3), 2539–2544 (2018).
[21] H. Huang, W. Zhang, J. Ding, D. M. StipanoviĆ and C. J. Tomlin, “Guaranteed Decentralized Pursuit-Evasion in the Plane

with Multiple Pursuers,” 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando,
FL, USA (2011) pp. 4835–4840.

[22] J. Li, M. Li, Y. Li, L. Dou and Z. Wang, “Coordinated Multi-robot Target Hunting Based on Extended Cooperative Game,”
2015 IEEE International Conference on Information and Automation, Lijiang, Yunnan, China (2015) pp. 216–221.

[23] A. Zafeiris and T. Vicsek, Why We Live in Hierarchies? A Quantitative Treatise (Springer, Switzerland, 2017).
[24] P. E. Stander, “Cooperative hunting in lions: The role of the individual,” Behav. Ecol. Sociobiol. 29(6), 445–454 (1992).
[25] J. Gong, J. Qi, G. Xiong, H. Chen and W. Huang, “A GA Based Combinatorial Auction Algorithm for Multi-robot

Cooperative Hunting,” 2007 International Conference on Computational Intelligence and Security, Heilongjiang, China
(2007) pp. 137–141.

[26] W. Wang, J. Qi, H. Zhang and G. Zong, “A Rapid Hunting Algorithm for Multi Mobile Robots System,” 2007 2nd IEEE
Conference on Industrial Electronics and Applications, Harbin, China (IEEE, 2007) pp. 1203–1207.

[27] Y. Duan, X. Huang and X. Yu, “Multi-robot Dynamic Virtual Potential Point Hunting Strategy Based on Fis,” 2016 IEEE
Chinese Guidance, Navigation and Control Conference, Nanjing, China (2016) pp. 332–335.

[28] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ACM SIGGRAPH Comput. Graphics 21(4),
25–34 (1987).

[29] T. Vicsek and A. Zafeiris, “Collective motion,” Phys. Rep. 517(3–4), 71–140 (2012).
[30] T. Saito, T. Nakamura and T. Ohira, “Group chase and escape model with chasers’ interaction,” Phys. A Stat. Mech. Appl.

447, 172–179 (2016). https://doi.org/10.1016/j.physa.2015.12.023
[31] M. Janosov, C. Virágh, G. Vásárhelyi and T. Vicsek, “Group chasing tactics: How to catch a faster prey,” New J. Phys. 19(5),

1–16 (2017).
[32] G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz and T. Vicsek, “Outdoor Flocking and Formation

Flight with Autonomous Aerial Robots,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, Illinois (2014) pp. 3866–3873.

[33] I. Rufus, Differential Games, SIAM Series in Applied Mathematics (Wiley, New York, 1965).
[34] F. Belkhouche, B. Belkhouche and P. Rastgoufard, “Parallel navigation for reaching a moving goal by a mobile robot,”

Robotica 25(1), 63–74 (2007).
[35] C. De Souza, R. Newbury, A. Cosgun, P. Castillo, B. Vidolov and D. KuliĆ, “Decentralized multi-agent pursuit using deep

reinforcement learning,” IEEE Rob. Autom. Lett. (RAL) 6(3), 4552–4559 (2021).
[36] C. De Souza, P. Castillo, R. Lozano and B. Vidolov, “Enhanced UAV Pose Estimation Using a KF: Experimental Validation,”

2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, Texas (2018) pp. 1255–1261.
[37] E. Soria, F. Schiano and D. Floreano, “The Influence of Limited Visual Sensing on the Reynolds Flocking Algorithm,”

Third IEEE International Conference on Robotic Computing (IRC) (2019) pp. 138–145.

Cite this article: C. de Souza, P. Castillo and B. Vidolov (2022). “Local interaction and navigation guidance for hunters drones:
a chase behavior approach with real-time tests”, Robotica 40, 2697–2715. https://doi.org/10.1017/S0263574721001910

https://doi.org/10.1017/S0263574721001910 Published online by Cambridge University Press

https://doi.org/10.1016/j.proeng.2012.01.520
https://doi.org/10.1016/j.physa.2015.12.023
https://doi.org/10.1017/S0263574721001910
https://doi.org/10.1017/S0263574721001910

	
	Introduction
	Pursuit
	Differential games
	Multi-agents
	Bioinspired group chase
	Authors"2019` contribution
	Setup and problem statement
	Agent
	Target
	Relative engagement
	Pursuit strategy
	Deviated Pure Pursuit "2013` DPP
	Hierarchy
	Pursuit control algorithm
	Collision avoidance
	Virtual wall
	Lateral control
	Simulations
	Fixed target
	Escape trajectories
	Swarm
	Effect of the offset angle on the capture
	Effect of the offset angle on the collision
	Experimental validation
	Drone control
	Experimental evaluation
	Three pursuers and one static target
	Three pursuers and one faster intruder
	Conclusion

