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Colloids which adsorb to and straddle a fluid interface form monolayers that are
paradigms of particle dynamics on a two dimensional fluid landscape. The dynamics is
typically inertialess (Stokes flows) and dominated by interfacial tension so the interface
is undeformed by the flow, and pairwise drag coefficients can be calculated. Here the
hydrodynamic interaction between identical spherical colloids on a planar gas/liquid
interface is calculated as a function of separation distance and immersion depth. Drag
coefficients (normalized by the coefficient for an isolated particle on the surface) are
computed numerically for the four canonical interactions. The first two are motions along
the line of centres, either with the particles mutually approaching each other or moving in
the same direction (in tandem). The second two are motions perpendicular to the line of
centres, either oppositely directed (shear) or in the same direction (tandem). For mutual
approach and shear, the normalized coefficients increase with a decrease in separation
due to lubrication forces, and become infinite on contact when the particle is more than
half immersed. However, they remain bounded at contact when the particles are less than
half immersed because they do not contact underneath the liquid. For in-tandem motion,
the normalized coefficients decrease with a decrease in separation; they collapse, for all
immersion depths, to the dependence of the drag coefficient on separation for two particles
moving in tandem in an infinite medium. The coefficients are used to compute separation
against time for colloids driven together by capillary attraction.
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1. Introduction

Colloids (here particles 10 nm–10 μm in characteristic size) can adsorb from immiscible
fluid phases bounding an interface (e.g. gas/liquid or non-polar/polar liquid phases) and
relocate onto the interface, where they straddle the surface, immersing themselves partly
in each phase and forming a monolayer ( figure 1a for a gas/liquid interface; for reviews cf.
Binks & Horozov 2006; Garbin, Crocker & Stebe 2012a; Deshmukh et al. 2015; Maestro,
Santini & Guzmán 2018). The adsorption is driven by changes in the fluid interfacial
energy and the surface energies of the colloid. Thus when a colloid locates to the bounding
surface, it removes part of its surface from contact with one phase, and replaces this contact
with contact with the opposite phase. Relocation also removes part of the original fluid
interface as the particle is now situated on the surface (Ballard, Law & Bon 2019). For a
spherical colloid of radius a relocating, for example, from a non-polar to a polar phase,
the change in surface energies on relocation is given by −πa2γ (1 + cos θ)2, where γ

is the tension of the interface, θ is equal to the contact angle as measured through the
polar phase and the equilibrium immersion depth d is given by d/a = 1 + cos θ , where
d is measured from the interface to the bottom of the colloid (figure 1a). When the
surface of the colloid is partially wetting into the polar phase (cos θ /=−1), the energy
of adsorption can be much greater than the thermal energy, creating the situation that
the colloids both straddle the surface and remain irreversibly trapped, forming a relatively
permanent colloidal monolayer even if they are active colloidal particles (Fei, Gu & Bishop
2017; Yariv 2017). This large energy barrier for particle detachment can be circumvented
by large in-plane compressive stresses (see, e.g. Garbin, Crocker & Stebe (2012b), Razavi
et al. (2015) and Poulichet & Garbin (2015)).

Colloidal monolayers are the subject of broad technological interest, principally because
of their effectiveness in stabilizing foams and emulsion. The trapped particles sterically
prevent the interfaces of the bubbles and drops from coalescing, and thereby maintain the
stability of the intervening film of the dispersed phase (‘Pickering’ emulsions, Binks 2002;
Herzig et al. 2007; Wu & Ma 2016; Huang et al. 2017). Colloidally stabilized dispersions
find many applications in food products, consumer products (creams and lotions) and in
materials fabrication (solid foams).

Once trapped at the interface, colloids can be subject to external forces exerted in the
plane of the surface, e.g. charged (magnetic) particles driven by electric (magnetic) fields,
or shear or dilatational flows imposed on the particle-laden interface. These external and
hydrodynamic forces cause particle movement in the plane of the surface. Movement
can also be driven by interparticle interactions, e.g. repulsive electrostatic (Danov &
Kralchevsky 2006; Oettel & Dietrich 2008) or magnetic (Vandewalle et al. 2012) forces
for charged or magnetic particles, respectively, or attractive van der Waals forces (Bresme
& Oettel 2007). Attached particles are also subject to attractive (‘capillary’) interparticle
forces, derived from overlapping local curvature changes between the particles induced
by the anisotropy in particle shape, surface roughness of the contact line along the
particle surface or, for larger and heavier colloids, surface depressions due to the particle
weight (Kralchevsky & Nagayama 2000; Stamou, Duschl & Johannsmann 2000; Danov &
Kralchevsky 2010). The motion generated by these external forces, flows and interparticle
interactions is resisted by viscous tractions exerted on the colloids by the fluids in the
adjoining phases. Thus, in addition to their importance in dispersion technology, colloidal
monolayers at a fluid interface serve as a model for studying particle dynamics and
hydrodynamic interaction in two dimensions under a broad array of external forces and
self-interactions. As such, the model can be used to gain insight into many phenomena
associated with two-dimensional (2-D) particle dynamics, including self-organization,
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Figure 1. (a) Schematic of the pairwise hydrodynamic interaction between colloids straddling a gas/liquid
interface and (b) top view of the fluid interface for the canonical motions in Stokes flow for the pairwise
interaction of two particles restricted to motion on the surface.

microstructure formation (chains and patterns), crystallization, phase transitions and
surface rheology, and how these phenomena are tuned by the forces, interactions and
hydrodynamics. This insight can guide the design of new particle-constructed materials
using a bottom-up approach. (Park & Lee 2014; Booth & Dryfe 2015).

In this study, attention is focused on the hydrodynamic interactions of a pair of spherical
colloids as they translate along the surface of a flat 2-D fluid landscape separating gas from
a liquid phase (figure 1a). Several investigations have examined, both experimentally and
theoretically, hydrodynamic interaction in conjunction with understanding 2-D particle
dynamics, and we briefly review these. The most relevant for this study are examinations
of the pairwise interaction of two spherical colloids attached to a planar fluid interface,
and driven together by capillary attraction (Vassileva et al. 2005; Boneva et al. 2007,
2009; Dalbe et al. 2011; Dani et al. 2015). These studies measured the separation distance
as a function of time (�(t), figure 1a). They also modeled the motion by assuming Stokes
flow, as the Reynolds numbers are typically small due to the small size of the colloids and
the fact that flows driven by capillary attraction (or any of the interparticle interactions)
are small. They also assumed the interface is undeformed by the flow and remains flat, as
the viscous forces in the generated flows are small relative to surface tension forces (small
capillary number, Ca) and the particle penetration depth does not change. Here, for the
gas/liquid interface (figure 1a), the capillary number is defined as Ca = μU/γ , where γ

is the tension of the gas/liquid interface, μ is the Newtonian viscosity of the liquid phase
bounding the interface and U is the characteristic colloid velocity. In addition, the rotation
of the colloids due to the translation is neglected, under the assumption that the contact
line pins the motion due to surface roughness (Dörr & Hardt 2015; Dörr et al. 2016).

With the above assumptions, the hydrodynamic motion of a pair of particles can be
decomposed, due to the linearity of the Stokes equations and the fact that the interface
is assumed flat and undeformed by the flow, into four canonical motions as shown in
figure 1(b) for a gas/liquid interface. Two motions are modes in which the colloids
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move along the line of centres, either ‘1’ approaching or moving away from each
other with velocity U or ‘2’ moving in-tandem with velocity U. Two are modes in
which the colloids move perpendicular to the line of centres, either ‘3’ a shear motion
in which the particles move in equal and opposite directions with velocity U or ‘4’
an in-tandem motion. With each mode there is a drag exerted on the particle in the
flow direction which can be formulated in terms of non-dimensional drag coefficients
(non-dimensionalized by μaU). These drag coefficients are a function of the immersion
depth (d/a) and separation distance �/a. Thus for the modes along the line of centres,
the dimensional drag on the particles along the centre-to-centre axis are given by
f̂i(d/a, �/a)μaU (i=1, 2), where f̂i(d/a, �/a) is the drag coefficient (non-dimensionalized
by μaU). For the modes involving motion perpendicular to the line of centres, the
dimensional drag is f̂i(d/a, �)μaU (i = 3, 4), and f̂i(d/a, �) are the non-dimensional drag
coefficients (figure 1b). (Note, for interfaces bounded by two liquids, all these coefficients
are also a function of the the viscosity ratio of the fluids; in this case the coefficients
are non-dimensionalized by one of the two viscosities.) These drag coefficients have
not been computed, although the coefficient for an isolated particle translating along a
flat surface (k(d/a), non-dimensionalized by μaU) has been obtained as a function of
immersion depth and the viscosity ratio using either eigenfunction expansion (O’Neill,
Ranger & Brenner 1985), finite element (Danov et al. 1995; Danov, Dimova & Pouligny
2000), boundary integral (Fischer, Dhar & Heinig 2006; Pozrikidis 2007) or integral
transform methods (Dani et al. 2015; Dörr et al. 2016). In the pairwise interaction studies,
since the colloids straddling the interface are driven by capillary attraction, which is
centrosymmetric, the separation distance is given by a balance of the capillary interaction
force Fcap,‖ and the drag for mutual approach Fcap,‖ = μaf̂ 1(d/a, �/a). In Vassileva
et al. (2005), Dalbe et al. (2011), Boneva et al. (2007, 2009) and Dani et al. (2015), for
f̂ 1(d/a, �/a) the following approximation is used:

f̂ 1(d/a, �/a)

k(d/a)
≈ f̂1,∞(�/a)

6π
, (1.1)

where f̂1,∞(�/a)/6π is the drag coefficient for the pairwise approach of two particles
completely immersed in a liquid divided by the Stokes drag coefficient of an isolated
particle completely immersed in the liquid (both coefficients non-dimensionalized by
μaU). The pairwise interaction drag coefficients in an infinite medium for mutual
approach and the other three modes have all been computed (for a summary, see Jeffrey
& Onishi (1984) and Appendix A, § A.2). Note that for the gas/liquid interface, (1.1)
is exact (for all four modes) for the case of an immersion depth d/a = 1 and either a
gas/liquid interface or equal viscosities for the bounding phases. This follows from the
fact that for these cases, the shear stress on the fluid surface is zero, and this makes the
flow field underneath the interface exactly the same as the flow field around a sphere in
an infinite medium. For this reason, the isolated drag coefficient for a sphere straddling a
gas/liquid interface is 1/2 the drag on a sphere in an infinite medium, or 3π, and the drag
coefficients f̂ i(d/a, �/a) are equal to 1/2 the coefficients in an infinite medium, f̂i,∞(�/a),
as also follows from (1.1). (For equal viscosities and d/a = 1, k(d/a = 1) = 6π and
f̂ i(d/a, �/a) = f̂i,∞(�/a), in agreement with (1.1).) In Vassileva et al. (2005), Dalbe et al.
(2011), Boneva et al. (2007, 2009) and Dani et al. (2015), the measured separation distance
with time agreed with the theoretical prediction using (1.1), although the theory was tested
for liquid–liquid systems in which the viscosities were equal or not very disparate and
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hence the colloids interacted as if they were in a infinite medium, or the immersion depth
was close to d/a = 1 for a system with disparate viscosities acting as a gas/liquid interface.

Many experimental and theoretical studies have investigated hydrodynamic interactions
among multiple colloidal particles straddling a fluid interface. For external flows applied
to the interface, examples are: Laal Dehghani, Khare & Christopher (2017) and Barman
& Christopher (2016); they studied a surface shear (Couette) flow, undertaking a 2-D
Stokesian dynamics simulation which included the interparticle forces of capillary and
electrostatic repulsion, and later extended this work to study aggregation in the absence
of an imposed flow (Laal-Dehghani & Christopher 2019; Rahman, Laal-Dehghani &
Christopher 2019b; Rahman et al. 2019a). In these studies, pairwise hydrodynamic
interactions are accounted for by (1.1). For shear flow imposed across the interface, Vidal
& Botto (2017) examined theoretically the Stokes drag on a planar array of immobile
colloids straddling a gas/liquid interface (d/a = 1) by placing the array, fully immersed, at
the midplane of a channel with a shear flow and using the symmetry of the configuration to
find the drag on the particles at the gas/liquid interface as 1/2 the fully immersed drag. De
Corato & Garbin (2018) and Huerre, De Corato & Garbin (2018) examined microstructure
development for particles attached to a planar or spherical gas/liquid interface under
rapid surface expansion, and the related capillary attraction between these particles under
normal rapid periodic forcing in the inviscid rather than the Stokes limit.

Several studies have examined the 2-D self-organization of colloids attached to a fluid
interface as driven by interparticle interaction forces. Mesoscopic discrete element and
Brownian dynamics simulations equate the Stokes drag force on the particles to the
interparticle interactions and a stochastic Brownian force, see Nishikawa et al. (2003),
Fujita et al. (2004), Nishikawa et al. (2006), Millett & Wang (2011), and Uzi, Ostrovski
& Levy (2016). These studies, for colloids attached to planar fluid surfaces, focus on
simulating the self-organization, with detailed modelling (including the use of diffuse
interface theory) of the capillary attraction and electrostatic interaction forces, and of the
frictional forces with a solid surface beneath the interface if the fluid interface overlays
a substrate. But the effect of hydrodynamic interactions between the particles as in
figure 1(b), are not addressed, as the fluid drag forces on the particles are formulated using
the Stokes drag force on a single, isolated particle, kμaU, independent of the immersion
depth.

A model 2-D particle system for understanding interparticle interactions which has
attracted considerable attention consists of particles which are magnetized by an external
magnetic field. These particles are either attached to a gas/aqueous interface (e.g.
Vandewalle et al. 2012; Lumay et al. 2013; Vandewalle, Obara & Lumay 2013; Darras et al.
2018) or are completely wetted by an aqueous phase and lie in a liquid layer immediately
above an inverted planar meniscus (Zahn, Méndez-Alcaraz & Maret 1997; Rinn et al. 1999;
Zahn & Maret 1999; Kollmann et al. 2002; Löwen et al. 2005) or between two plates
(Du, Hilou & Biswal 2018; Hilou et al. 2018). When the field is applied normal to the
interface, the resultant magnetic dipoles repel each other, while when the field is applied
with a horizontal component, the magnetized particles can move in the surface plane.
Brownian dynamics simulations have been undertaken to model the experiments in which
the particles are completely submerged and translate next to the inverted fluid interface
and repel each other due to a normal magnetic field (Zahn et al. 1997; Rinn et al. 1999;
Kollmann et al. 2002). These simulations incorporate pairwise hydrodynamic interactions
in an infinite medium using the Rotne–Prager approach formulation, and demonstrate
by comparison with experiments that the self-diffusivity is enhanced by the presence
of hydrodynamic interactions for the repulsive r−3 interparticle potential corresponding
to the magnetic dipolar repulsion. The importance of incorporating hydrodynamic
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interactions in the dynamics of a colloid monolayer confined to the midplane between
two parallel walls is detailed in the Stokesian dynamics studies of Pesché & Nägele
(2000a,b) using different interparticle potentials. Pairwise hydrodynamic interaction was
accounted for using the drag coefficients for an infinite medium augmented to include
the interaction with the wall. Although in these later studies the particles are completely
immersed and not attached to the interface (and surface specific forces like capillary
attraction were not examined), they can be considered models for surface confined colloids
for the case in which d/a = 1 and the colloids are attached to a gas/liquid interface or an
interface bounding phases of equal viscosity. Similarly, Bleibel et al. (2014) highlighted
the importance of hydrodynamic interaction in the motion of colloid particles restricted
to a plane in a liquid by demonstrating that the hydrodynamic interaction can give rise
to anomalous fast diffusion. Lattice–Boltzmann methods have also been applied to model
the self-organization of magnetized colloids attached to an interface – e.g. Xie, Davies &
Harting (2016, 2017) examined, on planar and spherical fluid interfaces, the interaction of
magnetic ellipsoidal and Janus particles that are tilted (relative to the surface tangent) by
an external magnetic field to create surface deformation and capillary attraction. Although
the Lattice–Boltzmann method implicitly incorporates hydrodynamic interactions between
the particles, these effects are not specifically studied.

The above summary highlights the importance of accounting for hydrodynamic
interactions in describing the 2-D dynamics of colloids attached to a fluid interface. The
summary also notes that the inclusion of pairwise interaction has only approximately
been accounted for by using either the approximation (1.1), or by assuming d/a = 1 and
the interface to be a gas/liquid surface or a liquid/liquid interface with equal bulk phase
viscosities (in which case (1.1) is exact). The purpose of this study is to provide a more
exact treatment of pairwise interaction by numerically solving for the drag coefficients for
the four canonical motions of figure 1(b) as a function of the immersion depth, and to
assess the validity of (1.1) for all modes. In this way, we particularly aim to understand the
correct dependence of the drag coefficients on the immersion depth.

2. Formulation

We consider the general motion in quasi-steady Stokes flow of a pair of colloids of identical
radius a moving arbitrarily with velocities U1 and U2 along a fluid interface (figure 1a)
between a gas and an incompressible Newtonian liquid phase (viscosity μ). We solve only
for the translational motion of the colloids along the interface (contact line pinning is
assumed to prevent rotation). The fluid interface is assumed to be stress-free and remain
flat up to the contact lines on the particle surfaces, even as the particles move (small
capillary number), and the immersion depth d of the particle into the liquid, as defined
by its contact angle, is identical for both particles and remains constant as the colloids
translate along the surface. The mass conservation (incompressibility constraint) and the
Stokes field equations for flow in the underlying fluid are:

∇ · v = 0 (2.1)

−∇p + ∇2v = 0, (2.2)

where ∇2 is the Laplacian (non-dimensionalized by the particle radius a), v is the local
fluid velocity field non-dimensionalized by U which scales the magnitude of the velocities
U1 and U2, and p is the pressure normalized by μU/a, where μ is the viscosity of the
liquid.
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The velocity normal to the fluid surface is zero and the tangential shear stress is zero,
(I − nf nf ) · {∇v + (∇v)†} · nf = 0 where nf is the normal vector to the upper gas/liquid
interface, and the gradients in the fluid velocity are evaluated at the fluid interface. This
stress free condition is formulated for the two orthogonal tangential directions normal to
the fluid surface. At the surface of the particles, the normal component of the fluid velocity
at the surface, vs · n, where n is a unit normal (figure 1a) is equal to the normal component
of the particle velocity at the surface ((U i/U) · n = vs · n).

The hydrodynamic motion that we are studying in this manuscript assumes that the
contact line is pinned (due, for example, to surface roughness), and therefore the particles
only translate but do not rotate along the planar surface. Pinning of the contact line
indicates no relative motion between the solid and the surface, a no-slip condition. In
general, slip at the interface is formulated through a Navier slip condition with slip
coefficient λ:

t · (U i/U − vs) = λ
a

n · (∇v + ∇v†)s · t, (2.3)

where t is a unit tangent vector to the colloid surface (figure 1a), and λ = 0 corresponds
to no-slip. In our study, instead of assuming a zero slip coefficient, we use a small finite
value λ/a = 0.01. Our reason is related to our finite element technique utilized to obtain
numerical solutions (implemented with the COMSOL Multiphysics numerical software
package). For λ/a = 0.01, velocity gradients near the surface are reduced relative to the
no-slip case, and a less dense meshing is required near the surface to obtain converged
solutions for the translational drag coefficient. The finite element solution requires the
inversion of the matrix of constants that approximate the variables in the elements of the
mesh; the smaller the mesh, the smaller the matrix and the fewer iterations are required
to obtain an accurate inversion. The fewer the iterations, the smaller the computation
time. Some test solutions were undertaken with a zero slip condition for d/a = 1, and
these simulations required denser meshing and resulted in longer computational times
for obtaining solutions for the translational drag coefficients. Converged values for the
drag coefficient assuming a no-slip coefficient were within one or two per cent of the
values obtained for λ/a = 0.01. This in fact is consistent with O’Neill et al. (1985), who
obtained analytical calculations for the drag coefficient of a colloid straddling a gas/liquid
interface for a single particle symmetrically located at the interface. They showed that the
translational coefficient for a single particle for this case is 3π((1 + 2λ/a)/(1 + 3λ/a)) ≈
3π(1 − λ/a), and hence the no slip-coefficient is within one per cent of the value for the
drag coefficient for no-slip conditions.

The hydrodynamic flow generates a traction on the surface of the translating particle,
and for each flow realization (figure 1b) these are given (in non-dimensional form) by:

F P =
∫∫
©
ΓP

(σ · n) ds, (2.4)

where ΓP denotes the portion of the particle surface in contact with the liquid, and
σ = −pI + ∇v + ∇v† is the total stress tensor. From the computed traction, the drag
coefficients are computed as described further on. The hydrodynamic equations and
boundary conditions were solved using the COMSOL Multiphysics numerical software,
which uses the finite element method to solve the field equations and boundary conditions
as described in Appendix A. Appendix A also provides details of the validation of the
calculations.
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3. Results

In the following, we treat separately the hydrodynamics and calculated drag coefficients
for the two modes along the line of centres (§ 3.1) and the two modes perpendicular to the
line of centres (§ 3.2).

3.1. Motion along line of centres
Figure 2(a) shows a schematic of the two particles approaching each other along their line
of centres (z axis), one translating along the interface with velocity U in the positive z
direction and the other moving in negative z direction with velocity −U in the laboratory
frame (canonical motion ‘1’, figure 1b). Assuming that the liquid underlying the interface
is an aqueous phase, figure 3 demonstrates the magnitude of the flow field around the
two particles, either hydrophilic (θ = π/3, d/a = 1.5), neutral (θ = π/2, d/a = 1) or
hydrophobic (θ = 2π/3, d/a = 0.5), assuming the liquid is water. The plane shown is
the symmetry plane for the z motion, i.e. x = 0, with vx = 0. The colour scheme for the
flow field in the figure provides the magnitude of the velocity in the x = 0 plane scaled by
the colloid velocity U, i.e [v2

z + v2
y ]1/2/U. The flow field also shows vectors of the velocity

in this plane scaled by the velocities of the colloids, U. As would be expected, the more
hydrophilic the particle is, the greater its penetration in the liquid phase and the larger
is the hydrodynamic disturbance under the free interface. For the hydrophilic d/a = 1.5
and neutrally wetting (d/a = 1.0) immersion depths, the flow between the colloids is
a squeezing lubrication flow, with high velocity developing between the colloids. The
colloids can in principle touch (as their equators are on or below the interface), although
lubricating hydrodynamic stresses (see below) will prevent the contact. The maximum
velocity in the region between the colloids occurs slightly below their equator (and
down from the free surface), and interestingly, the magnitude of the velocity is low just
underneath the interface. The plane perpendicular to the interface and equidistant between
the two spheres (z = 0) is a plane of reflectional symmetry (a separatrix), with the velocity
in the z direction equal to zero and the y velocity as in figure 2(c), which accounts for
the removal of the fluid between the colloids. Since the velocity at the free interface
in the x direction is required to be zero (the interface remains flat), a maximum in the
y velocity develops downward, away from the interface. This maximum is largest for
the hydrophilic colloid, and is larger than the velocity of the particles (≈1.2U). In the
case of the hydrophobic particle, with less immersion into the liquid (d/a = 0.5), large
velocities along the reflectional symmetry plane are not developed because there is no
strong squeezing of the intervening liquid as the particles contact each other above the free
surface. For this case, the maximum in the y velocity is only half of the particle velocities.
It is worth noting that while the forces on two touching neutrally wetting and hydrophilic
particles are singular, they remain finite for hydrophobic spheres since the particles do not
contact in the liquid phase.

The (non-dimensional) hydrodynamic drag force (i.e. the drag coefficient) in the z
direction exerted on each of the particles by their mutual approach along their line of
centres is denoted by f̂1(�/a, d/a), where � is the separation distance and is calculated
from (2.4) for the approach realization, i.e. FP,z(�/a, d/a) = f̂1. Plotted in figure 2(b) for
three values of the immersion depth, is f1(�/a, d/a) = f̂1(�/a, d/a)/k(d/a), which is the
non-dimensional drag coefficient normalized by the (non-dimensional) drag coefficient
exerted on each of these particles when the separation distance �/a is very large
(the single particle drag coefficient, FP,z(�/a → ∞, d/a) = k(d/a)). The calculation of
k(d/a) is undertaken separately by locating only a single particle on the surface in the
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Figure 2. Motion along the line of centres for two particles, one translating in the negative z direction and with
velocity −U and the other in the positive z direction and with velocity U on the surface of a semi-infinite liquid
in the laboratory frame, (b) normalized drag coefficient, (v) velocity in the y direction and (d) pressure in the
plane x = 0 and along the mid-line as a function of y, as function of interparticle separation for hydrophilic (θ =
π/3, d/a = 1.5), neutral (θ = π/2, d/a = 1) and hydrophobic (θ = 2π/3, d/a = 0.5) particles, assuming the
liquid to be water.

computational domain. The single particle drag results are summarized in table 2
in Appendix A for the immersion depths d/a = 1.5, 1 and 0.5. The single particle
coefficients as given in table 2 show the expected result that as the immersion depth
increases, the drag coefficient increases and that, owing to symmetry, the coefficient for
the neutrally wetting case is one-half the Stokes drag coefficient for a particle moving in
an infinite medium, k(d/a = 1) = 3π. In interpreting figure 2(b), we note first that for
the neutrally wetting particle, due to symmetry, the drag coefficient should be equal to
1/2 the coefficient for two particles approaching along their line of centres in an infinite
medium ( f̂1,∞(�/a)). Calculations of f̂1,∞(�/a) have been undertaken, see Jeffrey &
Onishi (1984) and Boneva et al. (2007), and their results are given in Appendix A (§ A.2)
as this coefficient normalized by an isolated particle translating in an infinite medium,
f̂1,∞(�/a)/6π. In figure 2(b), f̂1,∞(�/a)/6π is plotted from Boneva et al. (2007), and it
is shown to agree with f1(�/a, d/a = 1), providing further verification of the COMSOL
calculations.

Figure 2(b) demonstrates that for colloids which are neutrally wetting or hydrophilic, a
large drag coefficient develops as the colloids come in close contact (�/a → 2). As in any
lubrication flow caused by the approach of two surfaces to each other, the large drag is
caused by the increased viscous resistance to removing the liquid in between the particles.
This resistance causes a large pressure to be developed between the colloids, as is clear in
figure 2(d), and the resulting large velocities in the gap are shown in figure 2(c). As the
particles approach touching, this resistance becomes infinite. However, for the non-wetting
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Figure 3. Streamlines and velocity maps for the motion in the x = 0 symmetry plane, for particles approaching
along their line of centres for hydrophilic, θ = π/3, d/a = 1.5, neutral, θ = π/2, d/a = 1 and hydrophobic
θ = 2π/3, d/a = 0.5 particles, assuming the liquid to be water for mutual approach along the line of centres.

colloid, which rides with its equator above the interface, the mutual approach to contact
is not accompanied by a complete removal of the fluid from between the particles. (The
particles in fact can contact above the interface.) As a result, the pressures required to
remove the liquid and velocity are much lower, and the drag coefficient asymptotes to a
constant value as �/a → 2. As a consequence of this very different behaviour between
the non-wetting and wetting spheres, the useful approximation for the non-dimensional
drag, f1(�/a, d/a) = f̂1(�/a, d/a)/k(d/a) ≈ f̂1,∞(�/a)/6π, (1.1), while exact for neutrally
wetting, is only approximate for d = 0.5 and d = 1.5. (Compare the Danov & Kralchevsky
(2010) expression for f̂1,∞(�/a)/6π in figure 2(b) with the simulations for the wetting and
non-wetting drag coefficients.)

Figure 4(a) shows a schematic of the two particles moving in tandem along their
line of centres (z axis), both translating along the interface with velocity U in the
positive z direction in the laboratory frame – canonical motion ‘2’ in figure 1(b). As
in figure 2, assuming that the liquid underlying the interface is an aqueous phase,
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Figure 4. (a) Schematic of motion along the line of centres for two particles, both translating in the positive
z direction and with velocity U on the surface of a semi-infinite liquid in the laboratory frame, (b) normalized
drag coefficient as function of interparticle separation, (c) velocity in the z direction and (d) pressure both
in the plane x = 0 and along the mid-line as a function of y for hydrophilic (θ = π/3, d/a = 1.5), neutral
(θ = π/2, d/a = 1) and hydrophobic (θ = 2π/3, d/a = 0.5), particles assuming the liquid to be water.

figure 5 demonstrates the magnitude of the flow field around two hydrophilic (θ = π/3,

d/a = 1.5), neutral (θ = π/2, d/a = 1) and hydrophobic (θ = 2π/3, d/a = 0.5) particles,
again assuming the liquid is water. Some of the features are the same as in figure 2. The
more hydrophilic the particle is, the greater its penetration in the liquid phase and the
larger the hydrodynamic disturbance under the free interface. Note, however, that unlike
figure 2, the liquid between the particles is not squeezed out, but entrained and moves at a
uniform velocity equal to the tandem velocities of the particles. This uniform motion of a
trapped region of fluid is also clear in figure 4(c), which plots the velocity in the z direction
along the y axis at the midplane between the particles (z = 0) and perpendicular to the
interface. Along this plane, for y depths below the surface and below the particles, the z
velocity rapidly drops to zero. The pressure along the midplane is plotted in figure 4(d),
and demonstrates that the pressures in the intervening fluid between the colloids are much
smaller, by an order of magnitude, when compared to the the squeezing flow of figure 2.
This is not surprising as the lubrication flow created when the particles approach acts to
drive fluid from between the particles through the narrow gap. In addition, all pressures
along the y axis at the midplane drop to zero at the value of y corresponding to the bottom
of the colloid.

The normalized drag coefficient f2(�/a, d/a) for the drag exerted on each of the
particles for their in-tandem motions, f2(�/a, d/a) = f̂2(�/a, d/a)/k(d/a), is plotted
as a function of �/a in figure 4(b). Here f̂2(�/a, d/a) is the non-dimensionalized
coefficient for the in-tandem realization ((2.4), i.e. FP,z(�/a, d/a) = f̂2). Note that the
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Figure 5. Streamlines and velocity maps for the motion in the x = 0 symmetry plane for hydrophilic (θ =
π/3, d/a = 1.5), neutral (θ = π/2, d/a = 1) and hydrophobic (θ = 2π/3, d/a = 0.5) particles assuming the
liquid to be water for tandem motion along the line of centres.

normalized coefficients for each of the immersion depths collapse to a single curve,
which is coincident with the curve from the expression of Jeffrey & Onishi (1984)
for the normalized drag exerted on spheres moving in a bulk medium with in-tandem
motion, f̂ 2,∞/6π, as detailed in Appendix A. Thus the approximation for the in-tandem
non-dimensional drag coefficient, f̂2(�/a, d/a)/k(d/a) = f̂ 2,∞(�/a)/6π, while exact for
neutrally wetting because of symmetry, is also an excellent approximation for the other
values of d/a.

3.2. Motion perpendicular to the line of centres
Figure 6(a) shows the schematic of the motion of the two colloids moving perpendicular
to the line connecting their centres and in opposite directions, as a shearing motion along
the surface. To describe the flow for this shearing motion, the magnitude of the velocity
is detailed as a birds-eye view, i.e. in the plane of the fluid interface (y = 0) (figure 7)
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Figure 6. (a) Schematic of motion perpendicular to the line of centres for two particles, one translating
in the positive x direction and with velocity U and the other in the negative x direction and with velocity
−U, on the surface of a semi-infinite liquid for hydrophilic (θ = π/3, d/a = 1.5), neutral (θ = π/2, d/a = 1)
and hydrophobic (θ = 2π/3, d/a = 0.5) particles (assuming the liquid is water) in the laboratory frame, (b)
normalized drag coefficient as function of interparticle separation, (c) velocity in the z direction along the
x-axis at the interface y = 0 and (d) shear stress τzx in the plane y = 0 and along the midline x axis.

and in the plane perpendicular to the interface (x = 0) as in the earlier two figures for the
motions along the line of centres (figures 2 and 4). In the birds-eye view, the velocity is
only in the x and z direction (as vy is equal to zero at the surface), while in the plane x = 0
the motion is fully three dimensional. In agreement with the squeezing motion in figure 2,
when the particles approach each other along their line of centres, the hydrodynamic
disturbance increases with the immersion depth (figure 7). Because of the anti-symmetry
in the shearing motion, the velocity in the birds-eye view at the surface (y = 0) and along
the midline between the particles (x axis) is only in the z direction and antisymmetric with
respect to x, becoming equal to zero at the point on the centreline between the spheres,
i.e. the origin x = 0 (figure 6c). From the origin, for increasing x/a, vz increases to a
maximum (approximately one diameter from the origin), and then subsequently decreases
to zero (see figures 7 and 6c). The non-dimensional shear stress (τxz, scaled by μU/a) in
the plane y = 0 and along the midline (x axis) is plotted in figure 6(d) as a function of x/a.
Note that along the free surface, y = 0, τyx and τyz are equal to zero because the interface is
stress free and hence τxz is the only component of the shear at the free interface. It is clear
that along the midline between the particles (x axis) as the origin is approached (x = 0),
the shear stress τxz becomes a maximum for all contact angles because the distance of
separation between the colloids (edge-to-edge) is the smallest. Note that since the neutral
wetting has the smallest separation, the shear stress is the largest at the origin with a
peak non-dimensional value of ≈4.0, while the peak stress values for the particles with
the other two contact angles are lower. Interestingly, while it can be expected that the
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Figure 7. Streamlines and velocity maps for the motion for a birds-eye view in the plane of the surface (y = 0)
and and in a plane perpendicular to the surface (x = 0) for shear motion perpendicular to the line of centres
for hydrophilic (θ = π/3, d/a = 1.5), neutral (θ = π/2, d/a = 1) and hydrophobic (θ = 2π/3, d/a = 0.5)
particles (assuming the liquid is water).

peak shear stress for the hydrophobic and hydrophilic particles is less than the neutrally
wetting value because they are both at greater separation, the peak corresponding to
the hydrophobic particle is much less (≈1.2 for d/a = 0.5 and ≈3.3 for d/a = 1.5) since
the hydrophobic particle only skims along the surface, and the velocity gradient is less at
the origin, see figure 7. The maximum (non-dimensional) shear stress value of 4.0 for the
neutrally wetting particle can be rationalized as the difference in velocities between the
two particles (2U) divided by the gap separation distance (0.5a).

The normalized drag coefficient f3(�/a, d/a) for the drag exerted (in the x-direction) on
each of the particles for their perpendicular motion, f3(�/a, d/a) = f̂3(�/a, d/a)/k(d/a),
where f̂3(�/a, d/a) is the non-dimensionalized coefficient ((2.4), i.e. FP,x(�/a, d/a) = f̂3),
is plotted as a function of �/a in figure 6(b). As the hydrophilic and neutrally wetting
particles approach (�/a → 2), this resistance becomes dramatically high and tends to
infinity. However, for the non-wetting colloid, which translates with its equator above
the interface, the shear stress goes to a constant value as the separation distance tends
to zero (�/a → 2) because the particles do not touch each other as in the previous case
of the mutual approach along the line of centres (figure 3). Because of the symmetry for
the neutrally wetting spheres, the normalized drag coefficient f3(�/a, d/a) is equal (see
figure 6b) to that computed by Jeffrey & Onishi (1984) for the drag exerted on particles
in an infinite medium moving perpendicular to their line of centres and in opposite
directions, f̂3,∞(�/a)/6π, as detailed in Appendix A. However, as with the case for the
squeezing flow of two approaching colloids, the normalized drag coefficients for the other
two wetting angles do not collapse to the Jeffrey & Onishi (1984) expression. Note that
clearly in the case of partial wetting, the normalized drag for the particles moving along
the surface asymptotes to a constant value as �/a → 2, but the Jeffrey & Onishi (1984)
expression is divergent in this limit. Hence the approximation for the non-dimensional
drag, f̂3(�/a, d/a)/k(d/a) = f̂ 3,∞(�/a)/6π, while exact for neutrally wetting, is only
approximate for d = 0.5 and d = 1.5, which is the identical conclusion arrived at for the
squeezing flow caused by mutual approach.
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Figure 8. (a) Schematic of motion perpendicular to the line of centres for two particles, both translating in the
(minus) x direction and with velocity U, on the surface of a semi-infinite liquid for hydrophilic (θ = π/3, d/a =
1.5), neutral (θ = π/2, d/a = 1) and hydrophobic (θ = 2π/3, d/a = 0.5) particles (assuming the liquid is
water), in the laboratory frame, (b) normalized drag coefficient as function of interparticle separation, (c)
velocity in the x direction in the plane x = 0 as a function of y and (d) pressure in the plane y = 0 and along
the mid-line, z = 0.

Figure 8(a) shows the schematic of the motion of the two colloids moving perpendicular
to the line connecting their centres and in tandem. Flow fields are given for this motion
in a birds-eye view on the interface (y = 0) and in the plane x = 0 perpendicular to the
interface (figure 9). The birds-eye view demonstrates clearly that the in-tandem motion,
which is symmetric about the midline (x axis), causes liquid between the colloids to be
caught and move in the x direction approximately at the particle velocity for the hydrophilic
and neutrally wetting colloids. For the hydrophobic particles, whose hydrodynamic
disturbance due to the in-tandem motion is generally smaller than the other two contact
angles, the fluid caught between the spheres moves at a smaller velocity (≈0.6–0.8 of the
particle velocity) and hence is left behind as the particles move in the x direction. (The
perspective shown in the plane x = 0 provides a similar conclusion, as does the plot of the
velocity in the x direction, figures 9 and 8c.)

The non-dimensional pressure (P, scaled by μU/a) in the plane y = 0 and along the
midline x axis is plotted in figure 8(e) as a function of x/a. Because of the symmetry – in
the birds-eye view – in this in-tandem motion, the pressure along the midline between the
particles (x axis) is antisymmetric with respect to x, becoming equal to zero at the point on
the centreline between the spheres, i.e. the origin z = 0 (figure 8d). An understanding of
this pressure profile can be obtained by considering the in-tandem perpendicular motion
to be the sum of two flows: in the first case, the upstream velocity is U in the minus
x direction with the spheres immobile (i.e. the reference frame of the particles) and in
the second the spheres and fluid are moving at a uniform velocity U in the positive x
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Figure 9. Streamlines and velocity maps for the tandem motion perpendicular to the line of centres, for a
birds-eye view on the surface y = 0 and perpendicular to the surface (x = 0) for hydrophilic (θ = π/3, d/a =
1.5), neutral (θ = π/2, d/a = 1) and hydrophobic (θ = 2π/3, d/a = 0.5) particles (assuming the liquid is
water).

direction (uniform motion). The pressure field for the uniform motion is equal to zero, and
hence the pressure field in the particle frame is the field observed in figure 8(d). Far from
the spheres (x/a approximately 10 and larger) the pressure is zero, and it then increases
with decreasing x/a up to a maximum at x/a ≈ 1. The increase in pressure represents
the viscous resistance countering the movement of liquid through the gap between the
spheres. The viscous resistance decreases as the liquid passes through the gap and opens
up, and the pressure correspondingly decreases and becomes negative (−1 < x/a < 0)
before asymptoting to zero for x/a < −10. Although the neutrally wetting particles have
the smallest separation, the highest pressure is developed by the hydrophilic particle ≈0.7,
since more of the sides of the particles are exposed to the liquid squeezing through the
gap, and the viscous resistance is the highest.

The normalized drag coefficient f4(�/a, d/a) for the drag exerted on each of the
particles for their perpendicular-tandem motion, f4(�/a, d/a) = f̂4(�/a, d/a)/k(d/a),
where f̂4(�/a, d/a) is the non-dimensionalized coefficient ((2.4), i.e. FP,x(�/a, d/a) = f̂4),
is plotted as a function of �/a in figure 8(b). Note that the normalized coefficients for
each of the immersion depths collapse to a single curve, which is coincident with the
curve from the expression of Jeffrey & Onishi (1984) for the drag exerted on spheres
moving in a bulk medium in perpendicular tandem motion, f̂ 4,∞/6π, as detailed in
Appendix A. Thus, the approximation for the perpendicular tandem non-dimensional drag
coefficient, f̂4(�/a, d/a)/k(d/a) = f̂ 4,∞(�/a)/6π, which is exact for the neutrally wetting
case because of symmetry, is also valid for the other values of d/a.

4. Discussion and conclusion

This study has focused on the hydrodynamic interaction of two identical particles (radius
a) floating on a flat gas–liquid interface (low capillary number). The particles are assumed
to translate only along the surface with the particle immersion depth (d, as determined
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from the contact angle or particle wettability) assumed fixed. The hydrodynamic resistance
coefficients for Stokes flow corresponding to the complete set of pairwise relative motions
have been calculated as a function of the interparticle separation distance (�) and the
particle immersion depth (d). These are (figure 1b) relative motions ‘2’ and ‘4’ for
in-tandem motion along (‘2’) and perpendicular (‘4’) to the line of centres, and ‘1’ and ‘3’
for oppositely directed motion along (‘1’) and perpendicular (‘3’) to the line of centres. For
each relative motion at a particular immersion depth, we have defined a scaled resistance
or normalized drag coefficient fi(�, d/a), i = 1 . . . 4 which is the resistance coefficient
divided by the drag coefficient of an isolated particle translating along the surface at
the same immersion depth (k(d/a)). For in-tandem motions, we found that the scaled
resistance coefficients for different immersion depths collapse into one curve as a function
of separation distance. These curves correspond to the curves of Jeffrey & Onishi (1984)
for the normalized hydrodynamic drag coefficients of two particles moving in-tandem and
completely immersed in a liquid, f̂2,∞(�/a)/6π, along line of centres and f̂4,∞(�/a)/6π,
perpendicular to line of centres, as normalized by the drag of an isolated, completely
immersed particle. For oppositely directed motions, the scaled resistance coefficients
do not collapse for different immersion depths to the corresponding normalized drag
coefficient curves for particles in an infinite medium ( f̂i,∞(�/a)/6π, i = 1 and 3). These
scaled resistances are a strong function of the immersion depth. In particular when the
particle preferentially wets the liquid (contact angles less than π/2), the scaled resistance
increases without bound as the separation distance tends to zero because of the unbounded
increase in the lubrication forces. For oppositely directed motions in which the particle
resides predominantly in the gas phase, the scaled resistance tends to a finite value at zero
separation since at contact, the fluid remains entrained in the gap between the particles.
Only for neutral wetting do the scaled resistances collapse to the curves for particles
immersed in an infinite medium, due to the symmetry of the motion.

The drag coefficients that we have obtained – f̂i(�/a, d/a) (i = 1, . . . 4) – for the
complete set of relative motions can be directly used to calculate the trajectories of particle
pairs straddling an interface and subject to either external or interparticle forces along
the plane of the surface. If the forces create oppositely directed motions (e.g. ‘1’ or
‘3’), the dependence of the drag coefficients on the immersion depth (or contact angle)
which have been detailed can have a very significant effect on the resultant trajectories.
To illustrate this, we examine pair trajectories when the particles are subject to a capillary
force arising from surface roughness. In this case, an interparticle force arises because
the particle roughness creates a deformation around each particle as the liquid meniscus
attaches to an undulating contact line (figure 10a). The overlap of these deformations in
the gap between the particles creates a force between the particles (Stamou et al. 2000;
Kralchevsky, Denkov & Danov 2001; Loudet et al. 2005; Danov & Kralchevsky 2010). In
the case in which gravitational effects are negligible, this capillary attraction force is the
dominant interaction. (Gravitational effects become important when the Bond number,
Bo = �ρga2/γ (here �ρ is the absolute value of the density difference between the
particle and liquid) becomes order one or larger.) For the capillary attraction induced by
contact line deformation, if we consider the interface to be pinned in small displacements
about a circular contact line representing an (average) equilibrium wetting with contact
angle θ and contact radius rc = a sin θ , then the capillary force can be calculated as a sum
of contributions corresponding to each of the wavenumbers in a Fourier decompositon of
these displacements. The leading order interaction is the second mode of displacement for
each colloid; for the case in which the displacements are in phase, the force is attractive
and largest with the interaction energy quadrapolar and the force, Fcap,‖, centrosymmetric,
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Figure 10. (a) Surface roughness causes an undulating contact line which deforms the interface and creates a
capillary attraction force, and (b) dimensional interparticle separation (�) as a function of time (t) for the mutual
approach of two colloids along their line of centres driven by the capillary attraction (4.1) for a = 10 μm and
H = 10 nm.

and given dimensionally by:

Fcap,‖ = −48πγ H2a4 sin4 θ

l5
, (4.1)

where H is the amplitude of the second mode in the decomposition and assumed to be the
same for both colloids, γ is the gas/liquid surface tension and � the separation distance.
Hence two particles which are oriented with their deformations in phase will only move
towards each other in mutual approach, and their separation distance as a function of time
(t) is given (neglecting inertial effects) by a balance between the capillary force (4.1) and
the hydrodynamic drag for mutual approach (μaf̂1(�/a, d/a)(1/2)(dl/dt)),

μaf̂1(�/a, d/a)
1
2

dl
dt

= −48πγ H2a4 sin4 θ

l5
. (4.2)

Integrating (4.2) provides the interparticle separation as a function of time. The results
are shown, for the three contact angles, dimensionally in figure 10(b) for colloids with
a = 10 μm, H = 10 nm, μ = 0.001 Kg m−1 s−1 (water) and γ = 72 mN m−1 (clean
air/water surface). The integration is begun at an initial separation of 5a and ends when
� = 2.1a. The more the particle is immersed into the liquid phase, the longer the time to
contact due to the reduced capillary attraction and the larger hydrodynamic resistance. It
is seen that the hydrophobic colloids (θ = 120◦) take 1.5 s to come to the nearly touching
separation of � = 2.1a, while the neutrally wetting colloids (θ = 90◦) come together in
15 s and hydrophilic colloids (θ = 60◦) come together in the longest time (125 s). The
hydrodynamic interaction between the particles does become important as the separation
decreases, and we observe this from the shape of the trajectories if plotted linearly rather
than logarithmically in time. In this case, the separation distance decreases very rapidly
for the hydrophobic colloids relative to the hydrophilic ones.

The correct modeling of this pairwise hydrodynamic interaction is a necessary
building block in efforts to simulate the evolving microstructure of surface-adsorbed
colloids in applications in which either (i) the colloids are subject to in-plane surface
forces to organize or assemble them into desired mesostructures or (ii) an underlying
externally imposed hydrodynamic flow induces particle structure on a fluid interface
(e.g. Laal Dehghani et al. 2017). We envision that the primary use of our study is to
implement accurate simulations of the assembly process in which the hydrodynamic
resistance forces are described as pairwise and account for relative lubrication, shearing
and in-tandem motions as well as dependence on the immersion depth. As an
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ηmax

a
ηmin

a
ξmax

a
ξmin

a
k(d/a = 1)

0.1 0.01 0.05 0.005 9.67
0.09 0.009 0.05 0.005 9.56

Table 1. Mesh Refinement for an isolated translating particle.

example, this methodology can be implemented to study the formation and deformation
of crystalline particle interfacial microstructures under various steady and pulsatile
underlying flows. Additionally, in coalescence of droplets in Pickering emulsions,
dilatational deformation at the interface is of high importance in stabilizing droplets
with low or inhomogeneous particle coverage (Vignati, Piazza & Lockhart 2003),
and the redistribution of particles on the droplet surfaces can be described with this
approach.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.170.
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Appendix A

A.1. Numerical solution methods and computation parameters
To undertake the simulations, spherical colloids of equal radius a, straddling the interface
and translating along the z axis (line of centres) or the x axis (perpendicular to the line of
centres) are located in the computational domain of a rectangular box in which the depth in
the z direction is 35a. For motion in the z direction, the box extended 70a in the x direction
and 250a in the z as shown in figure 11(a). As the gas phase is assumed to exert negligible
tractions on the part of the colloid in contact with the gas, the particle boundaries
are constructed as sections of spheres with immersion depths d into the liquid phase.
The spheres are placed equidistant from the origin, a distance � apart (centre-to-centre)
and at the top of the computational domain which represents the gas/liquid interface
(figure 11a). The velocities are then prescribed for the z motion (approach or in-tandem).
Gradients in velocity are set equal to zero (symmetry conditions) along the sides of the box
perpendicular to the x and y directions to simulate infinite conditions. In the flow direction
(entrance and exit perpendicular to the z-direction), the flow velocity was set equal to zero
on one side and the pressure on the opposite side. The dimensions shown allowed the drag
of 3π for a single particle for d/a = 1 on an unbounded surface in x and z and above
a semi-infinite phase in y to be obtained to within a few per cent. Reduction of the box
size to 200a by 60a (in x) and by 30a in depth led to values of the drag coefficients that
changed by less than one per cent. To obtain these results, an asymmetry in dimension was
necessary with a much larger length required in the flow direction to allow the velocity to
relax to zero. In the other directions, the symmetry conditions required a smaller distance
to obtain the single particle drag result. The box was similarly constructed for motion in
the x direction, with the flow direction (now x) extending 250a and the sides perpendicular
to the z direction set a distance 70a.
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y

Figure 11. (a) Computational domain depicted for hemispherical sections (d/a = 1), and (b) top view of a
fully resolved mesh on the free interface for approach and d/a = 1 and �/a = 2.5.

d/a k(d/a) Literature

0.5 6.79 7.06a

— 6.22c

1 9.56 3π

1.5 11.92 11.78b

— 11.77c

Table 2. Drag coefficients for isolated translating particles.
aPozrikidis (2007).
bDani et al. (2015).
cDörr et al. (2016).

Solutions for the fluid flow are obtained by using COMSOL Multiphysics version
5.2 finite element solver. The volume of the computational domain is discretized
into tetrahedral elements by first applying triangular meshes to the surfaces and then
subdividing the volume into tetrahedra. In setting up the simulation, the maximum and
minimum sizes for the lengths of the surface (ηmax/a and ηmin/a, respectively) and contact
line edge elements (ξmax/a and ξmin/a) are specified, and the triangular mesh on the
surface and tetrehedral mesh in the volume are then constructed. The Stokes equations are
then solved on this mesh using finite-element approximation, and a convergence criterion
for the inversion of the finite element matrix is set to 0.0001 % relative error tolerance.
(Typically less than 20 iterations are necessary to reach convergence.)

The drag coefficient is computed and revised to asymptotic convergence through mesh
refinement. An iteration procedure is implemented in which the parameters for the surface
and edge elements of the mesh are reduced and the drag coefficient recomputed until
the recomputed values differ by less than 2 % from the previous iteration. To validate
the calculations, the translation of an isolated particle at different immersion depths
is simulated and the drag coefficient (k(d/a)) is calculated. In table 1 are given, as
illustration of the meshing refinement, the last two iterations in the calculation of the
isolated drag coefficient k(d/a) for d/a = 1 where the theoretical value for k is 3π
owing to the symmetry. In table 2 are summarized the converged values for k(d/a) for
the three values of the immersion depth d/a studied, and comparisons with either the
theoretical value (for d/a = 1), or literature values using a boundary integral technique
(for d/a = 0.5) (Pozrikidis 2007), a transform technique (for d/a = 1.5) (Dani et al.
2015) or an expansion about d/a = 1, for d/a = 0.5 and d/a = 1.5 (Dörr et al. 2016).
The computed values are within about 5 % of the literature values. A further validation
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ηmax

a
ηmin

a
ξmax

a
ξmin

a
f1(d/a = 1, l/a = 2.2) f3(d/a = 1.5, l/a = 2.2)

0.1 0.01 0.05 0.005 4.199 2.169
0.09 0.009 0.05 0.005 4.209 2.142

Table 3. Mesh Refinement for two colloidal particles (a) when they approach each other (b) translating in
opposite directions perpendicular to their lines of centres.

Mesh parameter Translating sphere

Number of Mesh Vertices 7537
Number of Tetrahedral Elements 36 990
Number of Triangular Elements 5154
Number of Edge Elements 272

Table 4. Mesh Statistics for two translating spheres at convergence for the case of approach with d/a = 1 and
�/a = 2.5.

of the calculations for the two particle interactions are the results as noted in §§ 3.1
and 3.2 that for d/a = 1, the normalized drag coefficients for the canonical motions
( fi(�/a, d/a = 1)) should correspond exactly with the normalized coefficients in the
infinite medium (i.e. fi,∞(�/a)) as required by symmetry. The plots of the drag coefficients
for d/a = 1 show this agreement, and in particular for the case in table 3 for �/a = 2.2,
f1(d/a = 1, l/a = 2.2) is within 3 % of Boneva et al. (2007). In figure 11(b), for �/a = 2.5
and d/a = 1, is depicted, as an illustration, the surface mesh of triangular elements for the
free interface at convergence for the case of approaching colloids. For this case, table 4
details the number of mesh vertices, the number of tetrahedral volume elements, and the
numbers of surface triangular and edge elements.

A.2. Drag coefficients for completely immersed particles
For motions along the line of centres (figure 1b and § 3.1), two spheres straddling the
surface either approach each other with equal but opposite velocities or move in tandem
with equal velocities. The drag coefficients for these cases, when the spheres are immersed
in an infinite medium, are f̂1,∞ and f̂2,∞, respectively. For f̂1,∞ the expression is formulated
as Jeffrey & Onishi (1984):

f̂1,∞/6π = XA
11 − XA

12 (A1)

When the spheres are far apart �/a 	 1,

XA
11

(
l
a

)
=

∞∑
k=0

f2k

(
2l
a

)−2k

, (A2)

XA
12

(
l
a

)
= −

∞∑
k=0

f2k+1

(
2l
a

)−2k−1

(A3)

with f0 = 1, f1 = 3, f2 = 9, f3 = 19, f4 = 93, f5 = 387, f6 = 1197, � is the centre to centre
inter-particle separation. For nearly touching spheres, using lubrication theory, Jeffrey &
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Onishi (1984) report:

XA
11 = g1

(
1 − 4

(
l
a

)−2
)−1

− g2 ln

(
1 − 4

(
2l
a

)−2
)

− g3

(
1 − 4

(
2l
a

)−2
)

ln

(
1 − 4

(
2l
a

)−2
)

+ f0 − g1

+
∞∑

m=2, m even

[
2−m(2)−m fm − g1 − 2m−1g2 + 4m−1m−1

1 g3

](2a
l

)m

, (A4)

where m1 = −2δm2 + (m − 2)(1 − δm2), g1 = (2)−2, g2 = 1.8(2)−3, g3 = 9 1
42 (2)−3

−XA
12 = 2

(
l
a

)−1

g1

(
1 − 4

(
l
a

)−2
)−1

+ g2 ln

(
l
a + 2
l
a − 2

)

+ g3

(
1 − 4

(
l
a

)−2
)

ln

⎛
⎜⎝

l
a

+ 2

l
a

− 2

⎞
⎟⎠+ 4g3

(
l
a

)−1

+
∞∑

m=1, m odd

[
2−m(2)−m fm − g1 − 2m−1g2 + 4m−1m−1

1 g3

](2a
l

)m

. (A5)

The above expressions are found to be consistent, over the complete range of �, with the
fitting obtained by Boneva et al. (2007) from a bispherical solution to the problem

XA
11 − XA

12 =
(

1 + a
2(l − 2a)

)[
1 + 0.3766 exp

[
−(ln(l − 2a) − ln a + 0.6789)2

6.297

]]
.

(A6)
For spheres which move in tandem along their line of centres in an infinite medium

(figure 1b and § 3.1), the drag coefficient ( f̂2,∞) is given by

f̂2,∞/6π = XA
11 + XA

12, (A7)

where the expressions for XA
11 and XA

12 are given above.
For motion perpendicular to the line of centres (figure 1b and § 3.2), the drag coefficients

in an infinite medium for spheres moving in opposite directions ( f̂3,∞) is given from
Jeffrey & Onishi (1984) by

f̂3,∞/6π = YA
11 − YA

12; (A8)

for widely separated spheres by

YA
11 =

∞∑
k=0

f2k(2)−2k
(

l
a

)−2k

, (A9)

YA
12 = −

∞∑
k=0

f2k+1(2)−2k−1
(

l
a

)−2k−1

; (A10)
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and for nearly touching spheres by

YA
11 = g2 ln(ξ−1) + AY

11 + g3ξ ln(ξ−1), (A11)

−YA
12 = g2 ln(ξ−1) − 1

2
AY

12 + g3ξ ln(ξ−1), (A12)

where m1 = −2δm2 + (m − 2)(1 − δm2), g1 = 2−2, g2 = 6 4
15(2)−3, g3 = 0.

For spheres which move in tandem perpendicular to their lines of centres (figure 1b and
§ 3.2), the drag coefficient in an infinite medium f̂4,∞ is given by

f̂4,∞ = YA
11 + YA

12, (A13)

where the expressions for YA
11 and YA

12 are given above.
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