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On Extensions for Gentle Algebras

İlke Çanakçı, David Pauksztello, and Sibylle Schroll

Abstract. We give a complete description of a basis of the extension spaces between indecomposable
string and quasi-simple bandmodules in themodule category of a gentle algebra.

Introduction

he representation theory of ûnite-dimensional algebras plays an important role in
many diòerent areas ofmathematics, such as in Lie theory, in number theory in con-
nection with the Langlands program and automorphic forms, in geometry ranging
from invariant theory to non-commutative resolutions of singularities, and as far
aûeld as harmonic analysiswhere the representation theory of S1 appears in the guise
of Fourier analysis.

Most ûnite-dimensional algebras are ofwild representation type; that is, their rep-
resentation theory is at least as complicated as that of the free associative algebras
in two generators. An algebra that is not wild is of tame representation type. One
particular class of tame algebras, the so-called gentle algebras, appear in a surprising
number of diòerent contexts. For example, in the context of Fukaya categories related
to Kontsevich’s homological mirror symmetry program [14, 21, 23], of dimer models
[6], of the enveloping algebras of Lie algebras [16], and in the context of cluster theory
as (m-)cluster tilted and m-Calabi Yau tilted algebras and also as Jacobian algebras
associated with unpunctured surfaces [2,4, 13,20]. Furthermore, the class of derived-
discrete algebras consists of gentle algebras [27].
But there are many other reasons why gentle algebras have been studied exten-

sively. One of themain reasons being that they are string algebras and that their inde-
composable representations are classiûed by string and band modules [28]; see also
[8]. he associated string combinatorics governs the representation theory of gen-
tle algebras; examples of this are the classiûcation of morphisms between string and
band modules [12, 19] and a characterisation of almost split sequences in terms of
string combinatorics [8]. Over the last few years, interest in gentle algebras has in-
tensiûedwith many new results appearing; an example of this is the recentwork [24],
where string combinatorics is used to classify support τ-tilting modules.
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Another reason for the extensive investigation of gentle algebras is the fact that they
are derived tame, and the indecomposable objects in the derived category of a gentle
algebra have been classiûed. hey are given by the so-called homotopy strings and
bands [5]. In [1], the morphisms between string and band complexes in the derived
category of a gentle algebra were characterised in terms of homotopy string combi-
natorics and in [9, 10] a graphical mapping cone calculus based on the morphisms
described in [1] was developed.
Extensions betweenmodules are one of the fundamental cohomological tools. Not

only do they play an essential role in the deûnition of, for example, theYoneda algebra
orHochschild cohomology, they are also essential inmany of thenewer developments
in representation theory such as cluster tilting in cluster theory.

he projective resolutions of indecomposablemodules over gentle algebras arewell
understood; see, for example, [18]. So it is surprising that up to now, in general, no
complete combinatorial description of the extensions between indecomposablemod-
ules over a gentle algebra is known. A description of certain combinatorially deûned
extensions between string moduleswas given in [25];wewill refer to these extensions
as arrow and overlap extensions. In [29], itwas shown that the existence of such exten-
sions is a necessary and suõcient condition for the non-vanishing of the Ext1-space.

However, it has remained an open problem for almost twenty years whether these
extensions form a basis of the Ext1-space between string modules and what the ex-
tensions involving bandmodules are. In fact, it has become apparent that string com-
binatorics in themodule category of a gentle algebramight not be enough to answer
this question. his has been conûrmed further by the recent results in [11], where,
based on arguments using the associated cluster category, it was shown that in the
context of gentle Jacobian algebras of quivers with potential, the extensions between
string modules described in [25] do indeed give a basis.

In this paper, we answer this open question by giving, for any gentle algebra, a
basis of the extension space between indecomposable modules. More precisely, we
explicitly determine the cohomology of the indecomposable objects in the bounded
derived category of a gentle algebra given in terms of homotopy strings and bands.
Building on thiswe give a complete description of the extension space between string
and quasi-simple bandmodules by giving a combinatorial description of a basis. We
do this by working not in themodule category of a gentle algebra, but we transfer the
problem into the derived category, where we are able to use the graphical mapping
cone calculus developed in [9, 10]. We now state our main results; for the relevant
deûnitions and details on notation, see Section 1 and Deûnition 3.1. hroughout the
sequel, k will be an algebraically closed ûeld and Λ = kQ/I will be a gentle algebra.

heorem A LetΛ be a gentle algebra and let v andw be stringswith M(v) andM(w)
the corresponding string modules over Λ. he collection of arrow and overlap extensions
of M(v) by M(w) form a basis of Ext1Λ(M(v),M(w)).

In Figure 1,we give a graphical representation of the strings in an arrow and overlap
extension.

We note that in concurrent work [7], which builds on [22], a basis for extensions
between string modules over a gentle algebra is also given using diòerent techniques.
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Extensions

Figure 1: Presentation in terms of strings of an overlap extension (top picture) and an arrow
extension (bottom picture) where for an arrow a ∈ Q1 , we denote its formal inverse by a.

When a band is involved, there are no arrow extensions, only overlap extensions.
An extension involving both a string module and a bandmodule has only one inde-
composable module as its middle term. An extension involving two band modules
can have as its middle term the direct sum of many indecomposable band modules.
he following theoremsdescribe the situation involving bandmodulesmore precisely.
Given a band b and a scalar µ ∈ k∗,we denote the associated quasi-simple bandmod-
ule by B(b, µ). A useful comparison for the following statements is the corresponding
statements for mapping cones of quasi-graph maps involving a band complex given
in [10]. In the following, for a band b, denote by ∞b∞ (resp. ∞b, resp. b∞) the string
obtained from b by repeatedly concatenating b with itself both on the le� and on the
right (resp. on the le�, resp. on the right).

heorem B Let Λ be a gentle algebra, let v be a string, and let (b, µ) be a band with
µ ∈ k∗. Suppose that v and ∞b∞ admit decompositions

v = vLBmAvR and ∞b∞ = ∞bbLDmCbRb∞ ,

where A, B,C ,D ∈ Q1 with C ≠ ∅ ≠ D and vL , vR , m, bL and bR are (possibly trivial)
strings satisfying the conditions of Deûnition 3.1(ii).
(i) If, a�er suitable rotation of b,m is a proper subword of b, then there is a non-split

overlap extension

0Ð→ B(b, µ)Ð→ M(u)Ð→ M(v)Ð→ 0,

where u = vLBmCbRbLDmAvR is a string.
(ii) If b is a subword of m, then a�er suitable rotation of b, there is a decomposition

b = b2b1 such that m = bkb2 for some k ≥ 1, and there is a non-split overlap
extension

0Ð→ B(b, µ)Ð→ M(u)Ð→ M(v)Ð→ 0,

where u = vLBbk+1b2AvR is a string.
Moreover, the collection of such extensions forms a basis of Ext1Λ(M(v), B(b, µ)).
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heorem C Let Λ be a gentle algebra, (c, λ) be a band with λ ∈ k∗ andw be a string.
Suppose that ∞c∞ and w admit decompositions

∞c∞ = ∞ccLBmAcRc∞ and w = wLDmCwR ,
where A, B,C ,D ∈ Q1 with A ≠ ∅ ≠ B and cL , cR , m, wL and wR are (possibly trivial)
strings satisfying the conditions of Deûnition 3.1(ii).
(i) If, a�er suitable rotation of c, m is a proper subword of c, then there is a non-split

overlap extension

0Ð→ M(w)Ð→ M(u)Ð→ B(c, λ)Ð→ 0,

where u = wLDmAcRcLBmCwR is a string.
(ii) If c is a subword of m, then a�er suitable rotation of c there is a decomposition

c = c2c1 such that m = cℓc2 for some ℓ ≥ 1, and there is a non-split overlap
extension

0Ð→ M(w)Ð→ M(u)Ð→ B(c, λ)Ð→ 0,
where u = wLDcℓ+1c2CwR is a string.

Moreover, the collection of such extensions forms a basis of Ext1Λ(B(c, λ),M(w)).

heorem D Let Λ be a gentle algebra and let (b, µ) ≠ (c, λ) be bandswith λ, µ ∈ k∗.
Suppose that ∞c∞ and ∞b∞ admit decompositions

∞c∞ = ∞ccLBmAcRc∞ and ∞b∞ = ∞bbLDmCbRb∞ ,
where A, B,C ,D ∈ Q1 are each nonempty and cL , cR ,m, bL , and bR are (possibly trivial)
strings satisfying the conditions of Deûnition 3.1(ii). hen either
(i) m is a proper subword of b, i.e., a�er suitable rotation of b there is a decomposition

b = mv; or,
(ii) b is a subword of m; i.e., a�er suitable rotation there is a decomposition b = b2b1

such that m = bkb2,
and, either,
(iii) m is a proper subword of c; i.e., a�er suitable rotation of c there is a decomposition

c = mw; or,
(iv) c is a subword of m, i.e., a�er suitable rotation there is a decomposition c = c2c1

such that m = cℓc2.
hen there is a band d and an integer t ≥ 1 such that

d t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mvmw if (a) and (c),
mvc2c1 if (a) and (d),
b2b1mw if (b) and (c),
b2b1c2c1 if (b) and (d),

and a non-split overlap extension

0Ð→ B(b, µ)Ð→
t
⊕
i=1
B(d ,ω i t

√
±λµ−1)Ð→ B(c, λ)Ð→ 0,

where ω is a primitive t-th root of unity. Moreover, the collection of such extensions
forms a basis of Ext1Λ(B(c, λ), B(b, µ)).
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heorem E Let Λ be a gentle algebra and let (b, µ) be a band with µ ∈ k∗. he
collection of extensions in heorem D in which m ≠ b together with the Auslander–
Reiten sequence,

0Ð→ B(b, µ)Ð→ B(b, µ, k2)Ð→ B(b, µ)Ð→ 0,

where B(b, µ, k2) denotes the 2-dimensional band module with Jordan block whose
eigenvalue is µ, form a basis of Ext1Λ(B(b, µ), B(b, µ)).

Remark In heoremD, each of thewords deûning d t is, a�er suitable rotation of b
and c, just the concatenation of the two bands, bc. However, diòerent possibilities for
d arise from the precise decompositions of b and c: for diòerent m, concatenations bc
with respect to diòerent decompositions need not be equivalent up to inverting the
word or cyclic permutation.

We now brie�y outline the content of the paper, including the general strategy of
the proofs of heorems A, B, C, D, and E. Let Λ be a gentle algebra. We begin by
recalling the basic notions of string and homotopy string combinatorics for gentle
algebras in Section 1. In Section 2, we determine the homotopy string or band of the
minimal projective resolution of a string or bandmodule over Λ and the cohomology
of a string or band complex in Kb ,−(proj(Λ)).

In order to describe the content of Sections 3 and 4 more precisely, ûx the follow-
ing notation. Let v and w be strings or bands and let M(v) and M(w) be the corre-
sponding string or quasi-simple band modules. We denote the homotopy strings or
bands of their projective resolutions by π(v) and π(w) and the corresponding string
or band complexes by Q●

π(v) and Q●
π(w). he standard basis of homomorphisms be-

tween string and/or band complexes is recalled from [1] in Section 1.4, enabling us to
give an explicit description of a basis ofHomKb ,−(proj(Λ))(Q●

π(v) , ΣQ●
π(w)).

In the ûrst step in the proof, we show in Section 3 that the image of every element
of the standard basis under the canonical isomorphism

(0.1) Φ∶HomKb ,−(proj(Λ))(Q●
π(v) , ΣQ●

π(w))
∼Ð→ Ext1Λ(M(v),M(w))

is either an overlap or an arrow extension. In particular, this shows that the set of
overlap and arrow extensions form a generating set for Ext1Λ(M(v),M(w)).

he second step of the proof, comprising Section 4, shows that the set of overlap
and arrow extensions forms a basis of Ext1Λ(M(v),M(w)). To see this, we show that
Φ restricts to a surjection from the standardbasisofHomKb ,−(proj(Λ))(Q●

π(v) , ΣQ●
π(w))

to the set of arrow and overlap extensions in Ext1Λ(M(v),M(w)).
We emphasise that,with the exception of the case highlighted in the remark above,

themethods apply equally to (homotopy or classical) strings and bands. Furthermore,
for ease of the already somewhat heavy notation, in the proofs in Section 3 and 4,
whenever we have amap between two band complexes or an extension between two
band modules, implicitly and without loss of generality, we assume that the param-
eters of the corresponding band complexes or band modules are equal to one; see
[9, §2.3] for more details on the placement of parameters with respect to mapping
cones.
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1 Background

In this section,we brie�y recall the deûnition of gentle algebras, background on string
and band modules, string and band complexes, and the standard basis of the mor-
phism spaces between string and band complexes that will be needed in the article.

1.1 Gentle Algebras

hroughout, k will be an algebraically closed ûeld. We recall the following deûnition
from [3].

Deûnition 1.1 A ûnite-dimensional k-algebra Λ is gentle if it is Morita equivalent
to a bound path algebra kQ/I, where Q is a quiver and I an admissible ideal in kQ
such that
(i) for each vertex i ∈ Q0, there are at most two arrows starting at i and at most two

arrows ending at i;
(ii) for each arrow a ∈ Q1, there is at most one arrow b with e(a) = s(b) and such

that ba ∉ I and at most one arrow c with e(c) = s(a) and such that ac ∉ I;
(iii) for each arrow a ∈ Q1, there is at most one arrow b with e(a) = s(b) and such

that ba ∈ I and at most one arrow c with e(c) = s(a) and such that ac ∈ I;
(iv) the ideal I is generated by length-two monomial relations.

From now on, Λ = kQ/I will be a gentle algebra.

1.2 String and Band Modules

We now describe strings and bands, which parametrise the indecomposable
Λ-modules. he reference for this material is [8,28]. Note that in this paper all mod-
ules will be ûnitely generated le� modules, and therefore, paths in the quiver will be
read from right to le�.
For each arrow a ∈ Q1, we introduce a formal inverse arrow a = a−1 with s(a) =

e(a) and e(a) = s(a). We write Q 1 for the set of formal inverse arrows. Similarly
for a path p = an ⋅ ⋅ ⋅ a1, the inverse path is p = a1 ⋅ ⋅ ⋅ an . Sometimes we will assert the
nonexistence of an arrow or inverse arrow a, and in this case, we write a = ∅.

Deûnitions 1.2 We recall the following notions.
(i) A walk of length l > 0 in (Q , I) is a sequence w = w l ⋅ ⋅ ⋅w1 satisfying s(w i+1) =

e(w i), where each w i is either an arrow or an inverse arrow, and where the
sequence does not contain any subsequence of the form aa or aa for an arrow
a ∈ Q1. We will call each arrow or inverse arrow w i in w a letter of w.

(ii) A string is a walk that does not contain subwalks v such that v ∈ I or v ∈ I. In
addition, there are trivial strings 1x for each vertex x ∈ Q0.

(iii) A band is a string b = bn ⋅ ⋅ ⋅ b1 such that e(bn) = s(b1), b1 ≠ bn , b1bn is deûned
as a string, and b ≠ vm for some substring v and m > 1.

Modulo the equivalence relation w ∼ w, the strings form an indexing set for the
so-called string modules. Given a string w, we write M(w) for the corresponding
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string module. Note that if w = 1x is a trivial string, then M(w) = S(x) is the simple
module at x. We refer to [8,28] for more details on how to construct string modules
from strings.

Modulo the equivalence relation given by inversion and cyclic permutation (rota-
tion), the bands together with scalars µ ∈ k∗ form an indexing set for the so-called
bandmodules, B(b, µ),where by conventionwe place µ on a direct arrow. By abuse of
notation,wewill usually drop the scalar andwrite simply B(b) for the corresponding
bandmodule. Again we refer the reader to [8] for the actual construction of the band
modules.

In order to deal with the word combinatorics involving bands eòectively, we will
need to consider inûnite periodic words corresponding to bands. Let b a band; we
write

∞b∞ = ⋅ ⋅ ⋅ bn ⋅ ⋅ ⋅ b1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

b

bn ⋅ ⋅ ⋅ b1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

b

bn ⋅ ⋅ ⋅ b1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

b

⋅ ⋅ ⋅ ,

∞b = ⋅ ⋅ ⋅ bn ⋅ ⋅ ⋅ b1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

b

bn ⋅ ⋅ ⋅ b1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

b

, and,

b∞ = bn ⋅ ⋅ ⋅ b1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

b

bn ⋅ ⋅ ⋅ b1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

b

⋅ ⋅ ⋅ .

In particular, let (b, µ) and (c, λ) be bands; then (b, µ) = (c, λ) if and only if∞b∞ =
∞c∞ or ∞b∞ = ∞(c−1)∞ and λ = µ with both λ and µ placed on a direct arrow in
the inûnite words that are equal.
By [28, Prop. 2.3], the string and band modules form a complete set of isomor-

phism classes of indecomposable Λ-modules.
he bandmodules given by representations inwhich each vertex is replaced by a 1-

dimensional vector space all lie at themouthofhomogeneous tubes and are referred to
as quasi-simple (band) modules. hey can be characterised as those bandmodules B
such that there exists an almost split sequence of the form 0 → B → E → τ−1B → 0,
where E is indecomposable; see, for example, [26]. In the following, by abuse of no-
tation, wheneverwe use the term bandmodule, wewill be referring to a quasi-simple
bandmodule.

1.3 String and Band Complexes

We now describe homotopy strings and bands, which parametrise the indecompos-
able complexes in the derived category Db(Λ). We will use the notation and termi-
nology employed in [1,9] and the references therein. However, for the sake of brevity,
we drop some of the formality of [1,9] regarding the degrees.

Deûnitions 1.3 he original reference for the following deûnitions is [5].

(i) A (ûnite) homotopy string is a walk of ûnite length in (Q , I). In addition, there
are trivial homotopy strings for each vertex x ∈ Q0.
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(ii) A subwalk p = w j ⋅ ⋅ ⋅w i of a homotopy string σ = w l ⋅ ⋅ ⋅w1 is a homotopy letter
if
(a) p or p is a path of length at least one in (Q , I);
(b) w i ∈ Q1 and w i−1 ∈ Q 1 or vice versa, or w iw i−1 ∈ I, or w i−1w i ∈ I;
(c) w j ∈ Q1 and w j+1 ∈ Q 1 or vice versa, or w j+1w j ∈ I, or w jw j+1 ∈ I.
We say that p is a direct homotopy letter if it is a path in (Q , I) and an inverse
homotopy letter if p is a path in (Q , I). In this way, we partition a homotopy
string σ into homotopy letters and write σ = σn ⋅ ⋅ ⋅ σ1 for this decomposition. A
homotopy subletter of p is a subwalk of p of length at least one.

(iii) A homotopy letter p = w l ⋅ ⋅ ⋅w1, with w i ∈ Q1 for i = 1, . . . , l or w i ∈ Q1 for
i = 1, . . . , l , is said to have length l , and we write length(p) = l . he length can
be zero, in which case p = 1x for some x ∈ Q0, and p is called a trivial homotopy
letter. Sometimes we shall assert the nonexistence of homotopy letters, and in
this case, we write p = ∅.

(iv) Let σ = σn ⋅ ⋅ ⋅ σ1 be a homotopy string decomposed into its homotopy letters. A
subwalk τ = σ j ⋅ ⋅ ⋅ σi with 1 ≤ i ≤ j ≤ n is called a homotopy substring of σ .

(v) A homotopy band is a homotopy string σ = σn ⋅ ⋅ ⋅ σ1 with s(σ) = e(σ), σ1 ≠ σ n ,
σ ≠ τm for some homotopy substring τ and m > 1, and σ has equal numbers of
direct and inverse homotopy letters.

Remark 1.4 hroughout the article, whenever we write a walk using Greek letters,
such as σ = σn ⋅ ⋅ ⋅ σ1, we will always mean its decomposition into homotopy letters;
whereas, in general, we reserve Roman letters for (classical) strings and bands.

Modulo the equivalence relation σ ∼ σ the homotopy strings form an indexing
set for the so-called string complexes. Given a homotopy string σ , we write P●σ for
the corresponding string complex. Note that if σ = 1x is a trivial homotopy, string
P●σ = P(x) is the stalk complex of the projectivemodule at x. We refer to [1,5] formore
details on how to construct string complexes from homotopy strings; for a sketch of
the constructions, see Example 1.5.

Modulo the equivalence relation given by inversion and cyclic permutation, the
homotopy bands together with scalars λ ∈ k∗ form an indexing set for the so-called
band complexes B●σ ,λ . Again, we refer the reader to [1, 5] for the actual construction of
the band complexes.
By [5,hm. 3], the string and band complexes form a complete set of indecompos-

able perfect complexes inDb(Λ). For the remaining objects ofDb(Λ), we need some
further terminology.

Example 1.5 ([1,RunningExample]) LetΛ = kQ/I be given by the following bound
quiver:

0

1

2

3

4

a

b

c d

e

f
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Consider the following indecomposable complex in Db(Λ), where we assume the
le�-most nonzero term is in cohomological degree zero.

0 // P(0)
[ c f ] // P(2)⊕ P(3)

[ b 0
0 e ] // P(1)⊕ P(4)

[ a f
0

]
// P(3) // 0.

his complex can be “unfolded” to give the following diagram:

P(4) P(3)eoo P(0)
foo c // P(2) b // P(1)

a f // P(3).
he indecomposable projective modules appearing are uniquely determined by the
endpoints of themaps, so all information in this complex is contained in the diagram

(1.1) ● ●eoo ●
foo c // ● b // ●

a f // ● .

Here, the homotopy string σ = e f cba f , andwe refer to (1.1) as the “unfolded diagram”
of σ . For more details, we refer the reader to [1, §2].

Deûnitions 1.6 In the following, walks can now be inûnite (on both sides).
(i) Awalkw is called a direct antipath if it is direct and in its decomposition into ho-

motopy letters, each homotopy letter has length 1; it is called an inverse antipath
if it is inverse and in its decomposition into homotopy letters, each homotopy
letter has length 1.

(ii) A le� inûnite walk w = ⋅ ⋅ ⋅wn ⋅ ⋅ ⋅w2w1 is a le� inûnite homotopy string if there
exists m ≥ 1 such that v = ⋅ ⋅ ⋅wn ⋅ ⋅ ⋅wm+1wm is a direct antipath.

(iii) A right inûnite walk w = w−1w−2 ⋅ ⋅ ⋅w−n ⋅ ⋅ ⋅ is a right inûnite homotopy string if
there exists m ≥ 1 such that v = w−mw−m−1 ⋅ ⋅ ⋅w−n ⋅ ⋅ ⋅ is an inverse antipath.

(iv) A two sided inûnite walk w = ⋅ ⋅ ⋅w2w1w0w−1 ⋅ ⋅ ⋅ is called a two-sided inûnite ho-
motopy string if there exist integers n > m such that ⋅ ⋅ ⋅ vn+1vn is a direct antipath
and vmvm−1 ⋅ ⋅ ⋅ is an inverse antipath.

(v) By a one-sided inûnite homotopy string, wemean either a le� inûnite homotopy
string or a right inûnite homotopy string.

By [5,hm. 3], the indecomposable non-perfect complexes inDb(Λ) are parame-
trised by the one-sided and two-sided inûnite homotopy strings; they are again called
string complexes. In the following, we write

Q●
σ =
⎧⎪⎪⎨⎪⎪⎩

P●σ if σ is a (possibly inûnite) homotopy string;
B●σ ,λ if σ is a homotopy band.

From now on, by abuse of terminology, we say homotopy string for a (possibly inû-
nite) homotopy string.

1.4 The Standard Basis

A basis for the morphism space between indecomposable complexes in Db(Λ) was
determined in [1]. Here, we brie�y recall this basis, which we will refer to as the stan-
dard basis. As observed in Example 1.5, homotopy strings and bands correspond to an
unfolding of the corresponding string and band complexes. hroughout the paper,we
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will freely make use of the unfolded diagram notation for string and band complexes
from [1,9].

heorem 1.7 ([1, heorem 3.15]) Let σ and τ be homotopy strings or bands. hen
there is a canonical basis ofHomDb(Λ)(Q●

σ ,Q●
τ) given by:

● graph maps f ●∶Q●
σ → Q●

τ ;
● singleton singlemaps f ●∶Q●

σ → Q●
τ ;

● singleton doublemaps f ●∶Q●
σ → Q●

τ ;
● quasi-graph maps φ∶Q●

σ ↝ Σ−1Q●
τ .

We note that a quasi-graph map is not a map, but in fact determines classes of
homotopy equivalent single and double maps, which is why we denote it by ↝ and
not→.

hroughout the following description of the maps listed above, σ and τ will be
homotopy strings or bands.

1.4.1 Graph Maps

Suppose σ and τ are, up to inversion, of the form:

(a) σ = βσLρσRα and τ = δτLρτRγ; or
(b) σ = ρσRα and τ = ρτRγ,

where α, β, γ, and δ are homotopy substrings; σL , σR , τL , and τR are (possibly trivial)
homotopy letters, and ρ is a (possibly trivial) maximal common homotopy substring,
and in the second case, an inûnite homotopy substring of σ and τ. We assume that ρ
occurs in the same cohomological degrees in both homotopy strings. hen the cor-
responding graph maps can be represented by the following unfolded diagrams:

Q●
σ ∶

β
● σL

fL
��

(∗)
●

ρk ●
ρk−1 ⋅ ⋅ ⋅

ρ2 ●
ρ1 ● σR

(∗∗)
● α

fR
��

Q●
τ ∶ δ

● τL
● ρk

● ρk−1
⋅ ⋅ ⋅ ρ2

● ρ1
● τR

● γ

P●σ ∶ ●
ρ3 ●

ρ2 ●
ρ1 ● σR

(∗∗)
● α

fR
��

P●τ ∶ ● ρ3
● ρ2

● ρ1
● τR

●, γ

where we require the squares marked (∗) and (∗∗) to commute; these are explicitly
written down in [1, §3.2]. he maximality of ρ as a common homotopy substring of
σ and τ necessarily means that σL ≠ τL and σR ≠ τR . Note that in the case of Section
1.4.1(b), ρ is an antipath, and we say that the graph map f ● is incident with ρ.
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1.4.2 Single Maps

he unfolded diagram of a singlemap f ●∶Q●
σ → Q●

τ is given by

Q●
σ ∶

f ● ��

β
● σL ● σR

f
��

● α

Q●
τ ∶ δ

● τL
● τR

●, γ

(1.4)

where f is a nontrivial path in (Q , I), and satisfying the following conditions.
(L1) If σL ≠ ∅, then σL is either inverse or is direct and σL f has a subpath in I.
(L2) If τL ≠ ∅, then τL is either direct or is inverse and f τL has a subpath in I.
(R1) If σR ≠ ∅, then σR is either direct or is inverse and σR f has a subpath in I.
(R2) If τR ≠ ∅, then τR is either inverse or is direct and f τR has a subpath in I.

A singlemap f ●∶Q●
σ → Q●

τ is called a singleton singlemap if its unfolded diagram,
up to inversion of one of the homotopy strings/bands, is

(1.5) Q●
σ ∶

f ● ��

β
● σL ●

f
��

σR= f fR // ● α

Q●
τ ∶ δ

● τL
● ●,

τR= f fL
oo

γ

where σL and τL never contain f as a subletter, and whenever σL is inverse or τL is
direct, f does not contain σL or τL as a subletter, and any of σL , σR , τL and τR are
permitted to be the empty homotopy letter ∅.

1.4.3 Double Maps

he unfolded diagram of a doublemap f ●∶Q●
σ → Q●

τ is

(1.6) Q●
σ ∶

β
● σL ● σC //

fL
��

● σR

fR
��

● α

Q●
τ ∶ δ

● τL
● τC

// ● τR
●, γ

where fL and fR are nontrivial paths in (Q , I) such that fLτC = σC fR has no subpath
in I, conditions (L1) and (L2) hold for fL , and (R1) and (R2) hold for fR .
A doublemap, as above, is called singleton if there is a nontrivial path f ′ in (Q , I)

such that σC = fL f ′ and τC = f ′ fR .

1.4.4 Quasi-graph Maps

If, in the situation of Section 1.4.1, the squares marked (∗) and (∗∗) of diagrams
(1.2) and (1.3) do not commute, then such diagrams determine a quasi-graph map
φ∶Q●

σ ↝ Q●
τ . he non-commuting endpoint conditions are explicitly spelled out in

[9, §1.4.4]. Note that while a quasi-graph map Q●
σ ↝ Q●

τ does not deûne a map, a
quasi-graph map φ∶Q●

σ ↝ Σ−1Q●
τ determines a family of homotopy equivalent single
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and/or double maps. Indeed, all single and double maps that are not singleton arise
in this way.

he following observation will be useful in the proofs in Section 4.

Remark 1.8 Suppose, in the unfolded diagram (1.2) above, that ρ1 is not the start of
both σ and τ and ρk is not the end of both σ and τ. In this case, the diagram deûnes
a graph map f ●∶Q●

σ → Q●
τ if and only if the same diagram, when read upside down,

i.e., from bottom to top, deûnes a quasi-graph map φ∶Q●
τ ↝ Q●

σ . Note that we do not
read fL and fR upside down; they occur as homotopy subletters of σL or τL (resp. σR
or τR). For example, consider the following case:

● σR // ●
fR
��

α

●
τR=σR fR

// ● γ

, vs. the same situation ‘upside down’, ●
τR=σR fR// ●

γ

● σR
// ● α

.

Here, the fact that τR = σR fR is the obstacle to the commuting of the right endpoint
when the “graph map” is read upside down, giving a (non-null-homotopic) quasi-
graph map endpoint condition; see [9, §1.4.4].

1.5 Morphisms vs. Extensions

For background on derived and homotopy categories we refer the reader to [15]. One
of the powerful features of the derived category is that it reformulates extensions in
themodule category in terms ofmorphisms. In particular, for any algebra Λ and any
Λ-modules M and N , we have
HomK(P●M , ΣP●N) ≃ Ext1K(P●M , P●N) ≃ Ext1Λ(M ,N),

P●M
f ●Ð→ ΣP●N ↦ P●N Ð→ C●f ● Ð→ P●M

f ●Ð→ ΣP●N ↦ 0→ N → H0(C●f ●)→ M → 0,

where K = Kb ,−(proj(Λ)), P●M , and P●N are projective resolutions of M and N , re-
spectively, and C●f ● is the (negative shi� of the) mapping cone of f ●. In particular,
computation of a basis of the Ext-space Ext1Λ(M ,N) reduces to the computation of a
basis of theHom-spaceHomKb ,−(proj(Λ))(P●M , ΣP●N).

2 Cohomology of String and Band Complexes

hroughout, σ will be a (possibly inûnite) homotopy string or band, unless one is
speciûed explicitly. Whenwewish to specify that σ is ûnite on the right, wewillwrite
σ = ⋅ ⋅ ⋅ σ2σ1, ûnite on the le�: σ = σnσn−1 ⋅ ⋅ ⋅, and ûnite on both sides: σ = σn ⋅ ⋅ ⋅ σ1.

Given a homotopy string or band σ ,wewill describe how to compute the cohomol-
ogy of the string or band complex Q●

σ . he strategy is to divide σ up into various ho-
motopy substrings each corresponding to appropriately chosen two-term complexes.
We start with an important technical deûnition.

Deûnition 2.1 Let σ be a homotopy string or band. A homotopy substring
τ = σ j ⋅ ⋅ ⋅ σi with i < j is amaximal alternating homotopy substring if
(i) for each i ≤ k < j, if σk is direct (resp. inverse), then σk+1 is inverse (resp. direct);
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(ii) if σi is direct (resp. inverse), then σi−1 is direct (resp. inverse) and σiσi−1 ∈ I
(resp. σi−1σi ∈ I) or is ∅;

(iii) if σ j is direct (resp. inverse), then σ j+1 is direct (resp. inverse) and σ jσ j+1 ∈ I
(resp. σ j+1σ j ∈ I) or is ∅.

If only condition (i) holds, then τ is called an alternating homotopy substring.

Remark 2.2 Let σ be a homotopy string or band and let τ = σ j ⋅ ⋅ ⋅ σi with i < j be a
maximal alternating homotopy substring of σ .

(i) he homotopy string τ has at least two homotopy letters.
(ii) he string complex P●τ is concentrated in precisely two cohomological degrees,

namely, deg P(s(σi)) and deg P(e(σi)); i.e., it is a “two-term complex”.
(iii) Amaximal alternating homotopy substring of a homotopy string or band can-

not be inûnite: all inûnite homotopy strings have antipaths to the le� and/or to
the right.

(iv) Since no two consecutive homotopy letters of τ “pass through a relation”, the
underlying walk of τ also determines a string. In the case that σ = σn ⋅ ⋅ ⋅ σ1 is
a homotopy band and τ = σ ; then the underlying walk of τ also determines a
band.

Lemma 2.3 (Maximal alternating homotopy substring rule) Let σ be a homotopy
string or band. Suppose τ = σ j ⋅ ⋅ ⋅ σi is a maximal alternating homotopy substring. De-
compose the homotopy letters σ j = b l ⋅ ⋅ ⋅ b1 and σi = ak ⋅ ⋅ ⋅ a1 into paths or inverse paths
in (Q , I) and set

w ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b l−1 ⋅ ⋅ ⋅ b1σ j−1 ⋅ ⋅ ⋅ σi+1ak ⋅ ⋅ ⋅ a2 if τ ≠ σ or τ = σ and
σ is a homotopy string
with σ1 inverse and σn direct;

σ if τ = σ and σ is a homotopy band.

hen the string module M(w) (resp. band module B(w)) is an indecomposable sum-
mand of the cohomologymoduleHd(Q●

σ),where d =max{degP(s(σi)),degP(e(σi))}.

Proof Suppose σ is a homotopy string and (Q●
σ , ∂●) is the corresponding string

complex. We treat the case that the maximal alternating homotopy substring τ has
unfolded diagram of the form below; the other cases, and the case that σ is a homo-
topy band, are similar.

●
σ j+1 // ●

σ j // ● ●
σ j−1oo ● ●σ i+1oo σ i // ● σ i−1 // ●

Note that in this case, d = deg P(s(σi)) and the homotopy letters σi , . . . , σ j are
components of the diòerential ∂d−1. In particular, we can wrap τ back up into
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a complex:

P(e(σ j+1))
σ j+1 // P(e(σ j))

σ j //

⊕

P(e(σ j−1))
⊕

P(e(σ j−2))

σ j−1
66

σ j−2 //

⊕

P(e(σ j−3))
⊕

P(e(σ j−4))

σ j−3
66

σ j−4 //

⊕

⋮
⊕

⋮ σ i+2 //

⊕

P(e(σi+1))
⊕

P(e(σi))
σ i //

σ i+1
66

P(s(σi))
σ i−2 // P(s(σi−1))

he other components of the diòerentials ∂d−2, ∂d−1, and ∂d are disconnected from
the components of ∂d−1 indicated above. he components above therefore contribute
a summand, M say, of the cohomology module Hd(Q●

σ); the other summands of
Hd(Q●

σ) are contributed by other parts of σ . We claim that M ≅ M(w), where w is
the string deûned in the statement.

he projectivemodules P(e(σi+1)), P(e(σi+3)), . . . , P(e(σ j−1)) ⊂ ker(∂d). Con-
sider the following components of the diòerential ∂d−1,

P(e(σm+1))
⊕

P(e(σm))

σm+1
55

σm
// P(s(σm)),

whichmap diagonally into submodules of P(e(σm+1)) and P(s(σm))with simple top
S(e(σm)). hus, in the quotient ker(∂d)/ im(∂d−1), the action of σm on the basis vec-
tor at s(σm+1) is the same as the action of σm−1 on the basis vector at s(σm−1), as indi-
cated in Figure 2. At the le�-hand endpoint of τ, i.e., at the homotopy letter σ j , in the
quotient ker(∂d)/ im(∂d−1) the arrow b l acts on the basis vector supported at s(b l)
by sending it to 0 (because the basis vector at e(b l) is an element of im(∂d−1)). Hence,
the arrow b l is removed from the string describing this indecomposable summand of
Hd(P●σ ). Similarly, at the right-hand endpoint of τ, i.e., at σi , the basis vector sup-
ported at s(a1) = x i−1, is not an element of ker(∂d). Hence, the arrow a1 is removed
from the string describing the indecomposable summand of Hd(P●σ ). It follows that
the summand M of ker(∂d)/ im(∂d−1) has the following form:

t(b l−1)

x j−1

x j−2

x j−3

x j−4

. . .

x i+3

x i+1

x i

s(a2)

b l−1

b1

ak

a2

σ j−1

σ j−2 σ j−3 σi+2 σi+1

262

https://doi.org/10.4153/S0008414X2000005X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000005X


Extensions

Figure 2: Schematic showing the computation of the cohomology: ker ∂ is shown in light grey,
im ∂ in mid-grey, and basis vectors identiûed by quotienting by the image of the diagonal map
shown in dark grey and joined by a dark grey line. Here, xm = e(σm), i.e., is the end of the
homotopy letter σm . Top le�: illustration of the situation at the le� end of the maximal alter-
nating homotopy string τ. Top right: a generic situation midway in τ. Bottom: the situation at
the right hand end of τ.
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that is, corresponds to the string w = b l−1 ⋅ ⋅ ⋅ b1σ j−1 ⋅ ⋅ ⋅ σi+1ak ⋅ ⋅ ⋅ a2. ∎

he following lemmas are computations analogous to that in Lemma 2.3. hus,we
provide only their statements and leave the proofs to the reader.

Lemma 2.4 (Cokernel rule) Let σ = ⋅ ⋅ ⋅ σ2σ1 be a homotopy string in which σ1 =
ak ⋅ ⋅ ⋅ a1 and σ2 are direct homotopy letters. If there exists c with c ∈ Q 1 such that σ1c is
deûned as a string, then take u = cm ⋅ ⋅ ⋅ c1 to be themaximal inverse string ending with
cm = c. Set

w ∶=
⎧⎪⎪⎨⎪⎪⎩

ak−1 ⋅ ⋅ ⋅ a1u if there is such a c;
ak−1 ⋅ ⋅ ⋅ a1 otherwise.

hen the string moduleM(w) is an indecomposable summand of the cohomologymod-
ule Hd(P●σ ), where d = deg P(s(σ1)).

For a homotopy string σ = ⋅ ⋅ ⋅ σ2σ1 with σ1 direct, it is possible that σ2 is not direct,
in which case σ1 is part of a maximal alternating homotopy substring τ = σ j ⋅ ⋅ ⋅ σ1.
In this case, we combine the cokernel rule with the maximal alternating homotopy
substring rule.

Lemma 2.5 (Combined rule) Let σ = ⋅ ⋅ ⋅ σ2σ1 be a homotopy string in which σ1 =
ak ⋅ ⋅ ⋅ a1 is a direct homotopy letter and τ = σ j ⋅ ⋅ ⋅ σ1 is amaximal alternating homotopy
substring. Decompose the homotopy letter σ j = b l ⋅ ⋅ ⋅ b1 into a path or inverse path in
(Q , I) and set

w ∶=
⎧⎪⎪⎨⎪⎪⎩

b l−1 ⋅ ⋅ ⋅ b1σ j−1 ⋅ ⋅ ⋅ σ1u if there exist c and u as in Lemma 2.4,
b l−1 ⋅ ⋅ ⋅ b1σ j−1 ⋅ ⋅ ⋅ σ2ak ⋅ ⋅ ⋅ a1 otherwise.

hen the string moduleM(w) is an indecomposable summand of the cohomologymod-
ule Hd(P●σ ), where d = deg P(s(σ1)).

here are obvious dual statements if σ = σnσn−1 ⋅ ⋅ ⋅ with σn inverse. If τ = σ with
σn inverse and σ1 direct, then wemust combine Lemma 2.5 with its dual.

Lemma 2.6 (Kernel rule) Let σ = σnσn−1 ⋅ ⋅ ⋅ be a homotopy string in which σn =
b l ⋅ ⋅ ⋅ b1 is a direct homotopy letter. If there exists c ∈ Q1 and cb l = 0, then take cm ⋅ ⋅ ⋅ c1
to be themaximal direct string starting with c1 = c. Set

v ∶=
⎧⎪⎪⎨⎪⎪⎩

cm ⋅ ⋅ ⋅ c2 if there exists such a c,
∅ otherwise.

hen the string moduleM(v) is an indecomposable summand of the cohomologymod-
ule Hd(P●σ ), where d = deg P(e(σn)). If m = 1, then v = 1e(c) is the trivial string
corresponding to the simplemodule S(e(c)).
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Note that if σ = σnσn−1 ⋅ ⋅ ⋅ is a homotopy string and τ = σn ⋅ ⋅ ⋅ σi is a maximal al-
ternating homotopy substring with σn direct, then Lemmas 2.3 and 2.6 do not need
to be combined. In particular, the string module M(v) is an indecomposable sum-
mand of Hd(P●σ ), and the string module M(w) is an indecomposable summand of
Hd+1(P●σ ), where v is deûned as in Lemma 2.6, w is deûned as in Lemma 2.3, and
d = deg P(e(σn)).

Lemma 2.7 (Nontrivial homotopy letter rule) Let σ be a homotopy string or band
in which σi is a direct homotopy letter and σi+1σiσi−1 is a non-alternating homotopy
substring with σi+1 possibly empty. Let d = deg P(s(σi)).

(i) If σi = ak ⋅ ⋅ ⋅ a1 with a j ∈ Q1 and k > 1, then setw = ak−1 ⋅ ⋅ ⋅ a2. he string module
M(w) is an indecomposable summand of the cohomology module Hd(Q●

σ). If
k = 2, then w = 1e(a1) = 1s(a2) and M(w) = S(e(a1)) = S(s(a2)).

(ii) If σi = a for some a ∈ Q1, then themap σi ∶ P(e(σi)) → P(s(σi)) contributes the
zero submodule to the cohomology module of Hd(Q●

σ).

Lemmas 2.4–2.7 admit obvious dual statements. When referring to these lemmas,
we will freely include those dual statements. We summarise this section with the
following theorem and illustrate with an example.

heorem 2.8 Let σ be a homotopy string or band. Lemmas 2.3–2.7 and their duals
provide a complete description of the cohomology complex H●(Q●

σ).

Remark 2.9 Note that in computing the cohomology Lemmas 2.3–2.7 and their
duals can be applied independently and therefore in any order. he only exception
is that the combined rule Lemma 2.5 should always be applied instead of Lemma 2.3
whenever the homotopy string has the appropriate form.

Example 2.10 We consider the gentle algebra with the following quiver where the
(length 2) relations are indicated by dotted lines.

14 13 12 11 487
9

10

32

1

5

6
g

b

f

c

dl
i

m
n

j
h

a

k
opqr

e
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Consider the following homotopy strings where the top line indicates the cohomo-
logical degree of the corresponding projective indecomposable:

0 1 0 −1 −2 −3 −2 −1

σ ∶ 7 i // 8 2kcboo 6
foo 3

goo 7bhoo i l // 5 d // 4

and
−1 0 1 2

τ∶ 14 r // 13
qpo // 9 m // 7.

Examining the homotopy string σ , we see that there are four indecomposable sum-
mands of H●(P●σ ). We list them below in order of ascending cohomological degree.

● We have H−2(P●σ ) = M(w1), where w1 = hi coming from themaximal alternat-

ing homotopy substring rule (Lemma 2.3) applied to 3 bh←Ð 7 i lÐ→ 5.
● We haveH−1(P●σ ) = M(w2),wherew2 = cbhmn coming from the cokernel rule

(Lemma 2.4) applied to 5 dÐ→ 4.
● We have H0(P●σ ) = M(w3), where w3 = n coming from the kernel rule

(Lemma 2.6) applied to 7 iÐ→ 8.
● We have H1(P●σ ) = M(w4), where w4 = kc coming from themaximal alternat-

ing homotopy substring rule (Lemma 2.3) applied to 7 iÐ→ 8 kcb←Ð 2.
● By Lemma 2.7, all remaining parts of the homotopy string σ contribute zero to

the cohomology H●(P●σ ).
Examining the homotopy string τ, in a similar fashion we obtain the following for

H●(P●τ ).
● We have H1(Pτ) = M(w1) where w1 = p coming from the nontrivial homotopy

letter rule (Lemma 2.7) applied to 13
qpoÐ→ 9 mÐ→ 7.

● We have H2(Pτ) = M(w2) where w2 = j coming from the cokernel rule
(Lemma 2.4) applied to 9 mÐ→ 7.

● here is no non-zero contribution to the cohomology coming from the non-
trivial homotopy letter rule (Lemma 2.7) applied to 14 rÐ→ 13

qpoÐ→ 9 or from the
kernel rule (Lemma 2.6) applied to 14 rÐ→ 13.

We end this section by giving the homotopy string or band of theminimal projec-
tive resolution of a string or quasi-simple band module, which will be heavily used
in the next sections. We note that gentle algebras are string algebras and that there
is a large body of work on string algebras. In particular, projective resolutions and
syzygies, have been considered before; see, for example, [17, 18]. In [28], minimal
projective presentations of string and band modules were given in terms of string
combinatorics, which in the case of gentle algebras can be formulated in terms of ho-
motopy string combinatorics. hese projective presentations correspond to maximal
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alternating homotopy substrings sitting between degrees −1 and 0. Before stating the
result, we set up some notation.

Deûnition 2.11 Let a and b be such that a, b ∈ Q1. Deûne
● inv(a) ∶= σ−1σ−2 ⋅ ⋅ ⋅ to bemaximal inverse antipath ending with σ−1 = a;
● dir(b) ∶= ⋅ ⋅ ⋅ σ2σ1 to be themaximal direct antipath starting with σ1 = b.

Corollary 2.12 Let w = wn ⋅ ⋅ ⋅w1 be a string. Deûne a homotopy string π(w) as
follows:
(i) π(w) = dir(b)w′ inv(a) if there are a and b such that a, b ∈ Q1, and bwa is

deûned as a string and where w′ = w.
(ii) π(w) = w′ inv(a) if there is an a with a ∈ Q1 such that wa is deûned as a string

but no b ∈ Q1 with bw deûned as a string, where w′ = w j ⋅ ⋅ ⋅w1 a�er removing a
maximal direct substring wn ⋅ ⋅ ⋅w j+1 of w.

(iii) π(w) = dir(b)w′ if there is b ∈ Q1 with bw deûned as a string but no a with
a ∈ Q1 such that wa is deûned as a string, where w′ = wn ⋅ ⋅ ⋅w i a�er removing a
maximal inverse substring w i−1 ⋅ ⋅ ⋅w1 of w.

(iv) π(w) = w′ if there are no a and b such that a, b ∈ Q1 and bwa is deûned as a
string, wherew′ = w j ⋅ ⋅ ⋅w i a�er removing amaximal direct substringwn ⋅ ⋅ ⋅w j+1
and amaximal inverse substring w i−1 ⋅ ⋅ ⋅w1.

(v) π(w) = w if w is a band.
hen P●π(w) (resp. B●π(w) when w is a band) is a projective resolution of M(w)
(resp. B(w)).

Proof he computation of the cohomology of P●π(w) (resp. B●π(w)) in heorem 2.8
givesM(w) (resp. B(w)) in cohomologicaldegree zero and zero in all otherdegrees.∎

Corollary 2.13 Let Λ be a gentle algebra. hen any quasi-simple band module has
projective dimension one.

hemaximal direct substringwn ⋅ ⋅ ⋅w j+1 removed fromw inCorollary 2.12(ii)will
be called a maximal direct suõx. Likewise, themaximal inverse substring w i−1 ⋅ ⋅ ⋅w1
removed from w in Corollary 2.12(iii) will be called amaximal inverse preûx.

Deûnition 2.14 For the homotopy string σ = π(w) deûned inCorollary 2.12 above,
we call the homotopy substrings inv(a) and dir(b) the antipath part of π(w). By
abuse of notation, we write inv(w) = inv(a) and dir(w) = dir(b). In the notation of
Corollary 2.12, we will call w′ themodule part of π(w).
An inverse homotopy letter σi = a1 ⋅ ⋅ ⋅ ak of σ is incident with inv(a) if ak = a.

Likewise, a direct homotopy letter σ j = b l ⋅ ⋅ ⋅ b1 of σ is incident with dir(b) if b1 = b.

In the following, as usual, wewrite Q●
π(w) whenwe do notwish to specify whether

w is a string or a band.

Remark 2.15 We make the following straightforward observations regarding the
forms of the homotopy strings occurring in Corollary 2.12.
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(i) If there is no a such that wa is deûned as a string, then the homotopy string
π(w) starts with a direct homotopy letter whose target lies in degree 0.

(ii) If there is no b such that bw is deûned as a string, then the homotopy string
π(w) ends with an inverse homotopy letter whose target lies in degree 0.

(iii) If σi+1σi are consecutive homotopy letters with the same orientation, then at
least one of them lies in the antipath part, and the other either lies in the antipath
part or else is incident with dir(w) or inv(w).

(iv) Owing to being a projective resolution of a module, the string/band complex
Q●

π(w) attains its maximal cohomological degree in degree 0. Moreover, homo-
topy letters occurring in the module part of π(w) provide components of the
diòerential inQ●

π(w) from degree−1 to degree 0. Indeed, togetherwith those ho-
motopy letters incident with dir(w) and inv(w) these provide all components
of the diòerential in Q●

π(w) from degree −1 to degree 0.
(v) Suppose σk is a homotopy letter of π(w). If length(σk) > 1, then deg(P(e(σk)))

∈ {0,−1} and deg(P(s(σk))) ∈ {−1, 0}, where deg(P(x)) denotes the cohomo-
logical degree in which P(x) occurs.

3 Determining Extensions in the Module Category

Recall that in [25] extensions for string modules are given in terms of string combi-
natorics.

Deûnition 3.1 Let v be a string or band and w be a string or band.
(i) (Arrow extension) If there exists a ∈ Q1 such that u = wav is a string, then there

is a non-split short exact sequence

0Ð→ M(w)Ð→ M(u)Ð→ M(v)Ð→ 0.

(ii) (Overlap extension) Suppose that v = vLBmAvR and w = wLDmCwR with
A, B,C ,D ∈ Q1 and m, vL , vR ,wL ,wR (possibly trivial) strings such that
(a) if A = ∅, then C ≠ ∅;
(b) if B = ∅, then D ≠ ∅; and,
(c) if m = 1x for some x ∈ Q0, i.e., a trivial string, then CA ∈ I and BD ∈ I

(whenever they exist, subject to the constraints above).
hen there is a non-split short exact sequence

0Ð→ M(w)Ð→ M(u)⊕M(u′)Ð→ M(v)Ð→ 0,

where u = wLDmAvR and u′ = vLBmCwR .

Remark 3.2 Condition (ii.c) is a “compatibly oriented” condition corresponding
to [9, Def 2.1]. We remark that this condition is missing in the deûnition of overlap
extension in [11], but it is used implicitly in the arguments therein.

Recall the canonical isomorphism (0.1) from the introduction:

Φ∶HomKb ,−(proj(Λ))(Q●
π(v) , ΣQ●

π(w))
∼Ð→ Ext1Λ (M(v),M(w)) .
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heorem 3.3 With the notation above, let M(v) and M(w) be indecomposable Λ-
modules with strings or bands w and v, respectively and let Q●

σ and Q●
τ with σ = π(v)

and τ = π(w) be their projective resolutions. hen for any standard basis element f ●

in HomKb ,−(proj(Λ))(Q●
σ , ΣQ●

τ), the corresponding extension Φ( f ●) in Ext1Λ(M(v),
M(w)) is given by an arrow or an overlap extension. In particular, the set of overlap
and arrow extensions form a generating set for Ext1Λ(M(v),M(w)).

In the rest of this section, we proveheorem 3.3 by considering each type ofmap
of the standard basis of HomKb ,−(proj(Λ))(Q●

σ , ΣQ●
τ) as deûned in [1]. We start by

showing that heorem 3.3 holds for graph maps.

3.1 Graph Maps

hroughout this subsection, we ûx the following setup.

Setup 3.4 Let v and w be strings or bands and let M(v) and M(w) be the cor-
responding string or band modules. Let σ = π(v) and τ = π(w) be the homotopy
strings or bands corresponding to the projective resolutions Q●

σ and Q●
τ ofM(v) and

M(w) as given in Corollary 2.12, respectively.

Lemma 3.5 Let f ●∶Q●
σ → ΣQ●

τ be a graph map incident with an antipath in Q●
σ and

an antipath in ΣQ●
τ . hen Φ( f ●) is an arrow extension in Ext1Λ(M(v),M(w)).

Proof Recall that π(v) = σ and π(w) = τ. We treat the case π(v) = dir(a)vφ and
π(w) = φ′w inv(a′) in detail, where a, a′ ∈ Q1, φ is an inverse antipath and φ′ is a
direct antipath, putting π(v) and π(w) both in case (i) of Corollary 2.12. If one of
φ = ∅ or φ′ = ∅, i.e., if π(v) = dir(a)v′ or π(w) = w′inv(a′), then the calculations
below remain essentially the same, even in the case where v is inverse andw is direct.

To simplify the notation, set dir(a) = θ = ⋅ ⋅ ⋅ θ2θ1 and inv(a′) = θ′ = θ′1θ′2 ⋅ ⋅ ⋅
with θ i , θ

′
i ∈ Q1 and θ1 = a and θ′1 = a′. Suppose that f ● induces an isomorphism

of projective modules lying in θ and θ′ and suppose this isomorphism is in degree
−n. hen as homotopy letters in antipaths are of length 1 and since Λ is gentle, there
exists an isomorphism θn ≃ θ

′
n−1, and we obtain an isomorphism in degree −n − 1.

We now continue inductively to the le� and right; we only need to take care about
what happens in degree −1, which we analyse in the cases below. Write v = vk ⋅ ⋅ ⋅ v1
and w = w l ⋅ ⋅ ⋅w1.

Case 1: vk is inverse and w1 is direct.
We have the following unfolded diagram

Q●
σ ∶

f ● ��

● θ3 // ● θ2 // ● a // ● ●vk ⋅⋅⋅v ioo // ●

ΣQ●
τ ∶ ●

θ
′

2

// ●
a′=θ2

// ● ●
w 1 ⋅⋅⋅w j

oo // ●

where 1 ≤ i ≤ k and 1 ≤ j ≤ l . hen by [9, hm. 2.2], the homotopy string of the
(shi� of the) mapping cone of f ● is given by α = φ′wavφ. By the form of π(w) and
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π(v), it follows from Corollary 2.12 that there exist b, b′ ∈ Q1 such that φ = bρ and
φ′ = ρ′b′ and b′wavb is a string. hen by Lemma 2.3,M(wav) is the cohomology (in
cohomological degree zero) of Q●

α .
he shi� of themapping cone, Q●

α , by deûnition sits in a distinguished triangle

(3.1) Q●
τ

h●Ð→ Q●
α

g●Ð→ Q●
σ

f ●Ð→ ΣQ●
τ .

We now observe that H0(g●) ∶= g∶M(wav) → M(v) is the canonical map in the
arrow extension, showing that the corresponding graph map does indeed induce the
claimed arrow extension.
Decompose v = νn ⋅ ⋅ ⋅ ν1 and w = µm ⋅ ⋅ ⋅ µ1 into homotopy letters so that σ =

θνn ⋅ ⋅ ⋅ ν1bρ and α = φ′µm ⋅ ⋅ ⋅ µ1aνn ⋅ ⋅ ⋅ ν1bρ. We assume that ν1 is direct so that b
is a homotopy letter; the case ν1 is inverse is similar. he map g●∶Q●

α → Q●
σ is given

by the following unfolded diagram

Q●α ∶

g●

��

● ●oo µ1 a //

µ1

��

● ●

νnoo // ⋅ ⋅ ⋅ ●

ν1 // ● ●

boo ●

φ2oo

Q●σ ∶ ●

θ3

// ●
θ2

// ●
a
// ● ●

νn
oo // ⋅ ⋅ ⋅ ●

ν1
// ● ●

b
oo ●

φ2
oo

which is supported in cohomological degree −1 at the le� endpoint. Wrapping α and
σ back up into complexes as in the proof of Lemma 2.3,wherewe have taken a “mirror
image” of σ in order to more easily match up the cohomological degree 0 parts, we
get the following diagram:
(3.2)

P(e(µ1a)) ωa //

⊕

P(e(νn))
⊕

P(e(νn))
⊕

P(e(a))aoo

⊕

P(s(νn))

νn
66

νn−1 //

⊕

P(s(νn−1))
⊕

P(s(νn−1))
⊕

P(s(νn))

νn
hh

νn−1oo

⊕

P(s(νn−2))

νn−2
66

νn−3 //

⊕

⋮
⊕

⋮ ⋮
⊕

P(s(νn−2))

νn−2
hh

νn−3oo

⊕

⋮ ν1 //

⊕

P(s(ν1)) P(s(ν1)) ⋮ν1oo

⊕

P(s(φ2))
φ2 // P(s(b))

b
66

P(s(b))

b
hh

P(s(φ2))
φ2oo

In Figure 3, we rewrite diagram (3.2) as in Figure 2. Here, we see immediately that
H0(g●) is the canonical factor map M(wav)↠ M(v). Taking the long exact coho-
mology sequence associated with the triangle (3.1) gives a short exact sequence

0Ð→ M(w) H0(h●)Ð→ M(wav) H0(g●)Ð→ M(v)Ð→ 0,

in which H0(g●) is the canonical map, whence it follows immediately that H0(h●) is
also the canonical map associated with the obvious substring/factor string decompo-
sition.

It now follows that f ● induces an arrow extension corresponding to that induced
by the arrow a, where themiddle term of the extension is given by the string module
M(wav).
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Figure 3: he strings shaded in grey are the cohomology of Q●α and Q●σ in degree 0. he iden-
tity maps between projective modules are indicated in alternating red and green colour. he
induced map between cohomology modules is the canonical factor map M(wav) ↠ M(v).
Colour online.

Case 2: Both vk and w1 are inverse.

We have the following unfolded diagram

Q●
σ ∶

f ● ��

● θ3 // ● θ2 // ● a //

w 1 ⋅⋅⋅w j
��

● ●vk ⋅⋅⋅v ioo // ●

ΣQ●
τ ∶ ●

θ
′

2=θ3

// ●
a′w 1 ⋅⋅⋅w j

// ● ●oo

where 1 ≤ i ≤ k and 1 ≤ j ≤ l . hen a′ = θ1 and by [9,hm. 2.2] the homotopy string
of themapping cone of f ● is given by α = ρ′b′wavbρ where φ = bρ and φ′ = ρ′b′ with
b, b′ ∈ Q1 such that b′wavb is a string. As inCase 1 above, one can check that themap
H0(g●)∶M(wav)→ M(v) is the canonical map given by the obvious substring/factor
string decomposition. It then follows that, taking cohomology, f ● induces an arrow
extension, corresponding to the arrow a, whosemiddle term is M(wav).

Case 3: Both vk and w1 are direct.

his case is similar to Case 1. We have the following unfolded diagram

Q●
σ ∶

f ● ��

● θ3 // ● θ3 // ● avk ⋅⋅⋅v i // ● ●oo

ΣQ●
τ ∶ ●

θ
′

2=θ3

// ●
a′=θ2

// ● ●
w 1 ⋅⋅⋅w j

oo // ●

where 1 ≤ i ≤ k and 1 ≤ j ≤ l . hen as above the cohomology of the mapping cone
induces an arrow extension corresponding to the arrow a.

Case 4: vk is direct and w1 is inverse.
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his case is similar to Case 2. We have the following unfolded diagram

Q●
σ ∶

f ● ��

● θ3 // ● θ2 // ● avk ⋅⋅⋅v i //

w 1 ⋅⋅⋅w j
��

● ●oo

ΣQ●
τ ∶ ●

θ
′

1=θ3

// ●
a′w 1 ⋅⋅⋅w j

// ● ●oo

where 1 ≤ i ≤ k and 1 ≤ j ≤ l . hen as above the cohomology of the mapping cone
induces an arrow extension corresponding to the arrow a.

Case 5: v or w or both are trivial.
If v is trivial but w is not, this is a degenerate case of Case 1 or 2. If v is not trivial

but w is, this is a degenerate case of Case 1 or 3. If both v and w are trivial, this is a
degenerate case of Case 1. ∎

Lemma 3.6 Let f ●∶Q●
σ → ΣQ●

τ be a graph map and let ν in σ and ω in τ be the
maximal alternating homotopy substrings corresponding to themodule parts of σ and τ
respectively. Suppose that f ● is supported in projective modules lying in ν and ω. hen
f ● is supported in a single indecomposable projective Λ-module P in degree −1 unless it
is incident with antipaths in both Q●

σ and ΣQ●
τ .

Furthermore, Φ( f ●) gives rise to either an arrow extension or an overlap extension
where the overlap is given by the simple Λ-module P/rad(P).

Proof here are three cases to be considered.

Case 1: f ● is supported in ν, and f ● is not incident with any antipath of σ .
In this case, we must have at least one isomorphism between projective modules

in degree −1 as follows:

(3.3) 0 -1 0

Q●
σ ∶

f ● ��

● x
ν ioo ν i−1 // ●

ΣQ●
τ ∶ ● ω j

// x ●ω j−1
oo

-2 -1 -2

where x ∈ Q0. Since the projectives in ν as a substring of σ are in cohomological
degrees 0 and −1 and the projectives in ω as a substring of the homotopy string corre-
sponding to ΣQ●

τ are in degrees −1 and −2, the graph map f ● can only be supported
in a single degree, as shown. By reversing the orientation on τ if necessary, we can
assume that σ and τ are compatibly oriented in the sense of [9, Def 2.1].

Now, the homotopy letters ν i−1, ν i , ω j−1, and ω j have the form ν i−1 = Aν′i−1, ν i =
ν′iB, ω j−1 = Dω′j−1, and ω j = ω′jC, where A, B,C ,D ∈ Q1 and the primed symbols are
homotopy subletters. hen v = vLBAvR and w = wLDCwR where vL , vR are (possibly
trivial) subwords of v and wL ,wR are (possibly trivial) subwords of w. Set x = e(A)

272

https://doi.org/10.4153/S0008414X2000005X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000005X


Extensions

(= e(B) = s(C) = s(D)). We wish to verify that we have an overlap extension in
which m = 1x in the sense of Deûnition 3.1(ii).
First, observe thatwhenever A, B,C ,D exist, the fact that diagram (3.3) is compat-

ibly oriented means that CA ∈ I and BD ∈ I. We now need to check that if A = ∅,
then C ≠ ∅ and if B = ∅, then D ≠ ∅. We check the ûrst condition; the second is
analogous.

Suppose that C = ∅, i.e., w = wLD. If A = ∅, then v = vLB. here must be an
arrow a ∈ Q1 such that va is deûned as a string; otherwise, by Corollary 2.12, B would
be removed as a maximal inverse preûx and the situation depicted in the unfolded
diagram (3.3) would not occur. However, in this case, the homotopy letters ν i = ν′iBa
and ν i−1 must be inverse or empty, again taking us outside the situation occurring in
diagram (3.3). Hence, we must have A ≠ ∅, as required. A similar argument shows
that if B = ∅, then D ≠ ∅. We have thus veriûed that the conditions for an overlap
extension in Deûnition 3.1(ii) hold.
Finally, by [9, §2], themapping cone of f ● is a direct sum of the projective resolu-

tions of the Λ-modules M(u) andM(u′) where u = wLD1xAvR and u′ = vLB1xCwR .
Taking cohomology and checking the maps in the corresponding triangle as in the
proof of Lemma 3.5 then shows that f ● gives rise to an overlap extension in the sim-
ple Λ-module S(x).
Case 2: f ● is incident with an antipath in Q●

σ and themodule part in ΣQ●
τ .

In this case, we obtain the following diagram for f ●:
-3 -2 -1

Q●
σ ∶

f ● ��

● θ2 // ● θ 1 // ● a // ●

ΣQ●
τ ∶ ●

φ′1
● ω j

// ● ●ω j−1
oo

-2 -1

Since θ1 is a homotopy letter of length 1, in order to obtain a graph map supported in
more than one degree, wemust have θ1 = ω j . If φ′1 is inverse or empty, then we reach
a non-commuting endpoint condition as deûned in Section 1.4.4; see also [9, §1.4.4]
for more details on non-commuting endpoint conditions. his contradicts the fact
that f ● is a graph map. hus, φ′1 must be direct and φ′1 = θ2. We are therefore in the
setup of Lemma 3.5, and the corresponding extension in the module category is an
arrow extension.
Case 3: f ● is incident with themodule part in Q●

σ and an antipath in ΣQ●
τ

his case cannot happen for degree reasons. ∎

Remark 3.7 Suppose one of v or w is a band, in which case σ or τ is a homotopy
band. A priori, onemight expect that theremay be a graphmap f ●∶Q●

σ → ΣQ●
τ deter-

mined by an overlap that is longer than σ or τ. However, Lemmas 3.5 and 3.6 ensure
that this situation can never occur. his makes sense; in [10, §1], such a situation cor-
responds to a “shortening” of the homotopy string or homotopy band determining
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the mapping cone relative to those occurring in the domain and target of the map.
hiswould correspond to having amiddle termof an extension of smaller dimension
than the sum of the outer terms.

3.2 Quasi-graph Maps

In this section, we consider a quasi-graph map φ∶Q●
σ ↝ Q●

τ , corresponding to a ho-
motopic family of single and doublemaps in the basis ofHomKb ,−(proj(Λ))(Q●

σ , ΣQ●
τ);

see [1, Def. 3.12].
We start by placing a restriction on the cohomological degrees in which a quasi-

graph map φ∶Q●
σ ↝ Q●

τ can be supported.

Lemma 3.8 Under the hypotheses of Setup 3.4, a quasi-graph map φ∶Q●
σ ↝ Q●

τ is
supported in cohomological degrees −1 and 0 only.

Proof If one ofQ●
σ orQ●

τ is a band complex, then, byCorollary 2.13, it is supported in
cohomological degrees −1 and 0 only, and therefore any quasi-graphmap φ∶Q●

σ ↝ Q●
τ

is trivially supported in only those cohomological degrees. herefore we assume that
Q●

σ = P●σ and Q●
τ = P●τ are string complexes.

Suppose, for a contradiction, that φ∶ P●σ ↝ P●τ is supported in cohomologicaldegree
−k ≤ −2. By Remark 2.15(iv), any component of φ supported in degrees −k ≤ −2
occurs in antipath parts of P●σ and P●τ . Without loss of generality, we can assume, up
to inversion if necessary, that σ = dir(b)w′σR and τ = dir(d)v′τR , where σR is either
an inverse antipath or empty; likewise for τR . hus, the antipath parts have the form

dir(b) = ⋅ ⋅ ⋅ θn ⋅ ⋅ ⋅ θ2θ1 and dir(d) = ⋅ ⋅ ⋅ψn ⋅ ⋅ ⋅ψ2ψ1 ,

where θ1 = b and ψ1 = d and b, d ∈ Q1 are such that bw and dv are deûned as strings.
Since φ∶ P●σ ↝ P●τ is supported in cohomological degree −k ≤ −2, we have the

following subdiagram of the unfolded diagram for φ:

● θ k+1 // ● θ k // ●

● ψk+1

// ● ψk

// ●

We ûrst show that φ is supported in degrees −k− 1 and −k+ 1. Suppose that φ was not
supported in cohomological degree −k + 1; then inverting τ the unfolded diagram of
φ would have the form

● θ k+1 // ● θ k //

(∗)
●

● ●ψk

oo ●ψk+1

oo

where (∗) corresponds to the graphmap right endpoint condition (RG3) in [9, §1.4.1],
whence by [1, Rem. 4.9] corresponds to a family of null-homotopic maps. Similarly,
one can show that φ is supported in cohomological degree −k− 1. his means thatwe
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can extend the subdiagram of the unfolded diagram of φ to the following:

● θ k+1 // ● θ k // ●

● ψk+1

// ● ψk

// ●

showing that θk = ψk for each k ≥ 2. But this means that the unfolded diagram of φ
satisûes (LG3) or (LG∞) (cf. [9, §1.4.1]), and, therefore, invoking [1, Rem. 4.9] again,
we see that φ corresponds to a null-homotopic family of single and double maps.
his contradicts our assumption that φ is a quasi-graph map; therefore, φ cannot be
supported in cohomological degrees smaller than −2, as claimed. ∎

We now consider the endpoints of a quasi-graphmap φ∶Q●
σ ↝ Q●

τ . Lemma 3.8 says
that they must occur in degrees −1 or 0. Recall the deûnition of homotopy strings or
bands σ and τ being compatibly oriented for a quasi-graph map φ from [9, Def. 3.1];
note that if a quasi-graphmap is supported inmore thanone degree, it is automatically
compatibly oriented in its unfolded form.

Lemma 3.9 Suppose the quasi-graphmap φ∶Q●
σ ↝ Q●

τ has right endpoint in degree 0.
(i) he compatibly oriented unfolded diagram for φ has the following form at the right

endpoint of φ:

● σs // x oo
σR ● α

● τ t
// x oo τR

●

such that σs , σR ≠ ∅, τt = ∅ or τt = σ ′sσs for some (possibly nontrivial) σ ′s , and
τR = ∅ or τR = σRσ ′R for some nontrivial σ

′
R .

(ii) Write σR = ak ⋅ ⋅ ⋅ a1 and σs = b l ⋅ ⋅ ⋅ b1 for k, l ≥ 1 and a i , b j ∈ Q1. hen
(a) v has a substring of the form

ṽ =
⎧⎪⎪⎨⎪⎪⎩

b l−1 ⋅ ⋅ ⋅ b1ak ⋅ ⋅ ⋅ a2 if σR is incident with inv(v),
b l−1 ⋅ ⋅ ⋅ b1ak ⋅ ⋅ ⋅ a1a for some a ∈ Q1 otherwise;

(b) w has a substring of the form

w̃ =
⎧⎪⎪⎨⎪⎪⎩

b l−1 ⋅ ⋅ ⋅ b1ak ⋅ ⋅ ⋅ a1a′ for some a′ ∈ Q1 if τR ≠ ∅,
b l−1 ⋅ ⋅ ⋅ b1ak ⋅ ⋅ ⋅ a1 otherwise.

Proof (i) Since P(x) sits in degree zero itmust be a sink for any diòerential incident
with it, because Q●

σ and Q●
τ are projective resolutions. If σs = ∅ or σR = ∅, then the

diagram indicates a graph map endpoint, and φ∶Q●
σ ↝ Q●

τ is not a quasi-graph map.
herefore, σs , σR ≠ ∅. If τR ≠ ∅, the orientation of the diòerentials means that φ must
satisfy the quasi-graph map right endpoint condition (RQ2), whence τR = σRσ ′R for
some nontrivial σ ′R . he statement regarding τt just lists the possible cases that may
occur with the given orientation.
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(ii)(a) First note that b l−1 ⋅ ⋅ ⋅ b1 is a substring of v byCorollary 2.12. If σR is incident
with inv(v), then the ûrst statement is clear. By Remark 2.15(i), σ cannot start with
the inverse homotopy letter σR unless it is incident with inv(v). hus, if σR is not
incidentwith inv(v), then αmust endwith a direct homotopy letter,whose last arrow
we denote by a ∈ Q1, say, giving the required form for ṽ.

(ii)(b)We treat this in cases. First, if τt , τR = ∅, then Q●
τ is the stalk complex P(x)

concentrated in degree zero. Using the form of σs and σR , we see that P(x) ≅ M(u)
for some string u = qb l ⋅ ⋅ ⋅ b1ak ⋅ ⋅ ⋅ a1p, where q is a maximal direct string and p a
maximal inverse string composablewith b l and ak , respectively, as strings. he claim
is now clear in this case.

Now assume that τt ≠ ∅ and τR = ∅. By (i), τt = σ ′sσs , where σ ′s is possibly trivial.
Since τR = ∅, w either starts with b1 (a direct arrow) or else w has had a maximal
inverse preûx removed. he former case cannot occur, because b1ak is deûned as a
string, which by Corollary 2.12 wouldmake τR ≠ ∅. hus, by gentleness, w = ua1wR
for some (possibly trivial) inverse stringwR . If ak ⋅ ⋅ ⋅ a1 is a (possibly equal) substring
of akwR , then w contains the substring w̃, as claimed. So suppose akwR = ak ⋅ ⋅ ⋅ a i
for some 1 < i ≤ k. hen akwRa i−1 is deûned as a string, again rendering τR ≠ ∅ by
Corollary 2.12, a contradiction.

Suppose now that τt = ∅ and τR ≠ ∅. Since τt = ∅, w ends with a direct substring
that has been removed by Remark 2.15(ii). By gentleness, the maximal direct suõx
that has been removed is pb l ⋅ ⋅ ⋅ b1,where again p is themaximal direct path compos-
able with b l as a string. Now since τR = σRσ ′R is a strictly longer inverse homotopy
letter than σR , it follows that w̃ is a substring of w, where σ ′R = a′σ ′′R for some a′ ∈ Q1
and σ ′′R is possibly trivial.
Finally, if τt , τR ≠ ∅, then arguing as above shows that w̃ is a substring of w. ∎

Lemma 3.10 Suppose the quasi-graph map φ∶Q●
σ ↝ Q●

τ has right endpoint in
degree −1.
(i) he compatibly oriented unfolded diagram for φ has the following form at the right

endpoint of φ:

(a) ● oo σs x
σR // ●

● oo τ t
x τR

// ●

(b) ● oo σs x oo
σR ●

● oo τ t
x τR

// ●

,

where τt ≠ ∅. In case (a), σs = ∅ or σs = τ′tτt for some τ′t and we require τR ≠ ∅
and σR = ∅ or else σR = τRτ′R for some nontrivial τ′R . In case (b), σs = τ′tτt for
some τ′t , andwe require one of τR ≠ ∅ or σR ≠ ∅, and if both are not empty letters,
then σRτR ≠ 0. In both cases, τ′t can be trivial.

(ii) Write τt = dq ⋅ ⋅ ⋅ d 1 and τR = cp ⋅ ⋅ ⋅ c1 for k, l ≥ 1 and c i , d j ∈ Q1. hen
(a) v has a substring of the form

ṽ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dq ⋅ ⋅ ⋅ d2 if σs is incident with inv(v),
cp−1 ⋅ ⋅ ⋅ c1c for some c ∈ Q1 if σs = ∅ and σR is incident with dir(v),
dq ⋅ ⋅ ⋅ d 1cp ⋅ ⋅ ⋅ c1c for some c ∈ Q1 if σs ≠ ∅ and σR ≠ ∅ is direct;
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(b) w has a substring of the form

w̃ =
⎧⎪⎪⎨⎪⎪⎩

dq ⋅ ⋅ ⋅ d 1cp ⋅ ⋅ ⋅ c1 τR ≠ ∅,
dq ⋅ ⋅ ⋅ d2 otherwise.

Proof (i)here are three possible orientations for the homotopy strings σ and τwith
right endpoint in degree −1, where in the following diagrams x sits in degree −1:

(I) ● xoo // ● (II) ● xoo ●oo (III) ● // x // ● .

Note that the fourth possible orientation does not occur, because the corresponding
string or band complex would then havemaximal cohomological degree −1, contra-
dicting Remark 2.15(iv). One can check that if σ has orientation (I), then so does
τ; the other orientations produce graph map endpoint conditions (and hence null-
homotopies; see [1, Rem. 4.9]), this gives case (a) above. Observe that in case (a),
τt ≠ ∅ and τR ≠ ∅, for otherwise, we would have a graph map endpoint condition.

If σ has orientation (II), then τ cannot have orientation (III), because this again
gives a graph map endpoint condition. If τ has orientation (II), then we can assume
τR ≠ ∅ (the case τR = ∅ is trivial can be considered as a subcase of τ having orientation
(I)), in which case, length(τR) ≥ 1. However, for degree reasons, it must be incident
with inv(w) and hence length(τR) = 1. herefore, τ cannot have orientation (II).
his gives us case (b). Note in this case that since x sits in degree −1, σs ≠ ∅ by
Remark 2.15(ii); as above, τs ≠ ∅; otherwise,we have a graphmap endpoint condition.

When σ has orientation (III), the unfolded diagrams are those for the dual le�
endpoint conditions and can be properly stated in the dual of this lemma.

(ii)(a) First observe that, in both cases, either σs ≠ ∅ or σR ≠ ∅ (or both) for
degree reasons: if both were empty homotopy letters, Q●

σ would be a stalk complex
concentrated in degree −1, contradicting Remark 2.15(iv).

Supposewe are in case (a) of part (i). Suppose σs = ∅, but σR ≠ ∅. hen σR = τRτ′R
for some nontrivial τ′R by the (RQ1) endpoint condition. By Remark 2.15(ii), σ cannot
end with a direct homotopy letter unless it is incident with dir(v). Let c ∈ Q1 be the
ûnal arrow of the homotopy (sub)letter τ′R . hen since σR is incident with dir(v), we
have that ṽ = cp−1 ⋅ ⋅ ⋅ c1c is a substring of v.

If σs ≠ ∅ but σR = ∅, then Remark 2.15(i) shows that σs is incident with inv(v),
giving ṽ = dq ⋅ ⋅ ⋅ d2 as a substring of v.

If σ1 , σR ≠ ∅, then neither is incident with dir(v) or inv(v), in which case ṽ =
dq ⋅ ⋅ ⋅ d 1cp ⋅ ⋅ ⋅ c1c, where c ∈ Q1 is as above, is a substring of v.

Now suppose we are in case (b) of part (i). If σR = ∅, then using Remark 2.15(i)
again, we have that σs is incident with inv(v), and ṽ = dq ⋅ ⋅ ⋅ d2 is a substring of v. If
σR ≠ ∅, then by Remark 2.15(v), length(σR) = 1 and σR is incident with inv(v), in
which case ṽ = dq ⋅ ⋅ ⋅ d2 is again a substring of v.

(ii)(b) Suppose we are in case (a) of part (i). Since τt , τR ≠ ∅, the homotopy
substring τ1τR cannot be incident with dir(w) nor inv(w) for degree reasons. hus,
w̃ = dq ⋅ ⋅ ⋅ d 1cp ⋅ ⋅ ⋅ c1 is a substring of w.
Finally, suppose we are in case (b) of (i). If τR = ∅, then Remark 2.15(i) shows that

τ1 is incident with inv(w), giving w̃ = dq ⋅ ⋅ ⋅ d2 as a substring of w. If τR ≠ ∅, then,
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as above, the homotopy substring τ1τR cannot be incident with dir(w) nor inv(w).
hus, w̃ = dq ⋅ ⋅ ⋅ d 1cp ⋅ ⋅ ⋅ c1 is a substring of w. ∎

Lemmas 3.9 and 3.10 admit obvious duals for the le� endpoints of quasi-graph
maps.

Now applying the graphical calculus for the mapping cones of the homotopy set
determined by a quasi-graph map [9, Prop. 5.2] and [10, §2] determines the middle
termof the extensionQ●

τ → E● → Q●
σ → ΣQ●

τ inKb ,−(proj(Λ)). Lemmas 3.9 and 3.10
and their duals,heorem 2.8, togetherwith a calculation as in the proof of Lemma 3.5
allows us to take cohomology to determine the extension 0 → M(w) → H0(E●) →
M(v)→ 0. We summarise this computation in the next proposition.

Proposition 3.11 Suppose φ∶Q●
σ ↝ Q●

τ is a quasi-graph map with the following un-
folded diagram, with t ≥ 0, and, when t = 0, wemean a quasi-graph map supported in
precisely one degree, and we replace ρ1 by σL and τL as appropriate:

deg: h′ h

Q●
σ ∶

φ
��

β
● σL ●

ρ t ●
ρ t−1 ⋅ ⋅ ⋅

ρ2 ●
ρ1 ● σR ● α

Q●
τ ∶ δ

● τL
● ρ t

● ρ t−1
⋅ ⋅ ⋅ ρ2

● ρ1
● τR

● γ

Let f ●∶Q●
σ → ΣQ●

τ be any representative of φ; then Φ( f ●) is an overlap extension with
overlap m = mLρt−1 ⋅ ⋅ ⋅ ρ2mR , where

mR =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ̃1ak ⋅ ⋅ ⋅ a2 if h = 0 and σR = ak ⋅ ⋅ ⋅ a2 is incident with inv(v);
ρ̃1ak ⋅ ⋅ ⋅ a1 if h = 0 and σR = ak ⋅ ⋅ ⋅ a1 is not incident with inv(v);
dq ⋅ ⋅ ⋅ d2 if h = −1 and ρ1 ≠ ∅ is incident with inv(v);
ρ̃1cp ⋅ ⋅ ⋅ c2 if h = −1, ρ1 ≠ ∅ and σR = cp ⋅ ⋅ ⋅ c1 with p > 0;

m = cp−1 ⋅ ⋅ ⋅ c1 if ρ1 = ∅ and σR = cp ⋅ ⋅ ⋅ c1 is incident with dir(v),

where a i , d i , c i ∈ Q1, mL is deûned dually, and

ρ̃1 =
⎧⎪⎪⎨⎪⎪⎩

ρ1 if t ≥ 1,
the last homotopy letter of mL if t = 0.

Remark 3.12 he analysis concerning quasi-graph maps above leading to Proposi-
tion 3.11 only concerns the endpoints of the overlap deûning a quasi-graphmap in the
unfolded diagram. As such, the length of the overlap is not relevant for the argument.
In particular, this means that when one (or both) of v or w is a band, and thus σ or
τ is a homotopy band, we are able to get quasi-graph maps whose overlaps are longer
than at least one of the bands, but this does not aòect the computation carried out in
Proposition 3.11.

278

https://doi.org/10.4153/S0008414X2000005X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000005X


Extensions

3.3 Singleton Maps

As before, throughout this subsection, σ = π(v) and τ = π(w) for some strings or
bands v and w. We now examine the kinds of extensions that arise from singleton
(single and double) maps f ●∶Q●

σ → ΣQ●
τ . We ûrst note that singleton double maps

never occur as morphisms between projective resolutions ofmodules.

Lemma 3.13 here are no singleton doublemaps f ●∶Q●
σ → ΣQ●

τ .

Proof By deûnition, the unfolded diagram of a singleton doublemap has the form

Q●
σ ∶

β
● σL ●

σC= fL f ′//

fL
��

● σR

fR
��

● α

ΣQ●
τ ∶ δ

● τL
●

τC= f ′ fR
// ● τR

● γ

where fL , f ′, and fR are nontrivial. By Remark 2.15(v), length(σC) > 1 and
length(τC) > 1. In particular, since σ is a homotopy string or band corresponding
to a projective resolution, σC is a homotopy letter occurring between degrees −1 and
0. On the other hand, τ is also a homotopy string or band corresponding to a pro-
jective resolution, but ΣQ●

τ has been shi�ed, whence τC must be a homotopy letter
occurring between degrees −2 and −1. Hence, there are no such maps. ∎

Recall thenotation andunfolded diagram for a singleton singlemap f ●∶Q●
σ → ΣQ●

τ
from Section 1.4.2(1.5). hroughout this section, whenever σR ≠ ∅ or τR ≠ ∅ in (1.5),
then since fR and fL are direct strings, we can assume, without loss of generality, that
fR ∈ Q1 and fL ∈ Q1, respectively.

Lemma 3.14 Suppose f ●∶Q●
σ → ΣQ●

τ as a singleton singlemapwith single component
f = fn ⋅ ⋅ ⋅ f1. hen the component f occurs in cohomological degree −1.

Proof Suppose f ● is supported in cohomological degree d. Since Q●
τ is a projec-

tive resolution, ΣQ●
τ attains its maximal degree in degree −1, thus d ≤ −1. By Re-

mark 2.15(v), if in (1.5) either σR ≠ ∅ or τR ≠ ∅, then d = −1. So assume that
σR , τR = ∅ and d < −1. By Corollary 2.12, since τL is the endpoint of a homotopy
string occurring in degree d, it must be inverse (otherwise there would be nontrivial
cohomology in degree d, contradicting the fact that ΣQ●

τ is a (shi�ed) projective reso-
lution). Moreover, for degree reasons, τL must be the ûrst homotopy letter of inv(w).
Writing τL = b l ⋅ ⋅ ⋅ b1 for some b i ∈ Q1, i = 1, . . . , l , the deûnition of singlemaps gives
us that b1 f 1 = 0. his contradicts the fact that inv(w) is the longest inverse antipath
incident with w′ (see Corollary 2.12). herefore, d = −1, as claimed. ∎

Corollary 3.15 Suppose f ●∶Q●
σ → ΣQ●

τ is a singleton single map. In the unfolded
diagram (1.5) in Section 1.4.2, τL must be a direct homotopy letter or τL = ∅.

Proof Since ΣQ●
τ attains its maximal cohomological degree in degree −1 and f ● is

supported in degree −1 by Lemma 3.14, τL cannot be inverse. ∎
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Corollary 3.15 allows us to further specialise the setup in Section 1.4.2(1.5) in the
statement of the next proposition.

Proposition 3.16 Suppose f ●∶Q●
σ → ΣQ●

τ is a singleton single map with single com-
ponent f = fn ⋅ ⋅ ⋅ f1. Write τL = b l ⋅ ⋅ ⋅ b1 with b i ∈ Q1 for i = 1, . . . , l . Whenever σL is
an inverse homotopy letter, we will write σL = ak ⋅ ⋅ ⋅ a1, where a i ∈ Q1 for i = 1, ⋅ ⋅ ⋅ , k
with k ≥ 1.

(i) If σR = ∅, then τR = ∅ and σL is inverse. he corresponding extension Φ( f ●) ∈
Ext1Λ(M(v),M(w)) is an arrow extension given by a1, i.e., Φ( f ●) gives rise to
an extension of M(w) by M(v) with middle term M(u) where u = wa1v.

Suppose σR ≠ ∅. If σR is not incident with dir(v) then σL is inverse and we have:

(ii) If τR = ∅, then the corresponding extension Φ( f ●) ∈ Ext1Λ(M(v),M(w)) is an
overlap extension whosemiddle term is given by

m = f 1 ⋅ ⋅ ⋅ f n−1 , A = ∅, B = fR , C = fn , and D = b1
if σR is incident with dir(v);

m = f 1 ⋅ ⋅ ⋅ f n , A = a1 , B = fR , C = ∅, and D = b1
otherwise.

(iii) If τR ≠ ∅, then the corresponding extension Φ( f ●) ∈ Ext1Λ(M(v),M(w)) is an
overlap extension, which, when σR is incident with dir(v), has its middle term
given by

m = f 1 ⋅ ⋅ ⋅ f n−1 , A = ∅, B = fR , C = fn and D = c1 if τL = ∅;

m = f 1 ⋅ ⋅ ⋅ f n−1 , A = ∅, B = fR , C = fn and D = b1 if τL ≠ ∅,

and is an overlap extension, which, when σR is not incident with dir(v), has its
middle term given by

m = f 1 ⋅ ⋅ ⋅ f n , A = a1 , B = fR , C = ∅ and D = c1 if τL = ∅;

m = f 1 ⋅ ⋅ ⋅ f n , A = a1 , B = fR , C = ∅ and D = b1 if τL ≠ ∅.

In case (iii) of the proof below,we do an example of a computation as in Lemma 3.5
for an overlap extension. An example computation for an arrow extension is done in
the proof of Lemma 3.5, and we refer the reader to Figure 3 for a schematic of such a
computation.

Proof (i) First note that σL is inverse, since if it were direct or empty, Q●
σ would

have nontrivial cohomology in degree −1, contradicting the fact that it is a projective
resolution. herefore, σL = ak ⋅ ⋅ ⋅ a1 with a i ∈ Q1 for i = 1, . . . , k for some k ≥ 1.
Moreover, σL is the start of inv(v), for otherwise, σ would start in degree 0 a�er the
removal of amaximal inverse preûx. It follows that v starts with the inverse substring
ak ⋅ ⋅ ⋅ a2, whence v ends with the direct substring a2 ⋅ ⋅ ⋅ ak .

280

https://doi.org/10.4153/S0008414X2000005X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000005X


Extensions

Consider the local subquiver of Q, where, without loss of generality, we assume
that fL ∈ Q1,

● ak // ● ● a1 // x
fL
��

●
fnoo ● y

f1oo b1 // ● ● b l // ● .

●

If τR ≠ ∅, then a1 fL = 0, contradicting the fact that σL is the start of inv(v). hus,
τR = ∅.

Since f is not a subletter of τL or vice versa, we must have f1 ≠ b1 and b1 f 1 is
deûned as a string. his means that a maximal inverse preûx, whose last (inverse)
arrow is f 1, has been removed from w in the computation of τ = π(w), for other-
wise, τR ≠ ∅. We claim that f is precisely the maximal inverse preûx that has been
removed. Clearly, the maximal inverse preûx cannot be a proper substring of f , be-
cause the computation of τ = π(w) inCorollary 2.12would require us to compose this
with w giving τR ≠ ∅. However, if f were a proper substring of themaximal inverse
preûx, then therewould be an arrow fn+1 ∈ Q1 such that a1 f n+1 = 0 giving us a contra-
diction as above. herefore, w starts with the substring τL f . Applying [9,hm. 3.2],
heorem 2.8, and a computation as in Lemma 3.5 shows that Φ( f ●) gives an arrow
extension corresponding to the arrow a1 with middle term M(u), where u = wa1v.

Suppose that σR ≠ ∅. If σR is not incident with dir(v), then by Remark 2.15(i),
σL ≠ ∅ and is inverse, and we write σL = ak ⋅ ⋅ ⋅ a1, where a i ∈ Q1 for i = 1, . . . , k with
k ≥ 1.

(ii) Suppose that τR = ∅. First observe that, by Corollary 2.12, w has a substring
of the form b l−1 ⋅ ⋅ ⋅ b1 f 1 ⋅ ⋅ ⋅ f n . If σR is incident with dir(v) (in which case so is σL
regardless of whether it is empty), then v ends with a substring fn−1 ⋅ ⋅ ⋅ f1 fR , i.e., v
starts with a substring fR f 1 ⋅ ⋅ ⋅ f n−1, by Corollary 2.12. Applying [9,hm. 3.2], taking
cohomology using heorem 2.8 and a calculation as in Lemma 3.5 then gives us an
overlap extension between M(w) and M(v):

m = f 1 ⋅ ⋅ ⋅ f n−1 , A = ∅, B = fR , C = fn and D = b1 .
Now suppose σR is not incident with dir(v). By Corollary 2.12, v has a substring
σL fn ⋅ ⋅ ⋅ f1 fR ; i.e., v has a substring f R f 1 ⋅ ⋅ ⋅ f nσL . Again applying [9,hm. 3.2],he-
orem 2.8, and a calculation as in Lemma 3.5 gives us the following overlap extension
between M(w) and M((v)):

m = f 1 ⋅ ⋅ ⋅ f n , A = a1 , B = fR , C = ∅ and D = b1 .
(iii) Suppose that τR ≠ ∅. First, we assume σR is incident with dir(v), whence v

starts with the substring fR f 1 ⋅ ⋅ ⋅ f n−1 as above. If τL = ∅, then, by Corollary 2.12, w
endswith a substring ct ⋅ ⋅ ⋅ c1 f 1 ⋅ ⋅ ⋅ f n fL ,where c i ∈ Q1 for i = 1, ⋅ ⋅ ⋅ , t and t ≥ 0. In this
case, the application of [9,hm. 3.2],heorem 2.8, and a calculation as in Lemma 3.5,
which we sketch below, gives us the following overlap extension between M(w) and
M(v):

m = f 1 ⋅ ⋅ ⋅ f n−1 , A = ∅, B = fR , C = fn , and D = c1 .
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We now sketch the calculation as in Lemma 3.5 for this case. he unfolded di-
agrams of the morphisms occurring in the mapping cone triangle of [9, hm. 3.2]
are:

Q●
τ ∶

g●1 ��

γ
●

fL
��

fL f // ●

E●1 ∶
h●1 ��

β
● σL // ●

f // ●
fR
��

Q●
σ ∶

β
● σL

// ●
f fR
// ● α

and

Q●
τ ∶

g●2 ��

γ
●

fL f // ●
fR
��

E●2 ∶
h●2 ��

●
γ

●
fL
��

fL f fR // ● α

Q●
σ ∶

β
● σL

// ●
f fR
// ● α

.

Figure 4 below shows the calculation of the induced maps in cohomology; it is clear
that they are the canonical maps in the resulting overlap extension. If τL ≠ ∅, then w

Figure 4: he diagram on the le� shows the calculation of g●1 ∶Q●τ → E●1 and h●1 ∶ E●1 → Q●σ ; the
one on the right shows the calculation of g●2 ∶Q●τ → E●2 and h●2 ∶ E●2 → Q●σ in case (iii) of the proof
of Proposition 3.16.
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has a substring b l−1 ⋅ ⋅ ⋅ b1 f 1 ⋅ ⋅ ⋅ f n fL . Applying [9,hm. 3.2] andheorem 2.8 gives us
the following overlap extension between M(w) and M(v):

m = f 1 ⋅ ⋅ ⋅ f n−1 , A = ∅, B = fR , C = fn and D = b1 .

Now assume that σR isnot incidentwithdir(v),whence v has a substring f R f 1 ⋅ ⋅ ⋅ f nσL
as above. Using the calculations of substrings of w for τL = ∅ and τL ≠ ∅ above, re-
spectively, and the application of [9, hm. 3.2], heorem 2.8 and a calculation as in
Lemma 3.5 gives us the following overlap extensions between M(w) and M(v):

m = f 1 ⋅ ⋅ ⋅ f n , A = a1 , B = fR , C = ∅, and D = c1 if τL = ∅;

m = f 1 ⋅ ⋅ ⋅ f n , A = a1 , B = fR , C = ∅, and D = b1 if τL ≠ ∅. ∎

4 Surjectivity of Φ onto Overlap and Arrow Extensions

In this section, we use the combinatorics of an overlap or arrow extension to show
that the isomorphism Φ∶HomKb ,−(proj(Λ))(Q●

π(v) , ΣQ●
π(w)) → Ext1Λ(M(v),M(w))

restricts to a surjection,

Φ∶{
standard basis elements of
HomKb ,−(proj(Λ))(Q●

π(v) , ΣQ●
π(w))

} ↠ { overlap and arrow extensions
η ∈ Ext1Λ(M(v),M(w))

} .

4.1 Overlap Extensions

hroughout this section we will have the following setup.

Setup 4.1 Let v andw be strings or bands and let π(v) and π(w) be the correspond-
ing homotopy strings or bands of their projective resolutions.

Suppose 0 ≠ η ∈ Ext1Λ(M(v),M(w)) is an overlap extension corresponding to the
decompositions v = vLBmAvR and w = wLDmCwR . We consider m and decompose
it into its homotopy letters m = µ l ⋅ ⋅ ⋅ µ1 with l ≥ 0. When l = 0, m is a trivial string,
i.e.,m = 1x for some x ∈ Q0, andwe call it a trivial overlap. If l = 1,we saym is a direct
or inverse overlap. If l > 1, we say that m is a zigzag overlap.

4.1.1 Zigzag Overlaps

We start with the zigzag overlap case.

Lemma 4.2 Suppose in Setup 4.1, the string m is a zigzag overlap. hen the map
f ∶M(w)→ M(v) associatedwith this decomposition induces a graphmap f ●∶Q●

π(w) →
Q●

π(v) of homotopy string or band complexes such that H0( f ●) = f .

Proof We ûrst show that the given decomposition induces a graph map Q●
π(w) →

Q●
π(v). It is suõcient to consider only the endpoints of themap, as determined by the

decomposition. We consider only the right endpoints; the analysis for le� endpoints
is analogous.

283

https://doi.org/10.4153/S0008414X2000005X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000005X


İ. Çanakçı, D. Pauksztello, and S. Schroll

Before breaking the argument up into a case analysis, ûrst note that one of A and C
must exist (i.e., be nonempty), since η is a non-split extension. By gentleness, if both
A and C exist wemust have CA = 0.
Case: µ1 is a direct homotopy letter.
By Corollary 2.12, the homotopy string or band π(w) has the following form:

π(w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

●
µ1 // ● if CwR = ∅ or is removed;

●
µ1 // ● ●

C poo for some path p in (Q , I) otherwise.

Similarly, the homotopy string or band π(v) has the following form:

π(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

●
µ1 // ● ●Coo if A = ∅;

●
µ1Aq // ● for some path q in (Q , I) otherwise.

Combining these, we get the following unfolded diagrams of graph map right end-
point conditions, showing the claim in this case.

●
µ1 // ●

● µ1
// ● ●

C
oo

●
µ1 // ●

Aq
��●

µ1Aq
// ●

●
µ1 // ● ●

C poo

p
��● µ1

// ● ●
C
oo

●
µ1 // ●

Aq
��

●
C poo

●
µ1Aq
// ●

Case: µ1 is an inverse homotopy letter.

π(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

● if C = ∅ or CwR is inverse, and there is no
a ∈ Q1 with wa deûned as a string;

● ●
µ1aoo if C = ∅ and there exists a ∈ Q1 with µ1a a

string;

● ●
µ1C poo for some (possibly trivial) path p in (Q , I),

otherwise,
where the homotopy string in the ûrst case starts with µ2 if it exists, or a single pro-
jective or the start of an antipath, otherwise. Similarly, the homotopy string or band
π(v) has the following form:

π(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

● ●
µ1oo Aq // ● for some path q in (Q , I) if A ≠ ∅;

● ●
µ1Coo if A = ∅.

We leave it to the reader to match up the various forms of the projective resolutions
and conûrm that they give rise to graph map right endpoint conditions as above.
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Now examining the components of f ●∶Q●
π(w) → Q●

π(v) consisting of identitymaps
between indecomposable projectivemodules and following thesemaps through a cal-
culation of the kind in Lemma 3.5 shows that the H0( f ●) = f ∶M(w) → M(v), i.e.,
f ● is indeed induced from f . ∎

Applying Remark 1.8, we get the following corollary.

Corollary 4.3 Keep the setup as in Lemma 4.2. hemap f ∶M(w) → M(v) induces
a quasi-graphmap φ∶Q●

π(v) ↝ Q●
π(w) of homotopy string or band complexes, and hence

a homotopy family ofmaps Q●
π(v) → ΣQ●

π(w).

Let g●∶Q●
π(v) → ΣQ●

π(w) be a representative of the homotopy family of single or
double maps deûned by the quasi-graph map φ∶Q●

π(v) ↝ Q●
π(w) obtained in Corol-

lary 4.3. hen, by Proposition 3.11, one obtains Φ(g●) = η.

4.1.2 Direct or Inverse Overlaps

Here we consider the case of Setup 4.1 in which m is a direct overlap; the case that m
is an inverse overlap is analogous. As in previous sections, σ = π(v) and τ = π(w).
Again, we use the combinatorics of the overlap to deûne a map g●∶Q●

π(v) → ΣQ●
π(w)

such thatΦ(g●) = η. In this case, g● is either a singleton singlemap or a representative
of a homotopy family ofmaps deûned by a quasi-graph map φ∶Q●

π(v) ↝ Q●
π(w).

In the following, we do a detailed analysis of the diòerent types of standard basis
maps that are induced by the diòerent possible forms the strings v and w can take.
We present the results by grouping the diòerent cases giving rise to the same type of
standard basis element in HomKb ,−(proj(Λ))(Q●

π(v) , ΣQ●
π(w)).

Case: g●∶Q●
π(v) → ΣQ●

π(w) is a singleton singlemap.

he unfolded diagram of the singleton single map is one of the diagrams below;
we explain in which cases they arise. In each case, the precise description of τR is ir-
relevant;we note only that in each case it is necessarily empty or an inverse homotopy
letter not containing m as a substring, or vice versa.

(I) σ ∶ ● ●
qBoo mAp //

m
��

●

Στ∶ ● τL
// ● ●τR
oo

(II) σ ∶ ● ●
DmAp //

Dm
��

●

Στ∶ ● τL
// ● ●τR
oo

,

where p and q are (possibly trivial) paths in (Q , I). Diagram(I) occurs preciselywhen
both A ≠ ∅ and B ≠ ∅; the pertinent part of the projective resolution of M(v) has
this form by Corollary 2.12. Now, applying Corollary 2.12 to w, we see that

τL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm if D = ∅ but there exists d ∈ Q1 with dm deûned as a string;
q′Dm for some (possibly trivial) path q′ in (Q , I) if D ≠ ∅ and wL is not

direct or wLD is direct and there exists d ∈ Q1 with dw deûned as a
string;

∅ otherwise.
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Diagram (II) occurs in the case where A ≠ ∅ but B = ∅; in this case, to avoid η being
a split extension, wemust have D ≠ ∅. In this case, we have

τL =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if wLD is direct and there exists no d ∈ Q1

with dw deûned as a string;
q′Dm for some nontrivial path q′ in (Q , I) if the ûrst letter of wL is not

inverse and we are not in the case above.
Note that in the case above, when the ûrst letter of wL is inverse, we do not get a
singleton singlemap; hence, this case is included in this argument but is treated in the
next case below. In each case, it is straightforward to verify that the diagram deûnes
a singleton singlemap. One now applies Proposition 3.16 to see that Φ(g●) = η.
Case: g●∶Q●

π(v) → ΣQ●
π(w) is a representative of a homotopy family determined by a

quasi-graph map φ∶Q●
π(v) ↝ Q●

π(w).

We check that we get a graph map f ●∶Q●
π(w) → Q●

π(v) in the opposite direction
and apply Remark 1.8.

In the case where A ≠ ∅ but B = ∅, and the ûrst letter of wL is inverse; i.e., the
one case excluded in treating diagram (II) above, we get the following graph map in
which p is some (possibly trivial) path in (Q , I):

π(w)∶ ● ●oo Dm // ●
Ap
��

●oo

π(v)∶ ● // ●
DmAp

// ●

Now suppose A = ∅, whence C ≠ ∅. he overlap data gives rise to a graph map
with the unfolded diagram

π(w)∶ ● ● τL //

fL
��

● ●τRoo

fR
��

τ0 ● ,

π(v)∶ ● σL
// ● ●

C
oo

in which

σL =
⎧⎪⎪⎨⎪⎪⎩

m if B ≠ ∅;
Dm if B = ∅;

τR =
⎧⎪⎪⎨⎪⎪⎩

Cp if CwR is not removed when computing π(w);
∅ otherwise;

τL =
⎧⎪⎪⎨⎪⎪⎩

∅ if wLDm is removed when computing π(w);
qDm otherwise,

where p is some (possibly trivial) path in (Q , I), and q is either the (possibly trivial)
maximal direct preûx of wL if wL ≠ ∅ is not a direct string, and q = dwL for some
d ∈ Q1 with dwL deûned as a string otherwise; in this second case, wL is also possibly
empty. he values of ( fL , fR) in each case are recorded in Table 1:
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fL σL = m σL = Dm
τL = ∅ ∅ ∅

τL = qDm qD q
and

fR σR = C
τR = Cp p
τR = ∅ ∅

Table 1: Le�: the value of fL in each case; right: the value of fR in each case.

4.1.3 Trivial Overlaps

We ûnally turn our attention to trivial overlaps. Suppose m = 1x for some x ∈ Q0.
In this case, we ûx the orientation of our strings and bands by requiring, whenever
the relevant arrows exist, that CB ≠ 0 and DA ≠ 0. We again describe in each case
how the combinatorics of the overlap can be used to construct a standard basis map
g●∶Q●

π(v) → Q●
π(w) such that Φ(g●) = η.

Case: g●∶Q●
π(v) → ΣQ●

π(w) is a graph map supported in one degree.
his is simply a degeneration of diagram (I) in the singleton single map case of

Section 4.1.2, where instead m = 1x for some vertex x ∈ Q0, i.e., providing a graph
map concentrated in one degree. Applying Lemma 3.6, we get Φ(g●) = η.
Case: g●∶Q●

π(v) → ΣQ●
π(w) is a singleton singlemap.

If A = ∅ and B ≠ ∅, in which case C ≠ ∅, then by Corollary 2.12, the homotopy
string π(v) has the form

π(v)∶ ● ●
qBCoo ●σRoo ,

where σR can be an empty homotopy letter. Similarly, the homotopy string π(w) has
the form

● τL // ● ●
C poo τR ● or ● τL // ● ,

where p is a (possibly trivial) path in (Q , I), and τL and τR are possibly empty ho-
motopy letters. he form of τL depends on the form of the substring wLD, but is not
relevant for the description of themap. he second case occurswhenw startswith C,
and we fall in cases (iii) or (iv) of Corollary 2.12. In the case where p is nontrivial, we
get the unfolded diagram on the le� below. In the case that π(w) starts with τL , we
get the unfolded diagram on the right. In both cases, we get a singleton singlemap:

π(v)∶ ● ●
qBCoo

C
��

●σRoo

Σπ(w)∶ ● τL
// ● ●

C p
oo

τR
●

or

π(v)∶ ● ●
qBCoo

C
��

●σRoo

Σπ(w)∶ ● τL
// ●
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he case where p is trivial gives rise to a quasi-graph map, which is dealt with be-
low. here are obvious dual considerations when A ≠ ∅ and B = ∅. Now apply
Proposition 3.16.

Case: g●∶Q●
π(v) → ΣQ●

π(w) is a representative of a homotopy family determined by a
quasi-graph map φ∶Q●

π(v) ↝ Q●
π(w).

In the case where A = ∅ but B ≠ ∅ above, in which the path p occurring in the
homotopy string π(w) is trivial, we must have that τR ≠ ∅ and is direct by Corol-
lary 2.12. his gives rise to a graph map f ●∶Q●

π(w) → Q●
π(v) given by the following

unfolded diagram:

π(w)∶ ● τL // ●
Bq
��

●Coo τR ●

π(v)∶ ● ●
qBC
oo ●σR

oo

By Remark 1.8, this gives rise to the quasi-graph map φ∶Q●
π(v) ↝ Q●

π(w), as claimed.
Indeed, one can see that the map given in the unfolded diagram above is one mem-
ber of the homotopy family determined by φ. Dual considerations apply for the case
A ≠ ∅ and B● = ∅.
Finally, the case A = ∅ and B = ∅ gives rise to a graph map f ●∶Q●

π(w) → Q●
π(v),

whence a quasi-graph map φ∶Q●
π(v) ↝ Q●

π(w) by Remark 1.8. Note that, necessarily,
C ≠ ∅ and D ≠ ∅. In this case, by Corollary 2.12, π(v) has the form

π(v)∶ ● σL // ● D // x ●Coo ●σRoo ,

in which the homotopy letters σL and σR can be empty. he homotopy string π(w)
has one of the following four forms:

● τL ●
qD // x ●

C poo ●τR x

● τL ●
qD // x x ●

C poo ●τRoo

where p and q are (possibly trivial) paths in (Q , I). Whenever p is trivial τR ≠ ∅ and is
direct; whenever q is trivial, τL ≠ ∅ and is inverse. he graph map f ●∶Q●

π(w) → Q●
π(v)

can be read oò from the following unfolded diagram, interpreting p and q as trivial
paths (whence isomorphisms) and deleting homotopy letters as appropriate to ût the
cases:

π(w)∶ ● τL ●
q
��

qD // x ●
C poo

p
��

●τR

π(v)∶ ● σL // ● D // x ●Coo ●σRoo

As above, we apply Proposition 3.11 to get Φ(g●) = η.
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4.2 Arrow Extensions

Let v = vm ⋅ ⋅ ⋅ v1 and w = wn ⋅ ⋅ ⋅w1 where v i ,w i ∈ Q1 ∪ Q 1. Suppose that
η ∈ Ext1Λ(M(v),M(w)) is an arrow extension corresponding to an arrow a ∈ Q1;
i.e., η corresponds to an extension with M(u) as themiddle term where u = wav.

Since we know av is deûned as a string, we are in case (i) or (iii) in Corollary 2.12
so that π(v) = dir(a)ṽ, where ṽ = v′inv(b) for some b ∈ Q1 or ṽ = v′ depending on
whether we fall into case (i) or (iii), respectively. We set dir(a) = ⋅ ⋅ ⋅ θ2θ1a. Likewise,

π(w) =
⎧⎪⎪⎨⎪⎪⎩

w̃ inv(c) if there exists c ∈ Q1 such that w1c is deûned as a string;
w̃ otherwise,

where w̃ is deûned in a manner analogous to ṽ, depending on considerations at its
end. We write inv(c) = cφ1 ⋅ ⋅ ⋅φ2 ⋅ ⋅ ⋅.

he form of themap g●∶Q●
π(v) → Q●

π(w) such that Φ(g●) = η depends on whether
v ends with an inverse or direct letter and w starts with an inverse or direct letter. We
deal with the cases in turn.

Case: w1 ∈ Q1 and vm ∈ Q 1.

If w̃ inv(c) is deûned, then we get the unfolded diagram of a (one-sided) graph
map, g●∶Q●

π(v) → ΣQ●
π(w), below, where we have used π(w) in the diagram:

Q●
π(v)∶

g● ��

● θ2 // ● θ 1 // ● a // ● vm ⋅⋅⋅v ioo

ΣQ●
π(w)∶ ● φ1

// ●
c=θ 1

// ● ●
w 1 ⋅⋅⋅w j

oo

Since w1a is deûned as a string, we have w1a ∉ I, whence c = θ1 by gentleness. Con-
tinuing, we see that φ i = θ i+1 for each i > 1. Applying Lemma 3.5, one veriûes that
Φ(g●) = η.

If w̃inv(c) is not deûned, then we get the following unfolded diagram of a (one-
sided) graph map g●∶Q●

π(v) → ΣQ●
π(w) supported in one degree; applying Lemma 3.5

shows Φ(g●) = η:

Q●
π(v)∶

g● ��

● a // ● ●vm ⋅⋅⋅v ioo

ΣQ●
π(w)∶ ● ●

w 1 ⋅⋅⋅w j

oo

Note that since w1a ∉ I, θ1 = ∅ (i.e., dir(a) = a), because otherwise θ1 would provide
such a c by gentleness of Λ.

Case: w1 ∈ Q1 and vm ∈ Q1.

By the same argument as above, we have one of the following unfolded diagrams
of a (one-sided) graph map, g●∶Q●

π(v) → ΣQ●
π(w), depending on whether w̃ inv(c) is
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deûned. In both cases, one then applies Lemma 3.5:

Q●
π(v)∶

g● ��

● θ2 // ● θ 1 // ● avm ⋅⋅⋅v i // ●

ΣQ●
π(w)∶ ● φ1

// ●
c=θ 1

// ● ●
w 1 ⋅⋅⋅w j

oo

or

Q●
π(v)∶

g● ��

● avm ⋅⋅⋅v i // ●

ΣQ●
π(w)∶ ● ●

w 1 ⋅⋅⋅w j

oo

Case: w1 ∈ Q 1 and vm ∈ Q 1.

Suppose w̃ inv(c) is deûned. Since θ1a ∈ I we have that θ1w1 is a string and c = θ1 is
the unique arrow such that cw1 ∉ I. Continuing,we have φ i = θ i+1 for i ≥ 1. his gives
the following unfolded diagram of a (one-sided) graph map, g●∶Q●

π(v) → ΣQ●
π(w);

now apply Lemma 3.5 again:

Q●
π(v)∶

g● ��

● θ2 // ● θ 1=c // ● a //

w 1 ⋅⋅⋅w j
��

● ●vm ⋅⋅⋅v ioo

ΣQ●
π(w)∶ ● φ1

// ●
cw 1 ⋅⋅⋅w j

// ● ●oo

If w̃ inv(c) is not deûned, then suppose w j ⋅ ⋅ ⋅w1 is themaximal inverse substring
startingw; in particular, w̃ startswithw j+1 that is either direct or empty. Furthermore,
θ1 = ∅, for otherwise w1θ 1 would be deûned as a string, and we could take c = θ1.
Hence, we get the following unfolded diagram of a singleton singlemap g●∶Q●

π(v) →
ΣQ●

π(w), and we apply Proposition 3.16.

Q●
π(v)∶

g● ��

● a //

w 1 ⋅⋅⋅w j
��

● ●vm ⋅⋅⋅v ioo

ΣQ●
π(w)∶ ● ●

w j+1 ⋅⋅⋅w k

oo

Case: w1 ∈ Q 1 and vm ∈ Q1.

Arguing as above, we get the following unfolded diagram of a (one-sided) graph
map or a singleton single map, g●∶Q●

π(v) → ΣQ●
π(w), when w̃ inv(c) is deûned and

when it is not, respectively. One then applies Lemma 3.5 or Proposition 3.16,
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respectively:

Q●
π(v)∶

g● ��

● θ2 // ● θ 1 // ● avm ⋅⋅⋅v i //

w 1 ⋅⋅⋅w j
��

● ●oo

ΣQ●
π(w)∶ ● φ1

// ●
cw 1 ⋅⋅⋅w j

// ● ●oo

or

Q●
π(v)∶

g● ��

● avm ⋅⋅⋅v i //

w 1 ⋅⋅⋅w j
��

● ●oo

ΣQ●
π(w)∶ ● ●

w j+1 ⋅⋅⋅w k

oo
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