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Analytical wind turbine wake models and wake superposition methods are prevailing
tools widely adopted by the wind energy community to predict the power production
of wind farms. However, none of the existing wake superposition methods conserve
the streamwise momentum. In this study, a novel wake superposition method capable
of conserving the total momentum deficit in the streamwise direction is derived
theoretically, and its performance is validated with both particle imaging velocimetry
measurements and large-eddy simulation results. Detailed inter-method comparisons
show that the novel wake superposition method outperforms all the existing methods
by delivering an accurate prediction of the power production and the centreline wake
velocity deficit, with a typical error of less than 5 % (excluding the near-wake region).
Additionally, the momentum-conserving wake superposition method is extended to
combine the transverse velocities induced by yawed wind turbines, and the secondary
wake steering effect crucial to the power optimization in active wake control is well
reproduced.

Key words: wakes

1. Introduction
Large wind farms with dozens of wind turbines arranged in multiple rows are

increasingly built worldwide to reduce the usage of unsustainable fossil fuels. The
spacing between the adjacent turbine rows/columns is typically selected as 3–10 times
the rotor diameter, due to the limitations of land usage and connection cable length.
At such a spacing, the power losses caused by the inevitable wake interactions can
reach up to approximately 40 %, when the directions of turbine rows/columns are
aligned with the wind direction (Stevens & Meneveau 2017; Porté-Agel, Bastankhah
& Shamsoddin 2019). To minimize these power losses, a fast prediction of the wind
farm power output in various wind conditions is needed in the layout design phase,
which in practice is realized by computationally cheap analytical methods. Specifically,
the wake velocity deficits caused by the individual wind turbines are first computed
from analytical wake models, and then superimposed to get the total wake deficit
(Jensen 1983; Niayifar & Porté-Agel 2016), as sketched in figure 1.
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FIGURE 1. Sketch of wake superposition in a three-row wind farm. Here, ui
s denotes the

wake velocity deficit caused by the ith wind turbine.

Depending on the reference wind speed used to calculate the individual wakes
(either local or global) and the operations adopted to combine the wakes (either
summing the wake velocity deficits, or summing the squares of the wake velocity
deficits), four wake superposition methods are available in the literature (Stevens &
Meneveau 2017; Porté-Agel et al. 2019), as follows.

Method A: Uw(x, y, z)=U∞ −
∑

i

(U∞ − ui
w(x, y, z)). (1.1)

Method B: Uw(x, y, z)=U∞ −
√∑

i

(U∞ − ui
w(x, y, z))2. (1.2)

Method C: Uw(x, y, z)=U∞ −
∑

i

(ui
0 − ui

w(x, y, z)). (1.3)

Method D: Uw(x, y, z)=U∞ −
√∑

i

(ui
0 − ui

w(x, y, z))2. (1.4)

Here, ui
0 is the mean wind velocity perceived by the ith wind turbine (referred to as

WTi hereinafter); ui
w is the wake velocity induced by WTi in stand-alone conditions.

The difference between the incoming wind velocity and the wake velocity defines the
individual wake velocity deficit, i.e. ui

s = ui
0 − ui

w.
The logic behind each of these methods is briefly explained here. In Method

A (Lissaman 1979), a large wind turbine spacing with weak wake interaction is
assumed, such that, during the calculation of individual wakes, the mean wind
velocity experienced by the downstream wind turbines can be substituted by the
inflow velocity of the wind farm, i.e. ui

0 ≈ U∞. Further, since the wake velocity
deficit is small, the momentum deficit term (U∞ − ui

s) · ui
s can be approximated

by U∞ · ui
s. Consequently, to conserve the total momentum deficit in the wake (i.e.

total wind turbine thrust), one only needs to sum the wake velocity deficits linearly,
like a passive scalar. Method B (Katic, Højstrup & Jensen 1987) makes a similar
assumption of ui

0 ≈ U∞ during the calculation of individual wakes. Nevertheless, the
wake superposition is realized by summing the squares of the wake velocity deficits.
By executing this operation, the authors expected to conserve the mean kinetic energy
deficit during wake interaction, which is disputable as the mean kinetic energy flux
is not conserved in wake flows due to the non-trivial turbulent dissipation.
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The counterparts of Methods A and B are Methods C and D proposed by Niayifar
& Porté-Agel (2016) and Voutsinas, Rados & Zervos (1990), respectively. In these
two recent methods, similar operations (i.e. linear sum and square sum) are adopted
to combine the individual wake velocity deficits without theoretical justification.
Nevertheless, during the computation of the individual wakes, the approximation of
ui

0 ≈ U∞ is removed, and the mean wind speeds perceived by the wind turbines ui
0

(i= 0, 1, 2, . . .) are determined consecutively from upstream to downstream. Therefore,
it is largely expected that Methods C and D will give more accurate predictions of
the wind farm power production than their counterparts, particularly in the cases of
short wind turbine spacing and large wake velocity deficit.

To summarize, the four existing wake superposition methods are all empirical
relations without solid theoretical foundation. During the combination of individual
wakes, the total momentum deficit is highly unlikely to be conserved by these
methods, which could introduce significant errors in the power prediction of wind
farms. In this study, a novel wake superposition method is derived rigorously from
the law of conservation of momentum and its superior performance over the other
four existing methods is demonstrated by experimental and large-eddy simulation
(LES) data.

2. Theoretical derivation
2.1. Linearized expression for the momentum deficit flux

For wake flow, the law of conservation of momentum stipulates that the total
momentum deficit flux across the wake cross-section has to be a conserved quantity,
equalling the drag imposed to the flow (Pope 2000). Applying this principle to each
of the wind turbines shown in figure 1, equation (2.1) can be derived (for details,
please refer to appendix A),

Ti = ρ

∫∫
ui

w(x, y, z) · ui
s(x, y, z) dy dz, (2.1)

where Ti denotes the thrust of WTi. Since the wake velocity uw is correlated with the
wake velocity deficit, the relationship between Ti and ui

s is nonlinear. However, if an
appropriate mean wake convection velocity (denoted as ui

c) is selected to represent the
spatially dependent wake velocity in the entire wake cross-section, equation (2.1) may
be rewritten in the following linear form:

Ti = ρ

∫∫
ui

c(x) · u
i
s(x, y, z) dy dz= ρui

c(x)
∫∫

ui
s(x, y, z) dy dz. (2.2)

Substituting (2.2) into (2.1), a mathematical definition of the mean wake convection
velocity is given as follows:

ui
c(x)=

∫∫
ui

w(x, y, z) · ui
s(x, y, z) dy dz∫∫

ui
s(x, y, z) dy dz

. (2.3)

Namely, the mean convection velocity necessary for linearizing the momentum
deficit term is a weighted average of the wake velocity, where the weights are
selected as the corresponding wake velocity deficits. Since the analytical expressions
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for ui
w and ui

s are widely available in various wind turbine wake models (Jensen 1983;
Frandsen et al. 2006; Bastankhah & Porté-Agel 2014), the expression for ui

c can also
be derived in different forms. Nevertheless, for the purpose of accurate wind farm
power prediction, only the wake models that are derived strictly from the law of
conservation of momentum (i.e. excluding the Jensen model) are recommended. Here,
the Gaussian wake model proposed by Bastankhah & Porté-Agel (2014) is taken as
an example. The wake velocity deficit behind the ith wind turbine reads as

ui
s

ui
0
=

(
1−

√
1−

Ci
t

8σyσz/D2

)
· exp

(
−

y2

2σ 2
y

−
z2

2σ 2
z

)
, (2.4)

where D is the rotor diameter; Ci
t is the thrust coefficient WTi; σy and σz denote the

wake width in the spanwise and vertical directions, respectively. Substituting (2.4) into
(2.3), an explicit expression for the mean convection velocity can be obtained:

ui
c(x)
ui

0
=

1
2
+

1
2

√
1−

Ci
t

8σyσz/D2
. (2.5)

As a result, the mean wake convection velocity is bounded between 0.5ui
0 and ui

0,
increasing with the wake width and decreasing with the thrust coefficient.

2.2. Momentum-conserving wake superposition principle
To conserve the total momentum deficit (i.e. wind turbine thrust) during wake
superposition, the combined wake velocity Uw has to satisfy the following equation:

ρ

∫∫
Uw(x, y, z) ·Us(x, y, z) dy dz=

∑
i

Ti =
∑

i

ρui
c(x)

∫∫
ui

s(x, y, z) dy dz, (2.6)

where Us is the total wake velocity deficit given by U∞ −Uw. Analogous to (2.3), a
mean convection velocity for the combined wake (Uc) can be defined as follows:

Uc(x)=

∫∫
Uw(x, y, z) ·Us(x, y, z) dy dz∫∫

Us(x, y, z) dy dz
. (2.7)

Using this relation to simplify (2.6), the following equation is derived:∫∫
Us(x, y, z) dy dz=

∑
i

ui
c(x)

Uc(x)

∫∫
ui

s(x, y, z) dy dz. (2.8)

At this stage, it becomes evident that, in order to conserve the total momentum during
wake superposition, the following expression should be used:

Us(x, y, z)=
∑

i

ui
c(x)

Uc(x)
ui

s(x, y, z). (2.9)
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Equation (2.9) states that the total wake velocity deficit equals a weighted sum
of the individual wake velocity deficits, where the weights are determined by the
ratio of ui

c to Uc. This is understandable since, when combining two wakes with the
same amount of velocity deficit, the one with the larger convection velocity carries
more momentum deficit, and thus should be represented by a higher weight during
the velocity deficit addition. In the case of small wake velocity deficits (say, ui

s 6
0.1U∞), ui

c/Uc may be approximated by 1, and the above expression automatically
becomes (1.3) (Method C). However, this only happens when the wind turbine spacing
exceeds 15D (Chamorro & Porté-Agel 2010). Additionally, since the mean convection
velocity for the combined wake is unknown prior to wake superposition, an iterative
method should be deployed to solve the combined wake velocity out of (2.7) and (2.9).
Specifically, Uc is initialized to be the maximum value of ui

c and substituted into
(2.9) to get an estimated total wake velocity deficit. The estimated total wake velocity
deficit is further plugged into (2.7) to get a corrected convection velocity for the
combined wake U∗c . This iterative correction repeats, until a certain criterion is met
(e.g. |Uc−U∗c |/U

∗

c 60.001). Typically, no more than five iterations are needed to reach
convergence, and the corresponding computation cost is negligible compared to the
individual wake computation.

3. Model validation
3.1. Particle imaging velocimetry measurements in a three-row wind farm

For validation purposes, the three-row wind farm sketched in figure 1 is constructed
in the boundary layer wind tunnel at the WIRE laboratory of EPFL, using the
miniature wind turbines designed by Bastankhah & Porté-Agel (2017) (WIRE-01,
rotor diameter: 0.15 m, hub height: 0.125 m), and the velocity field at the hub-height
is measured by a particle imaging velocimetry (PIV) system. The time-averaged wind
speed and the turbulence intensity at the hub level are kept at 4.9 m s−1 and 6 %,
respectively. The boundary layer thickness, determined by 99 % of the free-stream
velocity, is approximately 0.3 m. The streamwise spacing between the wind turbines
is fixed at 5D, and the optimal rotation speed of each wind turbine is set in situ
based on the free rotation speed, following the procedure described in Bastankhah &
Porté-Agel (2019). The thrust and power coefficients (denoted as Ct and Cp) of the
WIRE-01 turbine at optimal operation are 0.82 and 0.35, respectively (Bastankhah &
Porté-Agel 2016). The PIV system consists of a camera (LaVision-sCMOS), a Litron
laser (Nano TRL 425-10) and a programmable timing unit (PTU-v9, LaVision). Both
the camera and the laser are mounted on a traversing system, to shift the field of
view (FOV) in the streamwise direction. In total, three sets of FOVs are arranged to
cover the complete wake evolution in an area of 15D× 5D. In each FOV, 500 image
pairs are recorded to get statistically converged mean velocity fields.

The aforementioned model wind farm is used as a test bench to examine the
performance of different wake superposition methods. The individual wake velocity
deficits are computed from (2.4) (Bastankhah & Porté-Agel 2014), and the wake
width is modelled as a quasi-linear function of the streamwise coordinate (Shapiro,
Gayme & Meneveau 2018):

σy

D
= 0.35 cos β + kw ln

[
1+ exp

(
x− xth

D

)]
,

σz

D
= 0.35+ kw ln

[
1+ exp

(
x− xth

D

)]
,

 (3.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

77
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.77


889 A8-6 H. Zong and F. Porté-Agel

0 5 10 15

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Uw/U∞

x/D

y/D

y/D

y/D

y/D

y/D

y/D

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 2. Middle-hub wake velocity contours obtained from: (a) Method A (Lissaman
1979), (b) Method B (Katic et al. 1987), (c) Method C (Niayifar & Porté-Agel 2016),
(d) Method D (Voutsinas et al. 1990), (e) the proposed new method, and ( f ) particle
imaging velocimetry measurements.

where β, kw and xth denote the yaw angle, the wake spreading rate and the near-wake
length, respectively.

Namely, in the near wake, the wake width remains approximately constant, whereas
in the far wake, the wake width grows linearly with an asymptotic wake spreading rate
of kw. The detailed expression for xth is available in Vermeulen (1980). The wake
spreading rate is associated with both the ambient turbulence intensity I0 and the
added turbulence intensity I+, and can be modelled as kw = 0.38(I2

0 + I2
+
)1/2 + 0.004,

where I+ = 0.73a0.83I0.03
0 (x/D)−0.32 (Niayifar & Porté-Agel 2016). Additionally,

to simulate the effect of the near-wake pressure gradient, the thrust coefficients
in (2.4)–(2.5) are written as an error function of the streamwise coordinate,
Ci

t(x) = 0.82(1 + erf(x/D))/2, to create a gradual increase of the wake deficit at
x< 2D (Shapiro et al. 2018).

Figure 2 shows the middle-hub velocity fields computed with analytical methods
and measured by PIV. As a result of the low ambient turbulence intensity, the
near-wake region of WT1 extends to more than 3D (figure 2f ). In the centreline
of this near-wake region, a rather low wake velocity is noticed, which is related
to the hub drag. The performance of different wake superposition methods can be
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FIGURE 3. Streamwise variations of (a) the centreline wake deficit, (b) the normalized
total momentum deficit. Methods A–D are abbreviated as MA–MD in the legends.

appreciated by comparing the wake velocity contours behind WT2 and WT3, where,
due to the increase of turbulence intensity, a short near wake and a fast wake recovery
are expected. Methods A and B from Lissaman (1979) and Katic et al. (1987) fail
to reproduce these two phenomena, since the interactions between wind turbines
are neglected during the calculation of individual wakes. Method D (Voutsinas et al.
1990) delivers a reasonable trend of the near-wake length, whereas the wake velocity
deficit is largely underestimated, compared to the experimental data. Consequently,
Method C (Niayifar & Porté-Agel 2016) and the proposed new method are the only
two methods capable of delivering a satisfactory wind farm wake flow.

Quantitative comparison of the centreline wake velocity (i.e. Uw|y=0) is made in
figure 3(a). As shown, the centreline wake velocity deficit is largely overestimated
by Methods A and B, since both of them fail to account for the fact that the local
wind speeds perceived by the downstream wind turbines are always lower than
the inflow velocity. Method D, on the contrary, underestimates the centreline wake
velocity deficit, which is consistent with the observation in Niayifar & Porté-Agel
(2016). Method C and the proposed new method outperform the other methods by
delivering a satisfactory prediction of the centreline wake velocity deficit in the range
7 6 x/D 6 10. Nevertheless, the difference in their performance starts to stand out
at x/D 6 13, where the wake velocity predicted by Method C is always 5 % lower
than that obtained from the experiment and the new method. This 5 % discrepancy,
although still acceptable in the current context, can accumulate to large errors when
more turbine rows are added, as will be demonstrated in § 3.2.
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Based on the models results shown in figure 2, the normalized total momentum
deficit (Md) is computed by the following equation:

Md =

8
∫∫

Uw · (U∞ −Uw) dy dz

U2
∞

πD2
, (3.2)

where the initial momentum flux across the rotor disk is selected for normalization,
analogous to the definition of the wind turbine thrust coefficient.

Theoretically, the total momentum deficit should exhibit a stair-step increase along
the streamwise direction, with each step corresponding to the additional thrust/drag
induced by a new turbine row. Therefore, to validate the model predictions of Md,
experimental values of the turbine thrust are required. In the present study, force
measurements are not performed, and the power measurement data available in
Bastankhah & Porté-Agel (2019) are used to estimate the turbine thrust. Specifically,
based on the definitions of Ct and Cp (0.82 and 0.35 respectively for the WIRE-01
turbine at optimal operation), we have the following two equations:

Pi =Cp ·
ρ(ui

0)
3

2
·
πD2

4
,

Ti =Ct ·
ρ(ui

0)
2

2
·
πD2

4
,

 (3.3)

where Pi denotes the power production of the ith turbine (i = 1, 2, 3). Working out
the mean wind speed from the first equation and substituting into the second one, the
relation between Ti and Pi can be derived:

Ti =Ct ·

(
ρπD2

8

)1/3

·

(
Pi

Cp

)2/3

. (3.4)

Figure 3 compares the normalized total momentum deficits computed with the
analytical models and derived directly from the turbine thrust. Of all the five wake
superposition methods, only the one proposed in this study is able to collapse with
the thrust data and conserve the total momentum deficit during wake superposition.
For Methods B and D, the total wake deficit is decreased after the superposition,
whereas for Method A, the total momentum deficit keeps increasing unrealistically.
Method C, which serves as a simplified form of the proposed new method in cases
of large wind turbine spacing (more than 15D), also exhibits a slightly increasing
trend of the total momentum deficit, which directly leads to the wake velocity deficit
overestimation at x/D 6 13 (see figure 3a).

3.2. LES results for the Horns-Rev wind farm
In this section, the LES results for a large wind farm, Horns-Rev (Porté-Agel, Wu &
Chen 2013), are used as a benchmark to evaluate the performance of different wake
superposition methods. The Horns-Rev wind farm has a rhomboid layout, consisting
of 80 wind turbines arranged in 10 rows and 8 columns. Along both the row and
column directions, the spacing between two adjacent turbines is seven rotor diameters
(Barthelmie et al. 2010). To compute the power production of this wind farm, the
major parameters are inherited from Porté-Agel et al. (2013), including the ambient
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FIGURE 4. (a) Comparison of the Horns-Rev wind farm efficiency (η) predicted by
different wake superposition methods. Here, θ denotes the wind direction, with 270◦
corresponding to western winds. (b) Relative error between the model predictions and the
LES data at different wind directions.

turbulence intensity (7.7 %), mean hub-height velocity (8 m s−1) and turbine thrust
coefficient (0.8). Other parameters, e.g. the initial wake width, remain the same as
those used in § 3.1.

The wind farm efficiencies (denoted as η) predicted by the LES and analytical
wind farm model using different wake superposition methods are shown in figure 4(a).
Significant power losses are noticed in the vicinity of 222◦ and 270◦, which involve
full-wake interactions in a streamwise distance of less than 10D. Within these
two wind sectors, the wind farm efficiency predicted by the new method collapses
remarkably well with the LES data, whereas for the other methods, a noticeable
discrepancy still exists. To quantitatively examine these discrepancies, the relative
power prediction error (denoted as ε, in units of percentage) is plotted in figure 4(b).
Consistent with the wake velocity deficit analysis in § 3.1, Methods A, B and C
exhibit an overestimation of the wake-induced power losses, whereas Method D gives
an underestimation. As the streamwise spacing between two interacting wind turbines
decreases (270◦ versus 222◦), the relative power prediction error increases.

Figure 5 shows the normalized power production of each turbine row (denoted
as Pi), at a representative wind direction of θ = 270◦. As indicated by the LES
results, the power production first drops and then remains approximately unchanged.
The proposed new method, once again, outperforms the other methods by closely
following the trend stipulated by LES. For Methods A and C, since the individual
wake velocity deficits are directly summed, the total wake velocity deficit keeps
accumulating unrealistically in the streamwise direction, leading to a decreasing trend
of the power production. As a comparison, for Methods B and D, due to the usage
of a square-sum operation in the combination of individual wake velocity deficits,
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FIGURE 5. Normalized power production for different turbine rows.

the predicted power production quickly reaches a plateau after three turbine rows.
Nevertheless, this plateau value deviates noticeably from that in the LES results.

4. Extension to wake deflection superposition
Active wake control has been increasingly recognized as an effective technique

to mitigate the unfavourable wake interactions in wind farms. Bay et al. (2019)
demonstrated that, to accurately predict the power production subject to active wake
control, it is crucial to include the ‘secondary steering effect’ sketched in figure 6(a),
where, as the upstream wind turbine WT1 yaws, the wake trajectory of a non-yawed
downstream wind turbine WT2 deviates from its rotor centreline. This unexpected
wake deflection, originating from the non-vanishing transverse velocity induced by
WT1 at the position of WT2, underlies the necessity of wake deflection superposition.
Starting from the simplified spanwise momentum equation derived in appendix (A 4)
and following a similar procedure as described in § 2, the superposition principle of
vi can be derived, as follows:

V(x, y, z)=
∑

i

ui
c(x)

Uc(x)
vi(x, y, z), (4.1)

where V is the spatially dependent transverse velocity for the combined wake. This
equation, together with (2.9), reiterates that a weighed sum should be used to combine
the individual transverse velocity/wake velocity deficits, instead of a direct sum.

In the current wake models of yawed wind turbines, the wake deflection is typically
integrated from the slope of the wake trajectory, defined as the ratio of the wake-
centre transverse velocity to the mean convection velocity, as sketched in figure 6(a).
Following this route and applying (4.1) to the wake centre of the jth wind turbine
(xj

c, yj
c), the total transverse velocity experienced by the wake of WTj (V j

c) can be
obtained:

V j
c(x

j
c, yj

c)=
∑

i

ui
c(x

j
c)

Uc(x
j
c)
vi(xj

c, yj
c). (4.2)

It is evident from (4.2) that, in order to derive the total wake deflection, the mean
convection velocity for the combined wake (Uc) has to be known a priori, which
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FIGURE 6. (a) Sketch of the secondary steering effect. The wake trajectories of WT1
and WT2 are indicated by the solid lines. (b) Wake velocity fields measured at the
hub level. Top plot (Case 1): β1 = 30◦, β2 = 0◦, β2 = 0◦. Bottom plot (Case 2): β1 =

30◦, β2= 20◦, β2= 0◦. The red solid lines and the white dash-dot lines represent the wake
trajectories extracted from PIV data and computed by (4.3), respectively.

is impossible as Uc is dependent on the spatial distributions of the individual wake
velocity deficits and thus can only be computed once the wake deflection is given. In
principle, an iterative method should be deployed to reconcile this conflict. However,
to avoid increasing the computational cost, ui

c/Uc is approximated by ui
0/u

j
0, and the

slope of the wake trajectory of WTj is written as

dyj
c

dxj
c
≈

V j
c

uj
0

≈

∑
i

ui
0

uj
0uj

0

vi(xj
c, yj

c). (4.3)

Currently, several models are available to compute the transverse velocity induced
by a stand-alone yawed wind turbine (i.e. vi) (Jiménez, Crespo & Migoya 2010;
Bastankhah & Porté-Agel 2016; Shapiro et al. 2018). For the sake of simplicity, the
following expression adapted from Shapiro et al. (2018) is used in this investigation:

vi(x, y)=
−Ci

tu
i
0 cos2 βi sin βi

8σyσz/σy0σz0
·

[
1+ erf

( x
D

)]
· exp

(
−
(y− yi

c)
2

2σ 2
y

)
, (4.4)

where σy0 and σz0 are the initial wake widths along the spanwise and vertical
directions, respectively. Different from the original expression, a Gaussian function
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(i.e. exp(−(y− yi
c)

2/2σ 2
y )) is added here, to spread the transverse velocity in the

spanwise direction and thus generalize the wake deflection superposition to partial
wake conditions.

The three-row model wind farm described in § 3.1 is used once again as a test
bench to validate the proposed method of wake deflection superposition. Two
cases are selected to execute PIV measurements. In the first case, only the most
upstream wind turbine is yawed at β1= 30◦. In the second case, both WT1 and WT2
are actuated, and the optimal yaw angle list for the maximum power production
(β1 = 30◦, β2 = 20◦, β3 = 0◦) reported in Bastankhah & Porté-Agel (2019) is adopted.
Figure 6(b) compares the wake trajectories extracted from the PIV measurements
and obtained by (4.3). In both cases, the secondary steering effect is successfully
reproduced by the proposed analytical method, and the wake deflections of the first
two wind turbines (yc) are predicted within a mean error of less than 0.05D. For the
last wind turbine, the measured wake deflection is higher than the model prediction,
which can be attributed to the spanwise wind shear. Specifically, when the wake of
WT2 shifts preferably to the negative y-direction, the lower half of WT3 perceives a
lower wind speed than the upper half. Due to this noticeable wind shear, different
levels of turbulent kinetic energy are generated on the two sides of the wake of
WT3, leading to uneven wake recovery rates. As a result, larger/smaller wake velocity
deficits are exhibited on the side with a lower/higher wake recovery rate, resulting
in an additional shift of the wake centre, independent from that caused by the
non-vanishing transverse velocity induced by the upstream yawed wind turbines.

5. Summary

In this study, a novel wake superposition method is derived rigorously from the
law of conservation of momentum. The total wake velocity deficit is expressed as
a weighted sum of the individual wake velocity deficits, where the weight equals to
the ratio of the characteristic convection velocity of the individual wake to that of
the combined wake. The performance of this new method is validated against the
PIV data obtained in a three-row model wind farm and the LES results pertaining to
the Horns-Rev wind farm. Detailed comparisons show that, except for the near-wake
region where the pressure gradient is non-trivial, the proposed wake superposition
method can give a rather accurate prediction of the centreline wake velocity deficit.
The maximum power prediction error in the case of the Horns-Rev wind farm is
reduced to as low as 5 %. None of the wake superposition methods available in the
literature is able to achieve such a high accuracy, largely because of their inability
to conserve the total momentum deficit during wake superposition. Additionally, the
momentum-conserving wake superposition principle has been extended to combine the
transverse velocities induced by yawed wind turbines, and the secondary wake steering
effect crucial to active wake control is successfully reproduced.
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FIGURE 7. The control volume and boundary conditions used to derive the simplified
momentum equations for wake flow.
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Appendix A. Simplified momentum equations for wake flow
A sufficiently large stream tube enclosing the entire wind turbine is selected as the

control volume, as sketched in figure 7. Only uniform inflow is considered, which
is one of the inherent assumptions made to derive the analytical wind turbine wake
models (Jensen 1983; Frandsen et al. 2006; Bastankhah & Porté-Agel 2014). The inlet
of the stream tube is placed far away from the induction zone of the turbine, such that
both the static pressure and the inlet velocity remain unaffected and can be treated
as ambient values of p= p0 and u= u0. Similarly, the outlet is positioned in the far
wake, where the static pressure deviates marginally from the ambient pressure, i.e. p≈
p0. The turbulent momentum transportation contributed by the Reynolds normal stress
term 〈u′u′〉 is typically small compared to the mean momentum transportation (O(u2

0)),
and, thus, can be readily neglected (Tennekes & Lumley 1972). In addition, since the
stream tube is selected to be sufficiently large, the pressure disturbances and turbulent
shear stresses generated by wakes will not be felt by the side boundaries, leading to
zero pressure force and zero turbulent momentum transfer in the spanwise and vertical
directions, i.e. 〈u′v′〉 ≈ 0 and 〈u′w′〉 ≈ 0.

Based on the above assumptions, the integral form of the streamwise momentum
equation (Anderson 2010), when applied to the control volume shown in figure 7, can
be simplified as follows:

ρ

∫∫
inlet

u2
0 dy dz− ρ

∫∫
outlet

uw(x, y, z)2 dy dz= T, (A 1)

where T denotes the turbine thrust in the streamwise direction. Essentially,
equation (A 1) states that the total momentum difference between the inlet and
outlet of the stream tube equals the drag imposed to the flow. Further, applying the
law of conservation of mass to the control volume, we have

ρ

∫∫
inlet

u0 dy dz= ρ
∫∫

outlet
uw(x, y, z) dy dz. (A 2)

Substituting (A 2) into (A 1), the following expression can be obtained:

T = ρ
∫∫

outlet
uw(x, y, z) · us(x, y, z) dy dz. (A 3)
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In the case of a yawed wind turbine, a similar expression for the lateral turbine
thrust (denoted as F) can be derived from the spanwise momentum equation. In
particular, there is no spanwise momentum flowing into the control volume, and the
total spanwise momentum integrated over the outlet is directly balanced out by the
lateral force F, which reads as

F= ρ
∫∫

outlet
uw(x, y, z) · v(x, y, z) dy dz. (A 4)
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