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The mixing properties of statically stable density interfaces subject to imposed vertical
shear are studied using direct numerical simulations of stratified plane Couette flow.
The simulations are designed to investigate possible self-maintaining mechanisms of
sharp density interfaces motivated by Phillips’ argument (Deep-Sea Res., vol. 19,
1972, pp. 79–81) by which layers and interfaces can spontaneously form due to
vertical variations of diapycnal flux. At the start of each simulation, a sharp density
interface with the same initial thickness is introduced at the midplane between
two flat, horizontal walls counter-moving at velocities ±Uw. Particular attention
is paid to the effects of varying Prandtl number Pr ≡ ν/κ , where ν and κ are
the molecular kinematic viscosity and diffusivity respectively, over two orders of
magnitude from 0.7, 7 and 70. Varying Pr enables the system to access a considerable
range of characteristic turbulent Péclet numbers Pe∗ ≡ U∗L∗/κ , where U∗ and L∗ are
characteristic velocity and length scales, respectively, of the motion which acts to
‘scour’ the density interface. The dynamics of the interface varies with the stability of
the interface which is characterised by a bulk Richardson number Ri ≡ b0h/U2

w, where
b0 is half the initial buoyancy difference across the interface and h is the half-height
of the channel. Shear-induced turbulence occurs at small Ri, whereas internal waves
propagating on the interface dominate at large Ri. For a highly stable (i.e. large Ri)
interface at sufficiently large Pe∗, the complex interfacial dynamics allows the interface
to remain sharp. This ‘self-sharpening’ is due to the combined effects of the ‘scouring’
induced by the turbulence external to the interface and comparatively weak molecular
diffusion across the core region of the interface. The effective diapycnal diffusivity
and irreversible buoyancy flux are quantified in the tracer-based reference coordinate
proposed by Winters & D’Asaro (J. Fluid Mech., vol. 317, 1996, pp. 179–193) and
Nakamura (J. Atmos. Sci., vol. 53, 1996, pp. 1524–1537), which enables a detailed
investigation of the self-sharpening process by analysing the local budget of buoyancy
gradient in the reference coordinate. We further discuss the dependence of the effective
diffusivity and overall mixing efficiency on the characteristic parameters of the flow,
such as the buoyancy Reynolds number and the local gradient Richardson number, and
highlight the possible role of the molecular properties of fluids on diapycnal mixing.
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1. Introduction
In stably stratified flows in the ocean and atmosphere, it is not uncommon to

observe step-like structures in the vertical profile of density with layers of nearly
uniform density separated by sharp interfaces, see e.g. figure 10.1 of Turner (1973)
showing a step-like temperature profile (although in this example the temperature
changes can be at least compensated by changes in salinity). Other examples include
the microstructure measurements by Gregg (1980) and those described in § 7.1 of
Thorpe (2005). The flux-gradient paradigm proposed by Phillips (1972) is often
used to explain the formation of such structures (while alternative mechanisms
including internal wave straining have also been proposed, see e.g. Thorpe 2005,
2016). Phillips argued that a decrease of buoyancy flux with increasing buoyancy
gradient leads to a vertical divergence of flux which then drives the spontaneous
layering of buoyancy from an initially linear profile. Such a mechanism was also
considered by Posmentier (1977), and the formation of step-like structures was
observed in laboratory experiments, e.g. by Ruddick, McDougall & Turner (1989).
In this paper, we adopt a similar perspective to Phillips, in that we examine the
vertical variation of diapycnal mixing properties such as diapycnal diffusivity and
flux. However, we are interested here in the robustness rather than the formation of
a ‘sharp’ interface from an initially uniformly stratified fluid. We focus on whether
these mixing properties can lead to the maintenance and possible reinforcement of
an existing sharp density interface. Our considerations are based on analysing direct
numerical simulations (DNS) of stratified plane Couette flows with a sharp density
interface which is introduced, as an initial condition, at the midplane between two
flat, counter-moving horizontal walls. The stratified interface may then evolve in time
subject to the constant shearing imposed by the walls. The properties of the diapycnal
mixing occurring across the density interface not only could vary with external flow
parameters, but also may exhibit strong spatial variation in the vertical z-direction.
This z-dependent variation is the key focus of our investigation.

Central to Phillips’ argument is the flux-gradient relation due to the assumed
inherent properties of stratified turbulence. The review by Linden (1979) of numerous
experiments supported the existence of such a regime where flux decreases with
gradient, i.e. the ‘right flank’ of Phillips’ curve (figure 1). Subsequently, various
possible flux-gradient relations in the right-flank regime have been discussed, e.g.
see figure 1 of Balmforth, Llewellyn-Smith & Young (1998). Recently, statistical
mechanics arguments developed by Venaille, Gostiaux & Sommeria (2017), assuming
infinite Reynolds and Péclet numbers, suggest that some appropriate measure of the
overall mixing efficiency, characterising the fraction of the kinetic energy loss by the
fluid that leads to an irreversible gain in the potential energy due to mixing, varies
non-monotonically with the overall gradient Richardson number if the background
buoyancy profile contains a layered structure, whereas such a mixing efficiency
asymptotes to a constant value of approximately 0.25 if the background buoyancy
gradient is uniform. This suggests that the mixing properties of a sharp density
interface may vary significantly from that of a linearly varying density profile (e.g.
Shih et al. 2005). In this paper, we investigate the following four specific questions
about the mixing properties of a density interface subject to imposed vertical shear.

(i) Does the diapycnal flux (or its ‘turbulent’ component) completely vanish when
the stratification is particularly strong, or does the mixing efficiency saturate to
a constant as in standard turbulence parameterisations (e.g. Mellor & Yamada
1982), and as apparently observed in vertically stratified Taylor–Couette flow
between two concentric cylinders by Oglethorpe, Caulfield & Woods (2013)?
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Magnitude of 
irreversible
buoyancy

FIGURE 1. A schematic representation of the functional dependence of the irreversible
buoyancy flux φd in terms of the buoyancy gradient N2

∗
, i.e. Phillip’s flux-gradient curve.

The definitions of φd and N2
∗

are discussed further in § 3. The shaded portion corresponds
to the regime in which the flux decreases with the gradient, i.e. the ‘right flank’ of the
curve, and the unshaded portion corresponds to the ‘left flank’. The asymptotic properties
at sufficiently high buoyancy gradient are deliberately left open.

(ii) Does the molecular diffusivity of the fluid affect the overall mixing properties of
the system? In particular, how does the mixing efficiency in the layered system
compare to recent numerical results obtained in other flow configurations, e.g.
those studied by Maffioli, Brethouwer & Lindborg (2016) and Salehipour et al.
(2016b)?

(iii) Does there exist a self-sustaining mechanism which can act to keep the interface
sharp and maintain the layered structure?

(iv) If so, what are the ingredients of the mechanism, and is it possible to relate the
self-sharpening process to vertical variations in the mixing properties, analogously
to Phillips’ argument?

It is well known that interfacial internal waves are important dynamical features
associated with strongly stratified density interfaces. These waves may contribute,
along with other relatively large-scale stirring processes, to the reversible component
of buoyancy flux, thus introducing ambiguity to inferences of mixing from the
conventional definition of buoyancy flux, i.e. the correlation between density and
vertical velocity fluctuations (see e.g. the detailed discussion by Venayagamoorthy
& Koseff 2016). A rigorous framework concerning the potential energy balance
in a control volume was developed by Winters et al. (1995) and employed for
analysing the bulk properties (such as mixing efficiency) of mixing layers, e.g. by
Caulfield & Peltier (2000). A variant of the above formalism involves a tracer-based
reference ‘vertical’ coordinate which was formulated by Nakamura (1996) and
Winters & D’Asaro (1996), which has been used, for example, to quantify mixing
in idealised two-dimensional flows (Nakamura 1996; Shuckburgh & Haynes 2003)
and in large-scale geophysical situations (Marshall et al. 2006). In this paper, we
use the formulation introduced by Nakamura (1996) and Winters & D’Asaro (1996)
to examine the structural details of fluxes and diffusivities as they vary in the
tracer-based coordinate, here employed to describe three-dimensional DNS data.
As will be shown, this approach provides a useful framework for analysing the
irreversible mixing, as well as the sharpening or maintenance of a density interface.

The rest of the paper is structured as follows. In § 2 we describe the numerical
simulations of the layered stratified plane Couette flows and present qualitative
observations on the time evolution of an originally sharp density interface. In § 3
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the formalism which involves a tracer-based reference coordinate is reviewed, and
we propose a possible self-sharpening mechanism by examining the local budget of
buoyancy gradient in such reference coordinates. In § 4 we focus on the dynamics of
a highly stable density interface and discuss the proposed self-sharpening mechanism
in the framework that is presented in § 3 using DNS data. In § 5 the dependence of
effective diffusivity and overall mixing efficiency on the characteristic parameters of
the flow is discussed. In § 6 we provide some concluding remarks.

2. Numerical simulations
2.1. Simulation set-up

DNS of layered stratified plane Couette (LSPC) flows are considered in this paper,
and these simulations follow closely those of Deusebio, Caulfield & Taylor (2015)
and Zhou, Taylor & Caulfield (2017). A full description of the DNS algorithms is
presented in Taylor (2008). In these simulations, we consider the velocity vector
u = (u, v, w) in the coordinate system x = (x, y, z), where x and y are the periodic
(horizontal) directions and z the wall-normal (vertical) direction. The incompressible
Navier–Stokes equations under the Boussinesq approximation, i.e.

∂u
∂t
+ u · ∇u=−

∇p
ρ0
+ ν∇2u+ bez, (2.1a)

∂b
∂t
+ u · ∇b= κ∇2b, (2.1b)

∇ · u= 0, (2.1c)

are solved numerically, where ν and κ are the kinematic viscosity and the scalar
diffusivity respectively. The buoyancy

b≡−
ρ

ρ0
g (2.2)

is proportional to the gravity g and the density deviation ρ(x, t) from the reference
density ρ0. Dirichlet boundary conditions for both velocity and buoyancy are applied
at two horizontal non-slip walls as shown in figure 2. The walls move at the same
speed Uw in opposite directions in x with a fixed buoyancy difference of 2b0 between
them, i.e.

(u, v,w, b)= (±Uw, 0, 0,±b0) at z=±h (2.3)

respectively, resulting in a statically stable stratified shear flow system. Note that we
use the ‘geophysical’ coordinate system, where z is the wall-normal vertical direction
in which gravity acts, x is the streamwise direction with the flow driven by the relative
motion of the walls and y is the spanwise direction (see figure 2). Unless otherwise
indicated in the remainder of the paper, velocities are normalised by Uw, lengths are
normalised by h, buoyancy b is normalised by b0 and time t is normalised by h/Uw
(i.e. the ‘advective’ time unit).

Three external parameters, i.e. the Reynolds number Re, the (bulk) Richardson
number Ri and the Prandtl number Pr, can be used to describe the flow. They are
defined, respectively, as

Re≡
Uwh
ν
, Ri≡

b0h
U2

w

and Pr≡
ν

κ
. (2.4a−c)
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x

g

2h

Horizontally
periodic

y
z

FIGURE 2. Configuration of stratified plane Couette flow and boundary conditions.

A total of 17 simulations are performed varying all three control parameters. The
details of these simulations are summarised in table 1. Symbol types and colours
(associated with each of the simulations) which are used in the subsequent figures
are also shown in table 1. The choice of grid resolution in each simulation follows
the specifications of Zhou et al. (2017) for fully developed turbulent stratified plane
Couette flows. The values of Pr considered in this paper include 0.7, 7 and 70.
The first two values correspond to heat in air (Pr = 0.7) and heat in water (Pr = 7)
respectively, and the largest value, i.e. 70, is included in an attempt to investigate
the poorly diffusive regime corresponding to salt in water with a Schmidt number of
approximately 700 (which is currently prohibitively costly to simulate with available
resources).

2.2. Initial conditions
The simulations considered in this paper are designed to examine the time evolution
of an initially sharp density interface subject to imposed vertical shear and buoyancy
difference across the interface. We are specifically interested in how the interface
interacts with pre-existing turbulent motions that are external to the interface, i.e.
what we will later describe as the ‘scouring’ mechanism for mixing (see Woods et al.
2010). The initial conditions used in our simulations are, therefore, considerably
different from typical initial value problems concerning stratified shear instabilities
investigated by rundown simulations. The latter simulations are typically initialised
by specific mean profiles of u(z) and b(z) within a ‘clean’ laminar background
with turbulence generated only by the break down of the instability itself, as in e.g.
computational studies of Kelvin–Helmholtz and Holmboe instabilities (Salehipour &
Peltier 2015; Salehipour, Caulfield & Peltier 2016a).

The initial velocity field u(x, t = 0) for our ‘production’ simulations is obtained
by auxiliary simulations performed in two stages: first, unstratified plane Couette flow
(Ri= 0) is simulated until it reaches a fully turbulent statistically stationary state. The
purpose of this step is to produce a fully turbulent flow field spanning the channel
gap. Second, in a ‘relaxation stage’ a sharp density interface with a hyperbolic tangent
profile in z

b(z)= b0 tanh
(

z
δ0

)
, (2.5)

where δ0/h= 0.08, is introduced. The value of δ0/h controls the initial ‘sharpness’ of
the interface, i.e. the thickness of the interface, δ0, as compared to the half-channel gap
length, h, which characterises the length scale typical of large-scale energy-containing
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Simulation Re Pr Ri Symbol Colour (Nx,Ny,Nz) (Lx, Ly, Lz) Dyn. state

1 4250 0.7 0.01 + Red (256, 256, 129) (4π, 2π, 2) T
2 0.02 × T
3 0.04 D T
4 0.08 A L
5 0.16 E L
6 0.32 @ L

7 4250 7 0.01 + Green (512, 512, 257) (4π, 2π, 2) T
8 0.02 × T
9 0.04 D T

10 0.08 A T
11 0.16 E L
12 0.32 @ L

13 4250 70 0.01 + Blue (768, 768, 769) (2π,π, 2) T
14 0.04 D T
15 0.08 A T
16 0.32 @ H

17 14 700 7 0.32 @ Magenta (768, 768, 769) (2π,π, 2) L

TABLE 1. Summary of the numerical simulations of LSPC flows. (Nx, Ny, Nz) are
the number of grid points used in each direction, and (Lx, Ly, Lz) are the lengths of
computational domain. The last column lists the final dynamical state approached by each
simulation: T for ‘turbulent’; L for ‘laminarising’; and H for ‘Holmboe’, all of which are
described further in § 2.3.

eddies in the turbulence between and wall and the density interface. Although it
would be of interest to explore the dynamical effects of varying this ratio, for clarity
we here only consider this one specific value, sufficiently small so that the interface is
adequately ‘sharp’. All relaxation simulations are performed at (Ri, Pr)= (0.08, 0.7)
and the Reynolds number is the same as in the unstratified simulation. The purpose
of the relaxation stage is to reduce the excessive amount of turbulent kinetic energy
(TKE) locally at the centre of the channel gap around the interface, so that the
interface maintains its structural integrity at least at the beginning of the main
‘production’ simulations. This TKE reduction is achieved by resetting 〈b〉(z), i.e. the
mean value of b averaged over a horizontal plane, to the initial hyperbolic tangent
profile (2.5) at the end of every time step in the simulation, while allowing the
perturbations b′(x, t)= b(x, t)−〈b〉(z) and velocity field u(x, t) to evolve in time. The
strong stratification which is artificially maintained by resetting the mean buoyancy
profile suppresses the turbulent motions in the vicinity of the interface and hence
reduces the local values of TKE.

The volume-integrated TKE value reaches a minimum after running the relaxation
procedure for t ≈ 60h/Uw, and the velocity field u(x) at this minimum TKE state is
used to initialise the production simulations. A ‘fresh’ density field b(z) following
(2.5) is also introduced at the beginning of the production simulations, when the
values of Pr and Ri are reset to those defined in table 1 of a particular simulation.
Three sets of initial u fields are obtained using the same procedure (but varying Re
or domain size), each applied to simulations 1–12, 13–16 and 17, i.e. for simulations
within each of the three groups, the initial u fields are identical.
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FIGURE 3. (Colour online) Vertical profiles of mean quantities corresponding to the initial
condition used in the LSPC flow simulations with Re = 4250. (a) Mean velocity 〈u〉
(plotted with a solid line) and buoyancy 〈b〉 (plotted with a dashed line). (b) Initial
condition for the turbulent velocity scale q for a layered stratified plane Couette flow
simulation (plotted with a solid line) and a fully turbulent unstratified (Ri = 0) plane
Couette flow simulation at the same Re (plotted with a dashed line). (c) Profile of initial
gradient Richardson number Rig(z, t= 0), based on horizontal averages as defined in (2.7),
divided by the bulk Richardson number Ri.

Figure 3 shows typical vertical profiles describing the initial conditions of the
simulations. The sharp buoyancy interface located at z = 0 is embedded within a
sheared velocity profile. The mean vertical shear is stronger both at the centre of the
channel gap where the density interface is located and in the viscous wall regions.
As previously discussed, the initial u field is turbulent with the profile (as shown in
figure 3b) of the turbulent velocity scale q(z, t) defined as

q(z, t)≡
√
〈u′2 + v′2 +w′2〉, (2.6)

where 〈·〉 indicates a spatial horizontal average over an x–y plane and (u′, v′, w′)
denote fluctuation velocities from the horizontal mean. The magnitude of q in the
channel interior is approximately 10 % of the wall speed Uw and is reduced by
approximately 40 % from the unstratified fully turbulent plane Couette flow at the
same Re. Again, this particular initial condition of u is designed specifically to
prevent the interface from being broken up by strong turbulent motions when the
interface is introduced at t= 0. The mean gradient Richardson number,

Rig(z, t)≡
N2

S2
=

∂〈b〉/∂z
(∂〈u〉/∂z)2

, (2.7)

which is based on horizontal averages denoted by 〈·〉, is plotted in figure 3(c) for
t = 0. As expected, the Rig value peaks at the density interface centred at z= 0 and
is virtually zero within the uniform density layers above and below the interface, i.e.
|z/h|& 0.4.

2.3. Qualitative observations
Once initialised at t = 0, the stratified interface is subject to the mean and turbulent
motions maintained by the forcing of the walls. For flows with different external
parameters, the interface exhibits different behaviours and approaches three possible
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(a) (b) (c)

10–1 10–1 10–1

FIGURE 4. Side view of typical buoyancy field b(x, y = 0, z) at various times for
(a) simulation 10: (Pr, Ri) = (7, 0.08), corresponding to T state, (b) simulation 16:
(Pr, Ri)= (70, 0.32), corresponding to H state, and (c) simulation 12: (Pr, Ri)= (7, 0.32),
corresponding to L state. The visualisation window is 2πh long in x (corresponding to
half of the domain length, 0.5Lx, for simulations 10 and 12, and the full domain length,
Lx, for simulation 16) and 2h tall in z.

dynamical states as tabulated in table 1. The three possible states shown in figure 4
are:

(i) The ‘turbulent’ state T as shown in figure 4(a) for simulation 10. For relatively
weakly stratified flows with Ri6 0.04 for Pr= 0.7 or Ri6 0.08 for Pr= 7 and 70 (see
table 1), the stratification is too weak to suppress the turbulence. The interface soon
becomes highly disordered with spatially intermittent shear-induced local overturns
where vigorous mixing occurs. As a result, the sharpness of the interface is not robust,
with the thickness of the interface increasing with time and the system approaching a
fully turbulent, stratified, yet definitely not layered state.

(ii) The ‘Holmboe’ state H is shown in figure 4(b) where the interface stays robust.
The H state is observed in simulation 16 with large values of both Ri and Pr, i.e.
Ri = 0.32 and Pr = 70. Structures strongly reminiscent of ‘Holmboe waves’ (see
e.g. figure 4 of Smyth, Klaassen & Peltier (1988) and figure 4 of Salehipour et al.
(2016a)) appear to develop on the interface, and these structures prove to be long
lived and robust. ‘Cusp’ structures at the crests of the wave, along with concentrated
spanwise vorticity, i.e. ωy, appear on both sides of the interface associated with these
Holmboe-wave-like structures. As is typical, the cusps above and below the interface
are observed to propagate in opposite directions. The vortices on either side of the
interface act to entrain fluid from the interface, contributing to the ‘wisps’ structure in
the lee of the ‘cusps’ in their direction of propagation, similar to the simulations of
Smyth et al. (1988) and Salehipour et al. (2016a). It is important to note that all the
propagating disturbances observed on the interface have characteristic phase speeds
in the range −Uw < cph <Uw, and so none of the wave-like motions observed on the
interface should be interpreted as ‘pure’ interfacial internal waves, unrelated to flow
instabilities (specifically the Holmboe wave instability). The interface is observed to
stay sharp, and the dynamics is dominated by internal waves rather than shear-induced
turbulent overturns. The dynamics of the H state is also strongly reminiscent of the
experimental observations of Holmboe waves on a sheared density interface by Strang

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

26
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.261


206 Q. Zhou, J. R. Taylor, C. P. Caulfield and P. F. Linden

& Fernando (2001), who also reported buoyancy fluxes and entrainment rates based
on planar laser-induced fluorescence measurements. The three-dimensional velocity
and buoyancy fields obtained from direct numerical simulations allow us to consider
the irreversible diapycnal mixing processes in detail, as is presented in the remainder
of this paper.

(iii) The ‘laminarising’ state L is shown in figure 4(c) for simulation 12. This L
state exists at large Ri values for which stratification is able to suppress turbulence.
Simulation 12, shown as an example of the L state, has the same Re and Ri
values as simulation 16, shown for the H state, but the Pr value is 7 instead of
70. Internal waves similar to those in the H state appear at early times of the L
state. The amplitude of the wave motion, however, noticeably decays with time,
while the thickness of the interface gradually increases, presumably due to molecular
diffusion. The flow is observed to approach the laminar steady state solution with
u/Uw = b/b0 = z/h (Eliassen, Hailand & Riis 1953).

As an aside, we can investigate the linear stability properties of the flows described
above by examining the horizontally averaged, instantaneous velocity and buoyancy
profiles shown in figure 5. Simulations presented in figure 5 and the times at which
the mean profiles are sampled are identical to those shown in figure 4. In order to
examine the linear stability of these mean profiles, the viscous, diffusive and stratified
eigenvalue problem, e.g. as described in (3.6) and (3.7) of Eaves & Caulfield (2017),
is solved numerically using the procedure described in Smyth, Moum & Nash (2011).
Mean profiles associated with the T-state simulation 10 are shown in figure 5(a).
While the gradient Richardson number, Rig associated with these averaged profiles
is smaller than 0.2 (shown in the lower panel), the mean profiles are found to be
linearly stable. However, the flow stays turbulent (see figure 4a) as it evolves from
the already turbulent initial condition (see figure 3b) to reaching the fully developed
turbulent state (see e.g. Zhou et al. 2017).

For the H-state simulation 16 shown in figure 5(b) and the L-state simulation 12
shown in figure 5(c), the mean profiles analysed are all unstable to instabilities
which can be identified as being of Holmboe type. This identification can be made
for several reasons. The Rig distribution has the peaked structure associated with
Holmboe-type instabilities. Furthermore, the velocity structure has strong shear over
a relatively sharp interface, dropping to weaker shear either side. Such a structure
is entirely characteristic of Holmboe-type instabilities, which can be interpreted as
arising due to the interaction of an internal wave localised at the density interface,
and a Doppler-shifted vorticity or ‘Rayleigh’ wave localised at the edge of the shear
layer (Caulfield 1994; Baines & Mitsudera 1994; Carpenter et al. 2011). Finally, the
eigenfunction corresponding to the fastest growing Holmboe-type mode is plotted
in figure 6, showing the characteristic structure centred above and below the ‘sharp’
density interface, leading to the characteristic propagation of the disturbance relative
to the density interface (see Carpenter, Balmforth & Lawrence (2010) for further
discussion of instability classification in stratified shear flows).

It also is important to note that the profiles at t= 348 for simulation 16 (H state) are
unstable also to Kelvin–Helmholtz-type instabilities, centred on the density interface.
However, the Holmboe-wave-like structures only survive in the H state, but not in
the L state, even though the linear analysis predicts the mean profiles are unstable
to Holmboe instability in both cases. This analysis suggests that linear stability
analysis based on the mean profiles should be used with caution when predicting
the evolution of these density interfaces, at least when the underlying base flows
are initially turbulent and the mean profiles vary significantly in time. This is not
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FIGURE 5. Horizontally averaged velocity, buoyancy and gradient Richardson number
profiles for: (a) simulation 10 at (Pr, Ri) = (7, 0.08) (T state); (b) simulation 16 at
(Pr, Ri)= (70, 0.32) (H state); and (c) simulation 12 at (Pr, Ri)= (7, 0.32) (L state). The
profiles are sampled at the same times at which the buoyancy field is shown in figure 4
with lighter line shades corresponding to later times in each simulation.
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FIGURE 6. (Colour online) Typical structure of the vertical velocity eigenfunctions
associated with the fastest growing modes of linear theory corresponding to Holmboe-type
instabilities. The eigenfunctions are obtained for the mean profiles shown in figure 5(b)
at t = 84 (darkest line) for simulation 16 (H state). The eigenfunctions shown in both
panels, (a) and (b), have the same growth rate σ ' 0.00171 and equal and opposite real
phase velocity cph '∓0.338 (the arrow in each panel indicates the direction of cph). The
streamwise velocity component has higher magnitude, peaked on the other side of the
z-midplane for these eigenfunctions, and so the perturbation kinetic energy of both these
modes is peaked (as expected) in the vicinity of the location where the phase velocity
of the perturbation coincides with the velocity of the background flow. The streamwise
wavenumber associated with these fastest growing modes is kx ' 1.75.

entirely surprising, because the substantial temporal and spatial variations of the
actual streamwise velocity and buoyancy profiles about the horizontally averaged
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mean profiles preclude infinitesimal perturbations experiencing for any extended
period of time the notional profiles in which those infinitesimal perturbations are
predicted to be (linearly) unstable.

As discussed above, our goal is to describe the behaviour of a pre-existing density
interface subject to vertical shear from the perspective of diapycnal mixing. We
are particularly interested in any self-sustaining (and hence inherently nonlinear)
mechanism which keeps the interface sharp, and the existence of the H state described
above provides a dataset which can be analysed to identify and describe such
mechanisms. In the following section (§ 3), the mathematical formalism we employ
to describe the diapycnal mixing is described, and in § 4 we focus on investigating
the H state by comparing it to the L state as both L and H states can occur in large-Ri
strongly stratified systems. All T, H and L states are included in the considerations
of mixing properties discussed in § 5.

3. Mathematical formulation
3.1. Tracer-based coordinate, flux and diffusivity

The formalism developed by Nakamura (1996) and Winters & D’Asaro (1996) is
used to quantify the diapycnal mixing of the stratifying agent, i.e. the dynamic scalar
tracer within the flow. This framework considers the mixing of a conserved tracer
in a ‘sorted’ reference coordinate z∗. The definition of this z∗ coordinate relates to
the ‘background’ buoyancy profile which is obtained by sorting all fluid parcels
adiabatically to reach the minimum possible potential energy of the system, i.e. the
background potential energy (see e.g. Winters et al. 1995). In the present study, we
approximate the background buoyancy profile (or the ‘sorted’ profile) b(z∗, t) via the
probability density function (p.d.f.) method introduced by Tseng & Ferziger (2001)
which avoids the explicit sorting procedure but is formally equivalent in the limit as
the ‘bins’ used in constructing the p.d.f. become arbitrarily small.

Following the Winters–D’Asaro–Nakamura formalism, the diapycnal flux φd across
a specific isopycnal (constant buoyancy b) surface corresponding to a particular
reference position z∗ can be defined by a simple flux-gradient relation

φd ≡−κe
∂b
∂z∗

, (3.1)

where κe(z∗, t) is an effective diapycnal diffusivity and the gradient ∂b/∂z∗ can be
obtained from the background buoyancy profile b(z∗, t). The flux φd can be determined
exactly from the instantaneous (dynamic) scalar field b(x, t) via the following relation

φd =−κ
∂z∗
∂b
〈|∇b|2〉z∗, (3.2)

where 〈·〉z∗ indicates averaging over the isoscalar surface corresponding to the
reference position z∗, and |∇b|2 is given by the gradients of b in the physical
space x. By definition, b increases monotonically with z∗, i.e. ∂z∗/∂b > 0, and the
flux φd is negative definite (down gradient). It follows from (3.1) and (3.2) that the
effective diffusivity κe can be estimated by

κe = κ

(
∂z∗
∂b

)2

〈|∇b|2〉z∗, (3.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

26
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.261


Diapycnal mixing in layered plane Couette flow 209

which yields a positive-definite value of κe. The geometrical interpretation of (3.3) is
given by equation (12) of Winters & D’Asaro (1996), i.e.

κe = κ

(
As

A

)2

> κ, (3.4)

where As is the area of the isopycnal surface corresponding to buoyancy b at a
given reference position z∗. A given value of z∗ corresponds to a set of points in
the physical x = (x, y, z) coordinates. This set of points in x form the isopycnal
surface(s) corresponding to the buoyancy value at the reference position z∗ in the
sorted profile, i.e. b(z∗). It is important to appreciate that the isopycnal surface(s) may
have a distorted shape which may not be simply connected. A in (3.4) is the area
of the isopycnal surface projected onto a flat horizontal plane, i.e. the area of the
flat undistorted surface. The increase of As above A is due to the straining imposed
by the flow on the scalar field, and the effective diffusivity κe can thus be greatly
enhanced from the molecular value κ due to the factor (As/A)2.

3.2. Evolution of background buoyancy profile
Nakamura (1996) and Winters & D’Asaro (1996) showed that the advection–diffusion
equation of any conserved tracer in an incompressible flow can be written exactly as
a one-dimensional diffusion equation in the reference z∗ coordinate:

∂b
∂t
=−

∂φd

∂z∗
=

∂

∂z∗

(
κe
∂b
∂z∗

)
. (3.5)

Taking the derivative of (3.5) with respect to z∗ yields an evolution equation for the
buoyancy gradient in the reference coordinate N2

∗
≡ ∂b/∂z∗:

∂N2
∗

∂t
=
∂2κe

∂z2
∗

N2
∗︸ ︷︷ ︸

Source S(t)

+ 2
∂κe

∂z∗

∂N2
∗

∂z∗︸ ︷︷ ︸
Advection A(t)

+ κe
∂2N2

∗

∂z2
∗︸ ︷︷ ︸

Diffusion D(t)

. (3.6)

The first bracketed term S(t) on the right-hand side of (3.6) corresponds to a
source/sink term for N2

∗
depending on the sign of the prefactor ∂2κe/∂z2

∗
, the curvature

of κe. The second bracketed term A(t) corresponds to the advection of N2
∗

with a
‘velocity’ of −2∂κe/∂z∗. The third bracketed term D(t) corresponds to the diffusion
of N2

∗
with the effective diffusivity κe in the z∗ coordinate. Note that (3.6) can

alternatively be written as

∂N2
∗

∂t
=
∂2κe

∂z2
∗

N2
∗
+
∂κe

∂z∗

∂N2
∗

∂z∗
+

∂

∂z∗

(
κe
∂N2
∗

∂z∗

)
, (3.7)

where the third term on the right-hand side corresponds to the divergence of the
diffusive flux κe∂N2

∗
/∂z∗ in z∗, but we adopt the subdivision of terms in (3.6) for

the rest of the paper. As will be shown in the following section (§ 4), the diagnostic
framework described here yields a robust description of the dynamics of temporally
evolving density interfaces.
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FIGURE 7. (Colour online) Profiles of: background buoyancy gradient N2
∗

(a,d); effective
diffusivity κe normalised by molecular kinematic viscosity ν (b,e); and magnitude of
diapycnal flux φd normalised by κb0/h (c, f ). (a–c) Correspond to simulation 12 with
L state at (Pr, Ri) = (7, 0.32), and (d–f ) correspond to simulation 16 with H state at
(Pr, Ri) = (70, 0.32). Both simulations are at Re = 4250. Dotted vertical lines in (b,e)
correspond to the minimum possible value of κe= κ , or equivalently, κe/ν= 1/Pr. Profiles
at various times are shown, and flow snapshots at these times can be found in figure 4.
Note that the horizontal axes are shown on different scales in the two panels in (c, f )
showing the −φd profiles.

4. Dynamics of highly stable interfaces
4.1. Structure of diapycnal flux and effective diffusivity

In this section, we focus on simulations with Ri= 0.32, the largest bulk Richardson
number which we have considered, and investigate the dynamics of interfaces with
such strong stratification that they are stable to shear-induced overturns. Figure 7
shows the profiles of effective diffusivity κe and diapycnal flux φd in the z∗ coordinate.
Several times are shown for simulation 12 (L state) at (Pr, Ri, Re)= (7, 0.32, 4250)
and for simulation 16 (H state) at (Pr, Ri, Re) = (70, 0.32, 4250). Times associated
with the profiles also correspond to the flow snapshots shown in (c) and (b) of
figure 4 respectively.

As shown in figure 7(a), the buoyancy gradient N2
∗

at the midplane of the interface
at z∗ = 0 decreases with time, and the thickness of the interface grows. The effective
diffusivity κe takes the molecular value κ within the density interface located near
z∗ = 0, and as the interface grows thicker, κe approaches κ over a broader range of
z∗. This broadening suggests that the isopycnal surfaces are flattening, i.e. As→ A as
in (3.4), and the system is laminarising. The diapycnal flux φd varies significantly in
z∗, and the divergence of the flux drives the broadening of the interface.
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As is shown in figure 7(b), by varying Pr alone from 7 to 70, simulation 16 is in
the H state rather than the L state. The gradient N2

∗
at the midplane is observed to

increase (though weakly) with time and the interface thickness remains approximately
unchanged, which is consistent with the observations in figure 4(b) that the interface
is robust and long lived. The ratio κe/ν now takes smaller values at the midplane
as the lower bound determined by molecular diffusivity min(κe/ν) = κ/ν = 1/Pr is
smaller due to the larger Pr, which allows for a wide range of κe/ν from slightly
above 1/Pr∼O(0.01) around the midplane to O(1) away from the interface at z∗/h≈
±0.1. The flux φd is close to constant with z∗, and in the absence of a significant
divergence of the flux, the strong gradient at the interface is expected to stay constant
in time and last indefinitely.

The profiles shown in figure 7 also allow us to consider the role of various terms on
the right-hand side of (3.6) which govern the time evolution of the buoyancy gradient
N2
∗
. In both simulations considered in figure 7, the source term S(t) is positive and acts

to sharpen the local gradient, but the prefactor corresponding to the curvature of κe, i.e.
∂2κe/∂z2

∗
, is significantly larger for the H state. The advection term A(t) is expected to

be non-positive as ∂κe/∂z∗ and ∂N2
∗
/∂z∗ tend to take opposite signs for a given z∗, but

at the midplane of the interface A(t) is expected to be zero as ∂κe/∂z∗= ∂N2
∗
/∂z∗= 0

at z∗ = 0 due to the symmetry of the profiles about the midplane. The diffusion term
D(t) is expected to weaken the gradient within the interface as κe is positive definite.
Therefore, in order for an interface to be maintained, the source term S(t) must be
able to counterbalance the effects of the other two terms. We investigate this balance
quantitatively in § 4.2.

The sign of ∂2κe/∂z2
∗

serves as a simple diagnostic quantity to examine if any
sharpening process is present around a density interface. Turbulence and/or vortical
structures induced by Holmboe waves, which are displaced from the interface, could
conceivably act on either side of the interface to ‘scour’ the material away from the
interface via the ‘wisps’ structures that are clearly visible in figure 4(b). (Such a
behaviour appears at least qualitatively to be occurring in the rundown simulations
susceptible to Holmboe wave instabilities described in Salehipour et al. 2016a.) In
this case, an isopycnal surface away from the midplane z∗ = 0 would have a more
convoluted shape and thus larger surface area As and hence larger κe following (3.4).
On the other hand, in the middle of the interface the flow exhibits minimal wave
disturbances or turbulence, and the isopycnal surface is nearly flat with As ≈ A. Thus
κe is expected to increase away from the midplane of the interface, consistent with the
observations in figure 7. It is then possible to have a positive curvature of the κe(z∗)
profile, i.e. ∂2κe/∂z2

∗
> 0, in the presence of mixing associated with scouring. When

the scouring effect is large enough to overcome diffusion, i.e. |S(t)|> |D(t)|, the flow
may act to enhance the local gradient N2

∗
. The reverse is true when one considers

mixing due to large overturns, e.g. due to Kelvin–Helmholtz instability (KHI). The
isopycnal surface in the overturning case is expected to have the most convoluted
surface with large As/A ratio in the core region of the KHI finite amplitude ‘billow’
where the maximum κe is attained. The magnitude of κe decreases with the distance
to the midplane z∗ = 0, which may lead to ∂2κe/∂z2

∗
< 0 and thus negative values

of S(t). The S(t) term then reduces the local N2
∗

value in concert with the diffusion
term D(t), both acting to destroy the density interface through overturning dynamics.

4.2. Time evolution of the buoyancy gradient with respect to z∗
In this subsection, we further examine the time evolution of various budget terms in
(3.6) for the local gradient N2

∗
. First, the integral thickness δ∗ of the density interface
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can be calculated from the sorted buoyancy profile by

δ∗ ≡
1

2b0

[∫ 0

−h
(b0 + b) dz∗ +

∫ h

0
(b0 − b) dz∗

]
, (4.1)

where b0= b(z∗= h)=−b(z∗=−h), and the buoyancy difference across the interface
1b can be calculated as

1b≡ 1
2 [b(z∗ = δ∗)− b(z∗ =−δ∗)]. (4.2)

The volume (depth) averaged value of an arbitrary quantity F(z∗, t) over the density
interface −δ∗ < z∗ < δ∗ is denoted with an overbar, and defined as

F(t)≡

∫ δ∗

−δ∗

F(z∗, t) dz∗

2δ∗
. (4.3)

A set of ‘local’ scalings can then be applied to the density interface to form the
following dimensionless variables:

ẑ∗ ≡
z∗
δ∗
, b̂≡

b
1b

, t̂≡
κt
δ2
∗

and κ̂e ≡
κe

κ
. (4.4a−d)

The governing equation for the buoyancy gradient N2
∗

given by (3.6) can be rewritten
as

∂

∂ t̂

(
∂ b̂
∂ ẑ∗

)
=
∂2κ̂e

∂ ẑ2
∗

(
∂ b̂
∂ ẑ∗

)
︸ ︷︷ ︸

Source Ŝ(t)

+ 2
∂κ̂e

∂ ẑ∗

∂2b̂
∂ ẑ2
∗︸ ︷︷ ︸

Advection Â(t)

+ κ̂e
∂3b̂
∂ ẑ3
∗

,︸ ︷︷ ︸
Diffusion D̂(t)

(4.5)

with analogously scaled source, advection and diffusion (bracketed) terms.
In order to examine the evolution of the buoyancy gradient governed by (4.5) it

is necessary to evaluate the gradients with respect to the tracer-based coordinate ẑ∗
of the effective diffusivity κ̂e and the buoyancy b̂. However, the noise contained
in the ẑ∗ profiles associated with sampling issues (as shown in figure 8) tends to
get amplified if finite differences are taken repeatedly on the ẑ∗ profiles to obtain
the ∂2/∂ ẑ2

∗
and ∂3/∂ ẑ3

∗
gradients associated with higher-order derivatives. Instead,

we obtain an estimate of these gradients by first fitting polynomial functions to the
observed κ̂e(ẑ∗) and b̂(ẑ∗) profiles using a nonlinear least squares algorithm and then
calculate the gradients based on these fitted polynomial functions. Taking into account
the symmetry of the profiles about the midplane ẑ∗ = 0, we assume that κ̂e follows a
parabolic profile κ̂e= c1+ c2ẑ2

∗
and that b̂ follows a cubic profile b̂= c3ẑ∗+ c4ẑ3

∗
. It is

worth noting that the rescaled buoyancy profiles b̂ collapse reasonably well as shown
in figure 8(b).

The gradients of b̂ with respect to ẑ∗ are O(1) and they do not vary significantly
from one simulation to another, as shown for example in figure 9. On the other hand,
the gradients of κ̂e vary strongly between the various simulations. This can be seen
in figure 8(c) where the rescaled κ̂e(ẑ∗) profiles do not collapse. The curvature of the
κ̂e(ẑ∗) profile, i.e. ∂2κ̂e/∂ ẑ2

∗
, varies significantly between the various simulations and

varies strongly in time, as is shown in figure 9(a).
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FIGURE 8. Sample profiles: of buoyancy (a,b); effective diffusivity (c); and characteristic
Péclet number Pe∗, as defined in (4.6) (d). Multiple profiles are plotted for each simulation
as the profiles evolve in time. Profiles are shown for: simulation 6, an L state with
(Pr,Re)= (0.7, 4250) (plotted in red); simulation 12, an L state with (Pr,Re)= (7, 4250)
(plotted in green); simulation 17, an L state with (Pr, Re) = (7, 14 700) (plotted in
magenta); and simulation 16, an H state with (Pr,Re)= (70, 4250) (plotted in blue). In (b)
the vertical extent of the buoyancy profile is rescaled by the interface thickness δ∗ defined
in (4.1) and its magnitude is rescaled by the buoyancy difference across the interface 1b
defined in (4.2).

In figures 10(a,b), the time evolution of the buoyancy gradient at the midplane
z∗ = 0 is shown for the four simulations with Ri = 0.32. Except for simulation 16
which is in the H state, the gradient decreases with time for simulations 6, 12 and 17,
all of which are in the L state. In simulation 16 the density interface is maintained and
the gradient at z∗ = 0 is weakly enhanced due to ‘scouring’ motions (see figure 4b).
The time series of the source and diffusion terms in (4.5) which govern the time
evolution of the local gradient ∂ b̂/∂ ẑ∗ are shown in figures 10(c,d). At the midplane
of the interface, the advection term Â(t) is expected to be zero as both κe and ∂b/∂z∗
reach local extrema at z∗= 0 due to symmetry (see figure 7). While for all simulations
shown the source term Ŝ(t) takes positive values, i.e. there is ‘scouring’ acting on
the interface in all these cases, only in simulation 16 is this source term large
enough to overcome the diffusion term D̂(t), causing the local gradient ∂ b̂/∂ ẑ∗ to be
enhanced. In the laminarising state cases, (simulations 6, 12 and 17) however, the
scouring effect is weak compared to the molecular diffusion which is characterised by
the D̂(t) term.
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FIGURE 9. Time evolution of (a) ∂2κ̂e/∂ ẑ2
∗

and (b) ∂3b̂/∂ ẑ3
∗

at the midplane of the
interface ẑ∗ = 0. The colour conventions for the simulations are the same as those used
in figure 8.

In figure 11 we examine the ẑ∗-dependence of the budget terms in (4.5) for a
‘diffusing’ interface in an L state simulation (simulation 12) for which the midplane
gradient decreases (figure 11a) and a ‘sharpening’ interface in an H state simulation
(simulation 16) for which the midplane gradient increases (figure 11b) respectively.
In both cases, the advection term Â and the diffusion term D̂ both reduce the local
gradient. In order for sharpening to occur, the source term Ŝ has to outweigh Â
and D̂, which is the case shown in figure 11(b). Note also that the enhancement of
local gradients can only occur over a finite extent in ẑ∗, i.e. sharpening around the
centre of the interface comes at the expense of the buoyancy gradient immediately
above and below the midplane at ẑ∗ = 0.

4.3. Effect of Péclet number and isopycnal displacement

The terms ∂ b̂/∂ ẑ∗, κ̂e and ∂3b̂/∂ ẑ3
∗

which appear in the source and diffusion terms in
(4.5) are all of order unity at the midplane z∗ = 0, as can be seen in figures 8(c), 9
and 10(b), respectively. Therefore, in order for Ŝ to dominate D̂, the ∂2κ̂e/∂ ẑ2

∗
term

needs to be at least of order unity or larger. In figure 12, the values of ∂2κ̂e/∂ ẑ2
∗

sampled at z∗= 0 are plotted against the characteristic Péclet number of the flow. The
characteristic Péclet number, which is a function of z∗ and t, is defined as

Pe∗(z∗, t)≡
U∗(z∗, t)L∗(z∗, t)

κ
, (4.6)

where the characteristic turbulent velocity scale is defined as

U∗ ≡
√
〈u′2 + v′2 +w′2〉z∗, (4.7)

and the characteristic length scale is defined as

L∗ ≡
U∗
√
ε∗/ν

. (4.8)

In the definition above, ε∗≡ 〈2νsijsij〉z∗ is the kinetic energy dissipation rate averaged
for a given reference position z∗, and sij is the rate of strain tensor associated with
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FIGURE 10. (a,b) Time evolution of the buoyancy gradient N2
∗
≡ ∂b/∂z∗ at the midplane

of the interface z∗ = 0. In (a) the gradient is scaled by b0/h, and in (b) the local scaling
1b/δ∗ is used. (c) Time evolution of the source term Ŝ(t) (solid lines) and the diffusion
term D̂(t) (dashed lines), as defined in (4.5), for z∗ = 0. (d) A zoomed view of (c) for
t < 200. Data are shown for: simulation 6 with (Pr, Re) = (0.7, 4250) (plotted in red);
simulation 12 with (Pr, Re)= (7, 4250) (plotted in green); simulation 17 with (Pr, Re)=
(7, 14 700) (plotted in magenta); and simulation 16 with (Pr, Re)= (70, 4250) (plotted in
blue), i.e. the same colour conventions as those used in figure 8.

the full velocity field u. The definition of the length scale L∗ is analogous to the
Taylor microscale which is often used to describe isotropic turbulence (see e.g. Pope
2000). The quantities U∗ and L∗ can be considered to be the characteristic velocity and
length scales corresponding to the ‘scouring’ motion, and Pe∗ measures the relative
magnitude of scouring over molecular diffusion. Pe∗ tends to increase weakly away
from the midplane z∗ = 0 as shown in figure 8(d).

As is plotted in figure 12, the magnitude of ∂2κ̂e/∂ ẑ2
∗

increases strongly with Pe∗,
the depth-averaged Péclet number of a given profile, where the overline indicates
an average as defined in (4.3). This figure illustrates the fact that κ̂e profiles exhibit
more curvature as the effects of scouring become increasingly more important than
molecular diffusion. Significantly, the curvature does not appear to vary systemically
with other characteristic flow parameters such as buoyancy Reynolds number and
local gradient Richardson number (as discussed in § 5), the magnitude of which vary
little across the four simulations shown in figure 12. The magnitude of ∂2κ̂e/∂ ẑ2

∗

becomes larger than order unity for simulation 16 (plotted in blue) with Pe∗ & 400.
As the flow evolves in this simulation (the filling colour of the symbol is darker
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FIGURE 11. Variation with ẑ∗ of the various bracketed budget terms defined in (4.5) for:
(a) a representative ‘diffusing’ interface in simulation 12 at t ≈ 100; (b) a representative
‘sharpening’ interface in simulation 16 at t≈ 200.
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101
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FIGURE 12. Variation of the curvature of the κ̂e profile, i.e. ∂2κ̂e/∂ ẑ2
∗
, at the midplane of

the interface ẑ∗= 0, with the characteristic Péclet number Pe∗. The colour conventions for
the simulations are the same as in figure 8. Darker filling colours of symbols correspond
to later times in each simulation.

for later times), both Pe∗ and ∂2κ̂e/∂ ẑ2
∗

increase with time. Other simulations with
Pe∗ . 300 do not have curvature ∂2κ̂e/∂ ẑ2

∗
maintained at values larger than order

unity. Although in simulation 17 (plotted in magenta) the ∂2κ̂e/∂ ẑ2
∗

value starts with
magnitude of order unity, it decays with time as the flow laminarises. It appears that
there exists a transitional Pe∗ between 300 and 400 above which the scouring is able
to overcome diffusion so that the curvature in κ̂e can be maintained or enhanced.

This observation is reminiscent of the grid-stirred experiments (Crapper & Linden
1974). In that paper, the behaviour of a density interface in the absence of mean
shear is reported to vary significantly depending on whether an appropriate Péclet
number is ‘large’ or ‘small’, i.e. whether the Péclet number based on the turbulent
velocity and length scales at the interface is above or below approximately 200. For
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FIGURE 13. Variation of the depth-averaged enhancement ratio of diffusivity κe/κ −
1 with the depth-averaged (across the interface) length scale ratio `E,∗/δ∗. The colour
conventions for the simulations are the same as in figure 8. Darker filling colours of
symbols correspond to later times in each simulation.

the highly stable, vertically sheared interfaces we examine here, the magnitude of the
Péclet number also appears to determine whether or not the scouring motion, which
acts to sustain the interface, can overcome molecular diffusion, which acts to smooth
the sharp gradient.

We also examine the weak enhancement of the effective diffusivity κe relative to the
molecular diffusivity κ in the simulations of very stable interfaces. Figure 13 shows
the depth-averaged enhancement ratio of effective diffusivity, κe/κ − 1, plotted against
the ratio of the Ellison length scale to the integral thickness of the interface, `E,∗/δ∗,
(a measure of the vertical isopycnal displacements) where the Ellison length scale is
defined as

`E,∗(z∗, t)≡

√
〈b′2〉z∗

∂〈b〉z∗/∂z∗
, (4.9)

and b′ ≡ b − 〈b〉 denotes the buoyancy fluctuation relative to the horizontal mean
〈b〉. Figure 13 suggests that the moderate increase in κe relative to κ within the
density interface is strongly correlated to the magnitude of isopycnal displacements.
This observation reinforces the notion, which is encapsulated in (3.4), that diapycnal
mixing is made more effective by a flow which creates larger isopycnal surface area
for transport by molecular flux. In particular, enhancement of diffusion is achieved
by the corrugation of isopycnal surfaces due to scouring motions acting on the very
stable interfaces, an effect that is expected to be more significant as the isopycnal
displacements increase in amplitude.

5. Mixing analysis in the tracer-based coordinate
5.1. Scaling of effective diffusivity

In this section, we consider the variation of irreversible mixing properties with
characteristic flow parameters in all three flow states, L, H and T. We start
by investigating the effective diffusivity κe as defined by (3.1). Following the
Winters–D’Asaro–Nakamura formalism, κe values are sampled locally at each z∗
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FIGURE 14. Variation of normalised κe(z∗, t)/ν with: (a) Reb,∗(z∗, t); and (b) Rig,∗(z∗, t).
Horizontal dashed lines in (a) correspond to κe/ν=κ/ν=1/Pr for Pr=0.7 (red), 7 (green
or magenta) and 70 (blue) respectively. Symbol conventions are listed in table 1.

using (3.3). All data points considered here are for z∗ locations sampled over the entire
depth of the channel, i.e. −h< z∗ < h and for t > 10 advective time units when the
flow is observed to be free from initial transient effects due to the sudden introduction
of the density interface at t= 0. The values of κe, normalised by molecular kinematic
viscosity ν, are plotted against the locally sampled buoyancy Reynolds number Reb,∗
and gradient Richardson number Rig,∗, respectively, in figure 14. Specifically, Reb,∗
and Rig,∗ are defined in the tracer-based reference coordinate z∗ by

Reb,∗(z∗, t)≡
ε∗

νN2
∗

and Rig,∗(z∗, t)≡
N2
∗

S2
∗

, (5.1a,b)

where S∗ ≡ 〈∂u/∂z〉z∗ is the averaged vertical shear of streamwise velocity sampled
over a given z∗ position.

Figure 14(a) indicates a clear dependence of κe/ν on both Reb,∗ and Pr at least for
Reb,∗< 100. For Reb,∗=O(1) or smaller, κe approaches the value κ , i.e. κe/ν→ 1/Pr,
in this ‘molecular’ regime (see e.g. Shih et al. 2005; Bouffard & Boegman 2013).
For O(1) < Reb,∗ . 30, the scaling enters a ‘buoyancy-controlled’ regime where
κe/ν ∝ Re3/2

b,∗ (cf. Bouffard & Boegman (2013) and the references therein). Consistent
with Bouffard & Boegman (2013), for a given Reb,∗ value κe/ν decreases with
increasing Pr. For 30.Reb,∗. 100, i.e. the ‘transitional’ regime, κe/ν is proportional
to Reb,∗, which agrees with the scaling of this regime described by Shih et al.
(2005), although it is important to remember that the specific numerical values of the
buoyancy Reynolds number depend on the choices for dissipation rate and buoyancy
frequency made, which can of course vary between different analyses.

Within this ‘transitional’ regime, the weak dependence of κe/ν on Pr can still be
observed in our data. A simple power-law relation for κe/ν in terms of Reb,∗ is not
identifiable for Reb,∗ & 100 and the Pr dependence is also less distinct. Figure 14(b)
shows the variation of κe/ν with Rig,∗ where the reverse trend in Reb,∗ can be observed,
i.e. κe/ν in general decreases with increasing Rig,∗. This reversed trend is because, as
will be shown in figure 18, Reb,∗ and Rig,∗ are inversely correlated to each other in
these simulations. The degree of scatter is greater in the Rig,∗ plot than in the Reb,∗
plot.
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FIGURE 15. Application of the weakly stratified ‘left-flank’ scaling, i.e. κe/ν =
RebRig/(1− Rig), proposed for fully developed stratified plane Couette flow (Zhou et al.
2017), to the layered stratified plane Couette flow data. The ‘left-flank’ data points, with
small bulk Richardson numbers Ri 6 0.02 are shown in (a) for t> 10 and (b) for t> 60.
Dashed line in (b) indicates one-to-one slope. Symbol conventions are listed in table 1.

We now turn our attention to the Reb,∗ & 100 regime, where simple power laws
in Reb,∗ do not appear to describe the data, as is shown in figure 14(a). These large
Reb,∗ values are observed exclusively in the T state where the flow remains turbulent
despite the introduction of the density interface and approaches a fully developed
turbulent state (Zhou et al. 2017). In a fully turbulent stratified plane Couette flow,
diapycnal mixing is characterised by a linear relation between the flux and gradient
Richardson numbers, i.e. the turbulent Prandtl number Prt ≡ Rif /Rig is close to unity,
where Rif is the flux Richardson number defined as the ratio of buoyancy flux and
shear production. In other words, this is the typical behaviour on the weakly stratified
‘left flank’ of Phillips’ flux-gradient curve (see figure 1). This results in a scaling
of κe/ν = RebRig/(1 − Rig) (Zhou et al. 2017) which is tested in figure 15. In (a)
some large deviations from this ‘left-flank’ scaling can be observed, as the data points
plotted include early time points (t < 60) where the interface is undergoing shear-
induced overturns. As the transition to stronger turbulence is close to completion at
t> 60, the κe/ν follows more closely the ‘left-flank’ scaling Rif 'Rig for equilibrated
weakly stratified shear flows, as shown for example in figure 13 of Deusebio et al.
(2015).

5.2. Scaling of volume-integrated mixing efficiency
In this subsection, we consider the mixing efficiency of a density interface in the
volume-integrated sense. The framework of the analysis focusing on the available
potential energy change in a control volume was proposed originally by Winters
et al. (1995) and was employed subsequently to characterise the irreversible mixing
efficiency in a given system by e.g. Caulfield & Peltier (2000), Peltier & Caulfield
(2003). Here, we focus on the region within the density interface where a significant
buoyancy gradient, N2

∗
, is present and consider the integrated mixing properties over

an interval in the z∗ coordinate with −δ∗ < z∗ < δ∗, where δ∗ is the integral thickness
of the interface in the z∗ coordinate as defined by (4.1). The integrated diapycnal flux
is

Φd(t)≡−φd · 2δ∗ =
∫ δ∗

−δ∗

−φd(z∗, t) dz∗ =
∫ δ∗

−δ∗

κe
∂b
∂z∗

dz∗, (5.2)
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and the integrated dissipation is

E(t)≡
∫ δ∗

−δ∗

ε∗(z∗, t) dz∗. (5.3)

The overall irreversible mixing efficiency across the interface, which is defined as

Etot(t)≡
Φd

Φd + E
, (5.4)

can then be estimated. In addition, it is possible to define a measure of mixing
efficiency which excludes the laminar diffusion of the background profile with the
laminar flux φd,lam ≡ −(∂b/∂z∗)κ , following the suggestion of Caulfield & Peltier
(2000) in an attempt to isolate the irreversible mixing inherently due to turbulent
mixing processes. The corresponding integrated diapycnal flux is

M(t)≡
∫ δ∗

−δ∗

−(φd − φd,lam) dz∗ =
∫ δ∗

−δ∗

(κe − κ)
∂b
∂z∗

dz∗, (5.5)

and the corresponding ‘turbulent’ mixing efficiency is

E(t)≡
M

M+ E
. (5.6)

Figure 16 shows the total (turbulent and molecular) mixing efficiency Etot as a
function of depth-averaged gradient Richardson number Rig,∗ and buoyancy Reynolds
number Reb,∗, where the overbar indicates an average defined by (4.3). As shown
in (a), Etot increases with Rig,∗ for Rig,∗ . 0.1 corresponding to the T state. The
relation Etot = Rig plotted with a dashed line is equivalent to setting the turbulent
Prandtl number Prt= 1, which appears to agree well with the data showing the typical
‘left-flank’ behaviour in the Phillips flux-gradient curve (figure 1). The data enter the
‘right-flank’ regime for Rig,∗ & 0.1 where Etot is observed to vary strongly with the
molecular Prandtl number Pr. Data points in this regime correspond mainly to the L
and H states. Specifically, for Pr= 0.7 (plotted in red) Etot continues to increase with
Rig,∗, because laminar diffusion, at least for these simulations, becomes important
immediately after the flow enters the strongly stratified right flank. Non-monotonic
behaviour of Etot in Rig,∗ is observed for Pr = 7 (plotted in green) and 70 (plotted
in blue) where Etot first decreases with Rig,∗ and increases again when Rig,∗ becomes
sufficiently large due to the strength of the buoyancy gradient ∂b/∂z∗. Shown also
in figure 16(a) is the relation between Etot and Rig,∗ proposed by Venayagamoorthy
& Koseff (2016) plotted with a dashed-dotted line. While the relation is reasonably
close to the data on the left flank, Etot does not asymptote to a constant value of
0.25 as is predicted to occur in a linearly stratified system by Venaille et al. (2017),
although as usual, it is important to remember that the definitions of mixing efficiency
and Richardson number vary between analyses, and indeed the mechanisms by which
energy is injected into the flow also vary markedly.

When plotted against Reb,∗, as is shown in figure 16(b), Etot appears to collapse
into single curves for each value of Pr. For Reb,∗ . 100, Etot takes larger values for
smaller Pr at a given Reb,∗, and for Reb,∗ & 100, the dependence on Pr seems to
disappear. Consistent with Shih et al. (2005), Etot decreases with Reb,∗ for Reb,∗& 100.
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FIGURE 16. Variation of the time-dependent total mixing efficiency Etot ≡ Φd/(Φd + E)
across the density interface −δ∗< z∗<δ∗ with the corresponding depth averaged: (a) Rig,∗;
and (b) Reb,∗. Darker filling colours for the closed symbols and thicker lines for open
symbols correspond to later times in each simulation. Symbol conventions are shown
in table 1. Grey open squares in (b) correspond to data from Shih et al. (2005) with
Pr = 0.72. In (a), a dashed line shows the relation Etot = Rig,∗, and a dashed-dotted
line shows the relation proposed by Venayagamoorthy & Koseff (2016), Etot = 0.25[1 −
exp(−7 · Rig,∗)].

The Shih et al. (2005) data of Pr = 0.72 (plotted as grey squares) show consistency
with the LSPC data for simulations with Pr= 0.7 (plotted in red) for Reb,∗ >O(1).

Figure 17 shows the time-dependent ‘turbulent’ mixing efficiency E as a function
of Rig,∗ and Reb,∗. Interestingly, in figure 17(a) where E is plotted against Rig,∗,
the strong dependence on Pr on the ‘right flank’ with Rig,∗ & 0.1 vanishes when
the laminar diffusion is excluded. As the flow further laminarises in the L state, E
decreases with time (as shown by increasingly darker symbol fill colour). For the H
state plotted in blue squares, however, the efficiency E saturates to a value between
10−3 and 10−2. The same observation applies to the ‘left flank’ in Reb,∗ as shown
in figure 17(b). The behaviour of E follows closely that of Etot shown in figure 16
for Rig,∗ . 0.1, as the contribution of laminar diffusion is negligible in flows where
turbulent transport dominates, as expected. The data shown in (a) are also reminiscent
of the results compiled by Fernando (1991) in his figure 16, although, again it is
important to remember that the definitions of ‘Richardson number’ are different.

It is also important to appreciate the causes of the differences between the total
mixing efficiency Etot (figure 16) and the turbulent mixing efficiency E (figure 17).
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FIGURE 17. Variation of the time-dependent turbulent mixing efficiency E≡M/(M+ E)
across the density interface −δ∗< z∗<δ∗ with the corresponding depth averaged: (a) Rig,∗;
and (b) Reb,∗. Darker filling colours for the closed symbols and thicker lines for open
symbols correspond to later times in each simulation. Symbol conventions are shown in
table 1.

The definition E removing the purely diffusive component was proposed by Caulfield
& Peltier (2000) based on the assumption that the dominant mixing properties in flows
unstable to KHI are associated with the breakdown of the primary KHI billows. By
their very character, KHI billows are large scale and dominated by inertial processes.
As the Reynolds number of the flow increases, it is a reasonable hypothesis that
the laminar ‘mixing’ dynamics will become increasingly insignificant. In the layered
flow considered here, it is not at all clear that this assumption is valid, as even as
the external Re gets large, it is still expected that in the immediate vicinity of the
density interface, diffusive ‘laminar’ dynamics will remain significant. This remaining
significance is clearly implied by the spatial variation of κe in strongly layered flows
as shown in figure 7.

5.3. Comparison to mixing associated with Kelvin–Helmholtz instabilities
In this section, we compare the mixing efficiency measured in our LSPC flows
to the results obtained by simulating the turbulence induced by KHI, a canonical
flow configuration often employed to study mixing, e.g. by Caulfield & Peltier
(2000), Smyth, Moum & Caldwell (2001), Mashayek, Caulfield & Peltier (2013) and
Salehipour & Peltier (2015). Figure 18 compares our LSPC data to a recent study
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FIGURE 18. Comparison with the dual-parameter scaling for turbulent mixing efficiency
E≡M/(M+E) in (Rig,Reb) proposed by Salehipour et al. (2016b). In (a) the Salehipour
et al. (2016b) predictions, denoted by EKH , are plotted as contours, and the points in the
parameter space accessed by LSPC simulations are plotted in circles where the colour
conventions follow table 1. The grey dashed line corresponds to where the maximum E
occurs for a given Rig. The horizontal and vertical dashed-dotted lines correspond to Reb=

20 and Rig = 1/4 respectively. The predicted EKH values are plotted against the LSPC
results in (b) and (c) for Reb>20 and Reb<20 respectively. Darker fill colour corresponds
to larger values of Reb,∗ in (b) and larger values of Rig,∗ in (c). The dashed line in (c)
and the insert plot corresponds to E= EKH .
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by Salehipour et al. (2016b) which attempted to parameterise E as a function of
appropriate measures of gradient Richardson number and buoyancy Reynolds number
based on data from direct numerical simulation of KHI. As previously noted, it
is important to be cautious when comparing results from different analyses using
different definitions of key parameters, and as described in detail in Salehipour
& Peltier (2015), the definitions of the gradient Richardson number and buoyancy
Reynolds number used in Salehipour et al. (2016b) are somewhat different from
those used here. To re-iterate, the Rig,∗ and Reb,∗ values for our LSPC data are first
calculated ‘locally’ as a function of z∗ using the definitions given in (5.1), and are
then averaged using the ‘depth’ integral (denoted with an overbar) as defined in (4.3).
As can be seen in figure 18(a), Rig,∗ and Reb,∗ are strongly correlated to each other
in the LSPC flows, i.e. Reb,∗ tends to decrease with larger values of Rig,∗. As a
result, our data only access a subset of the parameter space. Interestingly, our data
for 20 . Reb . 1000, which fall in the weakly stratified ‘left flank’ of the Phillips
curve, follow closely the trajectory of maximum E for a given Rig,∗ observed by
Salehipour et al. (2016b). The LSPC data points do not access the most efficient
regime observed by Salehipour et al. (2016b) when Reb,∗ & 20 and Rig,∗ & 0.25. For
Reb,∗ & 20, the LSPC data agree reasonably well with Salehipour et al.’s (2016b)
prediction EKH , as is shown in (b). The agreement, which seems to be improved for
data of larger Reb,∗ values, is presumably due to the fact that the underlying flow
dynamics are similar in LSPC and KHI simulations for these data, i.e. shear-induced
overturns dominate the diapycnal mixing in both cases. For the less energetic, more
stratified data with Reb,∗ . 20 (or Rig,∗ & 0.25), there is poor agreement between
EKH and E, as is shown in (c). The Salehipour et al. (2016b) scaling predicts larger
efficiencies than those observed in the LSPC flow for small values of Rig,∗ . 1/2,
as shown in the insert of (c). As Rig,∗ increases further to Rig,∗ & 1/2, EKH becomes
virtually zero, whereas E stays at small but significantly non-zero values. This weak
but non-negligible mixing occurs in L and H states at the right flank of the Phillips
curve for which the diapycnal transport due to the scouring acting on a highly stable
density interface plays a key role.

5.4. Comparison to body-forced turbulence mixing
Another highly relevant flow configuration in studying stratified turbulence is triply
periodic forced turbulence simulations, e.g. by Brethouwer et al. (2007). Here we
also compare our results with a recent study by Maffioli et al. (2016) who measured
mixing efficiency from a series of body-forced stratified turbulence simulations
(figure 19). Crucially, the flow in their study is energised by the use of body forcing in
contrast to applying vertical shear driven at the boundaries in LSPC flow simulations,
and only a statistically steady state is considered in Maffioli et al. (2016), whereas
time-dependent mixing properties are captured in the LSPC flow data. Maffioli et al.
(2016) observed the dependence of mixing efficiency on the turbulent Froude number
Frh ≡ ε/(NU 2

h ), an equivalent of which can be estimated as Frh,∗ = ε∗/(N∗U 2
h,∗)

in the z∗ coordinate, where Uh,∗ ≡ 〈u′2 + v′2〉z∗ is the turbulent horizontal velocity
scale, though once again caution must be applied when comparing specific numerical
values of differently defined quantities. As shown in figure 19(a), plotting E against
the depth averaged Frh,∗ does not collapse the LSPC flow data completely, and
the Maffioli et al. (2016) simulations have a significantly larger mixing efficiency.
Furthermore, the LSPC flow never accesses the small Froude number regime
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FIGURE 19. (a) Turbulent mixing efficiency E≡M/(M+ E) as a function of the depth-
averaged horizontal Froude number Frh,∗. The data from Maffioli et al. (2016) are plotted
as grey circles. (b) Rig,∗ as a function of Frh,∗, where the dashed line corresponds to the
Rig ∝ Fr−2

h scaling for fully developed turbulent plane Couette flow (Zhou et al. 2017).
Darker fill colour corresponds to larger values of Reb with samples shown in (a). Data
points with Reb,∗> 20 are shown, consistent with the range investigated by Maffioli et al.
(2016).

identified by Maffioli et al. (2016), associated with an asymptotic (and constant)
mixing efficiency.

This difference appears to be related to the fundamental difference in the forcing,
with the external wall-forcing always leading to weaker mixing. Interestingly, the Fr−2

h
scaling in the weakly stratified regime (Frh > 1) of Maffioli et al. (2016) seems to
apply also to the large-Reb,∗ data points from LSPC flow, although the value of E
is approximately one order of magnitude smaller in LSPC flow for a given turbulent
Froude number. Note that the scaling E ∝ Fr−2

h may be inherently connected to the
scaling E ∝ Rig, because it can be shown in fully turbulent stratified plane Couette
flow (Zhou et al. 2017) that Rig ∝ Fr−2

h , a relation which appears to hold, at least
approximately, for the LSPC flow data shown in figure 19(b).

6. Concluding remarks
We have examined irreversible diapycnal mixing quantified in the tracer-based

coordinate z∗ following the Winters–D’Asaro–Nakamura formalism for layered
stratified plane Couette flow simulations. The results presented include not only
the bulk (volume-averaged) properties of irreversible mixing, but also the structural
details of effective diffusivity κe and diapycnal flux φd (figure 7). The structure of
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the κe(z∗) profile is particularly important as its curvature, i.e. ∂2κe/∂z2
∗
, determines

if diapycnal mixing is able to ‘sharpen’ the local gradient. The sign of ∂2κe/∂z2
∗

could also provide a simple test for whether the mixing process is dominated by
‘overturning’ (∂2κe/∂z2

∗
> 0) or ‘scouring’ (∂2κe/∂z2

∗
< 0). Overturning-dominated

mixing is reminiscent of the ‘internal’ mixing mechanism following the classification
by Turner (1973). The turbulence which drives internal mixing occurs within
the region where a large gradient of buoyancy is present. The ‘external’ mixing
mechanism, however, is driven by turbulence external to the region with large
gradient of buoyancy. It follows that the scouring processes examined here, which
are critical in the maintenance of density interfaces, are ‘external’ in nature following
Turner’s terminology. When Richardson and Péclet numbers are both sufficiently large,
we found the possibility of a density interface surviving due to the suppression of
overturning shear instabilities by large Richardson number, and comparatively weak
laminar diffusion at large Péclet number. Scouring by the external turbulence is key
to the robustness of very stable ‘sharp’ interfaces. The framework employed in this
analysis is effective for examining the spatial inhomogeneity of diapycnal mixing in
the vertical direction and can be readily applied to investigate similar flows where
layers and interfaces are the dominant features.

We have highlighted the relevance of molecular properties of the fluid (i.e. Prandtl
number Pr) in the ‘right flank’ of Phillips’ flux-gradient curve in determining the
mixing properties of a sheared density interface (see e.g. figure 16), and this is critical
because diapycnal transport does not vanish when the stratification is particularly
strong and the molecular flux becomes important in such ‘right-flank’ situations.
The kinetic energy available for mixing is supplied by vertical shear maintained by
the walls in the LSPC flow configuration, and an important feature of this simple
shear flow is the strong correlation between the gradient Richardson number and the
buoyancy Reynolds number (as shown in figure 18a). When the gradient Richardson
number is small, i.e. Rig,∗ . 0.25, shear-induced overturns dominate in the T state of
LSPC simulations, and the mixing efficiency is comparable to the data reported by
Salehipour et al. (2016b) based on Kelvin–Helmholtz simulations (see figure 18b).
The same observation applies when we compare the LSPC flow results to forced
statistically stationary turbulence in the limit of large turbulent Froude number (weak
stratification) Frh,∗ & 1, where the scaling E ∝ Rig,∗ ∝ Fr−2

h,∗ (see figure 19) seems to
hold regardless of the forcing mechanism. However, turbulence cannot be sustained
at large gradient Richardson numbers & 0.25 in our LSPC flow configuration where
the only forcing comes from vertical shear, and laminar diffusion becomes relevant
in determining the mixing properties for strongly stratified interfaces (see figure 16).
This is in contrast to body-forced turbulence studies, e.g. Maffioli et al. (2016),
where the flow stays energised under strong stratification by internal body forcing,
and hence ‘internal’ mixing in the sense of Turner (1973). The mixing efficiency does
not saturate to a constant, as in standard turbulence parameterisations, e.g. Mellor &
Yamada (1982), in the limit of strong stratification, and molecular diffusivity does
affect the mixing properties.

In this paper, we have investigated the self-sustaining mechanism of a sharp
density interface when the Péclet number is sufficiently large, i.e. the combined
external effects of the ‘scouring’ induced by the turbulence away from the interface
and comparatively weak molecular diffusion across the core central region of the
interface. It appears that a sharp density interface can be maintained by a subtle
yet robust balance and interplay between molecular processes in the ‘interface’,
where there is a strong density gradient suppressing vertical motions, and vigorous
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scouring turbulence in the much more weakly stratified ‘layers’ above and below the
interface. This self-sustaining mechanism might explain how layers and interfaces
may be robust structures in stably stratified geophysical flows, and this mechanism is
intrinsically related to the mechanism proposed by Phillips (1972) regarding how these
structures may form. On the other hand, we have only considered the ‘robustness’
of an existing density interface with a fixed initial thickness in this paper. Possible
formation mechanisms of such layered structures from initially linearly stratified flows
is the topic of a separate study (Taylor & Zhou 2017).
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