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Multi-linear forms, graphs, and
LP-improving measures in 4

Pablo Bhowmik, Alex Iosevich®, Doowon Koh®, and Thang Pham

Abstract. The purpose of this paper is to introduce and study the following graph-theoretic
paradigm. Let

Tef ()= [ K(xp)f(du(),

where f: X — R, X a set, finite or infinite, and K and u denote a suitable kernel and a measure,
respectively. Given a connected ordered graph G on n vertices, consider the multi-linear form

AcCfisforonf)= [ TT K@) TTAGDdu),
xl,x"eX (i,j)€€ (G) 1=1
where £(G) is the edge set of G. Define Ag(p1, ..., Pn) as the smallest constant C > 0 such that the
inequality
(0.1) AG(fl""’fn)SCHHfiHLPi(X,y)
i=1

holds for all nonnegative real-valued functions f;, 1< i < n, on X. The basic question is, how does
the structure of G and the mapping properties of the operator Tk influence the sharp exponents in
(0.1). In this paper, this question is investigated mainly in the case X = Fg , the d-dimensional vector
space over the field with q elements, K(x?, x7) is the indicator function of the sphere evaluated at
x' — x/, and connected graphs G with at most four vertices.

1 Introduction

One of the fundamental objects in harmonic analysis is the operator of the form

(1 Tef(x) = [, K(x)f()dy,
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where K : R? x R? - R is a suitable kernel and f is a locally integrable function.
See [16] and the references contained therein for a variety of manifestations of
operators of this type and their bounds.

The purpose of this paper is to study operators from (1.1) in the context of vector
spaces over finite fields. Let F; denote the finite field with g elements, and let IE‘Z be the

d-dimensional vector space over this field. Let K : F’; x IFZ — C be a suitable kernel,
and define

Tef(x) = Y. K(x»)f(y).

d
yelFg

Operators of this type have been studied before [4, 11-13]. In particular, the operator
Tx with K(x, y) = S;(x — y), where S is the indicator function of the sphere

Se={xeFa:|lx|| =1},

||x|| = x{ + x5 + -+ + x3, comes up naturally in the study of the Erd8s-Falconer dis-
tance problem in vector spaces over finite fields, namely the question of how large a
subset E c IFZ needs to be to ensure that if

A(E) = {llx = yll: %, y € E},

then |[A(E)| > . Here and throughout, |S|, with S a finite set, denotes the number of
elements in this set. See, for example, [3, 5, 8, 10, 15].

If one is interested in studying more complicated geometric objects than distances,
an interesting modification of the spherical averaging operator needs to be made.
Indeed, let E c FZ, and suppose that we want to know how many equilateral triangles
of side-length 1 it determines. The quantity that counts such triangles is given by

(1.2) >, K(x,y)K(x,2)K(y,2)E(x)E(y)E(2),

x,y,ze]FZ

where K(x,y) = S1(x — y).

Let us interpret the quantity (1.2) in the following way. Let us view x, y, z as vertices,
and let us view the presence of K(x, y) as determining the edge connecting x and y,
and so on. In this way, the quantity (1.2) is associated with the graph K3, the complete
graph on three vertices (Figure 1b).

Another natural example is the following. Let K(x, y) = $;(x — y), and consider
the quantity that counts rhombi of side-length 1, i.e.,

(13) Y K(x.7)K(2)K(zw)K(w, x)E(x)E(y)E(2)E(w).

x,y,2,weld

Arguing as above, we associate this form with the graph Cj, the cycle on four vertices
(Figure le).
In general, let K be a kernel function, and let G be a connected ordered graph on n
vertices. Define
1

(L4) AG(fl,fz,...,fn):m > I1 K(xi,xj)ﬁﬁ(xl),

..... xmeFd (i,j)e€(G) 1
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/N
( ) G =Ko (b) G = K3
)G =D, (d) G = C4+ diagonal
VAN
)G =C,4 (f)y G=Ps
\A )\
) G = K3+ tail (h) G = Y-shape

Figure I

where £(G) is the edge set of G and N(G) is the normalizing factor defined as the
number of distinct embeddings of G in ]FZ. Notice that N(G) is the number of tuples
(x',...,x") € (]FZ)” such that [T(; jyee (g) K(x' x7) = 1. We will call the operator Ag
as the G form on ]FZ.

We note in passing that the paradigm we just introduced extends readily to the
setting of hypergraphs. If we replace our basic object, the linear operator Tk, by
an m-linear operator Mg, the problem transforms to the setting where the edges
dictated by the kernel K are replaced by hyperedges induced by the multi-linear kernel
K(x',...,x™*"). We shall address this formulation of the problem in the sequel.

The norm [[f||p,1 < p < oo, is defined to be associated with normalizing counting
measure on Fg. More precisely, given a function f on 9, we define

1

Ifll,=a* X 1f@F| (<p<oo), and |Iflle = max|f(x)].

d
xs]Fq
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Definition 1.1 Let n and d be nonnegative integers. For each finite field IFy, we
consider a connected ordered graph G on n vertices in F’;. For any numbers
1<pi<oo,i=1,...,n, we define Ag(p1,...,pn) as the smallest number such that
the following inequality

(15) AG(fis-osfu) < Ma(pr-- o pa) [TIAL,
i=1

holds for all nonnegative real-valued functions f;,1< i < n, on IFZ.

Notice that the graph G in the above definition is chosen based on the underlying
finite field ;. Hence, the operator norm Ag(pi, ..., p,) may depend on g, the size
of the underlying finite field F; so that it can grow with q. However, if there exists
a constant C, independent of g, such that Ag(p1,...,pn) < C, then we will denote
Ag(pl, ce >pn) SL

The main purpose of this paper is to determine all numbers 1< p; < oo,
i=1,2,...,n, such that the operator norm Ag(ps,...,pn) is not allowed to grow
with g, that is, Ag(p1, ..., pn) S 1. We will refer to this problem as the boundedness
problem for the operator Ag on IFZ.

For the remainder of this paper, the kernel function K(x, y) is assumed to be
S¢(x — y) with ¢ # 0. In addition, when the dimension d is 2, we assume that the
number 3 in [F is a square number so that we can exclude the trivial case in which the
shape of an equilateral triangle in ]Fé does not occur.

We shall mainly confine ourselves to the following connected graphs G with at most
four vertices: K (the graph with two vertices and one edge), K3 (the cycle with three
vertices and three edges), K3 + tail (a kite), P, (the path of length 2), P; (the path of
length 3), C4 (the cycle with four vertices and four edges), C4 + diagonal, Y-shape
(a space station). In particular, we have avoided the K4 (the complete graph with four
vertices) since there is no K, distance graph on IFfZ. However, it would be interesting
to investigate the case when the graph G is a Ky in higher dimensions, a graph with
more than four vertices, or a disconnected graph. Despite the difficulties posed by this
case, we anticipate that experts in this field will address advanced results in the near
future.

When the graph G is the K3, the complete answer to the boundedness problem will
be given in all dimensions. To deduce the result, we will invoke the spherical averaging
estimates over finite fields (see Theorem 3.3).

When the number of the vertices of the graph G is 3 or 4, we will obtain reasonably
good boundedness results in two dimensions. In particular, in the case when the
degree of each vertex is at least 2 (K3, C4+ a diagonal, and C,), we shall prove sharp
results (up to the endpoints) for the operators on Fé (see Theorems 4.7, 6.5, and 7.5).
While the proofs for the graphs K, and K3 use standard results in the literature, in
other cases, a new approach will be introduced. We also note that there are several
papers in the literature studying the distribution of the graphs P,, P5, and Y-shape in
a large set (see [2, 9] for example); however, the techniques in those papers are not
helpful for the question raised in this paper. For three and higher dimensions, the
boundedness problem is not simple and we will address partial results.
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It is very natural to ask whether or not one can prove a general theorem that
addresses all connected graphs on n vertices. Unfortunately, such a result is beyond
the scope of this paper. The main difficulties arise when the maximal degree is large
or the edge set is dense, or if the graph contains a cycle or not. All of these issues will
be illustrated in the proofs of our results.

We also study the boundedness relation between the operators associated with a
graph G and its subgraph G’ with n-vertices. Throughout the paper, we always assume
that the graph G and its subgraph G’ are connected ordered graphs with |G| = |G’| in
IFZ, and two vertices x, y in G is connected if ||x — y|| = ¢ # 0.

In Theorem 5.5, we will see that any exponents 1< py, ps, ps < oo with
Ax;, (p1> P2, p3) $ 1 satisfy that Ap, (p1, p2, p3) S 1. Notice that P, can be considered
as a subgraph of K3, and the operators Ap, and Ak, are related to the graphs P,
and Kj, respectively. Hence, in view of Theorem 5.5, one may have a question that,
“Compared to a graph G, does the operator associated with its subgraph yield less
restricted mapping exponents?” More precisely, one may pose the following question.

Question 1.2 Suppose that G' is a subgraph of the graph G with n vertices in IFZ. Let
1<pi<oo,1<i<n If Ag(p1s-..>pn) S 1, isit true that Ag/(p1,..., pn) S1?

Somewhat surprisingly, the answer turns out to be no! When G = K3 and G’ = P,,
the answer to Question 1.2 is positive as Theorem 5.5 shows. However, it turns out
that there exist a graph G and its subgraph G’ yielding a negative answer, although the
answers are positive for the most graphs which we consider in this paper. For example,
the answer to Question 1.2 is negative when G is the C4 + diagonal and G’ is the C,
(see Proposition 7.6).

Since the general answer to Question 1.2 is not always positive, we pose the
following natural question.

Problem 1.3  Find general properties of the graph G and its subgraph G’ which yield a
positive answer to Question 1.2.

The main goal of this paper is to address a conjecture on this problem and to
confirm it in two dimensions. To precisely state our conjecture on the problem, let
us review the standard definition and notation for the minimal degree of a graph.

Definition 1.4 'The Minimum Degree of a graph G, denoted by §(G), is defined as
the degree of the vertex with the least number of edges incident to it.

We propose the following conjecture which can be a solution of Problem 1.3.

Conjecture 1.5 Let G’ be a subgraph of the graph G in F%,d > 2, with n vertices, and
let1< p; < 00,1< i < n. In addition, assume that

(L6) min {8(G),d} > 8(G’).
Then, if Ag(p1>--.»Pn) S1, wehave Ag/(p1,...,pn) S1
Note that the condition (1.6) in Conjecture 1.5 is equivalent to the following:

(L7) (i) 8(G) > 8(G") and (ii)d > 8(G).
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We have some comments and further questions below, regarding the above conjecture
and our main theorems which we will state and prove in the body of this paper.

o Our results in this paper confirm Conjecture 1.5, possibly up to endpoints, for all
graphs G and their subgraphs G’ on n = 3,4 vertices in Fé (see Theorem 10.7).
Also note that when d = 2 and n = 3, 4, the condition (1.6) is equivalent to the first
condition (i) in (1.7) since §(G) < 2 (see the figures above).

o It will be shown that the conclusion of Conjecture 1.5 cannot be reversed at least
for n = 3,4 in two dimensions (see Remark 5.6 for n = 3, and see Remarks 8.9, 8.12,
9.11, and 10.5 for n = 4.)

It is worth investigating whether the key hypothesis (1.6) of Conjecture 1.5 can be
relaxed.

o The conclusion of Conjecture 1.5 does not hold in general if the > in the assumption
(1.6) is replaced by >. To see this, consider G = C4+diagonal and G’ = C4 on 4 ver-
tices in FZ, with d = 2. Tt is obvious that G’ is a subgraph of G and min{8(G),d} =
8(G’) = 2. However, Proposition 7.6(ii) implies that the conclusion of Conjecture
1.5 is not true.

o We are not sure what can we say about the conclusion of Conjecture 1.5 if the main
hypothesis (1.6) of Conjecture 1.5 is relaxed by the second one of the conditions
(1.7). To be precise, when (1.6) is replaced by the second statement of (1.7), that
is, d > 8(G’), we do not have a definitive answer even for n =4 in IF;. For
instance, let G = Y-shape and G’ = K3+ a tail on Fz. Then it is clear that d =2 >
8(G')=1and 1=6(G) = 6(G’) and so this provides an example that does not
satisfy the assumption (1.6) of Conjecture 1.5 but satisfy the second statement
of (1.7). Unfortunately, in this paper, we have not found any inclusive boundedness
relations between the operators corresponding to such graphs. In order to exclude
this uncertain case, both conditions in (1.7) were taken as the hypothesis for
Conjecture 1.5, namely the condition (1.6).

Notation:

o Wedenote Ag(p1,...,pn) S 1if the inequality (1.5) holds true for all characteristic
functions on Fg.
+ By F7, we mean the set of all nonzero elements in IF,.

+ For t € F}, we denote by § "1 the sphere of radius ¢ centered at the origin in Fg:
-1
S¢ = {xeFy x| =t}

Unless otherwise specified in this paper, d represents the general dimension of
IFZ, d > 2. When n = d, we write S; instead of $¢~! for simplicity.

o We identify the set S; with its indicator function 15,, namely, S¢(x) = 1s,(x).

o We write & for the indicator function of the set of the zero vector in ]F‘; .

o For positive numbers A,B >0, we write ASB if A<CB for some constant
C > 0 independent of g, the size of the underlying finite field F;. The notation A ~ B
means that A < Band B < A.

The rest of this paper is organized as follows: In Section 2, we recall known results
on the spherical averaging operator, which functions as a fundamental tool to prove
our theorems. Sections 3-10 are devoted to the presentation and proofs of our main
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results associated with the graphs mentioned above. The Appendix contains some
technical lemmas on the number of intersection points of two spheres in ]FZ.

2 The spherical averaging problem

In the finite field setting, Carbery, Stones, and Wright [4] initially formulated and stud-
ied the averaging problem over the varieties defined by vector-valued polynomials.
This problem for general varieties was studied by Chun-Yen Shen and the third-listed
author [12]. Here, we introduce the standard results on the averaging problem over
the spheres. We adopt the notation in [12].

Let dx be the normalizing counting measure on IFZ. For each nonzero t, we endow
the sphere S; with the normalizing surface measure do;. We recall that

doy(x) = lst(x)dx

so that we can identify the measure do, with the function 1 s | , on IFZ.

The spherical averaging operator Ag, is defined by
QD Aof(0)=frdox) = [ fle-y)day)= o0 3 fGx
t yeSt
where f is a function on Fg. Bya change of variables, we also have

> Selx=y)f(y).

|S | ye]Fd

(2.2) As, f(x

For 1< p,r < oo, we define Ag,(p — r) to be the smallest number such that the
averaging estimate

(2.3) Ilf * d"t”L*(JFg,dx) < As,(p—~ ”)||f||LP(JFg,dx)
holds for all functions f on IFZ.

Problem 2.1 (Spherical averaging problem) Determine all exponents 1< p,r < oo
such that

Ast (p d 7’) Sl
Notation 2.2  From now on, we simply write A for the spherical averaging operator Asg, .
By testing (2.3) with f = §y and by using the duality of the averaging operator, it is

not hard to notice that the necessary conditions for the boundedness of A(p — r) are
as follows: (1/p,1/r) is contained in the convex hull of points (0, 0), (0,1), (1,1), and
d_ 1

d+1’ d+1/°
Using the Fourier decay estimate on S; and its cardinality, it can be shown that these
necessary conditions are sufficient. For the reader’s convenience, we give a detail proof

although the argument is standard, as is well known in the literature such as [4, 12].

Theorem 2.3 Let 1< p,r < oo be numbers such that (1/p,1/r) lies on the convex hull
of points (0,0), (0,1), (1,1), and (ﬁ, ). Then we have A(p —r) S 1.
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Proof Since both do; and dx have total mass 1, it follows from Young’s inequality
for convolution functions that if 1 < r < p < oo, then

(2.4) | doillrra,axy < 1 flee(ea,ax)-

We notice that these results do not hold for the Euclidean Averaging problem.
By the interpolation and the duality, we only need to establish the following critical
estimate:

d+1
A (L Sd+ 1) <1.
d
It is well known that for nonzero t,

1

[(do})Y (m)] = 51 S q_Lz_l) forall m + (0,...,0),

> x(m-x)

x€S;

where y denotes a nontrivial additive character of Iy (see the proof of Lemma 2.2
in [10]).

Since |S;| ~ g%}, we complete the proof by combining this Fourier decay estimate
with the following well-known lemma (see Lemma 6.1 in [12]).

Lemma 2.4 Let do be the normalized surface measure on an variety S in IE‘Z with

S| ~ gL If|(da)V (m)| $ q‘gfor allme IFZ'\(O, ..., 0) and for some k > 0, then we
have

A(k+2—>k+2)51. ]
k+1

The boundary points of the convex hull play an important role in the application
of Theorem 2.3. More precisely, we will apply the following result, which is a direct
consequence of Theorem 2.3.

Lemma 2.5 Let1< p,r< oo, and let A denote the averaging operator over the sphere
Si,t#0,inFl,d > 2.

(i) Ifls%Sﬁandézﬁ,thenA(per)SI.
(ii) Ifﬁs%gland%:%—d+l, then A(p —r) S 1.

3 Sharp mapping properties for the K, form

In this section, we provide the sharp mapping properties of the operator associated
with the graph K. To this end, as described below, we relate the problem to the
spherical averaging problem.

As usual, the inner product of the nonnegative real-valued functions f, g on F‘; is
defined as

< fog>=fglh = qi T f(x)g(x).

d
xqu
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Let € F7, and let fi, f, be nonnegative real-valued functions on F4,d > 2. Then the
K, form Ak, on ]FZ is defined by

1

(3.1) Ax,(fi, f2) = > Si(x =) AGD) fo(x).

qd|St| x1,x2eFd

Here, the quantity q¢|S;| represents the normalizing factor N(G) in (1.4) when the
graph G is K,. In other words, N(G) = q%|S;|, which is the number of the pair
(x',x?) € F4 x F4 such that §,(x' - x*) = 1.

By a change of variables, we can write

(3.2) szm,fz):qid S A= 5 AG - )83 | =< fiu Af >,

xleFd |St| x2eFd

where A denotes the averaging operator related to the sphere S;. Likewise, we also

obtain that Ak, (fi, f2) =< Afi, fo > .
The main goal of this section is to address all numbers 1< p;, p, < oo satisfying

A, (P> p2) 1.
We begin with the necessary conditions for the boundedness of the K, form Ag,
on IFZ.
Proposition 3.1 Let 1< p, py < co. Suppose that Ak, (p1, p2) S 1. Then we have
1 d d 1
—+—<d and —+—<d.

P P2 P P2

Proof By symmetry, it is clear that Ag, (p1, p2) S1 < Ax,(p2, p1) $1. Hence, it
suffices to prove the first listed conclusion that i +4 <4,

From (3.2) and our assumption that Ak, (p1, p2) $ 1, we must have

Ak, (fi 12) S [Aillpi 1 allp.-
We test this inequality with f; = 15, and f, = §. Then

1 1 _
A (fisf) == > = =q %
q xleS, |St|
and
- _ _i_d
Al fallps ~ (a~ISe) P (g~ ) VP2 ~ g 1 70e.
By a direct comparison, we get the desired result. [ ]

Remark 3.2 For 1< py, p; < 0o, one can note that i + % <d and % + p—lz <d if
and only if (1/p1,1/p2) € [0,1] x [0,1] lies on the convex hull of points (0,0), (0,1),
(#> 7) (1,0).

Let us move to the sufficient conditions on the exponents 1 < p;, p, < oo such that

Ax, (p1, p2) $1. We now show that the necessary conditions are in fact sufficient
conditions for A, (p1, p2) S 1.
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Theorem 3.3 (Sharp boundedness result for the K, form on IF‘;) Let1< py, pa < oo.
Then we have

d d 1
Ak, (p1> <1 ifandonlyi —+—<d Z oy <d.
k. (P1P2) if ly if o o
Proof By Proposition 3.1, it will be enough to prove that Ag,(p1, p2) $1 for all

1< p1, p2 < oo satistying

Lodeg 4.1y

P P2 P P2
By the interpolation theorem and the nesting property of the norm, it suffices to
establish the estimates on the critical endpoints (1/p;,1/p2) € [0,1] x [0,1], which
are (0,1),(1,0), and (d/(d +1),d/(d +1)). In other words, it remains to prove the
following estimates:

1 1
Ary(00,1) S 1, Ak, (Loo) S 1, Am(d; ,ég—)NL
Since Ax,(f1, f2) =< fi, Af; >, it follows by Holder’s inequality that if A(p, —
p1) $1 with 1< py, pp < 00, then Ag,(p1, p2) $1. Thus, matters are reduced to
establishing the following averaging estimates:

A1-1)51, A(oo - 00) <1, A(%+d+1)51.

However, these averaging estimates are clearly valid by Theorem 2.3, and thus the proof
is complete. [ ]

The following result is a special case of Theorem 3.3, but it is very useful in practice.

Corollary 3.4  For any dimensions d > 2, we have Ak, (%, %) SL

Proof Notice thatif p; = p, = M , then it satisfies that 1 ot ;T <d and R <d.
Hence, the statement follows immedlately from Theorem 3.3. [ ]

4 Boundedness problem for the K; form

Let t € F7. The K3 form Ak, on IFZ can be defined as

(4.1)

Ak (s for 5) = %, S S )82 = )i -,

|S ||Sd 2| xl,x2,x3eFd
where each f;,i=1,2,3, is a nonnegative real-valued function on ]FZ, and the
quantity g|S;||S¢~2| stands for the normalizing factor N(G) in (1.4) when G = Kj.
More precisely, N(G) is the number of (x',x% x°) € (IF;)3 such that S;(x! — x?)
Si(x? —x3)S(x® - x") = L.

The purpose of this section is to find the numbers 1< p;, p,, p3 < 0o such that
Ak (p1> p2> p3) S 1.
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When the dimension d is 2, we will settle this problem up to the endpoint estimate.
To this end, we relate our problem to the estimate of the Bilinear Averaging Operator
(see (4.3)) for which we establish the sharp bound.

On the other hand, as we shall see, in three and higher dimensions d > 3, it is not
easy to deduce the sharp results. However, when one of the exponents p;, pa, p3 is oo,
we will be able to obtain the optimal results. This will be done by applying Theorem 3.3,
the boundedness result for the K, form Ak, on F‘;.

We begin by deducing necessary conditions for our problem in F4¢,d > 2. Recall
that for d = 2, we pose an additional restriction that 3 € I, is a square number.

Proposition 4.1 (Necessary conditions for the boundedness of Ag,) Let 1< py,
P2, P3 < oo. Suppose that Ak, (p1, pa, p3) $ 1. Then we have

£+L+lsd i+i+i§d, i+i+isd.

pr P2 P3 b p2 P3 P P2 P3
In particular, when d = 2, it can be shown by Polymake' [1, 6] that (1/p1,1/p2,1/p3)
is contained in the convex hull of the points: (0,0,1),(0,1,0),(2/3,2/3,0),
(1/2,1/2,1/2), (2/3,0,2/3), (1,0,0), (0,0,0), (0,2/3,2/3).

Proof We only prove the first inequality in the conclusion since we can establish
other inequalities by symmetric property of A, fi, f2, f5. We will use the simple fact
that x € S, if and only if —x € S;. In the definition (4.1), taking f; = 8y, f2 = 1s,, and
f3 =1s,, we see that

>

_d 1 1
1Al 2llpa [l fallps ~ q 71 72 q s,

Ak, (fi fos f3) = id% > 1 ~q¢
q |St||st | x2,x3€Se||x2—x3||=t
where the last similarity above follows from Corollary A.4 in the Appendix with our
assumption that 3 € IFy is a square number for d = 2.
By the direct comparison of these estimates, we obtain the required necessary
condition. |

Remark 4.2 In order to prove that the necessary conditions in Proposition 4.1 are
sufficient conditions for d = 2, we only need to establish the following critical endpoint
estimates:  Ag,(2,2,2) $1, Ag,(00,00,00) $1,Ag,1,00,00) $1, Ag,(00,1,00) S 1,
Ak, (00,00,1) $1, Ag, (%, %, oo) $1, Ak, (%, 00, %) $1, Ak, (oo, %, %) <1. In fact,
this claim follows by interpolating the critical points given in the second part of
Proposition 4.1.

4.1 Boundedness results for Ak, on ]F‘;

The graph K, can be obtained by removing any one of three vertices in the graph K.
Therefore, the boundedness of Ag,(p1,p2) can determine the boundedness of

1Polymake is software for the algorithmic treatment of convex polyhedra.
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Ak, (p1, p2, 00). Using this observation, in the case when one of py, p,, p3 is oo, we
are able to obtain sharp boundedness results for Ag, (p1, P2, p3)-

Theorem 4.3 Let 1< a,b < oo satisfy that % + % <d and % + % < d. Then we have

A, (a,b,00) $1, Ak, (a,00,b) $1, and A, (o0, a,b) S 1.
Proof The statement of the theorem follows immediately by combining Theorem 3.3
and the following claim: If Ak, (a,b) $1, then

Ak, (a,b,0) 51, Ag,(a,00,b) $1, and Ak, (o0,a,b) S 1.

It suffices by symmetry to prove that if Ak, (a,b) <1, then Ak, (a,b,00) S 1.
Since f;, i = 1,2, 3, are nonnegative real-number functions on 4, it follows that

Ak (fis 2, f3) € |Sdl_2| max > £ Ak (fis f2)

1_42||=
[t =221=t s a2 - 3] == 31|

Since [S?72| ~ q¢?"% and Ax, (fi, f2) S ||fillallf2]l6» it suffices to prove that the maxi-
mum value in the above parenthesis is $ % 72|| f3||oo. Let us denote by I the maximum
above.

By a change of variables, x = x!, y = x! — x?

, we see that

I<| max > 1 Ifll oo

xelFd,yeS; 3 md. 3= f|[x3
q x3eFd:||x—y—x3||=t=[|x?—x||

By another change of variables by putting z = x — x°

I< ( max ”Z H 1) [|f3]lo0 = (max Z 1) Il 31lco-
H|lz—yl|=t

d
x€Fg, €St e, yeSt zeSyi||z—y||=t

, we get

Now, applying Corollary A.4 in the Appendix, we conclude that I $ g%72||f3]|eo as
required. u

It is not hard to see from Proposition 4.1 that Theorem 4.3 cannot be improved in
the case when one of the exponents p;, p,, p3 is co. In particular, the following critical
endpoint estimates follows immediately from Theorem 4.3:

A (d+1 d+1 )<1 A (d+1 d+1)<1 A ( d+1 d+1)<1
Y 7, X ~ 1 — Y 00, —— ~ 1 Oy ——, —— ~ 1
S\7a 4 A d s d’ d

Ak, (00,00,00) 51, Ag,(1,00,00) $1, Ag,(00,1,00) $1, Ag,(00,00,1) S 1.

(4.2)

Remark 4.4 From (4.2) and Remark 4.2, we see that to completely solve the problem
on the boundedness of Ax,(p1,p2,p3) for d =2, we only need to establish the
following critical endpoint estimate

d+2 d+2 d+2
A 5 > :A 2,2,2 Sl.
K}( d > d° d ) x(222)
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4.2 Sharp restricted strong-type estimates in two dimensions

Although Theorem 4.3 is valid for all dimensions d > 2, it is not sharp, compared to the
necessary conditions given in Proposition 4.1. In this subsection, we will deduce the
sharp boundedness results up to the endpoints for Ak, (p1, p2, p3) in two dimensions.
To this end, we need the following theorem, which can be proven by modifying the
Euclidean argument introduced in Section 7 of [7].

Theorem 4.5 Let Ak, be the K5 form on IFfI Then, for all subsets E, F, H ofIF2 the
following estimate holds: Ak, (E, F, H) < ||E|l2||F|l2||H]2-

For 1< py, pa, p3 < 00, we say that the restricted strong-type Ax,(p1, 2> p3)
estimate holds if the estimate

A, (E, F, H) < [[El|p, |||, | H[ p5
is valid for all subsets E, F, H ofFé. In this case, we write Ag, (p1, p2, p3) S 1.

Proof The proof proceeds with some reduction. When d = 2, by a change of variables
by letting x = x°, y = x> — x',z = x*> — x2, (4.1) becomes

Ak, (f fos f3) = pe Zfs( ) > Si(z=y)Su(2)S$: (M) filx - y) fa(x - 2) |-

xelF2 |S | y,z€F2
We define B( fi, f2)(x) as the value in the bracket above, namely,
1

(4.3) B(fi, f2)(x) := 51

Y A=y fa(x-2).

y,2€8:||z—y|=t

We refer to this operator B as “the bilinear averaging operator’” It is clear that

Ao forf5) = = 3 B(f ) (0)f5 (x) =< B(fus o), fo >

xeF?
By Holder’s inequality, we have
Ak, (fs fas f3) <[[B(fis f2)l[allf3l 2
Thus, Theorem 4.5 follows immediately from the reduction lemma below ]

Lemma 4.6 Let B(fi, f2) be the bilinear averaging operator defined as in (4.3). Then,
for all subsets E, F of F2, we have

IB(E, F)||2 < [|Ell2| [Fll2-

Proof We begin by representing the bilinear averaging operator B(f, f). From
(4.3), note that

B £)(5) = (57 - Al - )( % fz(x—Z)).

yeS: zeSsi||z—y||=t
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For each y € Sy, let ©(y) := {z € S; : ||z — y|| = t}. With this notation, the bilinear
averaging operator is written as

B £)(x) = (57 % il y>( > fz(x—Z))-

yeSy ze®(y)

Let 17 denote the quadratic character of ;. Recall that (s) = 1 for a square number s
inFy, and ;(s) = —1 otherwise. Notice from Corollary A.4 in the Appendix that @(y)
is the empty set for all y € S; if d = 2 and #(3) = —1. In this case, the problem is trivial
since B(fi, f2)(x) =0 for all x € IF%I. Therefore, when d = 2, we always assume that
n(3) =1

Notice that |@(y)| =2 for all y € S;, which follows from the last statement of
Corollary A.4 in the Appendix. More precisely, for each y € S;, we can write

O(y) ={0y, 67y},

where 0y denotes the rotation of y by “60 degrees,” and ||y — 0y|| = t = ||y - 67y
From these observations, the bilinear averaging operator B(fi, f2) can be repre-
sented as follows:

(4.4) B(fi, £2)(x) = Bo(f1, f2)(x) + Bo-1(f1> f2) (x).

Here, we define

5) BoCin £)0<) = 157 T A=) ol =09,
Y3t

and

Y Ax=p)falx-67"y).

yeS,

Bel(fl’fz |S |

In order to complete the proof of the lemma, it suffices to establish the following
two estimates: for all subsets E, F of IFZ,

(4.6) IBo (E, F)ll2 < [|E|2]Fl2,
and
(4.7) 1B~ (E, F)|l2 S |Ell2IF]]2-

We will only provide the proof of the estimate (4.6) since the proof of (4.7) is the
same.

Now we start proving the estimate (4.6). Since ||E||5 = ¢ 2|E| and ||F||3 = g%|F], it
is enough to prove that

(4.8) [1Bo (E, F)II3 < q*|EI|Fl.

Without loss of generality, we may assume that |E| < |F|. By the definition, it follows
that

[Be(E,F)I3 =g 3. >, E(x=y)E(x -y )F(x-0y)F(x-0)y) =1+II,

xe]Fz y,y'€Ss
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where the first term I is the value corresponding to the case where y = y’, whereas the
second term I1 is corresponding to the case where y # y’. We have

I=q|S ) X E(x-y)F(x - 0y).

yeSt xel2
Applying a change of variables by replacing x with x + y, we see that
I=q[S|? 3 2 E()F(x+y—-0y)=q S| ) ( > Flx+y- 9y))-
y€St xeF xeE \ yeS;

Observethat y — 6y = y' — 0y’ forall y, y" in S; with y # y’. Then we see that the value
in the parentheses above is bounded above by |S; N F| < |F|. Therefore, we obtain the
desired estimate:

I<q7%|S*|E|[F| ~ q*|E||F].

Next, it remains to show that IT § g *|E||F|. Since we have assumed that |E| < |F[, it
suffices to show that IT  g~*|E|*.
By the definition of I, it follows that

=g % Y E(x-y)E(x-y)F(x-0y)F(x-0y").
xs]Fz y,y'€Spyxy’

It is obvious that

I<q?|s)™ 3 3 E(x-y)E(x-y).
¥,y eSey=y’ xeFy

We use a change of variables by replacing x with x + y. Then we have

HSq‘ZIStI‘ZZE(X)( > E(x+y—y’))

xe]Fz v,y €Spy+y’

=q71S* Y E()| X E(x+u)W(u) |,

2 2
xEIFq 0¢ueIFq

where W (u) denotes the number of pairs (y, y’) € S; x S; such that u = y — y" and
y # y'. It is not hard to see that for any nonzero vector u € F2, we have W (u) < 2. So
we obtain that

I$q?87% > E(x)| Y E(x+u)|sq*|EP,
erE‘Zq 0¢ueIE‘§

as required. ]

In two dimensions, we are able to obtain the optimal boundedness of
Ax;, (p1> P2, p3) except for one endpoint. Indeed, we have the following result.
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2

Theorem 4.7 Let 1< py, p, p3 < 00, and let Ak, be the K3 form on IFg.

() If Ak, (p1> p2> p3) S 1, then

2 1 1 1 2 1 1 1 2
(4.9 —+—+—<2, —4+—+—<2, —+—+—<2.
pr P2 Ps3 P P2 P3 P P2 P
(ii) Conversely, if (p1,pa.p3) satisfies all three inequalities (4.9), then

A, (p1, p2, p3) S1for (p1, p2, p3) # (2,2,2), and we have Ak, (2,2,2) §1.

Proof The first part of the theorem is the special case of Proposition 4.1 with d = 2.

Now we prove the second part. As stated in Proposition 4.1, one can notice by using

Polymake [1, 6] that all the points (i, i, i) € [0,1]? satisfying all three inequalities
(4.9) are contained in the convex hull of the critical points

22 2 2 22
(1/2.2,1/2), (0,0,0), (1.0,0), 0.1.0), 0.0.1),(3.5.0). (5.0.5). (0.5.5 )
Notice from Theorem 4.5 with d = 2 that the restricted strong-type estimate for the
operator Ag, holds for the point (1/p1,1/p2,1/p3) = (1/2,1/2,1/2). In addition, notice
from the estimates (4.2) with d = 2 that Ak, (p1, P2, p3) S 1for the above critical points
(1/p1,1/p2,1/p3) except for (1/2,1/2,1/2). Hence, the statement of the second part
follows immediately by invoking the interpolation theorem. [ ]

5 Boundedness results for the P, form

For t € F} and functions f;,i=1,2,3, on Fg, the P, form Ap, on IF‘; is defined by

1

G1) Ap,(fis f2r f3) e > Si(a! =x?)Si(x? = ') Al o (x?) f3(x7),

xl,xz,x3e]Fz

where the quantity q%|S,|? stands for the normalizing factor N(G) in (1.4) when
G = P,. Note that this can be written as

(5.2) Ap,(fi> f2, f3) =< f2, Afi-Af3>.

In this section, we study the problem determining all numbers 1< py, pa, p3 < 00
satisfying Ap, (p1, P2, p3) $ 1. Compared to the K3 form Ag,, this problem is much
hard to find the optimal answers. Based on the formula (5.2) with the averaging
estimates in Lemma 2.5, we are able to address partial results on this problem (see
Theorem 5.3).

Proposition 5.1 (Necessary conditions for the boundedness of Ap,) Let 1< py, pa,
P3 < oo. Suppose that Ap,(p1, p2, p3) S 1. Then we have

i+i+isd, i+i<d, i+i§d, £+i+£§2d—l.

p1 P2 P3 P P2 P2 Ps3 p1 P2 P3

Also, under this assumption when d =2, it can be shown by Polymake [1, 6]
that (1/p1,1/p2,1/ps) is contained in the convex hull of points: (0,1,0),(1/2,0,1),
(1,0,1/2), (1,0,0), (5/6,1/3,1/2), (1/2,1/3,5/6), (2/3,2/3,0), (0,2/3,2/3), (0,0,0),
(0,0,1).
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Proof Suppose that Ap,(p1, p2, p3) $ 1. Then, for all functions f;,i=1,2,3, on ]FZ,
we have
1

APz(fbfz,fs)=W > St a8 (x" =) fila) folx?) f5(o7)

xl,xz,x36117’;

S Al 12l 1 f311ps

We test the above inequality with f, = &y, i = f3 = 1s,. It is plain to note that
1 d 1

_ a1 o_d 1 _1_d_ 1
Al 2llpallfsllps = (@ 41Sel) 71 q 72 (g 7[Sil) 7 ~ g 772 5a,

and

Ap,(fifos f3) =q %

conclusion that i + % + i <d.
To obtain the second inequality in the conclusion, we choose f; = &y, f> = 1s,, and

fr= Ipa. Then it is easy to check that

_d_1
IAllp 2l ol f5llps ~ q 2072,
and
_ 1

Ap,(fis f2, f3) 75 > Y S -2 =q"

x2eS; x3e]Fg

Comparing these estimates gives the second inequality in the conclusion.

The third inequality in the conclusion can be easily obtained by switching the roles
of f; and f; in the proof of the second one.

To deduce the last inequality in the conclusion, we take f; = f5 = §p and f, = 1s,.
Then

—d4_1_d
[Allp 1 f2llp [ f5llpy ~ g7 27225,

and

1
APZ(ﬁ’f23f3) = ~ q*2d+1.
q%S|

From these, we have the required result that i + é + % <2d-1. [ ]

By symmetry, it is not hard to note that Ap, (p1, p2, p3) S1 <= Ap,(p3, p2, p1) S 1.
In the following lemma, we prove that the boundedness question for the P, form A is
closely related to the spherical averaging problem over finite fields.

Lemma 5.2 Suppose that 4+ .-+ .- =1,A(p1—>n) 51, and A(ps —r3) $1 for

some 1< py, P2, P3, 11, 13 < 00. Then we have Ap, (p1, p2, p3) S 1.

Proof Since Ap,(f1, f2, f3) =< f2, Afi - Afs >, we obtain by Holder’s inequality with
the first assumption that

Ap,(fis for f3) < [[AAlInlI£llpllAS s S T Allpllfallp. 1S3l s
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where the averaging assumption was used for the last inequality. Hence,
Ap,(p1, P2, P3) $ 1, as required. -

Now we state and prove our boundedness results of Ap, (p1, p2, p3) on FZ,

Theorem 5.3 Let 1 < py, p2, p3 < oo. Then, for the P, form Ap, on Fg, the following
four statements hold:

If0< Psgmand—+;+—<dthenApz(p1,P2,p3)<1
(11) 1f0<I7 <p <1‘md7+g+—<dthenApz(p1,P2,P3)<1
dp < d, then Ap,(p1, p2, p3) S L

d 1 d
2 S 5 Sland *
pi <2d 1, then Ap,(p1, p2» p3) S L.

L1
g

+7

p3

Proof We proceed as follows.
(i) By the nesting property of the norm, it suffices to prove it in the case when

11 .. d 17, 0d 1 : . . 1
< < = -+ =4 ==
S s -7 and ot s + s d. This equation can be rewritten as ot
1 d . .
JE SRS <L L 2
P2 + dp =1. Since 0 < p s 25 S dyi> We see from Lemma 2.5 (i) that letting
1
- dpl - —dpa,wehaveA(pl—>r1)51andA(p3—>r3)Sl.

Since 711 + p—lz + % =1, applying Lemma 5.2 gives the required result.

(ii) As in the proof of the first part of the theorem, it will be enough to
prove A(pl,pz,p3) S$lin the case when 0 < <Ll and -+ -+

d+l = p3 pz
% =d. Let 71 i and - = ” -d+1 Then, by Lemma 2.5, it follows that
A(pr—>rn) sl and A(ps > r3) < 1. Also, notice that ril + i + % =1. Hence,

Theorem 5.3(ii) follows from Lemma 5.2.

(iif) Switching the roles of p;, p», the proof is exactly the same as that of the second
part of this theorem.

(iv) As before, it suffices to prove the case when %~ < —,— <1 and &+ — +

% =2d -1. Put i = % —d+1 for k =1,3. Then we see from Lemma 2.5(ii)

that A(px — rr) $1 for k =1,3. Notice that ril + i + 713 = 1. Therefore, using

Lemma 5.2, we finish the proof. ]

As a special case of Theorem 5.3, we obtain the following.

Corollary 5.4 For any dimensions d > 2, we have Ap, (4}, 441, 441) <,

Proof This clearly follows from Theorem 5.3 by taking p; = p3 = %, and p, =

d+1
a1 | |

When d =2, Theorem 5.3 does not cover some points such as (1,0,1/2) from
the convex hull in the necessary conditions by Proposition 5.1. However, it cannot
be concluded that Theorem 5.3 is not sharp because the necessary conditions can
be improved. While we do not know whether Theorem 5.3 is optimal or not, the
result will play a crucial role in proving the following theorem which implies that
Conjecture 1.5 is true for the graph K; and its subgraph P, in all dimensions d > 2
(see Corollary 5.7 below).

Theorem 5.5 Let A, and Ap, be the operators associated with K5 and P,, respectively,
on ]FZ. Then, if Ak, (p1, p2> p3) S 1for 1< py, pa, p3 < oo, we have Ap,(p1, p2, p3) S L.
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Proof Suppose that Ak, (p1, P2, p3) S1forl< py, pa, ps < co. Then, by Proposition
4.1, the exponents py, p,, ps satisfy the following three inequalities:

(5.3) —+i+—gd,—+—+— d,—+i+£<d.

p1 P2 P3 pr P2 P3 p1 P2 P3
To complete the proof, it remains to show that Ap, (p1, p2, p3) $ 1. We will prove this
by considering the four cases depending on the sizes of p; and ps.

Case 1: Suppose that 0< 2 o p— < d “7- The condition (5.3) clearly implies that

p1 + % + p— < d. Thus, by Theorem 5.3(i), we obtain the required conclusion that

Ap,(p1 2, p3) S 1.
Case 2: Suppose that 0< - p < d‘il < p <1. By Theorem 5.3(ii), to prove that
Ap,(p1> P2, p3) $ 1, it will be enough to show that

1 1 d
—+—+—=<d
dpi  p2  p3
However, this inequality clearly follows from the third inequality in (5.3) since d > 2.
Case 3: Suppose that 0 < —- p < d‘il < p < 1. By Theorem 5.3(iii), it suffices to show
that £ 4 17 + W < d. However, this inequality can be easily obtained from the first
1nequahty in (5.3).
Case 4: Suppose that ﬁ < i 7 S 1. By Theorem 5.3(iv), to show that
Ap,(p1, P2, p3) 1, we only need to prove that
4 + 1 + 4 <2d-1
pr P2 Ps
However, this inequality can be easily proven as follows:
dld(dll)d—l d-1
—t— 4+ —=—+—+— |+ <d+ <2d-1,
b1 P2 Ps3 pr P2 Ps b3 ps3
where the first inequality follows from the first inequality in (5.3), and the last
inequality follows from a simple fact that 1 < p; < oo. [ ]

Remark 5.6 The reverse statement of Theorem 5.5 cannot be true. Indeed, we know
by Corollary 5.4 that Ap, (d;'l, Zﬂ, d;I) $ 1. However, Ag, (d;rl, 31, d;'l) cannot
be bounded, which can be easily shown by considering Proposition 4.1, namely, the

necessary conditions for the boundedness of Ak, (p1, p2, p3)-
We invoke Theorem 5.5 to deduce the following result.

Corollary 5.7  Conjecture 1.5 is true for the graph K3 and its subgraph P, in ]FZ, d>2.

Proof It is clear that P, is a subgraph of Kj in IE‘Z. Sine §(K3) =2, d >2, and
0(P,) =1, we have min{d(K;),d} =2>38(P,) =1. Hence, all assumptions of
Conjecture 1.5 are satisfied for K3 and P,. Then the statement of the corollary follows
immediately from Theorem 5.5. m
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6 Mapping properties for the (C, + t) form

We investigate the mapping properties of the operator associated with the graph C, +
diagonal. Throughout the remaining sections, we assume that ¢ is a nonzero element
in F7. Let f;,1 < i <4, be nonnegative real-valued functions on IF‘;.

The operator A, is associated with the graph C4 + diagonal ¢ (Figure 1d), and we
define As, (fi> f2, f3, f1) as the quantity

1

W Z S,(xl—xz)St(xz—x3)St(x3—x4)St(x4—xl)St(xl—x3)Hﬁ(xi).

x! ,x%x’,x"éﬂ“j i=1
(6.1)

The operator Ay, is referred to as the (C4 + t) form on ]FZ. Here, notice that we
take the quantity g%|S;|[S?~2|? as the normalizing factor N(G) in (1.4).
Applying a change of variables by letting x =x'u=x"-x%v=x'-x3

w = x! — x*, we see that

(62) Ao, (fifor 35 fa) = qid > KT (fo, fos fa) (%) =< fi, T(fo> f, fa) >,

d
xe]Fq

where the operator T(f3, f3, f1) is defined by

! Z Se(v—u)Se(w —v) fa(x —u) fs(x —v) fa(x —w).

|St||5772|2 u,v,weS;

T(f2, f5, fa)(x) =
(6.3)

We are asked to find 1 < py, p2, p3, p4 < oo such that
(6:4) Ao (fs fo S5 fo) S I Allpll Fallp: L fsll sl

holds for all nonnegative real-valued functions f;,1<i <4, on ]FZ. In other words,
our main problem is to determine all numbers 1< py, ps, p3, pa < 00 such that

As,(p1, p2s P53, pa) S 1.

Lemma 6.1 (Necessary conditions for the boundedness of A, (p1, p2, p3> pa)) Let

As, be the (Cy + t) form on IFZ. If Ao, (P1> P2> P3> Pa) S 1, then we have
i+i+i+isd, i+i+i+i§al, and i+i+i+132d—2.
p1 P2 P33 Pa p1 P2 P33 P4 P p2 Pz Dpa

Also, under this assumption when d = 2, it can be shown by Polymake [1, 6] that (1/py,

1/p2,1/p3,1/pa) is contained in the convex hull of the points (0,0,1,0),(0,1,0,0),

(0,0,0,1),(1/2,0,1/2,1/2),(2/3,2/3,0,0),(1,0,0,0),(2/3,0,2/3,0),(1/2,1/2,1/2,0),

(2/3,0,0,2/3), (0,2/3,2/3,0), (0,0,0,0), (0,0,2/3,2/3).

Proof Taking fi = f, = fa =15,, and f5 = § in (6.4), we obtain the first conclusion
1 1 d 1

(6.5) —+—+—+—<d.
pr P2 Pz Pa
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The second conclusion follows by symmetry from the first conclusion. Finally, one
can easily prove the third conclusion, that is, - + 2

ot i + ;—4 < 2d - 2, by testing the
inequality (6.4) with f; = f5 =1, and f, = f4 = do. [

6.1 Boundedness results for A,, on F?

Given a rhombus with a fixed diagonal (the graph C, + diagonal), we will show that
by removing the vertex x* or the vertex x*,

Aoy (fis for f5: fa) S| folloo Ay (fro f3, fa) and Ao (fis fos S5, fa) 5 (|falloo Ay (Srs 2 £3)-

Hence, upper bounds of Ay, (p1, 00, p3, p4) and A, (p1, P2, 3, 00) can be controlled
by upper bounds of the Ag,(p1,ps,ps) and Ax,(p1, p2, p3), respectively. More
precisely, we have the following relation.

Proposition 6.2 Suppose that Ak, (p,s,r) S1for1< p,s,r < oo. Then we have
Ao, (p,oo,s,7)S1 and As,(p,s,r,00) S 1.

Proof Since Ak, (p,s,r) S1forl< p,s,r < oo, we see that for all nonnegative func-
tions f, g, h on IFZ, Ak, (f> g h) S fllpliglls|[k|l;. Thus, to complete the proof, it
will be enough to establish the following estimates: For all nonnegative functions
fii=1,2,3,4,

(6.6) Ao, (fis for f3 fa) S falloo Ay (frs fo5 fa)

and

(6.7) Ao, (fis fos f35 fa) S | falloo Ak (f15 f25 f3)-

Since the proofs of both (6.6) and (6.7) are the same, we only provide the proof
of the estimate (6.7). Notice by the definition of As,(fi, f2, f3, f1) in (6.1) that
As,(fi> f2, f3» f1) can be written as the form

1

& i 1 3 4 4 1 4
wae B (e ))[IS;“I 2y OO ORED]

xl,xz,xSE]F: x“e]FZ

et ==l =l =t

For each x',x* € F4 with [|x" — x*|| = £, we define M(x',x) as the value in the
above bracket. Then, recalling the definition of Ax, (fi, f2, f3) given in (4.1), we see
that

Ao, (fi f2 f3, fa) < _max M(x',x°) | Ak, (fis fo )

Al
)=t

Hence, the estimate (6.7) follows immediately by proving the following claim:
1
3 Si(x® - xS (x* - x") S L

max ——
d-2
d
x! %€y IS¢ |x4e]Fg

=t

(6.8) M :=
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To prove this claim, we first apply a change of variables by letting x = x', y = x! — x°.

Then it follows that
1

3 Si(x—y—x)Se(x* - x).

4cd
XE]Fq

M = max 3
xe]Fq‘@’,yeS, ‘St

Letting z = x — x*, we have

1
M= m

1
ax — ~ —— max 1.
xeFd, yes, | S92 2

d—
ceSiltonyllet 477 VSt e sl ylt
By Corollary A.4 in the Appendix, we conclude that M < 1, as required. [ ]
In arbitrary dimensions d > 2, we have the following consequences.

Theorem 6.3 Suppose that1< a, b < oo satisfy that

(6.9) Lodeg ana 41 lca
a b a b
Namely, let (1/a,1/b) be contained in the convex hull of points (0,0), (0,1), (d/(d +1),
d/(d +1)),(1,0). Then we have A,,(a,00,b,00) $1,Ag,(a,b,00,00) $1,Aq,(a, 00,
00,b) $1,Aq,(00,00,a,b) $1,Ay,(00,a,b,00) 1.

Proof From Theorem 4.3, we know that the assumption (6.9) implies that
Ax,(a,b,00) $1, Ak, (a,00,b) $1,and Ag, (o0, a,b) S 1. Hence, the statement of the
theorem follows immediately by combining these and Proposition 6.2. [ ]

6.2 Sharp boundedness results up to endpoints for A,, on F;

In this subsection, we collect our boundedness results for the operator A, in two
dimensions.
Theorem 6.4 Let A, be the (Cy + t) form on Ffj. Let1< py, pa, p3 < oo
(i) Suppose that (p1, p2, p3) * (2,2,2) satisfies the following equations:
2 1 1 1 2 1 1 1 2
—+—<2, —+—+—<2, —+—+—<2.

il <
p1 P2 Ps3 p1 P2 Ps3 P p2 P3

Then we have Ao, (p1> 00, p2, p3) S Land Ao, (p1> p2> p3,00) S 1.
(i) In addition, we have A, (2,00,2,2) $land Ay, (2,2,2,00) § 1, where § is used to
denote that the boundedness of ¢ holds for all indicator test functions.

Proof Notice that Proposition 6.2 still holds after replacing < by § . Hence, the
statement of the theorem is directly obtained by combining Proposition 6.2 and
Theorem 4.7(ii). u

Theorem 6.4 guarantees the sharp boundedness for the operator ¢, up to endpoints.
Indeed, we have the following result.

Theorem 6.5 Let ¢; be the (C4+t) form on IFZ. The necessary conditions for
O¢(p1> 2> P3- pa) S1 given in Lemma 6.1 are sufficient except for the two points

(P1> P25 P3 Pa) = (2,2,2,00),(2,00,2,2).
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In addition, we have
(6.10) 0¢(2,00,2,2) §1 and ¢4(2,2,2,00) 1.

Proof The statement (6.10) was already proven in Theorem 6.4(ii). Hence, using the
interpolation theorem and the second part of Lemma 6.1, the matter is reducing to
proving ¢¢(p1, P2, 3, pa) S 1for the critical endpoints (1/p1,1/p2, 1/p3,1/pa) includ-
ing all the following points: (0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),
(2/3,2/3,0,0), (2/3,0,2/3,0), (2/3,0,0,2/3), (0,2/3,2/3,0), (0,0, 2/3,2/3).

In other words, the proof will be complete by proving the following estimates:
1(00,00,00,00) $1, ©4(1,00,00,00) $1, ¢;(00,1,00,00) $1, ¢¢(00,00,1,00) 51,
01(00,00,00,1) 1, 04(3/2,3/2,00,00) $1, ©,(3/2,00,3/2,00) 1, ¢4(3/2, 00,
00,3/2) $1, 04(00,3/2,3/2,00) S 1, ¢4(00, 00,3/2,3/2) < 1.

However, by a direct computation, these estimates follow immediately from
Theorem 6.4(i). u

7 Boundedness problem for the C, form
Let t € ). Given nonnegative real-valued functions f;,1<i <4, on IFZ, we define
Ac,(fi, f2, f3» f1) to be the following value:
(71)

! T st - (P - xS (6 - xS (- ) [T filx),

qd|st|2|sf_2| xl,xz,x3,x4eﬂ7‘; i-1

where the quantity g%|S,|?|S¢~2| stands for the normalizing factor N(G) in (1.4) when
G = Cy.
Main problem is to find all exponents 1 < py, p,, p3, pa < oo such that the inequality

(72) Ac,(fis o fs 1) S Allp L2l s | fallps

holds for all nonnegative real-valued functions f;,1<i <4, on IFZ. In other words,
our main problem is to determine all numbers 1< py, pa, p3, pa < 00 such that

Ac,(p1> pa> p3»- pa) S L

Lemma 7.1 (Necessary conditions for the boundedness of Ac, (p1, p2, p3> pa))  Sup-
pose that (7.2) holds, namely Ac,(p1, p2. p3> p4) $ 1. Then we have

1 1 1 d 1 1 d 1 1 d 1 1
—+—+—+—<d+], —+—+—+—<d+], —+—+—+—<d+1,
pr p2 p3  Pa pr p2 p3  Ppa p1 p2 Pp3  pa
i+—i+i+isd+1, i+i+i+is2d—2, and i+i+i+i32d—2.
pr p2 P33 pa pr p2 P33  Ppa p1r p2 P33  pa

In particular, when d =2, it can be shown by Polymake [1, 6] that (1/p1,1/p2,
1/ps,1/ps) is contained in the convex hull of the points (0,0,1,0),(0,0,0,1),
(0,1,0,0), (2/3,0,0,2/3), (2/3,2/3,0,0), (1,0,0,0), (0,0,0,0),(0,2/3,2/3,0),(0, 0,
2/3,2/3).

Remark 7.2 When d =2,3, the first four inequalities in the conclusion are not
necessary. We only need the last two.
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Proof The six inequalities in the conclusion can be easily deduced by testing the
inequality (7.2) with the following specific functions, respectively: We leave the proofs
to the readers.

1)f1 :f2 :f3 :lst,andf4 = 80. 2)f1 :f2 :f4 :15t,andf3 = 60.
3)f1 :f3 :f4 =15t,andf2 = 60. 4)f2 :f3 :f4 = 13,,andf1 = 60.
5)f2 :f4:15,,andf1 :f3:60. 6)f1 :f3:13t,andf2:f4:8o. ]

7.1 Boundedness results for Ac, on ]Fg

In this subsection, we provide some exponents 1< p; <o0,1<i<4, such that
Ac,(p1> P2, P3> Pa) S 1in the specific case when one of p; is oo, but it is valid for all
dimensions d > 2. In general, it is very hard to deduce nontrivial boundedness results
for the C4 form on ]F‘;.

We begin by observing that an upper bound of Ac, (f1, f2, f3, fa) can be controlled
by estimating for both the K, form and the P, form.

Lemma 7.3  For all nonnegative functions f;,i=1,2,3,4, on Fz, d > 2, we have

(=LAl £2)+ A for ) lfalloos
(,s,, qL(fofar i)+ ACfas fi £2)) [ Fill
(L (hif f) + A fur ) | folloos
( 5 s L(ffa f3) + A(f £, fa) )||f1||<>o-

Proof We only provide the proof of the first inequality,

Ac,(fis for f3, fa) S

(73)  Ac,(fi, o 3. f4) S 7 Ak (ifss fo)llfalleo + Ap, (1o f20 f3) |l falloos

IS" ?|

since other inequalities can be easily proven in the same way by replacing the role of
fa with f3, f2, fi, respectively. By definition, the value of Ac, (fi1, f2, f3, f1) is equal to

1 Z St(xl_xZ)St(xZ_xZ») (Ijlfl(xl))

qd|st‘2|sl€liz| xl,x2,x3€F’;
x| Y S = xh)Si(x* - x1) falx?)
x4eFd
q
For fixed x!, x3 ¢ IF’;, the sum in the above bracket can be estimated as follows:

Silll falloos — if x' =%,
S 3_ .4 S 4 1 4 S | t_ i
Z t(x X ) t(x X )f4(x ) qd 2||f4||°°, if xl 2 a3,

4cd
xEIFq

Notice that this estimates are easily obtained by invoking Corollary A.4 in the
Appendix after using a change of variables.
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Let AC4(ﬁ,f2af3af4)— <>1+<>2, where 4 denotes the contribution to
Ac,(fis f2, 55 fa) when x'=x3, and <&, does it when x' # x*. Then it follows
that

falle L, . s 1
o1s sl Z Si(x” =x")(fifs)(x) fa(x7) = |S;’*2|AK2(f1f3’ I filloos

d
e]Fq

02 % %!T Y S-S - ) A AE)AE) S Ar(fo for )il

x‘,xz,x%F::xlatxJ

Hence, we obtain the required estimate (7.3). [ |

In Lemma 7.3, we obtained four different kinds of the upper bounds of the
Ac,(fi, f2> f3» f1). Using each of them, we are able to deduce exponents pi, p2, p3, pa
with Ac, (p1, p2» p3> pa) S 1, where at least one of pj, j = 1,2, 3, 4, takes co.

The following result can be proven by applying the first upper bound of
Ac,(fi, f2, 3> f1) in Lemma 7.3 together with Theorems 3.3 and 5.3.

Proposition 7.4 Let 1< py, pa, ps < oc. For the Cy form Ac, on IFZ, d > 2, the follow-
ing statements are true.
(i) If—+—+—<dand—+

+ d’ then AC4(P1>P2,P3,00) 5 1.
(ii) If*+*+f<dand—+i+
+

d .
ps3
P2 P - Pz pi d, the”AC4(P1,P2>°°,P4)S1.
(lll)If*Jr*+*<dand—+P pi < d, then Ac,(p1, 00, p3, pa) S 1.
(V) If 5 + 55 + 55 Sdand 5o+ oo+ 50 < d then Ac, (00, p2, p3, pa) S 1

Proof We will only provide the proof of the first part of the theorem since the
proofs of other parts are the same in the sense that the proof of the first part uses
the first upper bound of Lemma 7.3 and the proofs of other parts can also use their
corresponding upper bounds of Lemma 7.3 to complete the proofs.

Let us start proving the first part of the theorem. To complete the proof, we aim to
show that for all nonnegative functions f;,i =1,2,3,4, on Fg,

Ac,(foo for f35 f4) S Al fallpall fllps | fal oo

whenever the exponents 1 < py, p,, p3 < oo satisfy the following conditions:
1
(7.4) —+—+—<d and i+—+—<d.

By the first part of Lemma 7.3, it follows that

Aeulhiofo i )5 (g LR ) MG o))l

Therefore, under the assumptions (7.4), our problem is reducing to establishing the
following two estimates:

(75) A, (fifss 2) S Allpll 22l 5l s>
(7.6) Ap,(fis 2, 13) S Allp 1 f2ll a1 Fo] s
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For1< py, p3 < o0, let1/r =1/p; +1/ps. Then the conditions (7.4) are the same as

1 d d 1

-+—<d and —+ — <d.

r o p2 r P2
So these conditions enable us to invoke Theorem 3.3 so that we obtain the estimate
(7.5) as follows:

A, (fifss £2) SISl Ll < Al Allp. S]]y

where we used Holder’s inequality in the last inequality.

It remains to prove the estimate (7.6) under the assumptions (7.4). To do this, we
shall use Theorem 5.3, which gives sufficient conditions for Ap, (p1, p2, p3) $1. We
directly compare the conditions (7.4) with the assumptions of Theorem 5.3. Then it is
not hard to observe the following statements.

o (Casel) In the case when 0 < ; E d+1 ,
of the first part of Theorem 5.3.

e (Case 2) In the case when 0 < — P < di PL <1, the conditions (7.4) imply the
hypothesis of the second part of Theorem 5.3. To see this, notice that if d/p; +1/p, +
d/ps <d,then1/(dp;) +1/p, + d/p3 < d

e (Case 3) In the case when 0 < p <7< p1
hypothesis of the third part of Theorem 5.3.

o (Case4) In the case when -~ d <o p p <1, the conditions (7.4) imply the hypothesis
of the fourth part of Theorem 5.3.

the conditions (7.4) imply the hypothesis

<1, the conditions (7.4) imply the

Hence, we conclude from Theorem 5.3 that Ap, (p1, p2, p3) $ 1 under the assump-
tions (7.4), as desired. [ |

7.2 Sharp boundedness results for Ac, on F;

Recall that Proposition 7.4 provides sufficient conditions for Ac, (p1, P2, p2- pa) $1
in any dimensions d > 2. In this section, we show that Proposition 7.4 is sharp in two
dimensions. More precisely, using Proposition 7.4, we will prove the following optimal
result.

Theorem 7.5 Let Ac, be the C4 form on Fé. For1< p; <o00,1<i<4,wehave

1 2 1 1 2 1 2
Ac, (p1> p2> P3» S 1 ifandonly i —+—+—+—<2 and —+ —+ —+—<2.
¢, (P> p2s p3, pa) ST if y if o o T
Proof The necessary conditions for Ac, (p1, p2, p3> p4) S 1follow immediately from
Lemma 7.1 for d = 2 (see Remark 7.2).
Conversely, suppose that 1< py, p, p3, ps < oo satisfy the following two
inequalities:

2 1 1
(7.7) —+—+—+—<2,and —+—+—+—<2.

p1 P2 P3 P4 P11 P2 P3  Pa

Then, as mentioned in Lemma 71, it can be shown by Polymake [I, 6] that
(1/p1,1/p2,1/p3,1/ps) is contained in the convex hull of the points (0,0,1,0),
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(0,0,0,1), (0,1,0,0), (2/3,0,0,2/3), (2/3,2/3,0,0), (1,0,0,0), (0,0,0,0), (0,2/3,
2/3,0),(0,0,2/3,2/3).

By interpolating the above nine critical points, to prove Ac, (p1, P2, P3» pa) S 1for
all p;,1< i <4 satisfying the inequalities in (7.7), it will be enough to prove it for
the nine critical points (1/p1,1/p2,1/p3,1/p4). This can be easily proven by using
Proposition 7.4. For example, for the point (1/p1,1/p2,1/p3,1/pa) = (2/3,0,0,2/3),
a direct computation shows that the assumptions in Proposition 7.4(ii) are satisfied
and thus Ac, (p1, p2, p3, p4) = Ac, (3/2, 00, 00,3/2) $ 1. For other critical points, we
can easily prove them in the same way so that we omit the detail proofs. [ ]

Notice that the graph C, is a subgraph of the graph C, + diagonal, and they
are associated with the operators A¢, and As,, respectively. Hence, the following
proposition shows that the answer to Question 1.2 is negative when G is the C4 +
diagonal, and G’ is the C,. However, this does not mean that Conjecture 1.5 is not
true since the C, and the C4 + diagonal do not satisfy the main hypothesis (1.6) of
Conjecture 1.5.

Proposition 7.6 Let A,,, Ac, be the (Cy + t) form and the C4 form on %, respectively.
Let 1< py, pa, 3> pa < oo. Then the following statements hold.

(i) If Ac,(p1> P2> P3> Pa) S L then Ay, (p1, P2> p3> pa) S 1.
(ii) Moreover, there exist exponents 1< a, b, c,d < oo such that Ag,(a,b,c,d) $1but
Ac,(a, b, c,d) is not bounded.

Proof First, let us prove the statement (ii) in the conclusion. To prove this, we
choose (a,b,c,d) =(3/2,00,3/2,00). From Theorem 6.4(i), we can easily note
that A,,(3/2, 00,3/2, 00) < 1. However, it is impossible that A, (3/2, 00,3/2, ) 51,
which can be shown from Theorem 7.5.

Next, let us prove the first conclusion of the theorem. Suppose that
Ac,(p1> P2, p3, pa) S1for 1< p; < 00,1<i<4. Then, as mentioned in the second
conclusion of Lemma 71, the point (1/p;,1/p2,1/p3,1/ps) lies on the convex
body with the critical endpoints: (0,0,1,0),(0,0,0,1),(0,1,0,0),(2/3,0,0,2/3),
(2/3,2/3,0,0), (1,0,0,0), (0,0,0,0), (0,2/3,2/3,0), (0,0,2/3,2/3).

Invoking the interpolation theorem, to prove the conclusion that
Ao, (P1> p2> P3, pa) S 1, it will be enough to establish the boundedness only for
those nine critical points (1/p1,1/p2,1/ps,1/pa). More precisely, it remains to
establish the following estimates:

A, (00,00,00,00) $1, Ag,(1,00,00,00) $1, Ag,(00,1,00,00) 1, Ay, (00,00,
Loo) $1, A, (00,00,00,1) 1, Ag,(3/2,3/2,00,00) $1, Ay, (3/2,00,00,3/2) $1,
N, (00,3/2,3/2,00) $1, Ay, (00,00,3/2,3/2) S 1.

However, these estimates follow by applying Theorem 6.4(i). [ ]

8 Boundedness problem for the P; form

For f € F} and nonnegative real-valued functions f;,i=1,2,3,4, on IF‘;, we define
Ap,(fi> f2, f3, f1) as the following value:
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1

(8.1) —_
q4(S:?

4
T S-S - k)8 - ) L)
xl,xz,x3,x4E]Fg i=1

This operator Ap, will be named the P; form on IE‘Z since it is related to the graph Ps
with vertices in IFZ, d > 2. Note that in the definition of Ap, (f1, f2, f3, fa), we take the

normalizing fact g¢|S;|*, which is corresponding to N(G) in (1.4) when G is the P;.
We want to determine 1 < py, p2, p3, pa < oo such that

(8.2) Ap,(fis for f35 f4) S Allpl| £2llpa ]| F3ll sl fall s

holds for all nonnegative real-valued functions f;,i=1,2,3,4, on ]FZ. In other
words, our main problem is to find all numbers 1< py, p,, p3, ps < 0o such that

Ap, (P15 P2, P3> Pa) S 1.

Lemma 8.1 (Necessary conditions for Ap3(p1,p2,p3,p4) $1)  Suppose that
Ap,(p1, 2> P3>pa) S 1. Yhenwehave—+i+ <d, Ly dLcog 4,1

Pz dPs Pz p3 J 2 Pl 1312
Ly Llcgyp Lyl Ldo +2—+—+—+— 2 —1—+—+—+
1713 2 <d Pl p2 ps P4 <d J 2 p2 p3 pa — d 21 P2 p3
4 < 442 4 <
p4‘2d 1,andp1+p2+p3+p4_2d

In particular, when d = 2, by using Polymake [1, 6], it can be shown that (1/p1,1/pa,
1/p3,1/pa) is contained in the convex hull of the points: (0,1,0,1/2),(0,1,0,0),
(1/2,0,1/2,1), (1/2,0,1,0), (1,1/2,0,0), (1,0,0,0), (1,1/3,1/3,0), (1,0,1/2,0), (1/2,
1/3,5/6,0), (1,0,0,1), (1/2,1/2,1/2,1/2), (1,1/2,0,1/2), (0,5/6,1/3,1/2), (0,0,0,1),
(0,1/2,0,1), (0,2/3,2/3,0), (0,1/3,1/3,1), (0,0,1/2,1), (0,0,1,0), (0,0, 0, 0).

Remark 8.2 When d = 2, the third, fourth, and seventh inequalities above are not
necessary. When d = 3, the third and fourth inequalities above are not necessary.

Proof As in the proofs of Propositions 3.1, 4.1, and 5.1, the conclusions of the
statement follow by testing the inequality (8.2) with the following specific functions,
respectively:

l)fl :f3 = ls',fz = 80, andf4 = 1]Fg. 2)f1 = l]Fz,fz :f4 = lst, andf3 = 80.

3) f2 :f3 :f4 = ].st,al’ldfl = 6(). 4)f1 Ifz =f3 = lst,andf4 = 80.

5)f1 :f3 = lst, andfz :f4 = 8(). 6) fz :f4 = 1st,andf1 :f3 = 80.
7)f2:f3:13t,andf1:f4:80. ]

Boundedness results for Ap, on Fg

We begin by observing that an upper bound of Ap, (1, f2, f3, fa) can be controlled by
the value Ap,(f1, f2, f3)-

Proposition 8.3 Let 1<a,b,c<oo. If Ap,(a,b,c)$1, then Ap,/(a,b,c,0),
Ap,(o0,a,b,¢) S 1.

Proof For all nonnegative functions f;,i =1,2,3,4, on ]FZ, our task is to prove the
following inequalities:
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Ap, (f1s o, f3) || fal oo
& oo AN

We will only prove the first inequality, that is,

(8.4) Ap,(f1s fos 35 f4) S Ap, (1o fo f3) IIfall-

By symmetry, the second inequality can be easily proven in the same way. By definition
in (8.1), we can write Ap,(f1, 2, f3, f1) as

1

1 1
q41S¢?

51 Z f4(x4)St(x3—x4).

4 d
x e]Fq

> St(xl—xZ)St(xz—x3)(uﬁ(xi))

x1,x2,x3 E]Fg

Since the value in the above bracket is Af; (x*), which is clearly dominated by || A f4| oo»
the required estimate (8.4) follows immediately from the definition of Ap, ( f1, f2, f3)
in (5.1). [ |

The following lemma can be deduced from Proposition 8.3 and Theorem 5.3.

Lemma 8.4 Consider the P; form Ap, on Fg. Suppose that the exponents 1< a, b,
¢ < oo satisfy one of the following conditions:

(i dl+dilcg,

(i) 0<

—
=
o
N
|~

—
—
=
=
o
IN |
IAN O I=8 =8|~
IN

Q
S

H=
=
IN N R

Q [=a =
INIA

_-
)
S
QU
U

QU
—

s A A e
MH+‘Q_

IN

—_

S

Q
S
+

+ =1
ol +
IN SI=
N+
Q

|

Then we have Ap,(a, b, c,o00) S1and Ap,(o0,a,b,¢c) S 1.

Proof Using Theorem 5.3 with p; = a, p, = b, p3 = ¢, itis clear that Ap,(a,b,c) $1
for all exponents a, b, ¢ in our assumption. Hence, the statement follows immediately
from Proposition 8.3. ]

Now we prove that the value Ap,(fi, f2, f3, f1) can be expressed in terms of the
averaging operator over spheres. For functions f, g, h on ]FZ, let us denote

< fogh = ||fghll = qid S f(x)g(x)h(x).

d
erFq

Proposition 8.5 Let f;,i = 1,2, 3, 4, be nonnegative real-valued functions on IF;I. Then
we have

Ap,(fi fo f3, fa) =< Af, fo, A(f3- Afa) >=< A(f2- Af), f5, Afa>.

Proof By symmetry, to complete the proof, it suffices to prove the first equality,
that is,

Ap,(fi, fo, f3, fa) =< Af, fo, A(f3- Afa) >
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Combining the definition in (8.1) and the definition of the spherical averaging
operator A, it follows that

An(foforf fi) = 5 X AEDARCD) [ T AGS (62 - 2)Af ()
9 x2eFd |St| x3eFd
-5 B ACDARCDAG-AR) ().
xzeIFg
This gives the required estimate. .

Combining Proposition 8.5 and the averaging estimate over spheres, we are able to
deduce sufficient conditions for the boundedness of the P; form Ap, on F’;.

Lemma 8.6 Let 1< py, pa, p3, pa < 00 be exponents satisfying one of the following
conditions:

(i)Ogi,;—‘i,i+i<i and —+ L+ L+ L <
() o< L, ! -
(i) o<+, L+ 4 g4
~ 1
(1V)0Sp1
(M) 0< 2 ot g < <o <
4
1

ot ap S a1 S 1,and%+é+#+dl? <d.
(Vi)Ogﬁgﬁsi’i+ﬁmgl’and;1+i+%+i§2d_l'
(vii)OSi+%—d+1£ﬁ£ﬁ,isl,and%+;—z+;+£§d2+d—1
(viil) g5 <t —drl<land o+ v L4 <d’ 1 d -1

Then we have Ap,(p1, p2> p3> pa) S 1and Ap,(ps, p3, 2, p1) S 1.

Proof By symmetry, it will be enough to prove the first part of conclusions, that is,
Ap,(p1, P2, P3» pa) S 1. To complete the proof, we will first find the general conditions
that guarantee this conclusion. Next, we will demonstrate that each of the hypotheses
in the theorem satisfies the general conditions.

To derive the first general condition, we assume that 1 < 1y, p,, r < oo satisfy that

1 1 1
(8.5) —+ —+-<L

r P2 r

Then, by Proposition 8.5 and Holder’s inequality,

Ap,(fo> for f3, 1) < l[AAIn] ol [|ACS - Aflrs

where we also used the nesting property of norms associated with the normalizing
counting measure. Assume that1 < p;, s < oo satisfy the following averaging estimates
over spheres:

(8.6) A(pr—>n)s$1 and A(s—r)sl

https://doi.org/10.4153/50008414X2300086X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2300086X

238 P. Bhowmik, A. Iosevich, D. Koh, and T. Pham

It follows that Ap,(fi, f2, f3, fa) S|fillp |l f2llpa ]| f5 - Afalls. Now we assume that
1 < p3, t < oo satisfy that

(8.7) -= — + -,

Then, by Hélder’s inequality, we see that

Apy(fis fos f35 fa) S Allp I fall ol f3ll o3 [ASal ]

Finally, if we assume that 1 < p4 < oo satisfies the following averaging estimate
(8.8) A(ps — 1) S 1,

then we obtain that Ap, (f1, f2, f5, f1) S | Aillp |2l pal S5l [ fall -
In summary, we see that Ap,(p1, P2, p3,pa) S1 provided that the numbers

1< p; <o0,i=1,2,3,4, satisty all the conditions (8.5)-(8.8). Thus, to finish the proof,
we will show that each of the eight hypotheses in the theorem satisfies all these
conditions.

Given 1< py, ps4 < o0, by Lemma 2.5, we can chose 1 < ry, t < oo such that the first
averaging estimate in (8.6) and the averaging estimate (8.8) hold, respectively. More
precisely, we can select 0 < 1/ry, 1/t < 1as follows:

« Ifo<t s <45 1,thenwe:takel/rl—1/(dp1)
« Ifo< L P4 <+ 1,‘[henwe‘[akel/t—1/(dp4)
o If -4 <1, then we choose 1/r; =d/p; —d + 1.

d+1 p1

. Ifdi1 < 714 <1, then we choose 1/t =d/py —d + 1.

In the next step, we determine 1 < r < co by using the condition (8.7) and the second
averaging estimate in (8.6). Since two kinds of ¢ values can be chosen as above, the
condition (8.7) becomes

1 1 1 1 1 d

-=—+— or -=—+—-d+1

s p3 dps s P33 P4
Combining these s values with the second averaging estimate in (8.6), the application
of Lemma 2.5 enables us to choose 1/r values as follows:

-IfOS% p—+—< thenwetake— Loy

dps = d+1’ dps d2p4

d .1 d

o If 5 <= p—+ﬁ<1thenwetake— p—+P——d+1
1_ 1 1_

lIfOS;—E d+1<dl,thenwetake;—d—m+a—1+g.
. Ifi<1:i+——d+1<1 then we take L = 4 + £ _ g2 4]

d+1 = s~ ps | pa =0 r o ps  pa :
Finally, use the condition (8.5) together with previously selected two values for r; and
four values for r. Then we obtain the required remaining conditions. ]

Remark 8.7 Notice that Lemma 8.4 is a special case of Lemma 8.6. However, the
proof of Lemma 8.4 is much simpler than that of Lemma 8.6.

We do not know if the consequences from Lemmas 8.4 and 8.6 imply the sharp
boundedness results for the P; form Ap, on IF‘;. However, they play an impor-
tant role in proving the proposition below, which states that the exponents for
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Ap,(p1, P2, P3> pa) S 1 are less restricted than those for As, (p1, P2, p3» pa) $ 1. The
precise statement is as follows.

Theorem 8.8 Let Ay, and Ap, be the operators acting on the functions on Fé. If
Aot(Pl)PZaPSaIM) S lforl < pl’PZa P3’p4 < oo, then AP_:,(pl’PZa P3’P4) S L

Proof Assume that A, (p1, p2, p3.pa) $1 for 1< py, pa, p3, pa < 0o. Then, by
Lemma 6.1, the point (1/p1,1/p2,1/p3,1/pa) is contained in the convex hull of the
following points: (0,0,1,0), (0,1,0,0), (0,0,0,1), (1/2,0,1/2,1/2), (2/3,2/3,0,0),
(1,0,0,0), (2/3,0,2/3,0), (1/2,1/2,1/2,0), (2/3,0,0,2/3),(0,2/3,2/3,0),(0,0,0,0),
(0,0,2/3,2/3).

To complete the proof, by the interpolation theorem, it suffices to show that for
each of the above critical points (1/p1,1/p2,1/p3,1/p4), we have

APs(p1>p2)P3:P4) SL

To prove this, we will use Lemma 8.6 and Lemma 8.4. By Lemma 8.6 with the
hypothesis (i), one can notice that Ap, (3/2, 00, 00,3/2) <1, which is corresponding
to the point (1/p1,1/p2,1/p3,1/pa) = (2/3,0,0,2/3). Similarly, Lemma 8.6 with the
hypothesis (ii) can be used for the point (1/2,0,1/2,1/2), namely, Ap,(2, 00,2,2) S 1.

For any other points, we can invoke Lemma 8.4. More precisely, we can apply
Lemma 8.4 with the hypothesis (i) for the points (0,1,0,0), (2/3,2/3,0,0), (2/3,
0,2/3,0), (1/2,1/2,1/2,0), (0,2/3,2/3,0), (0,0,0,0), (0,0,2/3,2/3). 'The points
(0,0,1,0),(0,0,0,1) can be obtained by Lemma 8.4 with the hypothesis (ii). Finally,
for the point (1,0,0,0), we can prove that Ap, (1, 00, 00, 00) <1 by using Lemma 8.4
with the hypothesis (iii). This completes the proof. [ ]

Remark 8.9 The reverse statement of Theorem 8.8 is not true in general. As a
counterexample, we can take p; = 3/2, p» =3, p3 = 3/2, ps = 0. Indeed, the assump-
tion (i) of Lemma 8.4 with d =2 implies that Ap,(3/2,3,3/2,00) $1. However,
As,(3/2,3,3/2, 00) cannot be bounded, which follows from Lemma 6.1.

We obtain the following consequence of Theorem 8.8.

Corollary 8.10 Conjecture 1.5 is valid for the graph Cy + diagonal and its subgraph Ps
inF2.
q

Proof It is obvious that the P;5 is a subgraph of C, + diagonal in Fé. Ford =2, itis
plain to notice that min{8(Cy4 + diagonal),d} = 2> §(Ps) = 1. Thus, the graph Cy
+ diagonal and its subgraph P; satisty all assumptions of Conjecture 1.5. Then the
statement of the corollary follows immediately from Theorem 8.8 since the operators
¢+ and Ap, are related to the C, + diagonal and its subgraph Ps, respectively. [ ]

The following theorem provides a concrete example for a positive answer to
Question 1.2 since the operators < and A p, are related to the graph C,4 and its subgraph
P, respectively. Furthermore, the graphs also satisfy Conjecture 1.5 (see Corollary 8.13
below).

Theorem 8.11 Let Ac, and Ap, be the operators acting on the functions on IF,ZZ. If
Ac,(P1 P2 3, pa) SL1< 1, pa, p3, pa < 00, then Ap, (1, p2, p3, pa) S 1.
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Proof By Proposition 7.6(i), if Ac,(p1, P2, P3> pa) $1, then A, (p1, p2, p3> pa) S 1.
By Theorem 8.8, if As,(p1, P2, P3>Pa) $1, then Ap, (p1, p2, 3> pa) $ 1. Hence, the
statement follows. ]

Remark 8.12 'The reverse statement of Theorem 8.11 cannot hold. As in Remark 8.9, if
we can take p; = 3/2, p2 = 3, p3 = 3/2, ps = oo, then Ap,(3/2,3,3/2, ) < 1. However,
Ac,(3/2,3,3/2, 00) cannot be bounded, which follows from Theorem 7.5.

Corollary 8.13  Conjecture 1.5 holds true for the graph Cy and its subgraph P; on 5.

Proof The main hypothesis (1.6) of Conjecture 1.5 is satisfied for the graph C, and
its subgraph P; on IFfI :

min{6(Cy),2} =2>1=8(P;).

Since the operators Ac, and Ap, are associated with the graph C4 and its subgraph P,
respectively, the statement of the corollary follows from Theorem 8.11. ]

Operators associated with the graph K; + tail (a kite)

Given t € F} and functions f;,i=1,2,3,4, on IE‘Z, we define Aq(fi, f2, f3, fa) as the
following value:

! S )88 )8 -5 - [T,

qd|st|2|sf72| xl,x2,x3,x4e]FZ

Note that this operator Ag is related to the graph K; + tail (Figure 1g), and so the
normalizing factor N(G) in (1.4) can be taken as the quantity q%|S,|*[S?~2|.

Here, our main problem is to determine all exponents 1 < py, p2, p3, pa < o0 such
that

(CAY) Aa(fis fos S35 fa) S Al L2 lpa 1 53 ps | fallpa

holds for all nonnegative real-valued functions f;,i=1,2,3,4, on IFZ. In other
words, we are asked to determine all numbers 1< py, p, p3, pa < 0o such that

As(p1s p2> p3> pa) S L.

Recall that when d = 2, we assume that 3 € I is a square number.

Lemma 9.1 (Necessary conditions for the boundedness of As(p1, p2, p3, pa))  Sup-
pose that (9.1) holds, namely As(p1, p2, p3» pa) S 1. Then we have

1 1 d 1 1 d 1 d 1 1
—+—+—+—<d, —+—+—<d, —+—+—<d,
pr P2 Pz P4 pr P2 Pps pr p2 p3
i+i+i+i§2d—1, and i+i+i+ig2d—1.
Pr P2 P3P v P2 P3P

In particular, if d = 2, then it can be shown by Polymake [1, 6] that (1/p1,1/p2,
1/p3,1/ps) is contained in the convex hull of the points: (0,0,1,0),(0,1,0,0),
(0,1,0,1/2), (2/3,0,2/3,0), (1/2,1/2,1/2,0), (5/6,0,1/3,1/2), (1,0,0,0), (1/3,0,
1/3,1), (5/8,5/8,1/8,1/2), (1/2,0,0,1), (1/4,1/4,1/4,1), (1/3,1/3,0,1),(1,0,0,1/2),
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(2/3,2/3,0,1/2), (2/3,2/3,0,0), (0,1/2,0,1), (0,1/3,1/3,1), (0,0,0,1), (0,5/6,
1/3,1/2),(0,0,1/2,1),(0,0,0,0), (0,2/3,2/3,0).

Proof To deduce the first inequality, we test (9.1) with f; = f, = f4 = 15, and f5 = J;.
To obtain the second one, we test (9.1) with f; = f5 =1g,, f = 89, and f4 = Ipa. To
get the third one, we test (9.1) with f; = 8o, o= f3=1s,, and f4 = Ipa. To prove the
fourth one, we test (9.1) with f; = f3 =15, and f, = f4 = §. Finally, to obtain the fifth
inequality, we test (9.1) with f; = fs = 0p and f, = f5 = 1,. ]

9.1 Sufficient conditions for the boundedness of A, on ]Fg

When one of exponents pj, pa, ps is oo, the boundedness problem of Aq(pi, p2,
P3> pa) can be reduced to that for the K3 form Ak, or the P, form Ap,.

Proposition 9.2 Let1<a,b,c < oco.
(i) If Ak, (a,b,c) $1, then Ag(a,b,c,0) 1.
(i) If Ap,(a,b,c) $1, then Ag(co,a,b,c) Sland Aq(a, 00,b,¢) S 1.

Proof For all nonnegative functions f;,i =1,2,3,4, on Fg. we aim to prove the
following inequalities:

Ak, (fis fo £3) [l fall oo
(9.2) As(fris fos 3o f2) S 4 hlleo Ap,(f25 S35 f4)s
I falleo Ap,(fis f35 fa)-

By the definition, A4(fi, f2, f3, f1) can be expressed as

1 3 ;
T DL G S N CERE W NICaE Y (Hf,-(x ))
q |St||St |x1,x2’x35Fg il

1
" (IS 2 St(xa—x4)f4(x4))~
t| x4eﬁ<‘g

The sum in the above bracket is clearly dominated by || f4]|o. for all x* € IE“qj. Hence,
recalling the definition of Ak, (fi, f2, f3) in (4.1), we get the first inequality in (9.2):

As(fis fo f35 fa) < Aiy (s foo 13)] falloo-

Now we prove the second and third inequalities in (9.2). We will only provide the
proof of the second inequality, that is,

(9.3) As(fis fos 5o fa) < filloo Ap, (25 f35 f4)-

The third inequality can be similarly proved by switching the roles of variables x', x?.
We write Aq(f1, f2, f3, fa) as follows:

1 = i
e S Si(x® - x) S (a7 - x*) (Hfi(x ))
q | t| 2,03, x4eFd i=2

1

X ﬁ Z St(.xl - xz)st('x3 - xl)ﬁ(xl) :

|St |xleIE‘g
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Recall the definition of Ap, (f2, f3, fa) in (5.1). Then, to prove the inequality (9.3), it
will be enough to show that for all x?, x> € IE‘Z with ||x* — x*|| = t # 0, the value in the
above bracket is $ || fi]|co - Now, by a simple change of variables, the value in the above
bracket is the same as

LS (- 2?) ) Al ).

‘sfl_2| xleS;
This is clearly dominated by
1
a2 S =x%) =il

|S;i_2| xleS;

Since ||x* — x?|| = t # 0, applying Corollary A.4 in the Appendix gives us the desirable
estimate. u

We address sufficient conditions for the boundedness of A4 on IF‘;.
The following result can be obtained from Proposition 9.2(i).

Lemma 9.3 Let Ag be defined on the functions on FZ, d > 2. Supposethat1 < a,b < oo
satisfies the following equations:

1 d d 1

—+—-<d and —+—-<d.

a b a b
Then we have Ag(a, b, 00,00) $1, Ag(a,00,b,00) $1, Ag(o0,a,b,00) S 1.
Proof The statement follows immediately by combining Proposition 9.2(i) with
Theorem 4.3. u

Proposition 9.2(ii) can be used to deduce the following result.

Lemma 9.4 Let A be defined on the functions on ®%, d > 2. Suppose that1< a, b, ¢ <
oo satisfies one of the following conditions:

G o<t lcdgpglidylay
a [

a’>c ~ d+l b
() o<l< L <laand L +1+4<q,
(i) 0<t< L <lcrandd+ 1L <g,
(iv) <3, l<tandd+;+2<2d-1.

Then we have Aq(o0,a,b,c) $1 and Ag(a,o0,b,c) S1.

Proof From our assumptions on the numbers a4, b, ¢, Theorem 5.3 implies that
Ap,(a,b,c) $1. Hence, the statement follows by applying Proposition 9.2(ii). [

9.2 Boundedness of A4 in two dimensions

Lemmas 9.3 and 9.4 provide nontrivial results available in higher dimensions. In this
section, we will show that further improvements can be made in two dimensions.
Before we state and prove the improvements, we collect the results in two dimensions,
which can be direct consequences of Lemmas 9.3 and 9.4.

To deduce the following result, we will apply Lemma 9.3 with d = 2.
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Corollary 9.5 Let Agq be defined on functions on IF;. Then we have
Ag(p1, P2, P3»> pa) S 1 provided that (p1, p2, p3» pa) is one of the following points:
(oo, oo,oo,oo),(l,oo,<x>,oo),(oo,l,oo,oo),(oo,oo,l,oo), (3/2,3/2,00,00),(3/2,00,
3/2,00),(00,3/2,3/2,00).

Proof Using the first conclusion of Lemma 9.3 with d = 2, we see that A4(p,
P2, P3> Pa) $ 1 whenever (py, pa, p3, pa) takes the following points: (o0, 00, 00, 0),
(1, 00, 00, 00), (00,1, 00, 00), (3/2, 3/2, 00, 00).

Next, the second conclusion of Lemma 9.3 with d =2 implies that Aq(p1, p2,
P3» pa) S 1for the points (pi1, pa, p3» pa) = (00, 00,1,00), (3/2, 00,3/2, 00). Finally, it
follows from the third conclusion of Lemma 9.3 with d = 2 that A4(p1, p2, p3, pa) $1
for (p1, p2> p3» pa) = (00,3/2,3/2, 00). Hence, the proof is complete. |

The following theorem will be proven by applying Lemma 9.4 with d = 2.

Corollary 9.6 Let Ay be defined on the functions on IF;. Suppose that (p1, p2»
P3» pa) is one of the following points: (o0, 00, 00,1),(2,00,2,2),(3/2, 00, 0,3/2),
(00, 00,3/2,3/2). Then we have Aa(p1, p2, p3> pa) S 1.

Proof We get that A4(oco, 00, 00,1) $1 by using the assumption (ii) and the first
conclusion of Lemma 9.4. Invoking the assumption (i) and the second conclusion of
Lemma 9.4, one can directly note that A4(2, 00,2,2) $1and A4(3/2, 00, 00,3/2) S L
Finally, to prove that A4( o0, 00,3/2,3/2) $ 1, one can use the assumption (i) and the
first conclusion of Lemma 9.4. [ ]

We now introduce the connection between Ag(fi, f2, f3, fa) and the bilinear
averaging operator.

Proposition 9.7 Let B be the bilinear operator defined as in (4.3). Then, for any
nonnegative real-valued functions f;,i =1,2,3,4, on IF;, we have

As(f for f5 fa) = [IB(fis f2) - f5 - Afalls
where A denotes the averaging operator over the circle in IF;.
Proof Intwo dimensions, Aq(fi, f2, f3, fa) can be rewritten as the following form:

1
1S

Si(xt = x)S:(x7 — x2S, (x® — x*)Si (27 — 1) llfl(x')

xl,xz,x3,x4eIF;

By the change of variables by putting y' =x*-x!, y*=x>-x2, y*=x3, y*=x> - x%,

the value Aq(f1, f2 f3, fa) becomes

> S =SS ONVAG - ARG -y A (-5,

yhy?ydytery

This can be expressed as follows:

o Z (7 )(|s| > (P -y ))(|s| > ﬁ(f—yl)fz(f—yz)).

y3elFy y4eS yhLy2eSe|lyr-yll|=t

https://doi.org/10.4153/50008414X2300086X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2300086X

244 P. Bhowmik, A. Iosevich, D. Koh, and T. Pham

Recalling the definitions of the averaging operator in (2.1) and the bilinear averaging
operator in (4.3), it follows that

Aa(for o for f) = qi S HOMALGDB G ).

y3elfy
By the definition of the normalized norm || ||;, the statement follows. |

For 1< py, pa, P3, pa < 00, recall that the notation Aq(py, p2, p3, pa) S 1is used if
the following estimate holds for all subsets E, F, G, H of F>:

A(E, F, G, H) S |[E||p[Fllp. |G, 1l

and this estimate is referred to as the restricted strong-type Aq(p1, P2, p3. ps)
estimate.

The following theorem is our main result in two dimensions, which gives a new
restricted strong-type estimate for the boundedness on the operator Ag.

Theorem 9.8 Let Ag be defined on functions on Fé. Let 1< p3, py < 0o. Then the
following statements are valid for all subsets E, F of IFé and all nonnegative functions

f3, faon IFf].

(i) If2<p3< o0, 3/2<py < c>0,andp—13 + ﬁ < 1, then we have

As(E,F, f3, fa) S ||EILIIFIL2lf31lps | fall s

(ii) If2< p3 < o0, 4/3< py <3/2, and p% + 2 < 3, then we have

2
Pa
A<(E, F, f3, fa) S ||Ell2IIF[2]l f31l sl fall -

Proof LetE, F be subsets of F; and f, g be nonnegative real-valued functions on
By Proposition 9.7 and Hélder’s inequality, it follows that for 2 < p; < oo,

As(E,F, f3, fu) < |IB(E, E)[l2[lfsllps llAfal] 202 -

2
q°

Here, we also notice that 2 < % < o0. Since ||B(E, F)||2 < ||E||2||F]|2 by Lemma 4.6,
we see that

As(E,F, f3, fu) < |[EILIFll2ll fslps | Afall 2

Hence, to complete the proof, it suffices to show that for all exponents p3, p4 satisfying
the assumptions of the theorem, we have

2ps
(9.4) A( —>)51.
P4 Py -2
To prove this, we first recall from Theorem 2.3 with d =2 that A(p —» r) <1 for
any numbers 1< p,r < oo such that (1/p,1/r) lies on the convex hull of points
(0,0),(0,1),(1,1), and (3, 1). Also, invoke Lemma 2.5 to find the equations indi-
cating the endpoint estimates for A(p — r) $ 1. Using those averaging estimates with
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p=par= p23p_32) the inequality (9.4) can be obtained by a direct computation, where

we also use the fact that2 < r = % < oo. m

The following corollary is a direct consequence of Theorem 9.8.
Corollary 9.9  Let A4 be defined on functions on Ffi. Then we have Aq(2,2,2,00) S 1.
Proof The statement follows by a direct application of Theorem 9.8(i). [ ]

The lemma below shows that the exponents for A, (p1, p2, p3, p4) S 1 are more
restricted than those for Aq(p1, p2, p3» pa) $ 1up to the endpoints. This also provides
a positive answer to Question 1.2 since the graph K3 + tail is a subgraph of the graph
C4 + diagonal.

Lemma 9.10 Let Ay, and Ag be the operators acting on the functions on Fé. Sup-

pose that A, (p1, P2, P3> pa) S1 for 1< p1, pa, p3, pa < co. Then we have A4(p1, p2,
D3, pa) S 1except for the point (2,2,2, 00). In addition, we have A4(2,2,2,00) § 1.

Proof Assume that A, (p1, p2, p3,pa) $1 for 1< py, pa, p3, pa < 0o. Then, by
Lemma 6.1, the point (1/p1,1/p2,1/p3,1/p4) is contained in the convex hull of the
following points: (0,0,1,0), (0,1,0,0), (0,0,0,1), (1/2,0,1/2,1/2), (2/3,2/3,0,0),
(1,0,0,0), (2/3,0,2/3,0),(1/2,1/2,1/2,0),(2/3,0,0,2/3),(0,2/3,2/3,0),(0,0,0,0),
(0,0,2/3,2/3).

By Corollaries 9.5 and 9.6, the strong-type estimate A4(pi, P2, p3,> p4) $1 holds
for all the above points (1/p1,1/p2,1/p3,1/pa) except for (1/2,1/2,1/2,0). Moreover,
we know from Corollary 9.9 that A4(2,2,2,00) § 1. Hence, the statement follows by
interpolating those points. ]

Remark 9.11 The reverse statement of Lemma 9.10 is not true. To see this, observe
from Theorem 9.8(ii) that A4(2,2,6,3/2) $ 1. In addition, by Lemma 6.1, notice that
As,(2,2,6,3/2) cannot be bounded.

Corollary 9.12  Conjecture 1.5 holds up to endpoints for the graph C4 + diagonal and
its subgraph Ks + tail in ]FZ.

Proof The operators A,, and Ag are associated with the C, + diagonal and its
subgraph K3 + tail in Fé, respectively. Hence, invoking Lemma 9.10, the proof is
reduced to showing that the C4 + diagonal and its subgraph Kj + tail satisfy the main
hypothesis (1.6) of Conjecture 1.5. However, it is clear that

min{d(C, + diagonal),2} =2 >1= §(K; + tail).
Thus, the proof is complete. [ ]

The following result shows that there exists an inclusive relation between bound-
edness exponents for the operators corresponding to the graphs C4 and K; + tail,
although they are not subgraphs of each other.

Lemma 9.13 Let Ac, and Ag be defined on functions on F; and let 1< py, p2, p3»
P4 < oo, 7716” ifAC4(pl,P2a P3,P4) S 1; we have Aﬂ(plipZa P3ip4) S 1.
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Proof First, by Theorem 75, note that Ac,(2,2,2,00) cannot be bounded. Now
suppose that Ac,(p1, P2, P3>pa) $1. Then (p1, pa, p3, pa) # (2,2,2,00). Using
Proposition 7.6, we get Ao, (p1, P2, P3-pa) S1. Then the statement follows
immediately from Lemma 9.10. [

By combining Remark 9.11 and Proposition 7.6, it is clear that the reverse of
Lemma 9.13 does not hold. Notice that Lemma 9.13 provides an example to satisfy
Conjecture 1.5 without the hypothesis that G’ is a subgraph of the graph G.

10 Boundedness problems for the Y-shaped graph

In this section, we study the boundedness of the operator for the Y-shaped graph in
Figure 1h. For t € F, the Y-shaped form Ay is defined by

(10.1)

Ay(fi fo f5 fa) = m Z St(xs—xl)st(x3—xz)st(xs—x4)gﬁ(xi)’

x‘,xz,x3,x4e]Fg

where functions f;, i = 1,2, 3, 4, are defined on F¢. Note that this operator Ay is related
to the Y-shaped graph, and so the normalizing factor N(G) in (1.4) can be taken as
d|g |3
q°|Se[.
We aim to find all numbers 1 < py, pa, p3, pa < oo such that Ay (p1, p2, ps, pa) S 1.
Lemma 10.1 (Necessary conditions for the boundedness of Ay(pi, p2, p3,ps))

Let 1< p; < 00,1<i<4. Suppose that Ay(p1, p2> 3> pa) S1. Then all the follow-
ing inequalities are satisfied: L + L+ 44 L cg 4, d 4 1, p% <3d-2, % +

p1 P2 P3P pr P2 Ps3
d 1 d 1 d d 1 d d 1 d 1
=4+ =<2d-1, =+ —=—+4++=<2d-1, =+ =4+ =-<2d-1, =+ =<d, =+ =<
P2+P3_2d 1’P1+P3+P4_2d 1’P2+P3+p4_2d 1’P1+P3_d’Pz+p3_
1 d
— + =<
d’P3+P4_d'

In particular, if d = 2, then it can be shown by Polymake [1, 6] that (1/p1,1/pa2,
1/p3,1/ps) is contained in the convex hull of the points: (0,0,1,0),(1,0,0,1/2),
(1,0,1/2,0), (1/2,1,0,1/2), (1,1/2,0,1/2), (1/2,1/2,0,1), (1,0,1/3,1/3),(1/2,5/6,
1/3,0), (1,1/2,0,0), (1/2,0,1/3,5/6), (1/2,1,0,0), (1,1/3,1/3,0), (1/2,0,0,1), (1,0,
0,0),(0,0,0,0), (0,0,0,1), (0,1,0,0), (0,0,2/3,2/3), (0,5/6,1/3,1/2), (0,1,0,1/2),
(0,1/2,1/3,5/6), (0,1/2,0,1), (0,2/3,2/3,0).

Proof By adirect computation, the conclusions of the lemma easily follow by testing
the inequality

Ay (i, fo» f3 fa) < Ay (P, pas p3s POl il f2ll oo 1 5 ps Il fal s

with the following specific functions, respectively:

D fi=fa=fa=1s, f3 = bo. 2) i=fa=fa=00, f3=1s,.

3) h=fa=00f3=1s, fa = Iy 4) fi=fr=080,fo= 11Fg,f3 =1g,.

5) fi= lmgafz = fa =80, f3 = 1s,. 6) =00, f2=fa= l]k‘g)f3 =1s,.
7)f1:f4=1mg)f2:5o)f3:15t- S)ﬁ:f2:1Fg>f3:15t,f4:5o- n
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10.1 Sufficient conditions for the boundedness of Ay on F?

It is not hard to observe that the boundedness problem for the Y-shaped form can
be reduced to the spherical averaging estimate. Indeed, the value Ay (fi, f2, f3, f1) in
(10.1) can be written by

Ay (fis o f3. f4) = qd Z f(x%) I1 |S| Z Se(x® = x') fi(x")

xe]F" i=1,2,4 xe]F"’

Invoking the definition of the averaging operator A = Ag, in (2.2), we get

Ay(fis for 35 fa) = qd > AR AL Afs(x") = |Afi- Afa- f5- Afalli.
x3eFd
By Hoélder’s inequality and the nesting property of the norm || - [[ ,, we get

. 1 1 1 1
10.2) Ay(fo forfor fo) < IARIIAR I I FllAfall, i ~+ 4 2 u Ly,

o r2 Pz 1y

Proposition 10.2  Let1< pl,pz,p3,p4, > r2, T4 < oo be extended real numbers which
satisfy the following assumptions: - -+ —2 + E +—<land A(p; » ;) S1 forall i=
1,2, 4. Then we have

Ay (p1> p2>p3>pa) S1.

Proof By combining the inequality (10.2) with our assumptions on the averaging

estimates, it follows that for all functions f;,i =1,2, 3,4, on Fg,
Ay (fis fos S35 fa) S Ufillpa Il f2llpa L f3ll s [ fall -
This completes the proof. [

The following result provides lots of sufficient conditions for the boundedness of
the Y-shaped form.

Proposition 10.3  Let 1< py, pa, p3, ps < 00, and let Ay be the Y-shaped form on IFZ.
Then Ay(pl, pz, D3> pa) S 1 provided that one of the following conditions is satisfied:
o<t L, L<dgpdl Lyl Ly

_Pl P pa T od+l P P2 ps o pa

(11)Osi,ééﬁglj—qand‘i—m+d—m+—+i<d

(i) 0< -, - < gy < - <land g+ b+ o+ - < d.
(iv)O<i,ﬁ£ﬁ$ﬁ<land—+d—m+?+d—;<d.
(V)0<iSﬁgi,gj<landd—m+£+g+a<2d—l
(i) 0< L <o Lctand &t g+ L+ d<od -1
(Vii)0<igﬁsi,p—t<land—l+%+g+ﬁ_2d—l
(viii) dﬂgpi Pfg,iéland%+}i+1) +P—<3d 2.

Proof The proof uses Proposition 10.2 and the sharp averaging estimates in
Lemma 2.5. The proof of this theorem is similar to that of Theorem 5.3. Therefore,
we leave the detail of the proof to readers. [ ]

Conjecture 1.5 is also supported by the following theorem.
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Theorem 10.4 Let A, and Ay be the operators acting on the functions on Fé. If
AW(PI:PZ:P3:P4) S 1 with 1 < pla PZ)p3a P4 < oo, then AY(P1>P2)P3aP4) 5 L

Proof Assume that A, (p1, p2, p3> pa) $1. Then, by Lemma 6.1, (1/p1,1/p2,
1/p3,1/ps) is contained in the convex hull of the points (0,0,1,0),(0,1,0,0),
(0,0,0,1), (1/2,0,1/2,1/2), (2/3,2/3,0,0), (1,0,0,0), (2/3,0,2/3,0), (1/2,1/2,
1/2,0), (2/3,0,0,2/3), (0,2/3,2/3,0), (0,0,0,0), (0,0,2/3,2/3). By interpolating
those critical points, it suffices to check that each critical point above satisfies
one of the eight hypotheses of Proposition 10.3 with d = 2. However, this can
be easily shown by a direct computation. For example, for the critical point
(1/p1,1/p2,1/p3,1/ps) = (1/2,1/2,1/2,0), we can invoke the hypothesis (i) of
Proposition 10.3 with d = 2 and obtain that Ay(2,2,2, c0) $ 1. In the same way, it can
be easily proven for other critical points. ]

Remark 10.5 The reverse statement of Theorem 10.4 is not true. To find a coun-
terexample, we can take p; = p3 =00, pp = ps =3/2. Indeed, by the hypothesis
(5) of Proposition 10.3 with d =2, we see that Ay(o0,3/2,00,3/2) < 1. However,
As,(00,3/2,00,3/2) is not bounded, which follows from Lemma 6.1 with d = 2.

The following corollary proposes some possibility that the assumption of the
subgraph in Conjecture 1.5 can be dropped.

Corollary 10.6 Let Ac, and Ay be the operators acting on the functions on IF;. If
Ac,(p1> p2> P3> pa) S 1with 1< p1, pa, p3, pa < 00, then Ay (p1, pa2, p3, pa) S 1.

Proof The statement of the corollary follows immediately by combining Proposition
7.6 and Theorem 10.4. n

Combining all the results obtained so far, we get the following theorem:

Theorem 10.7 When d =2 and n = 3,4, Conjecture 1.5 is true, where we accept
boundedness results up to endpoints in the case when G is the C4 + diagonal and its
subgraph G’ is the K5 + tail.

Proof By Corollary5.7 for n = 3, and by Corollaries 8.10, 8.13,9.12,and 10.6 for n = 4,
we have proven that for d = 2and n = 3, 4, there is the required inclusive boundedness
relationship between any two operators corresponding to arbitrary connected ordered
graph G and its subgraph G’ except for the following three cases:
(I) G = Cy4 + diagonal and G’ = Cy.
() K3 + tail and G’ = Y-shape.

(III) G = K3 + tailand G’ = P;.

However, since §(G) = 6(G") for each case of (1), (II), and (III), they do not satisfy
the main hypothesis (1.6) of Conjecture 1.5. Hence, they cannot be counterexamples
contradicting Conjecture 1.5 and so there is no counterexample against Conjecture 1.5,
as required. ]
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A Appendix

In this appendix, we introduce the number of intersection points of two spheres in IFZ.
Let # denote the quadratic character of F*, namely, 7(s) =1 for a square number s in
IF7, and 5(s) = —1 otherwise.

Definition A.1 Given a nonzero vector m in IFd, and t, b € Fy, we define N(m, t,b)
to be the number of common solutions x € Fg of the following equations: ||x|| = t, m -

x=b.

Notice that the value of N(m, ¢, b) is the number of all intersection points between
the sphere S; and the plane {x ¢ ]F‘; :m - x = b}. The explicit value of it is well known
as follows.

Lemma A.2 Let b,t €Fgy, and let m be a nonzero element in F9,d > 2. Then the
following statements hold:

i) If||m|| # 0 and b* - t||m|| = 0, then
d-2 o
q°, if d is even,
N(m,t,b) = = a1 P
(m1:0) {qd2+qz(q—nn«—nznmm, i dis odd.

(ii) If||m|| # 0 and b* — t||m|| + 0, then

d—

m, q qu ((—1)£(b2—t||m||)), if d is even,
b= {q 2 =g (D)5 Iml)), if d is odd.

(iii) If||m|| = 0 = b* — t||m||, then

d

N B g2 +v(t)g Ty (( )z) ), if diseven,
(m, t, ) = d-2 _ % ( dT if dis odd
" =q (=) if d is odd,

where v(t) = ~1ift € Fy and v(0) = q - L.
(iv) If||m|| = 0 and b* — t||m|| # 0, then N(m, t,b) = q*~2

Proof See Exercises 6.31-6.34 in [14], or one can prove it by using the discrete Fourier
analysis with the explicit value of the Gauss sum. [ ]

By a direct application of Lemma A.2, one can find the explicit number of the
intersections of two spheres over finite fields. Precisely, we have the following result.

Theorem A.3  Given a nonzero vector m € IE‘Z andt,jeFy, let

O(m,t,j) = {x €S |lx - m| = j}.

If m € Sy, then |@(m, t, j)| = (m t, e J).
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Proof Since ||x —m||=t+{—2m-x for x € S;, m € Sy, it is clear that ®(m, ¢, j) is
the number of common solutions x of the following equations:

t+l—j
Ixl[=t, m-x=—"""J
2
Hence, by the definition of N, we obtain the required conclusion. |

Corollary A4 Lett € F and { € Fy. Then, for every nonzero vector m € Sy, we have
]~ i

xeSy:||x—ml||=t

excepting for the following three cases:

Dd=2,0+0,n(tl-0*/4)=-1. 2)d=2,0=0,n7(-1) =1
3)d=3,0=0,n(-t) =1.

For each of those three cases, the value in the above sum takes zero. On the other hand,
ifd=2,0+0,and n(tl — (*]4) = 1, the value in the above sum is exactly two.

Proof It follows from Theorem A.3 that for any ||m]| = ¢,

1:N(m,t,{),
2

and so the corollary is a direct consequence of Lemma A.2(i)-(iii). [

xeS||x—ml||=t
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