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Abstract
The notion of an m-algebraic lattice, where m stands for a cardinal number, includes numerous special
cases, such as complete lattice, algebraic lattice, and prime algebraic lattice. In formal concept analysis, one
fundamental result states that every concept lattice is complete, and conversely, each complete lattice is
isomorphic to a concept lattice. In this paper, we introduce the notion of an m-approximable concept on
each context. The m-approximable concept lattice derived from the notion is an m-algebraic lattice, and
conversely, everym-algebraic lattice is isomorphic to anm-approximable concept lattice of some context.
Morphisms on m-algebraic lattices and those on contexts are provided, called m-continuous functions
and m-approximable morphisms, respectively. We establish a categorical equivalence between LATm, the
category of m-algebraic lattices and m-continuous functions, and CXTm, the category of contexts and m-
approximablemorphisms.We prove that LATm is cartesian closed wheneverm is regular andm> 2. By the
equivalence of LATm and CXTm, we obtain that CXTm is also cartesian closed under same circumstances.
The notions of a concept, an approximable concept, and a weak approximable concept are showed to be
special cases of that of anm-approximable concept.

Keywords: Formal concept analysis; m-algebraic lattice; m-approximable concept, cartesian closed category; categorical
equivalence

1. Introduction
Formal concept analysis (FCA) is a method for deriving a concept hierarchy from a collection of
objects and their attributes, which has a significant potential for applications in fields including
data mining, knowledge management, and machine learning (see, e.g., Davey and Priestley 2002;
Ganter and Wille 1999; Kang and Miao 2016; Ren et al. 2017; Yu et al. 2018). The theory has a
deep connection with the mathematical theory of lattices and ordered sets. One standard result
in FCA states that the concept lattice of a context is a complete lattice, and, conversely, every
complete lattice is isomorphic to a concept lattice of some context. To build connections between
contexts and other mathematical structures, Zhang and Shen presented the notion of an approx-
imable concept (Zhang and Shen 2006). The introduction of the notion was motivated by the idea
in domain theory (Gierz et al. 2003) that pieces of information or results of a computation should
either be finite or approximated by finite elements. Approximable concept lattices constituted by
approximable concepts are exactly algebraic lattices, and every algebraic lattice is isomorphic to
an approximable concept lattice of a context. Based on the work about approximable concepts,
Hitzler and Zhang (2004) provided an appropriate notion of morphisms between contexts and
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showed that the resulting category is equivalent to the category of algebraic lattices and Scott con-
tinuous functions. As an abstract branch of mathematics, category theory has been widely applied
in various areas (MacLane 1971). The theory provides a unified framework to different mathe-
matical structures, and an equivalence of categories establishes a relation that these structures are
essentially the same from the abstraction view. Hitzler et al. (2006) explored algebraicity in FCA
from a category theoretical view. Following the work of Zhang and Shen (2006), Liu et al. (2011)
presented the notion of a weak approximable concept, and they proved that the corresponding
weak approximable concept lattices derived from the notion are exactly completely distributive
algebraic lattices.

In mathematics, cardinal numbers are used to measure the size of sets (see, e.g., Dauben 1990;
Deiser 2010). The concept of cardinality was formulated by Georg Cantor, who also developed a
large portion of the theory of cardinal numbers. In this paper, we accept the axiom of choice. Then
the sequence of natural numbers and aleph numbers indexed by ordinals:

0, 1, 2, ..., n, ...; ℵ0, ℵ1, ℵ2, ..., ℵα , ....

includes every cardinal number. A cardinal m is regular if and only if it cannot be expressed as
the cardinal sum of a set whose cardinality is less thanm, and the elements of which are cardinals
less than m. Roughly speaking, regular cardinals are those which cannot be broken into a smaller
collection of smaller parts. In this paper, we mainly deal with regular cardinals. m-Algebraic lat-
tices were first appeared in Grätzer (1965), wherem stands for a cardinal number. In the case that
m= ℵ0 the smallest infinite cardinal, m-algebraic lattices are exactly algebraic lattices. Thus m-
algebraic lattices are also viewed as natural generalizations of algebraic lattices. In Lee (1988), Lee
investigated countably algebraic lattices which are precisely ℵ1-algebraic lattices (ℵ1 is the small-
est uncountable cardinal). Representation theory of m-algebraic lattices is an important research
topic, where m is a regular cardinal (see Grätzer 1992; Grätzer et al. 1994). One question arises
naturally: Is there a type of concepts on each context such that the resulting concept lattice is an
m-algebraic lattice, and every m-algebraic lattice is isomorphic to the resulting concept lattice on
some context? We deal with this problem by presenting the notion of an m-approximable con-
cept. We also provide appropriate types of morphisms on contexts and functions on m-algebraic
lattices such that the corresponding category of contexts and that ofm-algebraic lattices are equiv-
alent. Finally, we compare our work with other results and show some direct applications of the
categorical equivalence.

2. Preliminaries
In this section, we recall some basic concepts in order theory, FCA, and category theory. We refer
the reader to Abramsky and Jung (1994) and Gierz et al. (2003) for standard domain-theoretic
notations and elementary facts about algebraic lattices, and to MacLane (1971) for more details
about categorical results.

Let L be a complete lattice, A⊆ L and x ∈ L. We write
∨
A for the least upper bound of A in L,

and

↓x= {y ∈ L : y≤ x}, ↑x= {y ∈ L : x≤ y}, ↓A=
⋃
a∈A

↓a.

For any setA, we denote by card(A) the cardinality ofA. A cardinalm is regular if for any family
of sets {Aj : j ∈ J}, card(J)<m and card(Aj)<m for j ∈ J imply card(

⋃
j∈J

Aj)<m. In this paper, m

stands for a fixed cardinal.

Definition 2.1. A context is a triple K = (G,M, I) where G andM are sets of objects and attributes,
respectively, and I ⊆G×M is a relation.
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For A⊆G and B⊆M, define

A′ = {m ∈M : aIm for all a ∈A},
B′ = { g ∈G : gIb for all b ∈ B}.

A concept is a pair (A, B), where A⊆G, B⊆M, A′ = B, and B′ =A. Then A is called the extent
of the concept (A, B) and B is called the intent.

Lemma 2.2. (Davey and Priestley 2002) Let (G,M, I) be a context, A,Aj ⊆G and B, Bj ⊆M, for
j ∈ J. Then

(1) A⊆A′′ and B⊆ B′′;
(2) A′ =A′′′ and B′ = B′′′;
(3) (

⋃
j∈J

Aj)′ = ⋂
j∈J

A′
j and (

⋃
j∈J

Bj)′ = ⋂
j∈J

B′
j.

Definition 2.3. A category C consists of the following:
(1) a collection C0 of objects;
(2) for each pair A, B of objects, a collection Hom(A, B) of morphisms from A to B;
(3) for each triple A, B, C of objects, a composition function

◦ :Hom(A, B)×Hom(B, C)→Hom(A, C)

satisfies the associative law: if f ∈Hom(A, B), g ∈Hom(B, C), and h ∈Hom(C,D), then (h ◦ g) ◦ f =
h ◦ ( g ◦ f );

(4) for each object A, an identity morphism idA on A satisfies the left and right unit laws: f ∈
Hom(A, B) implies f = f ◦ idA, g ∈ Hom(C,A) implies g = idA ◦ g.

Definition 2.4. A category C is called cartesian closed if it satisfies the following three properties:
(1) it has a terminal object T such that for any object A of C, there is exactly one morphism from

A to T;
(2) any two objects A and B of C have a product object A× B together with morphisms π1 :

A× B→A and π2 :A× B→ B such that for any object C and morphisms f : C →A, g : C → B,
there is a unique morphism f × g : C →A× B with π1 ◦ ( f × g)= f and π2 ◦ ( f × g)= g;

(3) any two objects A and B of C have an exponential object BA in C together with a morphism
ev : BA ×A→ B such that for each f : C ×A→ B, there exists a unique morphism �f : C → BA
with ev ◦ (�f × idA)= f .

Category theory has been widely applied inmany branches ofmathematics, and even in areas of
theoretical computer science. Cartesian closed categories are especially important inmathematical
logic and the theory of functional programming. Semantic categories of higher-order functional
programming languages are required to be cartesian closed, in which case higher order objects
are just normal objects. For example, in domain theory, one main task is to find cartesian closed
categories of domains to give rise to models of typed λ-calculi (see, e.g., Abramsky and Jung 1994;
Gierz et al. 2003; Jia et al. 2015; Jung 1989; Zhang and Li 2017).

Definition 2.5. Let C andD be categories. A functor F from C toD is a map sending each object A
of C to an objectF(A) ofD and each morphism f :A→ B in C to a morphismF( f ) :F(A)→F(B)
in D such that

(1) F preserves composition: F( f ◦ g)=F( f ) ◦F( g) for all compositions f ◦ g;
(2) F preserves identity: F(idX)= idF (X) for all objects X.
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A functor F : C →D between categories C and D induces a function

FA,B :Hom(A, B)→Hom(F(A),F(B))

for every pair of A and B in C. The functor F is called
(1) full if FA,B is surjective for every pair A, B;
(2) faithful if FA,B is injective for every pair A, B.

Definition 2.6. The categories C andD are equivalent if there is a functor F from C toD such that
F is full, faithful, and each object A in D is isomorphic to F(B) for some object B in C.

Category theory makes it possible to prove related results of different mathematical struc-
tures in a unified way. The concept of equivalence of categories is the category theoretic view of
sameness of categories. Particularly, an equivalence of categories preserves cartesian closedness.

3. m-Algebraic Lattice
In this section, we first recall the notion of an m-algebraic lattice. We then introduce a type of
continuous functions between m-algebraic lattices, with which a category of m-algebraic lattices
yields. Cartesian closedness of the category is investigated.

Definition 3.1. (Grätzer 1965; Grätzer et al. 1994) Let L be a complete lattice.
(1) An element x ∈ L is m-compact if for all subsets A⊆ L, the relation x≤ ∨

A always implies the
existence of X ⊆A with card(X)<m and x≤ ∨

X. Write κm(L) for the set of m-compact elements
of L.

(2) The lattice L is m-algebraic if each element x of L is a join of m-compact elements, i.e., x=∨
(↓x⋂

κm(L)).

The notion of an m-algebraic lattice is a natural generalization of that of an algebraic lattice.
There is also an “m-version” of the concept of a directed set: A subset D of a complete lattice is
calledm-directed if for any X ⊆D with card(X)<m, there is an upper bound of X in D. By means
ofm-directed sets, we have the following definitions.

Definition 3.2. Let L be a complete lattice.
(1) We say that x ∈ L is m′-compact if for all m-directed sets D⊆ L, x≤ ∨

D implies x≤ d for
some d ∈D. Let κ ′

m(L) denote the set of m′-compact elements of L.
(2) The lattice L is called m′-algebraic if for all x ∈ L, ↓x⋂

κ ′
m(L) is m-directed and x=∨

(↓x⋂
κ ′
m(L)).

Proposition 3.3. (1) If an element x of a complete lattice L is m-compact, then x is m′-compact.
(2) If m is a regular cardinal, then m-compact elements coincide with m′-compact ones, and L

is m-algebraic if and only if it is m′-algebraic.

Proof. (1) Suppose that x is m-compact. For any m-directed set D⊆ L with x≤ ∨
D, we have

x≤ ∨
X for some X ⊆D with card(X)<m. Then, since D is m-directed, there is an upper bound

d of X in D, and hence x≤ d. Thus x ism′-compact.
(2) Let x ∈ L be an m′-compact element, and A⊆ L with x≤ ∨

A. Define D= {∨X : X ⊆A
and card(X)<m}. We claim that D is m-directed. Indeed, for any {∨Xj : j ∈ J} ⊆D such that
card(J)<m, we have card(

⋃
j∈J

Xj)<m, and then
∨{∨Xj : j ∈ J} = ∨

(
⋃
j∈J

Xj) ∈D, which proves

the claim. Moreover, x≤ ∨
A= ∨

D. Then x≤ ∨
X0 for some

∨
X0 ∈D, where card(X0)<m.

Thus x ism-compact. By (1), we havem-compactness is equivalent tom′-compactness.
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Figure 1. The Hasse diagram of the lattice L in Example 3.4.

To prove the equivalence between m-algebraicity and m′-algebraicity, it suffices to show that
↓x⋂

κm(L) is m-directed for all x ∈ L. Let X ⊆ ↓x⋂
κm(L) with card(X)<m. We shall show∨

X is m-algebraic. Suppose A⊆ L such that
∨
X ≤ ∨

A. Then, for each y ∈ X, we have y≤ ∨
Xy

for some Xy ⊆A, where card(Xy)<m. Hence
∨
X ≤ ∨

(
⋃
y∈X

Xy). Moreover, card((
⋃
y∈X

Xy))<m

by the regularity of m. Thus
∨
X is m-algebraic, and then

∨
X ∈ ↓x⋂

κm(L), which proves that
↓x⋂

κm(L) ism-directed.

Example 3.4. We shall show that an m′-algebraic lattice is not necessarily m-algebraic. Consider
the case of m= 3, which is not regular. A 3-directed set is exactly a directed set. And 3′-algebraic
lattices are algebraic lattices. Let L= {⊥, a, b, c, d, e, f , g,
}, see Figure 1 for the order relation ≤
on L. It is easy to check that L is a complete lattice. Moreover, L is an algebraic lattice (in fact,
all finite complete lattices are algebraic). Notice that a≤ ∨{b, c, d} = 
, but for any subset X of
{b, c, d}whose cardinality less than 3, we always have a�∨

X. Then a is not 3-compact, and hence
a �= ∨

(↓a⋂
κm(L))= ⊥. That is to say, L is not 3-algebraic.

Definition 3.5. Let L be a complete lattice. A subset A⊆ L is called m-closed, if
(1) ↓A=A;
(2) for any m-directed set D⊆ L, D⊆A implies

∨
D ∈A.

Write �m(L) for the set of m-closed subsets of L, and �m(L) is called the m-closure system on L.

It is clear that �m(L) is closed under arbitrary intersections, and thus �m(L) is indeed a clo-
sure system on L. Recall that a function f : (X, �(X))→ (Y , �(Y)) between closure spaces is called
continuous if f−1(A) ∈ �(X) for all A ∈ �(Y). For a closure system �(X) on X, if ∅, X ∈ �(X) and
A

⋃
B ∈ �(X) for any A, B ∈ �(X), then �(X) is said to be a topological closure system (in which

case the complements of elements in �(X) form a topology on X). We call a function f : L→M
between complete latticesm-continuous if f is continuous with respect to them-closure systems.

Proposition 3.6. (1) Unions of subfamilies {Aj : j ∈ J} of an m-closure system �m(L), where
card( J)<m are still m-closed.

(2) If m> 2, then �m(L) is a topological closure system on the complete lattice L.
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(3) A function f : L→M between complete lattices is m-continuous iff f (
∨
D)= ∨

f (D) for all
m-directed subsets D of L.

Proof. (1) If card(J)< 2, then the family {Aj : j ∈ J} has at most one element, and hence
⋃
j∈J

Aj is

obviously m-closed. Now suppose that card(J)≥ 2. Let D⊆ ⋃
j∈J

Aj be m-directed. We shall show

that D⊆Ai0 for some i0 ∈ I. Assume not, then, for each j ∈ J, there is dj ∈D such that dj /∈Aj.
Then, since D is m-directed, there is an upper bound d0 ∈D of {dj : j ∈ J}. Moreover, there must
be an i0 ∈ I such that d0 ∈Ai0 . Since Ai0 is a lower set, we have {dj : j ∈ J} ⊆ ↓d0 ⊆Ai0 , which
contradicts to di0 /∈Ai0 . Thus D⊆Ai0 for some i0 ∈ I, and hence

∨
D ∈Ai0 ⊆ ⋃

j∈J
Aj, which proves

that
⋃
j∈J

Aj ism-closed.

(2) A direct consequence of (1).
(3) ⇒: Suppose that f ism-continuous andD⊆ L ism-directed. For any x, y ∈ L with x≤ y, we

have↓f ( y) ∈ �m(M), then y ∈ f−1(↓f ( y)) ∈ �m(L) which implies x ∈ ↓y⊆ f−1(↓f ( y)), and hence
f (x) ∈ f ( f−1(↓f ( y)))⊆ ↓f ( y), i.e., f (x)≤ f ( y). Thus f is monotone. Consequently,

∨
f (D)≤

f (
∨
D). And f (D)⊆ ↓∨

f (D). Then D⊆ f−1(↓∨
f (D)) ∈ �m(L), and hence

∨
D ∈ f−1(↓∨

f (D)).
Thus f (

∨
D) ∈ f ( f−1(↓∨

f (D)))⊆ ↓∨
f (D), that is to say, f (

∨
D)≤ ∨

f (D). Therefore, f (
∨
D)=∨

f (D).
⇐: Conversely, suppose A ∈ �m(M) and D⊆ f−1(A) ism-directed. Again, we first show that f

is monotone. Let x, y ∈ L with x≤ y. Notice that x ∈ ↓y and ↓y is m-directed. Then f (x)≤∨
f (↓y)= f (

∨↓y)= f ( y), and hence f is monotone. We next prove that f (D)⊆A is m-directed.
Suppose that X ⊆ f (D) with card(X)<m. For each x ∈ X, there is dx ∈D such that f (dx)= x. Let
X0 = {dx : x ∈ X}. Then card(X0)= card(X) and f (X0)= X. Let d0 ∈D be an upper bound of X0 in
D. Then f (d0) is an upper bound of X in f (D), i.e., f (D) is m-directed. Then, since A is m-closed,
f (

∨
D)= ∨

f (D) ∈A. Hence
∨
D ∈ f−1(A), and then f−1(A) is m-closed, which proves that f is

m-continuous.

Let L and M be m-algebraic lattices. For d ∈ κm(L) and e ∈ κm(M), define the step function
(d ↘ e) : L→M by

(d ↘ e)(x)=
{
e x ∈ ↑d,
⊥M otherwise.

Proposition 3.7. The step functions (d ↘ e) : L→M are m-continuous.

Proof. Suppose that D⊆ L is m-directed. If
∨
D ∈ ↑d, then, by Proposition 3.3(1), there is

d0 ∈D such that d ≤ d0, hence
∨
(d ↘ e)(D)= e= (d ↘ e)(

∨
D); else, (d ↘ e)(

∨
D)= ⊥M =∨

(d ↘ e)(D). Thus (d ↘ e) ism-continuous.

Consider the set [L→M] of allm-continuous functions betweenm-algebraic lattices L andM,
under the pointwise ordering: f ≤ g iff f (x)≤ g(x) for all x ∈ L.

Lemma 3.8. If m is a regular cardinal, then the function space [L→M] between m-algebraic
lattices is still an m-algebraic lattice.

Proof. We first show that [L→M] is a complete lattice. Let F ⊆ [L→M]. Define h : L→M by

h(x)=
∨
f∈F

f (x).
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Then h is the least upper bound of F as long as it ism-continuous. For anym-directed D⊆ L, we
have

h
(∨

D
)

=
∨
f∈F

f
(∨

D
)

=
∨
f∈F

∨
d∈D

f (d)

=
∨
d∈D

∨
f∈F

f (d)

=
∨
d∈D

h(d),

which shows that h is indeedm-continuous. Consequently, [L→M] is a complete lattice.
It remains to show that [L→M] is m-algebraic. We claim that the step functions (d ↘ e)

are m-compact in [L→M]. Indeed, for any A⊆ [L→M] with (d ↘ e)≤ ∨A, we have
(d ↘ e)(d)= e≤ ∨A(d), then, since e is m-compact, there is X ⊆A with card(X )<m, such
that (d ↘ e)(d)≤ ∨X (d). If x ∈ ↑d, then (d ↘ e)(x)= e≤ ∨X (d)≤ ∨X (x) (we have proved
that eachm-continuous function is monotone in the proof of Proposition 3.6); if x ∈ L \ ↑d, then
(d ↘ e)(x)= ⊥M ≤ ∨X (x). Thus (d ↘ e)≤ ∨X , which proves the claim. Suppose f ∈ [L→M].
Define

F = {(d ↘ e) : d ∈ κm(L), e ∈ κm(M), (d ↘ e)≤ f }.
Then F ⊆ ↓f ⋂

κm([L→M]). For every x ∈ L, define

G = {(d ↘ e) : d ∈ ↓x
⋂

κm(L), e ∈ ↓f (d)
⋂

κm(M)}.
Then G ⊆F . Moreover,(∨

G
)
(x)=

∨
d∈↓x⋂

κm(L)

∨
e∈↓f (d)⋂ κm(M)

(d ↘ e)(x)

=
∨

d∈↓x⋂
κm(L)

∨
e∈↓f (d)⋂ κm(M)

e

=
∨

d∈↓x⋂
κm(L)

f (d)

= f
(∨

(↓x
⋂

κm(L))
)

= f (x),
because in the case thatm is regular, ↓x⋂

κm(L) ism-directed by Proposition 3.3(2). Then

f (x)=
(∨

G
)
(x)≤

(∨
F

)
(x)≤ f (x),

and hence f = ∨F , which proves that [L→M] is anm-algebraic lattice.

We denote the category of allm-algebraic lattices andm-continuous functions by LATm.

Theorem 3.9. Let m be a regular cardinal with m> 2. Then the category LATm is cartesian closed.

Proof. (1) A singletonm-algebraic lattice serves as a terminal object in the category LATm.
(2) Suppose that L andM arem-algebraic lattices. Let L×M be the cartesian product together

with the pointwise order, that is: (x1, y1)≤ (x2, y2) iff x1 ≤ x2 and y1 ≤ y2. Define π1 : L×M → L
by
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π1(x, y)= x,

and π2 : L×M →M by

π2(x, y)= y.

It is trivial to check that L×M is a complete lattice. We shall show that L×M is m-algebraic by
proving (κm(L)× {⊥M})⋃ ({⊥L} × κm(M))⊆ κm(L×M), where ⊥L,⊥M are least elements of L
and M, respectively. Suppose (x,⊥M) ∈ κm(L)× {⊥M}. For any A⊆ L×M with (x,⊥M)≤ ∨

A,
we have x≤ ∨

π1(A), then there is X ⊆ π1(A), where card(X)<m, such that x≤ ∨
X. Notice that

for each a ∈ X, there is ba ∈M such that (a, ba) ∈A. Define Y = {(a, ba) : a ∈ X}. Then (x,⊥M)≤∨
Y . Moreover, card(Y)= card(X)<m. Thus (x,⊥M) ∈ κm(L×M). Dually, we also have {⊥L} ×

κm(M)⊆ κm(L×M), which proves (κm(L)× {⊥M})⋃ ({⊥L} × κm(M))⊆ κm(L×M). For every
(x, y) ∈ L×M, we have((

↓x
⋂

κm(L)
)

× {⊥M}
) ⋃

({⊥L} × (↓y
⋂

κm(M)))⊆ ↓(x, y)
⋂

κm(L×M).

Hence

(x, y)=
∨ (((

↓x
⋂

κm(L)
)

× {⊥M}
) ⋃ (

{⊥L} ×
(
↓y

⋂
κm(M)

)))
≤

∨ (
↓(x, y)

⋂
κm(L×M)

)
≤ (x, y),

and then (x, y)= ∨ (↓(x, y)⋂ κm(L×M)
)
, which proves that L×M is an object of the category

LATm. We next show that L×M is the product of L andM in LATm. For anyD⊆ L×M, we have

π1
(∨

D
)

= π1
(∨

π1(D),
∨

π2(D)
)

=
∨

π1(D).

Thus π1 is m-continuous by Proposition 3.6(3). In the same way, we conclude that π2 is also m-
continuous. Suppose that Y is anm-algebraic lattice, f1 : Y → L and f2 : Y →M arem-continuous
functions. Define f : Y → L×M by

f (x)= ( f1(x), f2(x)).

For anym-directed D⊆ Y , we have

f
(∨

D
)

=
(
f1

(∨
D

)
, f2

(∨
D

))
=

(∨
f1(D),

∨
f2(D)

)
=

∨
f (D).

Then f is m-continuous. Moreover, π1 ◦ f = f1 and π2 ◦ f = f2. Thus L×M is the product object
of L andM.

(3) We shall show that the function space [L→M] is an exponential object form-algebraic lat-
tices L andM. By Lemma 3.8, we have that [L→M] is an object of LATm. Consider the evaluation
function ev : [L→M]× L→M defined by

ev( f , x)= f (x).
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Let F and D be anm-directed subsets of [L→M] and L, respectively. Then

ev
(∨

F , x
)

=
(∨

F
)
(x)

=
∨
f∈F

f (x)

=
∨
f∈F

ev( f , x),

and

ev
(
f ,

∨
D

)
= f

(∨
D

)
=

∨
f (D)

=
∨
d∈D

ev( f , d).

Assume now that D ⊆ [L→M]× L is m-directed. Then π1(D) and π2(D) are also m-directed.
For each f ∈ π1(D) and x ∈ π2(D), sincem> 2, there is ( g, y) ∈D such that f ≤ g and x≤ y. Thus

ev
(∨

D
)

= ev
(∨

π1(D),
∨

π2(D)
)

=
∨

f∈π1(D)

ev
(
f ,

∨
π2(D)

)

=
∨

f∈π1(D)

∨
x∈π2(D)

ev( f , x)

=
∨

( f ,d)∈D
ev( f , d),

which proves ev is m-continuous. For each m-continuous function f : P × L→M, where P is an
m-algebraic lattice, we define �f : P → [L→M] by

�f (x)= f (x, ·).
Them-continuity follows easily from that of f . And ev ◦ (�f × idL)= f . Therefore [L→M] is the
exponential object for L andM.

4. m-Approximable Concept
In this section, we introduce the notion of anm-approximable concept and provide a representa-
tion theorem for m-algebraic lattices. By defining an appropriate type of morphisms on contexts,
an equivalence of the resulting category of contexts and the category LATm of m-algebraic
lattices is obtained. The cardinals m considered in this section are regular, in which case m-
compactness and m-algebraicity coincide with m′-compactness and m′-algebraicity, respectively.
We also require thatm≥ 2.

Definition 4.1. Let K = (G,M, I) be a context. A subset A⊆M is called an m-approximable
(attribute) concept if for any X ⊆A with card(X)<m, we have X′′ ⊆A. We use the notation A(K)
for the set of all m-approximable concepts in K, ordered by inclusion.

Lemma 4.2. Let K = (G,M, I) be a context and X ⊆M. Then
(1) the posetA(K) is a complete lattice;
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(2) X′′ is an m-approximable concept;
(3) if card(X)<m, then X′′ is an m-compact element in the setA(K);
(4) if X is an m-compact element in A(K), then there is X0 ⊆ X with card(X0)<m, such that

X = X′′
0 .

Proof. (1) To prove that A(K) is a complete lattice, it suffices to show that A(K) is a closure
system. It is equivalent to show that

⋂ B ∈A(K) for any B ⊆A(K). Suppose that X ⊆ ⋂ B with
card(X)<m. Then, for each B ∈ B, X ⊆ B, and we have X′′ ⊆ B because B is an m-approximable
concept. Hence X′′ ⊆ ⋂ B, this proves ⋂ B ∈A(K). Consequently,A(K) is a complete lattice.

(2) By the fact that F′′ ⊆ (X′′)′′ = X′′ for any F ⊆ X′′.
(3) Let D ⊆A(K) be an m-directed set such that X′′ ⊆ ∨D. We claim that

⋃D is the supre-
mum of D in A(K), which is equivalent to saying that

⋃D is an m-approximable concept.
Indeed, if Y ⊆ ⋃D for any card(Y)<m, then, for all y ∈ Y , there is Dy ∈D such that y ∈Dy,
and then, since D is m-directed, there is DY ∈D such that Dy ⊆DY for all y ∈ Y . Hence Y ⊆DY ,
and therefore Y ′′ ⊆DY ⊆ ⋃D, which proves the claim.

Then X′′ ⊆ ⋃D, and thus X ⊆ ⋃D. By an argument similar to that given above, there is DX ∈
D such that X ⊆DX . Hence X′′ ⊆DX , and thus X′′ ism-compact.

(4) Since X is an m-approximable concept, we have X = ∨{Y ′′ : Y ⊆ X and card(Y)<m}
(notice that m≥ 2). Moreover, {Y ′′ : Y ⊆ X and card(Y)<m} is m-directed by the regularity of
m. Then, bym-compactness of X, X = X′′

0 for some X0 ⊆ X with card(X0)<m.

Theorem 4.3. [Representation Theorem] For any context K = (G,M, I), the poset A(K) of m-
approximable concepts is an m-algebraic lattice. Conversely, for every m-algebraic lattice L, there is
a context KL whose m-approximable concept latticeA(KL) is order-isomorphic to L.

Proof. We first show that A(K) is an m-algebraic lattice. Let A ∈A(K). Then, A= ⋃{X′′ : X ⊆A
with card(X)<m}, and by Lemma 4.2(3), we haveA(K) is anm-algebraic lattice.

For the converse part, suppose that (L,≤ ) is an m-algebraic lattice. Define the context KL =
(L, κm(L),≥ ), where ≥ is the dual of ≤. We shall show that L is order-isomorphic to A(KL). We
claim that A⊆ κm(L) is anm-approximable concept if and only if A= ↓a⋂

κm(L) for some a ∈ L.
Since L is an m-algebraic lattice, we have a= ∨

(↓a⋂
κm(L)) for every a ∈ L. Then the function

i : L→A(KL) defined by

i(a)= ↓a
⋂

κm(L)

is clearly an isomorphism. To prove the claim, first observe that for any X ⊆ κm(L),

X′ = {a ∈ L : ∀x ∈ X, a≥ x}
= ↑

(∨
X

)
,

and

X′′ = {b ∈ κm(L) : ∀y ∈ X′, y≥ b}
=

{
b ∈ κm(L) : ∀y ∈ ↑

(∨
X

)
, y≥ b

}
=

{
b ∈ κm(L) :

∨
X ≥ b

}
= ↓

(∨
X

) ⋂
κm(L).

If A= ↓a⋂
κm(L) for some a ∈ L, then for any X ⊆ ↓a⋂

κm(L), we have
∨
X ≤ a, and then

X′′ = ↓(∨X)
⋂

κm(L)⊆ ↓a⋂
κm(L), hence A is anm-approximable concept. On the other hand,
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assume that A is an m-approximable concept. We will complete the proof by showing A=
↓(∨A)

⋂
κm(L). Clearly, A⊆ ↓(∨A)

⋂
κm(L). Let

D=
{∨

X : X ⊆A and card(X)<m
}
.

We have D which is an m-directed set and
∨
A= ∨

D. Suppose a ∈ ↓(∨A)
⋂

κm(L). We
have a which is m-compact and a≤ ∨

A= ∨
D. Then there is some

∨
X0 ∈D, where X0 ⊆A

with card(X0)<m, such that a≤ ∨
X0. Thus a ∈ ↓(∨X0)

⋂
κm(L)= X′′

0 ⊆A. That is to say,
↓(∨A)

⋂
κm(L)⊆A, which completes the proof.

The following definition carries the notion of an m-approximable concept from attributes to
objects.

Definition 4.4. Let K = (G,M, I) be a context. A subset A⊆G is called an m-approximable object
concept if for any X ⊆A with card(X)<m, we have X′′ ⊆A. Let O(K) denote the set of all m-
approximable object concepts of K, together with the inclusion order.

Lemma 4.5. Let K = (G,M, I) be a context and X ⊆G. Then
(1) the posetO(K) is a complete lattice;
(2) X′′ is an m-approximable object concept;
(3) if card(X)<m, then X′′ is an m-compact element in the setO(K) under inclusion;
(4) if X is an m-compact element in O(K), then there is X0 ⊆ X with card(X0)<m, such that

X = X′′
0 .

Proof. Similar to that of Lemma 4.2.

Theorem 4.6. The poset O(K) of m-approximable object concepts of a context K is an m-algebraic
lattice. Conversely, every m-algebraic lattice L is order-isomorphic to an m-approximable concept
latticeO(KL) for some context KL.

Proof. By a process analogous to that employed in the proof of Theorem 4.3. Notice that for the
converse part, KL is defined to be (κm(L), L,≤ ).

For any set A, let Pm(A) denote the set of all subsets of A whose cardinality is less thanm.

Definition 4.7. Given the contexts K1 = (G1,M1, I1) and K2 = (G2,M2, I2), an m-approximable
morphism� from K1 to K2 is a subset of Pm(M1)×Pm(M2) such that for all X, X1, X2 ∈Pm(M1)
and Y1, Y2, Yj ∈Pm(M2), where j ∈ J and card(J)<m, the following axioms are satisfied:

(a1) ∅� ∅;
(a2) X� Yj for all j ∈ J implies X�

⋃
j∈J

Yj;

(a3) X1 ⊆ X′′
2 , X1� Y1 and Y2 ⊆ Y ′′

1 imply X2� Y2.

Proposition 4.8. Let � be an m-approximable morphism from K1 = (G1,M1, I1) to K2 =
(G2,M2, I2), X, X1, X2, Xj ∈Pm(M1) and Y , Y1, Y2, Yj ∈Pm(M2), for all j ∈ J and card(J)<m. We
have the following conclusions.

(1) If X1 ⊆ X2 and X1� Y, then X2� Y.
(2) If X� Y1 and Y2 ⊆ Y1, then X� Y2.
(3) If Xj� Yj for all j ∈ J, then

⋃
j∈J

Xj�
⋃
j∈J

Yj.
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Proof. (1) Since X2 ⊆ X′′
2 , we have X1 ⊆ X′′

2 . Moreover, Y ⊆ Y ′′. Then, by Axiom (a3), we have
X2� Y .

(2) By a method similar to the one used in (1).
(3) By (1), we have

⋃
j∈J

Xj� Yj0 for all j0 ∈ J. Then, by Axiom (a2), we have
⋃
j∈J

Xj�
⋃
j∈J

Yj.

We write CXTm for the collection of all contexts together withm-approximable morphisms.

Theorem 4.9. The collection CXTm is a category.

Proof. The composition of m-approximable morphisms is taken to be the composition of
the relations. We first show that the composition of m-approximable morphisms is still an
m-approximable morphism. Let K1 = (G1,M1, I1), K2 = (G2,M2, I2), and K3 = (G3,M3, I3) be
contexts, and let�1:K1 →K2 and�2:K2 →K3 bem-approximable morphisms. We shall show
that�2 ◦�1 is anm-approximable morphism from K1 to K3:

(1) It is clear that ∅(�2 ◦�1 )∅.
(2) Suppose that X ∈Pm(M1), Zj ∈Pm(M3) and X(�2 ◦�1 )Zj for all j ∈ J, where card(J)<

m. Then for each j ∈ J, there exists Yj ∈Pm(M2) such that X�1 Yj and Yj�2 Zj. By
Axiom (a2), we have X�1

⋃
j∈J

Yj. And by Proposition 4.8(3), we have
⋃
j∈J

Yj�2
⋃
j∈J

Zj. Hence

X(�2 ◦�1 )
⋃
j∈J

Zj.

(3) Let X1, X2 ∈Pm(M1), Z1, Z2 ∈Pm(M3) such that X1 ⊆ X′′
2 , X1(�2 ◦�1 )Z1 and Z2 ⊆ Z′′

1 .
Then there is Y ∈Pm(M2) such that X1�1 Y and Y�2 Z1. Notice that Y ⊆ Y ′′. By Axiom (a3),
we have X2�1 Y and Y�2 Z2. Thus X2(�2 ◦�1 )Z2.

We next show that for each context K1, there is an identity m-approximable morphism. Let
�id:K1 →K1 be defined by

X1�id X2 iff X2 ⊆ X′′
1 .

It is easy to check that�id is an m-approximable morphism. Moreover, for every X ∈Pm(M1),
we have X�id X. Then, for any m-approximable morphism �:K1 →K2, X� Y implies
X(� ◦�id ) Y . Conversely, if X(� ◦�id )Y , then there is X0 ∈Pm(M1) such that X0 ⊆ X′′ and
X0� Y , and henceX� Y by Axiom (a3). Thus� ◦�id=�. The left unit law is proved similarly.

The associativity ofm-approximable morphisms follows from that of composition of relations.
Therefore, CXTm is a category.

Lemma 4.10. Let f , g : L→M be m-continuous functions between m-algebraic lattices. Then f = g
iff f (c)= g(c) for all c ∈ κm(L).

Proof. Suppose f (c)= g(c) for all c ∈ κm(L). Then for any x ∈ L,

f (x)= f
(∨ (

↓x
⋂

κm(L)
))

=
∨

f
(
↓x

⋂
κm(L)

)
=

∨
g

(
↓x

⋂
κm(L)

)
= g

(∨ (
↓x

⋂
κm(L)

))
= g(x),

and thus f = g. The converse is clear true.
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Theorem 4.11. The category CXTm is equivalent to LATm.

Proof. We first construct a functor F from LATm to CXTm. For every m-algebraic lattice L,
defineF(L)= (L, κm(L),≥ ). And for eachm-continuous function f : L→M betweenm-algebraic
lattices, let F( f )=�f : (L, κm(L),≥ )→ (M, κm(M),≥ ) be defined by

X�f Y iff Y ⊆ ↓f
(∨

X
) ⋂

κm(M).

It is trivial to check that�f satisfies Axioms (a1) and (a2). Assume that X1 ⊆ X′′
2 , X1�f Y1, and

Y2 ⊆ Y ′′
1 , where X1, X2 ∈Pm(κm(L)) and Y1, Y2 ∈Pm(κm(M)). Then

Y2 ⊆ ↓
(∨

Y1
) ⋂

κm(M) (because Y ′′
1 = ↓

(∨
Y1

) ⋂
κm(M))

⊆ ↓f
(∨

X1
) ⋂

κm(M) (because X1�f Y1 ⇒ Y1 ⊆ ↓f
(∨

X1
) ⋂

κm(M))

⊆ ↓f
(∨

X2
) ⋂

κm(M) (because X1 ⊆ X′′
2 ⇒

∨
X1 ≤

∨
X2),

and hence X2�f Y2. Thus�f is an m-approximable morphism. Let 1L be the identity function
on L. We prove F(1L)=�1L is exactly the identity morphism�id on (L, κm(L),≥ ):

X�1L Y ⇔ Y ⊆ ↓1L
(∨

X
) ⋂

κm(L)= ↓
(∨

X
) ⋂

κm(L)= X′′

⇔ X�id Y .

Suppose g :M →N also is an m-continuous function between m-algebraic lattices. Then F
is a functor once we prove F( g ◦ f )=F( g) ◦F( f ). Assume that X�g◦f Z. Then Z ⊆ ↓g ◦
f (

∨
X)

⋂
κm(M). Since ↓g ◦ f (∨X)

⋂
κm(M) is m-directed, there is z ∈ ↓g ◦ f (∨X)

⋂
κm(M)

such that
∨
Z ≤ z. Moreover, z ≤ g( f (

∨
X))= ∨

g(↓f (∨X)
⋂

κm). Notice that g(↓f (∨X)
⋂

κm)
is m-directed because g is monotone. Then there is y ∈ ↓f (∨X)

⋂
κm such that z ≤ g( y). Thus

X�f {y} and {y}�g Z, and hence X(�g ◦�f )Z. Conversely,

X(�g ◦�f )Z ⇒ X�f Y and Y�g Z for some Y ∈Pm(κm(M))

⇒ Y ⊆ ↓f
(∨

X
) ⋂

κm(M) and Z ⊆ ↓g
(∨

Y
) ⋂

κm(M)

⇒ Z ⊆ ↓g( f
(∨

X
)
)
⋂

κm(M)

⇒ X�g◦f Z.

Then �g◦f=�g ◦�f , and hence F is a functor. The following three parts together imply that
CXTm is equivalent to LATm:

(1) The functor F is faithful. Suppose f , g ∈ [L→M] with f �= g. By Lemma 4.10, there is c ∈
κm(L) such that f (c) �= g(c). Then ↓f (c)⋂ κm(M) �= ↓g(c)⋂ κm(M). Without loss of generality,
there exists d ∈ ↓f (c)⋂ κm(M) but d /∈ ↓g(c)⋂ κm(M). Then

{c}�f {d} but {c} /�g{d},
we conclude that�f �=�g .

(2) The functor F is full. Let � be an m-approximable morphism from (L, κm(L),≥ ) to
(M, κm(M),≥ ). Define f� : L→M by

f�(x)=
∨ ⋃

{Y ∈Pm(κm(M)) : ∃X ∈Pm(κm(L)) such that X ⊆ ↓x and X� Y }.
We check first that f� ism-continuous. Suppose thatD⊆ L ism-directed. For anyX ∈Pm(κm(L))
with

∨
X ≤ ∨

D, we have
∨
X ≤ d for some d ∈D by the m-compactness and m-directedness.
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Then

f�
(∨

D
)

=
∨ ⋃ {

Y ∈Pm(M) : ∃X ∈Pm(L) such that X ⊆ ↓
(∨

D
)
and X� Y

}
=

∨ ⋃ {
Y ∈Pm(M) : ∃X ∈Pm(L) such that X ⊆ ↓d for some d ∈D and X� Y

}
=

∨
f�(D),

which implies that f� is m-continuous. We next show that � is the image F( f�)=�f� . Let
X ∈Pm(κm(L)) and Y ∈Pm(κm(M)). Then X�f� Y iff

Y ⊆ ↓f�
(∨

X
) ⋂

κm(M)

=
(
↓
∨ ⋃ {

Y0 ∈Pm(M) : ∃X0 ∈Pm(M) such that X0 ⊆ ↓
∨

X and X0� Y0
}) ⋂

κm(M).

The set {Y0 ∈Pm(M) : ∃X0 ∈Pm(L) such that X0 ⊆ ↓∨
X and X0� Y0} is m-directed by

Proposition 4.8(3). Thus

X�f� Y

⇔ ∃Y0 ∈Pm(M), ∃X0 ∈Pm(L) such that Y ⊆ ↓
∨

Y0
⋂

κm(M)= Y ′′
0 , X0 ⊆ X′′ and X0� Y0

⇒ X� Y (by Axiom (a3)).

Conversely, if X� Y , then X�f� Y by setting X0 = X and Y0 = Y . Thus�=�f� , and hence F
is full.

(3) For each context K = (G,M, I), we shall show K0 =F(A(K))= (A(K), κm(A(K)),⊇ ) is
isomorphic to K in CXTm. Define�1⊆Pm(M)×Pm(κm(A(K))) by

X�1 X iff
∨

X ⊆ X′′.

It is obvious that �1 satisfies Axioms (a1) and (a2). Suppose X1, X2 ∈Pm(M) and X1,X2 ∈
Pm(κm(A(K))) such that X1 ⊆ X′′

2 , X1�1 X1 and X2 ⊆X ′′
1 . By Lemma 4.2(4), we have X1 is of

the form {A′′
j : j ∈ J}, where card(J)<m and card(Aj)<m for all j ∈ J. Then

X2 ⊆X ′′
1

=
(
↓
∨

X1
) ⋂

κm (A(K))

=
(

↓
(⋃

{Aj : j ∈ J}
)′′) ⋂

κm(A(K))

implies B⊆ (
⋃{Aj : j ∈ J})′′ for all B ∈X2. And

X1�1 X1 ⇒A′′
j ⊆ X′′

1 for all j ∈ J

⇒
(⋃

{Aj : j ∈ J}
)′′ ⊆ X′′

1 ⊆ X′′
2 .

Then B⊆ X′′
2 for all B ∈X2, i.e., X2�1 X2. Thus�1 is an m-approximable morphism from K to

K0. Define�2⊆Pm(κm(A(K)))×Pm(M) by

X �2 X iff X ⊆
∨

X .
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Again, it is trivial to check that�2 satisfies Axioms (a1) and (a2). With the notions defined above,
suppose X1 ⊆X ′′

2 , X1�2 X1, and X2 ⊆ X′′
1 . Then

X2 ⊆ X′′
1

⊆
∨

X1
(
because X1 ⊆

∨
X1 and

∨
X1 is anm-approximable concept

)
⊆

∨
X2

(
because

∨
X1 ⊆

∨
X ′′
2 =

(
↓
∨

X2
) ⋂

κm(A(K))
)
,

and thus X2�2 X2. Hence �2 is an m-approximable morphism from K0 to K. We claim that
�2 ◦�1 is the identity morphism�id(K) on K. Indeed,

X1�id(K) X2 ⇒ X2 ⊆ X′′
1

⇒ {X′′
1 }�2 X2

⇒ X1(�2 ◦�1 )X2 (because X1�1 {X1}),
and

X1(�2 ◦�1 )X2 ⇒ X1�1 X and X �2 X2 for some X ∈Pm(κm(A(K)))

⇒
∨

X ⊆ X′′
1 and X2 ⊆

∨
X

⇒ X2 ⊆ X′′
1

⇒ X1�id(K) X2.

It remains to show that�1 ◦�2 is the identity morphism�id(K0) on K0:

X1�id(K0) X2 ⇒X2 ⊆X ′′
1 =

⎛
⎝↓

⎛
⎝⋃

j∈J
Aj

⎞
⎠

′′⎞
⎠ ⋂

κm(A(K)) (where Aj are those defined above)

⇒X1�2
⋃
j∈J

Aj and
⋃
j∈J

Aj�1 X2

⇒X1(�1 ◦�2 )X2,

and conversely,

X1(�1 ◦�2 )X2 ⇒X1�2 X and X�1 X2 (for some X ∈Pm(M))

⇒ X′′ ⊆
∨

X1 and
∨

X2 ⊆ X′′

⇒
∨

X2 ⊆
∨

X1

⇒X2 ⊆
(
↓
∨

X1
) ⋂

κm(A(K))=X ′′
1

⇒X1�id(K0) X2.

Thus K is isomorphic to K0, which completes the proof.

Since an equivalence of categories preserves cartesian closedness, we obtain the following
corollary:

Corollary 4.12. Ifm is a regular cardinal withm> 2, then the category CXTm is cartesian closed.

Proof. By Theorems 3.9 and 4.11.
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5. Special Cases ofm-Algebraic Lattices andm-Approximable Concepts
5.1 The case of m= 2
The cardinal 2 is regular. Let L be a complete lattice. It is easy to check that any nonempty subset
D of L is 2-directed. Then we have the following:

Proposition 5.1. (1) An element x of a complete lattice L is 2-compact iff for any nonempty subset
A⊆ L, x≤ ∨

A implies that there is a ∈A such that x≤ a.
(2) A function f : L→M between complete lattices is 2-continuous iff f preserves arbitrary joins,

i.e., f (
∨
A)= ∨

f (A) for all A⊆ L.

Definition 5.2. (1) An element x of a complete lattice L is called a complete prime (Nielsen et al.
1981) (also called a completely join-irreducible element Raney 1952, a super-compact element Zhao
and Zhou (2006), etc.) if for any A⊆ L, x≤ ∨

A implies that there is a ∈A such that x≤ a.
(2) A complete lattice L is prime algebraic (Nielsen et al. 1981) (or superalgebraic lattice Zhao

and Zhou 2006, completely algebraic lattice Liu et al. 2011, etc.) if each element of L is the join of
complete primes.

The notion of a 2-compact and that of a complete prime differ only on the least element⊥:⊥ is
a 2-compact element, but not a complete prime (because ⊥ ≤ ∨∅). However, a 2-algebraic lattice
is exactly a prime algebraic one since ⊥ = ∨{⊥} = ∨∅.

For a context K = (G,M, I), a subset A⊆M is an 2-approximable concept iff ∅′′ ⊆A and {a}′′ ⊆
A for all a ∈A. The Axiom (a2) plays no role in the definition of a 2-approximable morphism
between contexts. By Theorem 4.3, we have the following.

Theorem 5.3. For any context K = (G,M, I), the poset A(K) of 2-approximable concepts is a
prime algebraic lattice. Conversely, for any prime algebraic lattice L, there is a context KL whose
2-approximable concept latticeA(KL) is order-isomorphic to L.

Liu et al. (2011) introduced a type of concepts as follows:

Definition 5.4. (Liu et al. 2011) Let K = (G,M, I) be a concept. A subset A⊆M is called a weak
approximable attribute concept if {a}′′ ⊆A for all a ∈A.

The notion of a weak approximable attribute concept is slightly different from that of a
2-approximable concept: ∅ is always a weak approximable attribute concept; however, it is a
2-approximable concept only in the case that ∅′′ = ∅. Liu et al. also obtained the above repre-
sentation by means of weak approximable attribute concepts (see Theorems 6 and 7 in Liu et al.
2011). By Theorem 4.11, a categorical equivalence is obtained:

Theorem 5.5. The category LAT2 of prime algebraic lattices and 2-continuous functions is
equivalent to the category CXT2 of contexts and 2-approximable morphisms.

5.2 The case of m= ℵ0

The smallest infinite cardinalℵ0 is regular. A subsetD of a complete lattice L isℵ0-directed iff every
finite subset of D has an upper bound in D iff D is directed. An ℵ0-algebraic lattice is exactly an
algebraic one. A function f : L→M between complete lattice isℵ0-continuous iff f (

∨
D)= ∨

f (D)
for all directed D⊆ L iff f is Scott continuous (see Gierz et al. 2003).

The notion of an approximable concept, introduced by Zhang and Shen (2006), coincides with
that of an ℵ0-approximable concept, and a context morphism, proposed by Hitzler and Zhang
(2004), is precisely an ℵ0-approximable morphism:
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Definition 5.6. (Zhang and Shen 2006; Hitzler and Zhang 2004) (1) Let K = (G,M, I)) be a
context. A subset A⊆M is an approximable concept iff F′′ ⊆A for any finite subset F of A.

(2) A context morphism �: (G1,M1, I1)→ (G2,M2, I2) between contexts is a subset of
Fin(M1)× Fin(M2), where Fin(M1) and Fin(M2) are all finite subsets of M1 and M2, respectively,
such that for all X, X1, X2 ∈ Fin(M1) and Y1, Y2 ∈ Fin(M2):

(i) ∅� ∅;
(ii) X� Y1 and X� Y2 imply X� Y1

⋃
Y2;

(ii) X1 ⊆ X′′
2 , X1� Y1 and Y2 ⊆ Y ′′

1 imply X2� Y2.

The following “ℵ0-versions” of Theorems 4.3 and 4.11 have also been obtained in Zhang and
Shen (2006); Hitzler and Zhang (2004):

Theorem 5.7. (1) For any context K = (G,M, I), the setA(K) of approximable concepts ordered by
inclusion is an algebraic lattice. Conversely, for any algebraic lattice L, there is a context KL whose
approximable concept latticeA(KL) is order-isomorphic to L.

(2) The category CXTℵ0 of contexts and context morphisms is equivalent to the category LATℵ0
of algebraic lattices and Scott continuous functions.

5.3 The case of m= ℵ1

The cardinal ℵ1 is the smallest one, which is bigger than ℵ0. A set whose cardinality is less than ℵ1
is a countable set. The cardinal ℵ1 is regular because unions of countably many countable sets are
still countable. Lee (1988) investigated ℵ1-algebraic lattices under the name countably algebraic
lattices.

Definition 5.8. (Lee 1988) Let L be a complete lattice.
(1) A subset D⊆ L is countably directed if every countable subset of D has an upper bound in D.
(2) An element x ∈ L is said to be a Lindelöf element if for any countably directed D⊆ L with

x≤ ∨
D, there is d ∈D such that x≤ d.

(3) The lattice L is called countably algebraic if every x ∈ L is a join of Lindelöf elements.

By Theorem 4.3, we have a representation theorem for countably algebraic lattices:

Theorem 5.9. For any countably algebraic lattice L, there is a context KL whose ℵ1-approximable
concept lattice A(KL) is order-isomorphic to L. Conversely, for any context K = (G,M, I), the poset
A(K) of ℵ1-approximable concepts is a countably algebraic lattice.

A function f : L→M between complete lattices is ℵ1-continuous if f preserves countably
directed joins, i.e., f (

∨
D)= ∨

f (D) for all countably directed subsets D of L. By Theorem 3.9,
we have the following:

Theorem 5.10. The category LATℵ1 of countably algebraic lattices and functions which preserves
countably directed joins is cartesian closed.

Concerning the execution of a nondeterministic or parallel program, one natural assumption
is that of fairness, which states that no process is forever denied its turn for execution (see, e.g.,
Apt and Olderog 1983; Park 1980). Apt and Plotkin (1986) came up with four semantics for a
programming language admitting unbounded (but countable) nondeterminism, providing frame-
works for investigating fairness via translation into a language for countable nondeterminism.
Involving countable nondeterminism leads to a lack of continuity (preserving directed sups) of
various semantic functions. The notion of a countably directed set is also called anω-directed one,
and that ofℵ1-continuity (which is weaker than the notion of continuity) is calledω1-continuity in
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Apt and Plotkin (1986). By the categorical equivalence and the representation theorem provided
in this paper, ℵ1-approximable concepts and ℵ1-approximable morphisms might be considerable
theoretical interest in programming semantics which resort to the use of countable ordinals.

5.4 The case of m= ∞
We set∞ to be the limit of all cardinals, i.e., every cardinal is less than∞. A subsetD of a complete
lattice L is an ∞-directed set iff

∨
D ∈D. Then every element of L is ∞-compact, and hence every

∞-algebraic lattice is just a complete lattice.
For a context K = (G,M, I), a subset A⊆M is an ∞-approximable concept iff X′′ ⊆A for every

X ⊆A iff A′′ =A iff (A′,A) is a concept (in which case, A is called the intent of (A′,A)). Similarly,
a subset B⊆G is an ∞-approximable object concept iff (B, B′) is a concept iff B is the extent of
(B, B′). Then Theorem 4.6 can be viewed as a generalization of the following well-known result in
FCA:

Theorem 5.11. (Davey and Priestley 2002; Ganter and Wille 1999) The posetO(K) of extents of a
context K is a complete lattice. Conversely, every complete lattice L is order-isomorphic toO(KL) for
some context KL.
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