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Thin glass sheets may be manufactured using a two-part process in which a sheet is
first cast and then subsequently reheated and drawn to a required thickness. The latter
redrawing process typically results in a sheet with non-uniform thickness and with
smaller width than the cast glass block. Experiments suggest that the loss of width
can be minimized and the non-uniformities can be essentially confined to thickening
at the sheet edges if the heater zone through which the glass is drawn is made very
short. We present a three-dimensional mathematical model for the redraw process
and consider the limits in which (i) the heater zone is short compared with the
sheet width, and (ii) the sheet thickness is small compared with both of these length
scales. We show that, in the majority of the sheet, the properties vary only in the
direction of drawing and the sheet motion is one-dimensional, with two-dimensional
behaviour and the corresponding thick edges confined to boundary layers at the
sheet extremities. We present numerical solutions to this boundary-layer problem and
demonstrate good agreement with experiment, as well as with numerical solutions
to the full three-dimensional problem. We show that the final thickness at the sheet
edge scales with the inverse square root of the draw ratio, and explore the effect
of tapering of the ends to identify a shape for the initial preform that results in a
uniform rectangular final product.

Key words: interfacial flows (free surface), low-Reynolds-number flows, thin films

1. Introduction

Drawing is a technique widely used in the manufacture of thin glass sheets and
fibres. The most common techniques require hot molten glass to be extruded and
stretched as it cools. However, such an approach may be unsuitable when making
specialist glasses prone to devitrification or containing components that will evaporate
or react with the atmosphere, or in applications where only a small quantity of the
product is required. In such situations, an alternative two-step approach to drawing
requires that a sheet is first block cast (this pre-cast sheet is known as a preform) and
later fed vertically into a furnace where it is reheated and stretched by the application
of a tensile force at a fixed distance downstream. As the glass stretches, it thins and
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FIGURE 1. (Colour online) Schematic of the glass redraw process.

contracts laterally. A schematic of this redrawing process is shown in figure 1. Redraw
is a batch process, but each process runs for a long time so that it typically operates
in a steady state. Ideally, this process would produce a long, wide and very thin glass
sheet of close to uniform thickness.

Schott AG are a supplier of specialist glasses and glass products, and use the
redraw process in the manufacture of thin glass sheets. Using a very short heater
zone (Buellesfeld et al. 2014), these sheets may be redrawn without substantial loss
of width and with essentially uniform final thickness, except for small regions near
the edges in which the sheet thickness is typically larger than in the bulk; we refer
to this phenomenon as edge thickening. A sample thickness profile is plotted in
figure 2(a). It is evident that after redraw, the cross-section is far from uniform, with
the edges thicker than the centre by a factor of approximately six. The presence of
such thick edges may result in breakage when the sheet is rolled up for storage and
transportation, and it is therefore desirable to understand and eliminate this behaviour.
Figure 2(b) shows the results of simulation experiments (details of which may be
found in § 5); again the edges are much thicker than the centre and, apart from the
case where the heater zone is longer than the sheet half-width, there is a large region
in the centre of the sheet with uniform thickness.

Redraw is an example of an extensional flow problem in which the longitudinal
and transverse velocities do not vary significantly across the sheet thickness. Models
developed for other extensional flow problems, such as downdraw (Matovich &
Pearson 1969) and the float glass process (Howell 1994, 1996), may be adapted
for the redraw process. These processes share a number of key features and are
characterized by small aspect ratios which may be exploited to simplify corresponding
mathematical models. Studies of extensional flow date back to the experimental work
of Trouton (1906), who developed an empirical formula for the extension of a
rod subject to a tensile force. The Trouton model, which governs the velocity and
thickness (radius) profiles of a sheet (rod) under tension, has since been derived,
generalised and analysed by various authors. Solutions for steady-state isothermal
drawing of a rod were obtained by Matovich & Pearson (1969), who considered
the effects of viscosity, inertia, surface tension and gravity. Dewynne, Ockendon
& Wilmott (1989) considered the tapering of a cylindrical glass fibre in which the
central region is heated and the ends are pulled apart, and tracked the evolution of
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FIGURE 2. (Colour online) (a) Thickness profile of a glass sheet drawn with draw ratio 38
at Schott AG plant, (b) numerical solutions of final sheet cross-section with draw ratio 20
for various heater zone lengths: the ratios of heater zone length to initial sheet half-width
are 0.1 (blue line), 0.2 (red dashed), 0.4 (yellow dot-dashed), 0.8 (purple circles) and 1.6
(green crosses).

imperfections in the initial rod radius when viscous stretching dominates the stress
balance. Griffiths & Howell (2008) modelled the drawing of a non-axisymmetric tube,
solving an inverse problem to obtain the die shape required to produce a desired final
shape. Taroni et al. (2012) studied the interplay between extensional flow and heat
transport in a glass fibre, determining a hierarchy of problems for the temperature
profile in the fibre in various heat transfer regimes.

A model for the viscous flow of a three-dimensional sheet characterized by its
small aspect ratio of thickness to other length scales was derived by Howell (1994,
1996), who used this as a model for the float glass process. This thin-sheet model
has also been used by Filippov & Zheng (2010) to study the redraw process. Studies
of the redraw process, for example by Filippov & Zheng (2010), as well as the
experimental results as shown in figure 2, show that both the width and the thickness
of the sheet are affected by stretching, and that the final thickness of the sheet is
typically non-uniform. Furthermore, numerical simulations using Polyflow (Ansys Inc.
Polyflow 2013, see § 5 for details) show that when the heater zone is very short, these
non-uniformities are confined to the neighbourhood of the sheet edges, as shown in
figure 2(b).

The same edge-thickening phenomenon has been observed in the related problem of
casting of polymer films, for example by Dobroth & Erwin (1986) and Silagy, Demay
& Agassant (1999). Dobroth & Erwin (1986) investigated the relative importance of
die swell, surface tension and edge stress effects in the edge-thickening phenomenon.
They determined that edge stress effects dominate the behaviour, and by assuming that
the centre of the sheet is subject to plane strain while the edge experiences uniaxial
stress, proposed the relationships

final bulk thickness
initial bulk thickness

= 1
draw ratio

, (1.1a)

and
final edge thickness

initial edge thickness
= 1√

draw ratio
. (1.1b)
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D’Halewyu, Agassant & Demay (1990) and Silagy et al. (1999) used the thin-sheet
model to describe casting of a polymer film of uniform temperature, and showed
numerically that this model does indeed predict the experimentally observed
non-uniform thickness profiles. Other studies (for example, Debbaut, Marchal &
Crochet 1995; Beaulne & Mitsoulis 1999) included viscoelasticity to more accurately
model polymer film casting. Smith & Stolle (2000) used numerical simulations to
show that edge thickening can be reduced by the use of a non-rectangular extrusion
die.

The stability of fibre and sheet drawing has received a great deal of attention due to
the restrictions that instabilities place on industrial operating regimes. Under certain
circumstances, when the ratio of the draw speed to the feed speed is sufficiently
large, draw resonance is observed, in which perturbations to the steady state grow
in amplitude, resulting in varicose variations in the thickness of the final product.
Pearson & Matovich (1969) investigated the stability of steady-state isothermal
one-dimensional drawing, and predicted that this process first becomes unstable at a
draw ratio of approximately 20.2. The effect of temperature variation on stability
has been studied for fibres by Shah & Pearson (1972), and more recently by
Scheid et al. (2009) for sheets. Their results show that, except under extreme
conditions, both cooling and temperature variations across the sheet thickness are
typically stabilizing, and allow significantly larger draw ratios to be achieved without
encountering resonance. In the parameter regimes of interest here (see § 7 for values),
Scheid et al. (2009) showed that a sheet which undergoes a viscosity change of
just one order of magnitude during drawing is stable to draw resonance up to draw
ratios of order 104, while the typical ratios used in redraw processes are less than
100. Furthermore, draw resonance has not been observed in any of the numerous
numerical and laboratory experiments carried out into the redraw process. Since draw
resonance is not found to be a limiting factor in redraw processes, in this paper we
will consider only steady states and not concern ourselves with their stability.

Glass is characterized by a viscosity that decreases rapidly with increasing
temperature; for a typical glass used in the redraw process, the required temperature
change of approximately 250 K corresponds to a viscosity change of three orders of
magnitude. For this reason, most of the stretching takes place in the region where
the glass temperature is maximized. The fully coupled flow–temperature problem
may in principle be tackled using finite-element software, but leaves little scope for
mathematical analysis. In this paper, we instead suppose that the temperature (and
hence viscosity) profile in the sheet is prescribed, and focus our attention on the fluid
mechanical processes that underlie edge thickening. This approach is valid when the
transfer of heat to the sheet due to radiation and air convection is large compared
with convection of heat in the direction of drawing (Taroni et al. 2012).

In this paper we develop a model for the redraw process that predicts and quantifies
the phenomenon of edge thickening. In §§ 2 and 3 we exploit several features of the
problem to facilitate our analysis and gain insight. First, we use the fact that the
Reynolds number is typically small (Re . 10−4) in order to neglect inertia and
model the flow using the three-dimensional Stokes equations. Second, we exploit the
geometrical property that the preform thickness is small compared with the heater
zone length, which in turn is short compared with the preform width. (We use the
terms thickness, width and length as defined in figures 1 and 3.) We use asymptotic
analysis to examine the structure of the flow and capture the one-dimensional
behaviour in the bulk, with two-dimensional behaviour in a boundary layer at
the sheet edge. This represents an advance on previous work by authors such as
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FIGURE 3. (Colour online) Three-dimensional glass sheet with width 2b(x) and thickness
2h(x, y) undergoing redraw in the x-direction subject to an imposed temperature profile
T(x, y, z). The sheet has velocity u = (u, v, w), with feed speed u = U and draw speed
u=UD.

d’Halewyu et al. (1990), Silagy et al. (1999) and Filippov & Zheng (2010), as we
demonstrate that the distance over which edge thickening persists scales with the
length of the heater zone, and that the edge thickening phenomenon is described
by a canonical two-dimensional boundary-layer problem. Only the boundary-layer
problem requires numerical solution, and our approach thus removes the numerical
stiffness associated with the large separation of length scales in the full free-boundary
problem. In § 3.2 we present numerical solutions to this boundary-layer problem.
In our solutions, the final thicknesses at the centre and at the edge of the sheet
depend on the draw ratio D (= draw speed/feed speed) through the universal power
laws (1.1), as proposed by Dobroth & Erwin (1986). The corresponding exponents are
explained in § 4 through an exact conservation property of the thin-sheet equations at
a stress-free edge, thus providing a more systematic justification than that of Dobroth
& Erwin (1986). In § 5 we compare the predictions of our model with numerical
solutions to the full three-dimensional problem and with experimental data. In § 6 we
extend the Smith & Stolle (2000) idea of modifying the preform shape with the aim
of producing a perfectly rectangular final cross-section, by presenting and illustrating
a simple method for calculating the exact preform required. In § 7 we discuss the
validity of our main assumptions (namely that heat flow is decoupled from fluid flow
and that surface tension is not important) and the extension of the model to include
a fully coupled temperature equation and surface-tension effects. Finally, in § 8 we
discuss our findings and their implications.

2. Mathematical model
2.1. Full dimensional problem

We adopt Cartesian coordinates x= (x, y, z), with the x-axis aligned with the direction
of drawing, the y-axis spanning the width of the sheet as it enters the heater zone
and z in the transverse direction as shown in figure 3. We consider a planar sheet
of glass of width 2b(x) in the y-direction and thickness 2h(x, y) in the z-direction,
undergoing redraw through a furnace of length d in the x-direction. We assume a one-
way coupling between heat transfer and fluid flow, so that the temperature in the glass
is controlled directly by the furnace temperature and we thus know the temperature
profile T(x, y, z) of the glass before solving the flow problem. The sheet enters the
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heater zone across the x = 0 plane and exits through the x = d plane. We assume
that the centre surface of the sheet is flat so that the glass surfaces are located at
z=±h(x, y) for −b(x)< y< b(x) and 0< x< d. In industrial processes of interest, the
Reynolds number is small, the sheet is thin compared with other length scales and the
heater zone is short compared with the preform width. We will exploit these features
to derive a simplified model governing the behaviour of the sheet.

We assume that the flow is steady and governed by the Stokes equations

∇ · u= 0, ∇ · σ = 0. (2.1a,b)

Here u= (u, v,w) is the velocity vector, ∇= (∂/∂x, ∂/∂y, ∂/∂z) and

σ =−pI +µ(∇u+ (∇u)T) (2.2)

is the stress tensor, with p denoting the pressure, µ the viscosity and I the identity
matrix.

We initially consider a preform with rectangular cross-section. The preform has
half-thickness h0 and half-width b0, and is pushed slowly into the heater zone by the
preform clamp, moving at speed U, so that the inlet conditions read

h(0, y, t)= h0, b(0, t)= b0, u(0, y, z, t)=U, v(0, y, z, t)= 0. (2.3a−d)

Over the length of the heater zone, the speed is increased by a factor D (called the
draw ratio) by the use of draw rollers at the bottom of the heater zone, so that the
final velocity is given by

u(d, y, z, t)=DU, v(d, y, z, t)= 0. (2.4a,b)

The sheet moves like a rigid body upstream and downstream of the heater zone. In
principle, one should also specify boundary conditions at x= 0 and x= d for w, the
velocity out of the xy-plane, such as

w(0, y, z, t)=w(d, y, z, t)= 0. (2.5)

However, we will see later that this is no longer necessary when a thin-sheet
approximation is made. On the free surfaces z = ±h(x, y), we impose no-flux and
no-stress conditions

u · n̂= σ · n̂= 0, (2.6)

where n̂ is the unit normal to the surface. We neglect the effect of surface tension
since the capillary number Ca=µ0U/γ �1, where γ is the surface-tension coefficient
at the glass–air interface and µ0 is the minimal viscosity (here the viscosity varies
along the sheet as a function of temperature; we will discuss this in more detail in
§ 3.2). We note that this assumption will break down in a very small region near the
edge of the sheet, and we will discuss the effects of surface tension further in § 7.

The material parameters used for one particular glass type and redraw process are
shown in table 1. These parameters may vary significantly between glass types and
processes.
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Parameter Symbol Approximate value Units

Density ρ 2100 kg m−3

Feed speed U 8.33× 10−4 m s−1

Heater zone length d 0.12 m
Preform thickness h0 0.002 m
Preform width b0 0.4 m
Maximum temperature T0 1300 K
Minimum viscosity µ0 3.16× 104 Pa s
Surface tension coefficient γ 0.3 N m−1

TABLE 1. Typical parameter values for redraw of a borosilicate glass sheet (Griffiths &
Howell 2008; Buellesfeld et al. 2014).

2.2. Non-dimensionalization
We define two aspect ratios

ε = preform thickness
preform width

= 2h0

2b0
, (2.7a)

δ = length of heater zone
preform half-width

= d
b0
. (2.7b)

In the processing of glass sheets, the sheet thickness is invariably much smaller than
either length or width, and it follows that both ε � 1 and ε � δ must be satisfied.
There exist drawdown processes in which δ is O(1) or indeed where δ is large (so
the sheet is very long compared to its width). In this paper, however, we focus on
industrially relevant processes where the heater zone is short relative to the sheet
width, and therefore we assume that the two parameters ε and δ satisfy

0< ε� δ� 1. (2.8)

We now non-dimensionalize the system and exploit these two small parameters by
introducing

(x′, y′, z′)=
(

x
δb0

,
y
b0
,

z
εb0

)
, (b′, h′)=

(
b
b0
,

h
εb0

)
, (u′, v′,w′)=

( u
U
,
v

δU
,

w
εU

)
,

(2.9a−c)

p′ = δb0

µ0U
p, T ′ = T

T0
, µ′ = µ

µ0
. (2.9d−f )

Here T0 is the maximum temperature attained by the glass inside the furnace, and
µ0 = µ(T0) is the corresponding (minimum) viscosity. Inserting these new variables
into the governing equations (2.1) and dropping the primes from the notation
yields

ux + δ2vy + δwz = 0, (2.10a)

ε2(−p+ 2µux)x + ε2δ2(µuy +µvx)y + (δ2µuz + ε2δµwx)z = 0, (2.10b)

ε2(−p+ 2δ2µvy)y + ε2(µuy +µvx)x + (δ2µvz + ε2δµwy)z = 0, (2.10c)

(−δp+ 2δ2µwz)z + (δµuz + ε2µwx)x + (δ3µvz + ε2δ2µwy)y = 0, (2.10d)

where subscripts denote differentiation.
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The kinematic and dynamic conditions (2.6) become

±(uhx + δ2vhy)= δw, (2.11a)

±ε2hx(−p+ 2µux)± ε2δ2hy(µuy +µvx)= δ2µuz + ε2δµwx, (2.11b)

±ε2hx(µuy +µvx)± ε2hy(−p+ 2δ2µvy)= δ2µvz + ε2δµwy, (2.11c)

±hx(δµuz + ε2µwx)± hy(δ
3µvz + ε2δ2µwy)= (−δp+ 2δ2µwz), (2.11d)

on z = ±h(x, y, t). Finally, our choice of non-dimensionalization yields the end
conditions

u(0, y, z)= h(0, y)= b(0)= 1, u(1, y, z)=D, v(0, y, z)= v(1, y, z)= 0. (2.12a−c)

2.3. Thin-sheet limit
We now consider the thin-sheet limit ε→ 0, with δ held fixed for the moment. The
details of the asymptotic analysis may be found in Howell (1994, 1996) and are
omitted here. The leading-order flow is found to be extensional, meaning that the
in-plane velocity is uniform across the sheet, i.e.

u= u(x, y), v = v(x, y). (2.13a,b)

Net conservation of mass and momentum then leads to the leading-order governing
equations

(uh)x + δ2(vh)y = 0, (2.14a)

(4µ̄hux + 2δ2µ̄hvy)x + δ2(µ̄huy + µ̄hvx)y = 0, (2.14b)

(µ̄huy + µ̄hvx)x + (2µ̄hux + 4δ2µ̄hvy)y = 0, (2.14c)

where

µ̄(x, y)= 1
2h

∫ h

−h
µ(x, y, z) dz (2.15)

is the viscosity averaged across the sheet thickness.
We assume symmetry about the x-axis and hence impose the conditions

v = uy = 0 at y= 0. (2.16)

Net conservation of mass and momentum at the edge of the sheet lead to the boundary
conditions

δ2v = ub′(x), (2.17)
δ2(uy + vx)= (4ux + 2δ2vy)b′(x), (2.18a)

2ux + 4δ2vy = (uy + vx)b′(x), (2.18b)

all at y= b(x).
The feed and draw conditions are

u(0, y)= h(0, y)= b(0)= 1, u(1, y)=D, v(0, y)= v(1, y)= 0. (2.19a−c)

If the thickness-averaged viscosity µ̄ is a known function of (x, y), then the equations
and boundary conditions (2.14)–(2.19) in principle provide a closed problem for the
in-plane velocity (u(x, y), v(x, y)), and the sheet half-thickness h(x, y) and half-width
b(x). We note that (2.14)–(2.19) are equivalent to the equations used by Filippov &
Zheng (2010) to model redraw when gravity is neglected from their model.
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2.4. Short heater-zone limit
We now apply the additional physically relevant asymptotic limit δ� 1, in which the
heater-zone length is short relative to the preform width (but still much larger than
the preform thickness), by writing the variables u, v, h as asymptotic expansions in
δ2, i.e.

ψ =ψ0 + δ2ψ1 + · · · . (2.20)

Note that the subscripts refer to an expansion in δ about the leading-order (in ε)
solution.

In addition to our assumption that the temperature profile in the sheet is prescribed,
we will restrict our consideration to temperature profiles that vary along the length
of the sheet only, i.e. T = T(x), and µ̄ = µ(x). This is valid provided the furnace
temperature is constant in the y-direction, with sufficiently weak coupling between
flow and heat transfer. A full discussion of this assumption and the role of heat
transfer in the system will be presented in § 7.

At leading order, conservation of mass (2.14a) and x-momentum (2.14b) with
boundary conditions (2.19) imply that the axial velocity and film thickness are
independent of y, i.e.

u0 = u0(x), h0 = h0(x). (2.21a,b)

These functions satisfy the familiar one-dimensional model (Scheid et al. 2009)

u0h0 = 1, 4µ̄h0u0x = 1, (2.22a,b)
u0(0)= h0(0)= 1, u0(1)=D, (2.22c,d)

whose solution is

u0(x)= exp

log(D)

∫ x

0
µ̄−1ds∫ 1

0
µ̄−1ds

 , h0(x)= 1
u0(x)

. (2.23a,b)

The y-component of momentum conservation (2.14c) at leading order yields an
equation for v0. Integrating twice and applying homogenous Dirichlet conditions
(2.19), we find that the leading-order lateral velocity is zero:

v0 ≡ 0. (2.24)

Continuing to O(δ2), one can quickly find that the first corrections u1, h1, v1 are all
zero and, indeed, that all algebraic corrections are zero. Hence the leading-order outer
solution (2.23), (2.24) is exponentially accurate in δ.

Finally, evaluating the no-flux condition (2.17) we see that b(x)∼ 1 at leading order,
while the edge conditions (2.18) can only be satisfied by (2.23), (2.24) in the trivial
case of no stretching (i.e. D = 1). From this result we infer that there must be a
boundary layer in the region near y= b(x), in which a different scaling is required.

3. Boundary-layer behaviour
3.1. Rescaled problem

To satisfy the free-boundary conditions on y = b(x) we must introduce a boundary
layer at the sheet edge where the fluid behaviour changes rapidly. We therefore
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perform the rescaling

b= 1+ δB, y= 1+ δY, v = δ−1V, (3.1a−c)

so that the free surface is now located at Y = B(x) and the outer flow (2.23) is
recovered as Y→−∞. The quantity δB may be interpreted as the displacement of the
preform edge in the y-direction from its position at the top of the heater zone. The
rescaling of the lateral velocity v reflects the expectation that the velocity components
should be comparable in the boundary layer.

The conservation laws (2.14) become

(uh)x + (vh)Y = 0, (3.2a)
(4µ̄hux + 2µ̄hVY)x + (µ̄huY + µ̄hVx)Y = 0, (3.2b)
(µ̄huY + µ̄hVx)x + (2µ̄hux + 4µ̄hVY)Y = 0, (3.2c)

and we recover the fully two-dimensional problem, as expected. The feed and draw
conditions are

u(0, Y)= h(0, Y)= 1, u(1, Y)=D, V(0, Y)= V(1, Y)= B(0)= 0, (3.3a−c)

and the boundary conditions (2.17), (2.18) on the sheet edge Y = B(x) are now given
by

v = uBx, (3.4a)
uY + Vx = (4ux + 2VY)Bx, (3.4b)
2ux + 4VY = (uY + Vx)Bx. (3.4c)

This system is closed by matching to the outer solution (2.23), (2.24), i.e.

u→ u0(x), V→ 0, h→ 1/u0(x) as Y→−∞. (3.5a−c)

The boundary-layer solutions for u, V and h converge exponentially in Y to the far-
field behaviour (3.5), implying that any boundary-layer effects decay exponentially
away from the sheet edges. This behaviour is consistent with our observation that the
outer solution (2.23), (2.24) is exponentially accurate in δ.

3.2. Numerical solution
We now present numerical solutions of the boundary-layer problem (3.2)–(3.4)
obtained using the finite-element software FEniCS (Logg & Wells 2010; Logg,
Wells & Hake 2012). To enable solution with FEniCS, the domain is transformed
from (X, Y)∈ [0, 1] × (−∞,B(X)] onto a fixed rectangle [0, 1] × [−L, 0], with L� 1;
since the edge effects decay exponentially, only moderate values of L are required to
obtain accurate solutions. We use a regular triangular mesh with Lagrange elements
of degree 1, and the resulting nonlinear problem is solved using a built-in Newton
solver. For the case when µ = 1 and D = 20, we find that 300 × 260 nodes with
L= 3.5 suffice to give solutions correct to two decimal places.

For the moment we focus on the case of constant viscosity µ̄ ≡ 1, so that the
solution depends on a single parameter D. A typical spatially varying viscosity profile
used in industrial simulations will be considered in § 5.

In figure 4 we show the thickness profile in the boundary later for a sheet redrawn
at draw ratio D= 20. As the sheet moves through the heater zone (x increasing), we
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FIGURE 4. (Colour online) Thickness profiles inside the boundary layer for a constant-
viscosity sheet drawn at a draw ratio D= 20.

see that the cross-sectional area decreases, as expected, as the velocity increases. We
also observe a departure from uniform thickness. The location of the sheet edge moves
inwards and, as a result, the thickness at the edge increases relative to the bulk. In
§ 4 we will argue that this is a universal consequence of conservation of mass near a
stress-free surface.

In figure 5 we show the velocity profile in the sheet, as well as the evolution of the
sheet edge, during drawing at D=20. Comparing figures 4 and 5 we see that the sheet
necks inwards in both the y- and z-directions during drawing. Far from the sheet edge,
the solution approaches the one-dimensional far-field behaviour (3.5), which depends
only on x, and the velocity vector points strictly in the x-direction. However, close to
the sheet edge, the velocity points inwards, and this results in the necking in of the
sheet, as well as the observed difference between the edge and bulk thicknesses.

Finally, we ask how this behaviour depends on the draw ratio D. Since draw
resonance is not a concern, it is sensible to study (3.2)–(3.4) even for large D.
Figure 6(a) shows the final edge displacement B(1) as a function of draw ratio; as D
increases so too does the magnitude of the change in edge position, with the rate of
change decreasing for large draw ratios. Figure 6(c) shows the final sheet thickness
h(1, Y) at varying distances from the sheet edge. We observe that the difference
between the edge and bulk thickness increases with increasing draw ratio. We also
note the appearance of two power laws as predicted by (1.1). Far from the edge, the
final thickness scales with 1/D; this corresponds to the one-dimensional behaviour
described by (2.23). Close to the edge, the final thickness scales with 1/

√
D; we

discuss this further in § 4. We also note that as D grows large, small oscillations
occur as the thickness profile decays away from the sheet edge; the first minimum is
highlighted in figure 6(b) for a draw ratio of 80.

4. Edge behaviour

We investigate the phenomenon of edge thickening in a more general setting by
returning to the governing equations (2.14)–(2.19) and considering the behaviour of
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FIGURE 5. (Colour online) Velocity profile inside the boundary layer of a sheet
undergoing redraw at draw ratio D = 20 under constant viscosity conditions, with free
surface Y = B(x) shown.

the fluid at the free surface y = b(x). Close to this free surface, it is natural to use
a local curvilinear coordinate system; we let s parametrize arc-length along the free
surface and n be the normal distance from the free surface, so that

x̃= (δx, y)= st̂ + nn̂, (4.1)

where t̂ and n̂ are the unit tangent and normal to the sheet edge. We also define
tangential and normal velocity components us and un, respectively by

ũ= (u, δv)= us(s, n)t̂ + un(s, n)n̂. (4.2)

The factors of δ in the definitions (4.1) and (4.2) account for the fact that the x and
y variables were non-dimensionalized using different scalings.

The conservation-of-mass equation (2.14a) may now be rewritten as

∇̃ · (hũ)= 0. (4.3)

In terms of the new coordinates, the kinematic boundary condition (2.17) and the
normal component of the no-stress condition (2.18) at the sheet edge take the forms

un = 0, 2n̂ · [(n̂ · ∇̃)ũ] + t̂ · [(t̂ · ∇̃)ũ] = 0 at n= 0. (4.4a,b)

Now, by evaluating (4.3) at the free surface n = 0, and using the boundary
conditions (4.4), we obtain the exact relation

∂

∂s
(h
√

us)= 0 at n= 0. (4.5)
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FIGURE 6. (Colour online) Dependence of sheet behaviour on draw ratio D: (a) location
of sheet edge at the bottom of the heater zone B(1) as a function of D, (b) final thickness
profile for draw ratio 80, with a local minimum in thickness at Ym, (c) final sheet thickness
as a function of D at varying distances from the sheet edge Y =B(x) are shown in black,
while plots of D−1 (dashed line) and D−1/2 (dot-dashed) are shown in red.

Thus the product of the sheet thickness and the square root of the fluid speed at the
sheet edge is a conserved quantity. From the inlet conditions h= u= us = 1 at x= 0,
and outlet condition u= us=D at x= 1, we deduce that the final sheet edge thickness
is given by

h(1, b(1))= 1/
√

D. (4.6)

Dobroth & Erwin (1986) give the following simple physical argument for this result.
In the direction of drawing, x, the elongation ratio is equal to the draw ratio D. At
the edge of the sheet there is no stress either across the sheet thickness or across the
sheet width, so the elongation ratios in these directions must be the same and equal
to 1/

√
D. In contrast, the outer solution (2.23) yields h(1, y) ∼ 1/D at the centre

of the sheet, since the behaviour here is equivalent to that of an infinitely wide
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sheet, with no flow in the y-direction. These are exactly the power-law behaviours
observed in figure 6(c). It is thus clear that the final sheet thickness will always
be larger at the edges than in the middle, with the disparity increasing as the draw
ratio increases. Hence we provide a systematic derivation of the same power-law
relationships proposed by Dobroth & Erwin (1986) for casting of a polymer film.

It is worth emphasizing that the relation (4.6) is exact for any thin viscous sheet
under tension with no stress at the edges. In contrast, the one-dimensional outer
solution (2.23) is valid only in the limit δ→ 0, i.e. in the regime where the heater
zone is short compared with the sheet width. In the regime where δ = O(1), the
inward retraction of the edge would affect the whole sheet and cause the thickness at
the centre to be larger than the one-dimensional result h∼ 1/D. At the other extreme,
where δ � 1 so the sheet is long and narrow, the edge-thickening effect would be
eliminated; the sheet thickness would remain approximately uniform and scale with
1/
√

D everywhere (Howell 1994).

5. Comparison with three-dimensional model and with redraw data
We now test the validity of our model by comparing our predictions with numerical

solutions to the full three-dimensional problem (2.1)–(2.6) and with measurements
from a redraw plant at Schott AG. We impose a typical dimensionless temperature
profile used in industrial simulations to mimic the effects of furnace heating, namely

T(x)= θ0 + (1− θ0)

(
1

1+ exp[−k(x− xL)] +
1

1+ exp[k(x− xR)] − 1
)
, (5.1)

where xL < xR, θ0 < 1 and k� 1 are parameters. As shown in figure 7(a), the profile
(5.1) remains approximately at the inlet temperature θ0 for x< xL, increases rapidly to
the maximum temperature T ≈ 1 for xL < x< xR, then rapidly falls back to T ≈ θ0 for
x> xR. The parameter k is a measure of how rapidly the transitions occur; prototypical
parameter values are k= 20, xL = 0.25, xR = 0.75 and θ0 = 0.8.

A typical glass temperature–viscosity relation is of the form

µ= exp
[

1
ν

(
1

T − Tc
− 1

1− Tc

)]
, (5.2)

in dimensionless variables, where Tc and ν are parameters; ν is typically small so
that µ is strongly temperature dependent. Relevant illustrative values are ν = 0.1 and
Tc = 0.34; as illustrated in figure 7(b), this leads to a viscosity that is almost three
orders of magnitude lower in the main heating zone xL < x< xR than in the inlet and
outlet zones.

In figure 8 we show the final sheet profile calculated numerically from the
dimensionless version of the full three-dimensional Stokes equations (2.1), (2.2)
with associated boundary conditions (2.3)–(2.6) using the finite-element package
Polyflow (Ansys Inc. Polyflow 2013). We prescribe the temperature profile (5.1) on
the free surface and at the inlet boundary, and the temperature in the bulk is then
calculated by solving the energy equation (13.1–4 in Ansys Inc. Polyflow 2013).
The corresponding viscosity is then found using (5.2), as this was found to be
numerically more stable than imposing the viscosity field directly in the bulk. The
furnace temperature and viscosity parameters are the same as those used in figure 7.
The other parameter values are ε = 0.01, D = 20 and two different small values
of δ ∈ {0.1, 0.2}. In all cases, the sheet was discretized using linear elements for
temperature and mini-elements for velocity and pressure (for details see Fortin 1981;
Ansys Inc. Polyflow 2013). Remeshing was carried out via a streamwise method, full
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FIGURE 7. (Colour online) (a) Temperature profile (5.1) and (b) viscosity profile (5.2),
for k= 20, xL = 0.25, xR = 0.75, θ0 = 0.8, ν = 0.1 and Tc = 0.34.
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FIGURE 8. (Colour online) Final thickness profile h(1, y) at the bottom of the heater zone
for a draw ratio D= 20 and temperature and viscosity profiles (5.1), (5.2) with the same
parameter values as in figure 7. The coloured data points are numerical solutions to the
full three-dimensional Stokes problem calculated using software package Polyflow. The
blue circles correspond to ε = 0.01, δ = 0.1 and the red × symbols to ε = 0.01, δ = 0.2.
The black diamonds and green crosses are the solutions to the three-dimensional Stokes
problem with surface tension included (with Ca= 80), for ε = 0.01, δ= 0.1 and ε = 0.01,
δ= 0.2 respectively. The data is scaled so that the profiles collapse onto the black dashed
curve which is the numerical solution to the boundary-layer problem (3.2)–(3.4).

details of which may be found in Ansys Inc. Polyflow (2013). Grid independence
was established for typical grid sizes of 100× 50× 4.

Figure 8 demonstrates that the scalings from (3.1) collapse the two thickness
profiles onto a single curve in the neighbourhood of the edge y = b(x). We have
also plotted the Polyflow numerical solutions to the three-dimensional problem when
surface tension is included (with Ca = 80), and these collapse onto the same curve,
verifying that surface-tension effects are not important in the inner region for this
process.

In figure 8, we also plot the numerical solution to the boundary-layer problem
(3.2)–(3.5), calculated using the same viscosity profile. The agreement between the
full numerical solution and the boundary-layer solution is extremely good, despite
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the values of δ not being especially small. This is because we retain all of the
terms in the governing equations (3.2)–(3.4) inside the boundary layer near the edge,
and the influence of the free surface decays exponentially away from the edge (cf.
§ 2.4). The thin-sheet model surely breaks down very close to the sheet edge but
nevertheless gives an excellent approximation to the thickness profile everywhere
else. In summary, figure 8 demonstrates that, provided the heating zone is sufficiently
short, the edge thickening effect is independent of the sheet width. The details of the
thickness profile plotted in figure 8 do depend on the draw ratio and on the viscosity
profile, but the asymptotic variations h∼ 1/D in the bulk and h∼ 1/

√
D at the edge

are universal. We note a small discrepancy between the thicknesses predicted by the
boundary-layer solution and by the three-dimensional solution near the sheet edge.
The numerical solution of the three-dimensional problem is more challenging than the
two-dimensional boundary-layer problem due to the presence of very small and large
parameters, and we attribute the discrepancy to numerical error arising in Polyflow.

In figure 9, we compare numerical predictions of the final thickness profile with
data from a redraw plant at Schott AG. By taking measurements with thermocouples
fixed on a plate travelling through the heater zone, it was established that this heater
zone corresponds to a dimensionless length of δ = 0.4 and that the induced glass
temperature profile can by roughly approximated by a function of type (5.1). The blue,
red and green data points indicate thickness data (measured offline using a contact
profilometer) taken at three different times during typical redraw of a borosilicate glass
sheet with aspect ratio ε = 0.01 and draw ratio D= 38. The black dashed lines show
the numerical solution of the boundary-layer problem (3.2)–(3.5), while the black solid
line shows the one-dimensional bulk solution (2.23). The thin pink line shows the
numerical solution to the full three-dimensional problem (2.10)–(2.12).

Even for such a moderate value of δ, the agreement between the three-dimensional
and thin-sheet models is very good. Our asymptotic solution gives an excellent
prediction of the final sheet width as well as the edge and bulk thicknesses observed
experimentally. However, the physical sheet is not completely flat in the bulk, and
there appears to be a significant discrepancy between the predicted and measured
profiles in the regions indicated by arrows in figure 9. One possible source of error
is an over-simplification of the temperature profile. The two- and three-dimensional
simulations assume that the temperature is a known function of x; in reality, the
temperature will vary across the sheet width (and may also vary across the thickness).
A more accurate, two-dimensional temperature profile would better reflect the
industrial process and improve the prediction of the thickness transition between
the bulk and edge, in particular in the region highlighted in figure 9.

6. Non-rectangular preforms
The ubiquitous edge-thickening effect demonstrated in figures 4–9 is a nuisance for

glass manufacturers, and it is natural to ask whether the shape of the preform might be
modified to counteract the accumulation of glass at the sheet edges. From the analysis
performed in § 4, we know that the final edge thickness scales with 1/

√
D while the

bulk thickness scales with 1/D. This suggests that a tapered preform whose edges
have reduced thickness 1/

√
D will provide a final product with edge thickness 1/D,

in line with that of the bulk of the sheet. It is not obvious, however, exactly what the
shape or extent of the taper should be.

The analysis presented in this paper is valid for non-rectangular preforms, provided
the preform is only doctored over a length O(δ) at the edge, i.e. provided the
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FIGURE 9. (Colour online) Thickness profile h(1, y) at the bottom of the heater zone
for a draw ratio D= 38 and temperature and viscosity profiles given by (5.1) and (5.2).
The blue, red and green data points show thickness profiles measured at three different
times during an experimental run of the redraw process whose parameters correspond to
ε = 0.01 and δ = 0.4. The black dashed lines show the solution of the boundary-layer
problem (3.2)–(3.4), and the black solid line in the centre, located at h = 1/38, is the
one-dimensional bulk solution (2.23). The thin pink line shows the numerical solution to
the full three-dimensional problem (2.10)–(2.12) calculated using Polyflow for ε = 0.01
and δ = 0.4. The arrows highlight regions where the discrepancy between experimental
data and the numerical solutions is significant.

imposed non-uniformity is confined to the naturally occurring boundary layer. One
can therefore conduct numerical experiments by solving the boundary-layer problem
from § 3 with different preform thickness profiles imposed at x= 0 and discover the
corresponding final thickness profiles produced at x = 1; an approach similar to this
was adopted by Smith & Stolle (2000). Alternatively, one could impose the condition
of a uniform final sheet thickness at x = 1 and then try to determine the required
preform profile h(0, y). At first glance, one would expect the resulting inverse problem
to be ill posed. However, we can exploit the scaling and reflectional symmetries of
the governing equations (3.2) to translate the inverse problem into a version of the
forward problem already solved in § 3.

The idea is to solve the boundary-layer problem (3.2)–(3.5) numerically for draw
ratio D = D∗ < 1. While physical compression of the sheet would certainly lead to
a sinuous transverse instability, the purely in-plane thin-sheet model (3.2)–(3.5) is
mathematically well posed regardless of whether D is greater or smaller than unity.
A suitable reflection and scaling of the resulting forward (starred) solution, namely

x= 1− x∗, h(x, Y)=D∗h∗(x∗, Y), u(x, Y)= 1
D∗

u∗(x∗, Y), (6.1a−c)

V(x, Y)=− 1
D∗

V∗(x∗, Y), B(x)= B∗(x∗)− B∗(1), (6.1d,e)

gives a solution of the inverse problem with draw ratio D = 1/D∗ > 1 and uniform
thickness at the downstream end x= 1. Therefore, to find the optimal taper for a given
draw ratio D, we simply impose a uniform thickness at x∗ = 0, solve the forward
problem for draw ratio 1/D and an appropriately reflected temperature profile and
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FIGURE 10. (Colour online) Optimal preform shape to draw a rectangular product at draw
ratios 10 (green dot-dashed), 20 (blue solid) and 40 (red dashed) with constant viscosity.

record the thickness profile produced at x∗= 1. Such an ‘optimal preform’ is shown in
figure 10 for three different draw ratios, D= 10, 20, and 40 and constant temperature
and viscosity. We see that the edge thickness is 1/

√
D as expected, increasing to 1

an O(δ) distance from the sheet edge.
Drawing of the optimal preform at D = 20 is illustrated in figure 11(a), and we

see that it does indeed produce a rectangular thin sheet. While it is likely to be
impractical and expensive to create a preform with a precisely specified smooth
taper, it is relatively easy via a cutting process to produce a piecewise linear preform
profile. The result of drawing such a linear preform is shown in figure 11(b). We
see that the shape of the final product is greatly improved compared with that shown
in figure 4, but that the sharp corner in the preform results in a kink in the final
product as indicated by the arrow, and shown more clearly in figure 11(c). The exact
inverse-problem solutions shown in figure 10 would provide a valuable guide in
designing a preform shape that reduces the thickness variations in the final product
while satisfying manufacturing constraints.

7. Redraw of a thin viscous sheet including fully coupled heat transfer and surface
tension

The model used in this paper relies on three basic assumptions, namely that (i)
inertia effects are negligible, (ii) the temperature is a known function of position in the
heater zone, and (iii) surface-tension effects are negligible. The Reynolds number in
industrial processes of interest is almost always small, and therefore inertia effects are
indeed unlikely to be significant. However, situations may arise in which it is prudent
to include coupled heat transfer and/or surface tension effects in the model. In this
section we will briefly discuss the implications of each.

7.1. Heat transfer
The temperature in the glass is known a priori provided heat transfer between the
glass sheet and the surrounding atmosphere is effectively instantaneous. To check this
assumption, we refer to the heat transfer model outlined by Taroni et al. (2012) for
a glass fibre, in which heat is transported within the fibre by convection, conduction
and radiation, and gained from/lost to the surroundings by radiative transfer and air
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FIGURE 11. (Colour online) Drawing of (a) sheet with optimal initial thickness profile,
(b) sheet with linear taper, at draw ratio D=20 at constant viscosity, (c) final cross-section
of tapered sheet shown in (b).

convection, assuming that a Rosseland approximation may be made. Taroni et al.
(2012) find that the glass and air furnace temperatures are approximately equal
provided one or both of the reduced Stanton number

St∗ = khd
ρcpUh0

= δ
ε

kh

ρcpU
, (7.1)
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and the parameter

λ∗ = σεRT3
0 d

ρcpUh0
= δ
ε

σεRT3
0

ρcpU
, (7.2)

is sufficiently large. Here cp ≈ 1000 J kg−1 K−1 is the specific heat of the glass,
kh≈ 100 W m−2 is the coefficient of heat transfer between the glass and surrounding
atmosphere, εR ≈ 0.9 the specific emissivity of the glass (Taroni et al. 2012) while
σ = 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann constant. The parameters
St∗ and λ∗ measure the effects of heat transfer from the furnace due to convection
and radiation, respectively, compared with convection of heat in the glass. The
representative parameter values given in table 1 imply that St∗ ≈ 3.4 and λ∗ ≈ 3.8.
While these values are sufficiently large to indicate that the heat-flow problem
decouples to a first approximation, the effects of coupling may be important, especially
near the edges.

Redraw is undertaken at sufficiently high temperatures that radiative heat transfer is
significant. Modelling radiative heat transfer inside the sheet in full is computationally
demanding, but simpler models may be developed in certain limiting cases. If the
sheet is optically thick, the Rosseland approximation may be made (see, for example,
Taroni et al. 2012) and radiative heat transfer treated as a diffusion-like process. If
the sheet is optically thin, and temperature variations across the sheet thickness can
be neglected, a simplified model for the radiative heat transfer between the semi-
transparent glass and its environment can be derived by a straightforward extension
of the considerations of Modest (2013) on absorption, transmission and reflection of
radiation in window panes.

7.2. Surface tension
The parameter values in table 1 indicate that the capillary number Ca=µ0U/γ ≈ 80.
Including surface tension in the model requires the imposition of a normal force on
the free surface. In the thin-sheet limit the bulk momentum equations (3.2) remain
unchanged, and only the boundary conditions (3.4b) and (3.4c) on y=±b(x, t) need
be modified. At the sheet edge, a force balance in dimensional terms yields

−2γ√
1+ h2

n

=
∫ h

−h
n̂ · (σ · n̂) dz, (7.3)

where hn = n̂ · ∇h is the normal derivative of the sheet thickness at the sheet edge.
Non-dimensionalizing and integrating provides a normal stress condition

2µ
1+ B2

x

[B2
x(2ux + VY)− Bx(uY + Vx)+ (ux + 2VY)] =− δ

εCa
1
h
, (7.4)

along with the condition of zero tangential stress. These new boundary conditions
could easily be incorporated into the numerical solution of the boundary-layer
problem, and the presence of surface tension will act to exacerbate the problem of
edge retraction. The size of the effect of O(δ/(εCa)) which may be O(1) in processes
of interest. However, in figure 8, we compare solutions to the full three-dimensional
Stokes problem (2.10)–(2.12) with and without the inclusion of a surface tension term.
The solutions are plotted in figure 8 for the cases ε = 0.01, δ = 0.1 and ε = 0.01,
δ = 0.2 and temperature and viscosity profiles (5.1) and (5.2). We observe that the
data are virtually indistinguishable and collapse onto the same curve in the boundary
layer, so our assumption that surface tension may be neglected is accurate for the
particular process of interest here, in which δ/(εCa)= 0.5.
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8. Conclusions
In this paper we examine the glass redraw process, in which a prefabricated sheet

is fed into a heater zone and drawn out the other end at a greater speed. We derive a
mathematical model to predict how the thickness profile of the resulting final product
depends on the process parameters and, in particular, to explain and quantify the
anomalous thickening observed near the edges of the sheet. We find that the bulk
flow is purely one-dimensional, with the axial velocity and sheet thickness satisfying
the Trouton model. Variations in the sheet thickness are confined to boundary layers
near the edges of the sheet, where the flow is governed by a canonical free-boundary
problem. The inward displacement of the sheet edge and the local thickness profile
depend on the draw ratio and on the temperature profile in the heater zone, but not
on the width of the sheet. This finding should inform future manufacture of thin
sheets by redraw; increasing the width of the preform while keeping the heater zone
length constant will increase the yield of uniformly thin glass by the same amount,
with no increase in the amount of waste due to edge thickening.

In the limit where the heater zone is very short compared with the preform width,
mass conservation in the one-dimensional bulk flow implies that the ratio of final to
initial bulk thickness is equal to the inverse of the draw ratio. However, the mass-
conservation equation and stress-free edge conditions imply that the ratio of final to
initial edge thickness is equal to the inverse square root of the draw ratio. This result
holds for any thin sheet (i.e. regardless of the length of the heater zone), provided that
surface tension is negligible. We thus provide a rigorous derivation of the draw-ratio
relationships previously proposed by Dobroth & Erwin (1986).

We demonstrate that the inverse problem of how to determine the optimal preform
shape that will redraw to a uniform-thickness sheet may be transformed to a version of
the forward problem and then solved numerically in a straightforward way. This allows
us to determine the required preform that achieves a uniformly thick sheet following
redraw. In addition, we predict a preform shape that achieves a final product that is
close to uniform in the case where we are only able to taper the preform linearly.
Here, we find that the final cross-sectional profile is close to uniform but possesses an
unavoidable ‘kink’ that arises from the gradient discontinuity in the preform where the
taper begins. This second result provides insight into the optimization strategy given
certain preform fabrication constraints.

We may easily extend our theory to include the effect of surface tension, but doing
so has little impact on the observed behaviour. We also discuss the steps for including
heat transfer. In this case the modelling becomes significantly more complex as the
profile evolution is coupled to temperature variations. However, including such features
may be able to explain the finer details, such as the discrepancy between theory and
experiment in the transition region connecting the thick edges to the main glass sheet,
and the small non-uniformities observed across the sheet in the real experiment.

This work provides a novel fluid-dynamical theory that offers key insight into the
redraw process, the results of which should allow for design optimization that can
minimize costs and improve efficiency within the glass industry.
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