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PROBABILISTIC CELLULAR AUTOMATA
WITH GENERAL ALPHABETS POSSESSING
A MARKOV CHAIN AS AN INVARIANT DISTRIBUTION

JÉRÔME CASSE,∗ Université de Bordeaux

Abstract

This paper is devoted to probabilistic cellular automata (PCAs) on N, Z or Z/nZ,
depending on two neighbors with a general alphabet E (finite or infinite, discrete or
not). We study the following question: under which conditions does a PCA possess a
Markov chain as an invariant distribution? Previous results in the literature give some
conditions on the transition matrix (for positive rate PCAs) when the alphabet E is finite.
Here we obtain conditions on the transition kernel of a PCA with a general alphabet E.
In particular, we show that the existence of an invariant Markov chain is equivalent to
the existence of a solution to a cubic integral equation. One of the difficulties in passing
from a finite alphabet to a general alphabet comes from the problem of measurability,
and a large part of this work is devoted to clarifying these issues.
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1. Introduction

1.1. Cellular automata and probabilistic cellular automata with finite alphabet

Cellular automata (CAs), as described by Hedlund [11], are discrete local dynamical systems
on a space EL, where E = {0, . . . , κ} is a finite alphabet, the set of states of cells, and L is a
discrete lattice. Formally, a cellular automaton A is a tuple (L, E, N, f ), where

• L is a lattice, called a set of cells. In this paper, L is N, Z or Z/nZ.

• N is the neighborhood function for i ∈ L, N(i) = (i + l : l ∈ L), where L ⊂ L is finite.
Each neighborhood has cardinality |N | = |L|. In this paper, N(i) = (i, i + 1) when the
lattice is N or Z and N(i) = (i, i + 1 (mod n)) when the lattice is Z/nZ.

• f is the local rule. It is a function f : E|N | → E.

The CA A = (L, E, N, f ) defines a global function F : EL �→ EL on the set of configu-
rations EL. For any configuration S0 = (S0(i) : i ∈ L), the image S1 = F(S0) of S0 by F is
defined by, for any j ∈ L, S1(j) = f ((S0(i) : i ∈ N(j))).

In words, the state of all cells are updated simultaneously and the state S1(j) of the cell j

at time 1 depends only on the states (S0(i) : i ∈ N(j)) of its neighborhood at time 0. Hence,
the dynamics are as follows. Starting from an initial configuration St0 ∈ EL at time t0, the
successive states of the system are (St : t ≥ t0), where St+1 = F(St ). The sequence of
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configurations S = (St = (St (i) : i ∈ L), t ≥ t0) is called the space–time diagram of A. The
state St (i) of the cell i at time t will be denoted by S(i, t).

Probabilistic cellular automata (PCAs) with finite alphabets are generalizations of CAs in
which the states (S(i, t) : i ∈ L, t ≥ t0) are random variables defined on a common probability
space (�, A, P), each of the random variables S(i, t) taking almost surely its value in E. Seen
as a random process, S is equipped with the σ -field generated by the cylinders. The definition
of a PCA relies on a transition matrix T indexed by E|N | × E (instead of a local rule f ),
which gives the distributions of the state of a cell at time t + 1 conditionally on those of its
neighborhood at time t :

P(S(j, t + 1) = b | (S(i, t) = ai : i ∈ N(j))) = T ((ai : i ∈ N(j)); b).

Conditionally on St , the states (S(j, t + 1) : j ∈ L) are independent (see (1)). The transition
matrix T is then an array of nonnegative numbers satisfying, for any (a1, . . . , a|N |)∈ E|N |,∑

b∈ET ((a1, . . . , a|N |); b) = 1. Formally, a PCA A with a finite alphabet E is an operator
F : M(EL) �→ M(EL) on the set of probability distributions M(EL) on the set of configura-
tions. If S0 has distribution μ0 then S1 has distribution μ1 = F (μ0). We can also define μ1
directly from μ0 and T by giving its finite-dimensional distribution (Kolmogorov extension
theorem) as follows. For any finite subset C ⊂ L and for any (bj : j ∈ C) ∈ EC ,

μ1((bj : j ∈ C)) =
∑

(ai )i∈N(C)∈EN(C)

μ0((ai : i ∈ N(C)))
∏
j∈C

T ((ai : i ∈ N(j)); bj ), (1)

where N(C) = ⋃
j∈C N(j). A measure μ ∈ M(EL) is said to be invariant by A if F (μ) = μ.

The simplest case of a PCA is the two colors case E = {0, 1} on Z with neighborhood
N(i) = (i, i + 1). This case has been studied in depth and there are many results in the
literature; see Toom [19]. For example, Belyaev [2] characterized the set of a PCA possessing
as an invariant distribution a Markov chain indexed by Z. Nevertheless, there are still interesting
open problems concerning them. For instance, it remains an open question as to whether all
positive rate PCAs (i.e. for any a, b, c ∈ {0, 1}, T (a, b; c) > 0) are ergodic or not.

So far, it has been observed in different frameworks that explicit calculus of the invariant
distribution of PCAs can be done only if the transition matrix satisfies some algebraic equations
(that form a manifold in terms of the (T (a, b; c) : a, b, c ∈ E)). In Belyaev [2] this was shown
for PCAs with a two-letter alphabet whose invariant distributions are Markov chains or product
measures. In [13] and [21], this was shown for quasi-reversible PCAs on Z

d with finite alphabet
whose invariant distributions are Markov chains or Gibbs measures. In [17], this was done for
PCAs on Z

d with a two-letter alphabet and whose invariant distributions are Gibbs measures.
In [6], the same phenomenon was observed for PCAs on Z or Z/nZ with a finite alphabet
possessing a Markov chain as an invariant distribution. Hence, the literature has been focused
on the characterization of PCAs having simple invariant measures: product measures and
Markov chains for |N | = 2, and Gibbs measures for PCAs on Z

d . In addition to [2], the
study of PCAs on Z admitting an invariant product measure was carried out by Mairesse and
Marcovici [15] (in a finite alphabet case). For PCAs possessing a Markov chain as an invariant
distribution, in addition to [2] and [6], Bousquet-Mélou [4] characterized those on Z/nZ with
a two-letter alphabet and Toom [19] gave a sufficient condition for PCAs on Z with a finite
alphabet.

The most general results are given in [6] where it is proved (in Theorem 2.6) that a positive
PCA on Z with two neighbors and a finite alphabet E = {0, . . . , κ} admits a horizontal zigzag

https://doi.org/10.1017/apr.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.5


Probabilistic cellular automata 371

Markov chain (see Definition 3) as an invariant distribution if and only if the following two
conditions are satisfied:

(i) for any a, b, c ∈ E,

T (a, b; c)T (a, 0; 0)T (0, b; 0)T (0, 0; c) = T (a, b; 0)T (a, 0; c)T (0, b; c)T (0, 0; 0);
(ii) Dγ Uγ = Uγ Dγ , where

Dγ (a; c) =
∑
k∈E

γ (k)

T (a, k; 0)
T (a, k; c)

{∑
k∈E

γ (k)

T (a, k; 0)

}−1

and

Uγ (c; b) = γ (b)

T (0, b; 0)
T (0, b; c)

{∑
k∈E

γ (k)

T (0, k; 0)
T (0, k; c)

}−1

for any a, b, c ∈ E,

where γ is an eigenvector of an explicit matrix that depends only on T .

This theorem is an extension of [2, Theorem 3] valid only for a 2-letter alphabet.

1.2. PCAs with general alphabets

Inspired by this recent work, in this paper we investigate the case where the alphabet E is
general (finite or infinite, discrete or not). As we have to define probability distributions on E,
as usual in probability theory, we will assume that E is a Polish space (a separable complete
metrizable space) equipped with its Borel set B(E). It could be finite or infinite and discrete or
not. In the following, when we write ‘general alphabet’, we are thinking about a Polish space
alphabet.

CAs and PCAs with infinite alphabets appear in the literature under different forms. In [5],
CAs with alphabet E = [0, 1] were used to solve the classification problem with arbitrary
precision: the classification problem consists of finding a CA such that, on any initial config-
uration of 1s and 0s on the line Z, the CA configuration converges to the line colored 1 if the
initial fraction r of 1s is greater than 1

2 and to the line colored 0 if r < 1
2 . CAs with alphabet

E = R are applicable to modeling the heat equation [18]. Theorems about surjectivity of CAs
have been extended to CAs whose alphabets are (possibly infinite) objects in some concrete
category and then guarantee that some CAs with infinite alphabets have a Garden of Eden
configuration (a configuration that does not have a predecessor) [7]. Recently, complex PCAs
with infinite and continuous alphabets have been proposed in [20] in order to model urban
dynamics. In Section 3.3 we will see that the synchronous totally asymmetric simple exclusion
process (TASEP) on R defined by Blank [3] (it is a discrete-time, synchronous, space-continuous
version of the TASEP studied by Derrida et al. [8]) could be modeled by a PCA on Z with
alphabet E = R and neighborhood N(i) = (i, i + 1). Hence, PCAs with general alphabets are
already present in the literature even if they are not generally studied as such.

We believe that the present approach of a PCA with general alphabets permits the connection
between different domains and points of view. The structure of the set of a PCA having the
distribution of a Markov chain as an invariant measure is shown to be characterized by some
algebraic-integral equations. These equations are reminiscent of the standard algebraic relations
(in the parameters space) appearing in

• statistical physics concerning the notion of integrable systems,

• combinatorics where it is often the case that exact computations can be performed only for
simple structures for which generating functions solve ‘simple’functional equations [10],
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• probability theory where invariant distribution of Markov chain on Z can be computed in
some rare cases (conditioned random walks, birth and death processes), this being again
related to some algebraic questions.

Here, Theorem 2 and Proposition 1 have exactly this flavor and this is a case where everything
is quite transparent. If a Markov chain is conserved by a PCA (see (2)) then an infinite system
of algebraic-integral equations having the form ‘a product equals a sum of products’ possesses
a solution. Underlying this paper is the following question: ‘which PCA possesses a Markov
chain?’ (or anything else one may prefer) must be seen as an algebraic question in the discrete
case, and as an algebraic-integral question in the continuous one, solved here.

Theorem 2 and Proposition 1 provide the form of the solutions, those which explain such
‘miraculous’ simplification in the infinite system (2).

First, let us define formally a PCA with general alphabets. In this case, transition matrices
are replaced by transition kernels. Let F and G be two Polish spaces, K = (K(x; Y ) : x ∈
F, Y ∈ B(G)) is a transition kernel from F to G: if, for all Y ∈ B(G), x �→ K(x; Y ) is
B(F )-measurable and if, for all x ∈ F , Y �→ K(x; Y ) is a probability measure on (G, B(G)).

Definition 1. (PCAs with a general alphabet.) Let E be a Polish space, L a lattice, N a
neighborhood function, and T a transition kernel from E|N | to E. A PCA A is a tuple
(L, E, N, T ) that defines an operator F : M(EL) �→ M(EL), where, for any μ0 ∈ M(EL),
μ1 = F (μ0) is such that for any finite subset C ⊂ L, for any (Bj : j ∈ C) ∈ B(E)C ,

μ1((Bj : j ∈ C)) =
∫

EN(C)

(∏
j∈C

T ((ai : i ∈ N(j)); Bj )

)
dμ0((ai : i ∈ N(C))).

As usual, the measure μ1 is defined by its finite-dimensional distributions. If E is finite, this
definition is similar to the classical definition of a PCA.

Example 1. (Gaussian PCAs.) For any m, σ > 0, we define a PCA (Gm,σ ) on N with alphabet
R and neighborhood N(i) = (i, i + 1) as follows. The transition kernel of Gm,σ is as follows.
For all a, b ∈ R and Borel set C ∈ B(R),

T (a, b; C) = P

(
N

(
a + b

m
, σ 2

)
∈ C

)
,

where N (c, σ 2) is a Gaussian random variable with mean c and variance σ 2. In Section 3.2.1
we prove that an invariant measure of this PCA is related to autoregressive processes of order 1.

The aim of this paper is to shed some light on the structure of the set of a PCA with a general
alphabet (finite or infinite, discrete or not) having a Markovian invariant distribution on lattices
N, Z or Z/nZ. In this case, some important complications arise (compared with the finite case).

The first problem is that in the case of a finite alphabet, it is known that each PCA admits
at least one invariant probability distribution [19, p. 25]. This property fails when the alphabet
size is infinite.

Example 2. Consider the following (infinite) transition matrix T defined, for any a, b, c ∈ N,
by

T (a, b; c) = 1
2 (1{max(a,b)+1}(c) + 1{a+b+1}(c)).

The PCA indexed by N having transition matrix T does not admit any invariant probability
measure since, for any (t, i), S(i, t + 1) ≥ S(i, t) + 1 and so S(i, t) → ∞ as t → ∞.
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The second problem is due to measurability issues. In continuous probability, two distri-
butions having a density are equal if these densities differ at most on a Lebesgue negligible
set. This fact holds in a more general context. If ν1 and ν2 are two probability measures
absolutely continuous with respect to a σ -finite measure μ, then ν1 = ν2 if and only if their
Radon–Nikodym derivatives with respect to μ are equal μ-almost everywhere (a.e.).

Now, assume that M and M ′ are two Markov kernels such that M(x; ·) = M ′(x; ·) except
possibly for some x in a μ-negligible set. Under this condition, some distribution ρ may exist
such that the two Markov chain with initial distribution ρ and respective Markov kernels M

and M ′ do not coincide in distribution.
For a PCA with any general alphabet, the same complications arise: a unique PCA can

have some ‘plural behaviors’. Hence, in this paper, each time a PCA A is studied, a σ -finite
measure μ is specified and, formally, it is on the pair (A, μ) that the conditions and/or results
hold.

Example 3. (Gaussian PCAs except on the diagonal.) Let m, σ > 0. We define the PCA
(G̃m,σ ) on N with alphabet R. Its transition kernel T̃ is the same as that of Gm,σ (see Example 1)
except when a = b; in this case, for any C ∈ B(R), T̃ (a, a; C) = δa(C), where δa is the Dirac
measure in a.

The PCA G̃m,σ has the same behavior as Gm,σ if the initial state St0 does not contain two
consecutive cells in the same state, i.e. for any i, S(i, t0) 
= S(i + 1, t0). But, if, for example,
its initial state is 0N then it will stay in this configuration until the end.

1.3. μ-supported and μ-positive transition kernels

Before stating our main results we recall some facts concerning the Radon–Nikodym the-
orem. Recall that if μ and ν are two measures on E such that μ is absolutely continuous
with respect to ν (μ � ν), there exists a unique (up to a ν-null set) ν-measurable function
f : E −→ R

+ such that for all A ∈ B(E), μ(A) = ∫
A

f dν. The function f is denoted by
dμ/dν and called the Radon–Nikodym derivative of μ with respect to ν (or ν-density). We
say that ν and μ are positive equivalent if ν � μ and μ � ν. In that case, dμ/dν > 0 and
dν/dμ > 0, μ-a.e.

If μ is a measure on E and d ∈ N then μd will stand for the product measure on Ed .
Now, we define the two crucial notions used throughout this paper: μ-supported and μ-

positive transition kernels.

Definition 2. Let E be a Polish space, μ a σ -finite measure on E, and d ∈ N. Let K be
a transition kernel from Ed to E; K is said to be μ-supported if for μd -a.e. (x1, . . . , xd),
K(x1, . . . , xd; ·) � μ. If, moreover, for μd -a.e. (x1, . . . , xd), μ � K(x1, . . . , xd; ·), then K

is said to be μ-positive.
For K , a μ-supported transition kernel from Ed to E, the μ-density of K is the μd+1-

measurable function k such that

k : Ed+1 → R, k(x1, . . . , xd; y) �−→ dK(x1, . . . , xd; ·)
dμ

(y).

If, moreover, K is μ-positive then for μd+1-a.e. (x1, . . . , xd, y), k(x1, . . . , xd; y) > 0.

In the following, we will work with μ-supported or μ-positive kernels for d = 1 (transition
kernels of a Markov chain) or d = |N | = 2 (transition kernels of a PCA). We will see that such
transition kernels permit us to work with densities instead of measures. In the following, the
Radon–Nikodym derivative of any measure with respect to μ will be also shorter in μ-density.
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An example of a Lebesgue-supported transition kernel is the transition kernel T of a Gaussian
PCAs (defined in Example 1). This transition kernel is even Lebesgue-positive. In the following,
we call a μ-supported (respectively μ-positive) PCA a PCA whose transition kernel is μ-
supported (respectively μ-positive).

Remark 1. (i) There exists some transition kernel that is not μ-supported by any σ -finite
measure μ. For example, the transition kernel T from R

2 to R defined by, for any a, b ∈ R,
C ∈ B(R),

T (a, b; C) =
⎧⎨
⎩

δa(C) if a 
= b,∫
C

1√
2π

e−(c−a)2/2 dc if a = b

is not μ-supported. Indeed, any measure μ that could support this PCA has necessarily an atom
at each x in R. Then μ is not a σ -finite measure.

(ii) At the opposite, there exists some transition kernel that is supported by several singular
measures. The PCA G̃m,σ of Example 3 is Lebesgue-positive and also δa-positive for any
a ∈ R.

(iii) Nevertheless, if a PCA A is μ and ν-positive then μ and ν are positive equivalent or singular.
Indeed, if there exist (a, b) ∈ E2 such that the measure T (a, b; ·) is both μ and ν-positive, then
they are positive equivalent by transitivity. Otherwise, Pμ = {(a, b) : T (a, b; ·) is μ-positive}
and Pν = {(a, b) : T (a, b; ·) is ν-positive} are measurable and disjoint, and so taking N =
Pν ⊂ P c

μ, μ(N) = 0 and ν(Nc) = 0, i.e. μ ⊥ ν.

We will make apparent below (in particular in Section 3.1 and Section 3.2.1) that to describe
the invariant distribution of a PCA, at least in the case where it admits a Markov chain as an
invariant distribution, we have to work under a reference measure μ which, depending on the
case, can be the Lebesgue measure, a discrete measure, or any σ -finite measure. The idea is that
the PCA can be seen to be trapped on some subsets of EZ of the type AZ, where A is the support
of a measure μ. When such a trap exists, the criterion for it to be an invariant distribution will
depend on μ only (and its support). An example of this is the PCAs G̃m,σ of Example 3 for
which we will find different invariant distributions according to whether the reference measure
is the Lebesgue measure or δa .

The PCAs studied in this paper correspond to a μ-supported PCA and its subset of a μ-
positive PCA for μ, a σ -finite measure. For both sets, we characterize PCAs that have an
invariant horizontal zigzag Markov chain, as defined now.

Let us define the horizontal zigzag Markov chains (HZMCs) on N. First, the geometrical
structure of a horizontal zigzag is such that the t th horizontal zigzag (HZ) on a space–time
diagram is given by

HZN(t) =
{(⌊

i

2

⌋
, t + 1 + (−1)i+1

2

)
, i ∈ N

}

as illustrated in Figure 1.
Since HZN(t) is made by two lines corresponding to two successive times, a PCA A on N can

be seen as acting on the configurations of HZN. The image of a configuration (S(i, t), S(i, t +
1) : i ∈ N) on HZN(t) by the PCA A is (S(i, t + 1), S(i, t + 2) : i ∈ N) on HZN(t + 1), where
the configuration of the second line of HZN(t) becomes the configuration of the first line of
HZN(t + 1), and the configuration of the second line of HZN(t + 1) is the image by A of the
second line of HZN(t).
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Figure 1: Shown in bold is HZN(t), the t th horizontal zigzag on N on a space–time diagram.

Definition 3. A HZMC on HZN(t) with general alphabet E is a Markov chain with two
transition kernels D (for down) and U (for up) from E to E and an initial probability distribution
ρ0 on E such that

(i) the distribution of state S(0, t) is ρ0,

(ii) the distribution of state S(i, t + 1) knowing S(i, t) = xi is D(xi; ·), and

(iii) the distribution of state S(i + 1, t) knowing S(i, t + 1) = yi is U(yi; ·).
In the following, we study the conditions under which a PCA admits a HZMC as an invariant

distribution. For μ-supported PCAs, the HZMC itself will be μ-supported: a (ρ0, D, U)-
HZMC is μ-supported if ρ0 � μ and D and U are μ-supported. In this case, we den-
ote r0, d, and u their respective μ-densities. Hence, a μ-supported (ρ0, D, U)-HZMC is
invariant by a μ-supported PCA with transition kernel T , if, for any k ≥ 0, for μ-a.e.
b0, b1, . . . , bk+1, c0, . . . , ck ∈ E,

r0(b0)

( k∏
i=0

d(bi; ci)u(ci; bi+1)

)

=
∫

Ek+3
r0(a0)

(k+1∏
i=0

d(ai; bi)u(bi; ai+1)

)( k∏
i=0

t (bi, bi+1; ci)

)
dμk+3(a0, . . . , ak+2).

(2)

The support Ẽ(ρ0,D,U) of a (ρ0, D, U)-HZMC on HZN(t) is the union of the support
of the marginals of the first line of the HZMC, i.e. Ẽ(ρ0,D,U) = ⋃

i∈N
supp(ρi), where ρi

is the distribution of S(i, t). When the (ρ0, D, U)-HZMC is μ-supported then, for μ-a.e.
x ∈ Ẽ(ρ0,D,U), there exists i ∈ N such that ri(x) > 0 (that holds because E is a Polish space).
In the case of a μ-positive (ρ0, D, U)-HZMC, Ẽ(ρ0,D,U) = supp(μ). When the context is clear,
Ẽ(ρ0,D,U) will be denoted Ẽ.

Remark 2. Take two μ-supported PCAs A and A′ with transition kernel T and T ′ with
support Ẽ such that T and T ′ coincide except on a μ2-negligible set (μ2({a, b : T (a, b; ·) 
=
T ′(a, b; ·)}) = 0). Such PCAs are said to be μ-equivalent. They have the same set of invariant
μ-supported HZMCs. To see this, change t by t ′ in (2).

Let μ be a measure on E and d : (a, c) �→ d(a; c) and u : (c, b) �→ u(c; b) be two μ2-
measurable functions from E2 to R, then the μ2-measurable function du from E2 to R is
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defined by du(a; b) = ∫
E

d(a; c)u(c; b) dμ(c). For a μ-supported HZMC, du(a; b) is the μ-
density of the transition kernel (DU ) of the Markov chain (induced by the HZMC) on the first
line St = (S(i, t) : i ∈ N) of HZN(t).

1.4. Content

In the next section we present out main results; Theorems 1 and 2 and Proposition 1.
Section 3 is dedicated to some examples of PCAs. In Section 3.1 we show applications

of Theorems 1 and 2 and Proposition 1 to PCAs with finite alphabets. In Section 3.2.1 we
use Theorem 2 and Proposition 1 to show that the law of an autoregressive process of order 1
(AR(1) process) is invariant by both Gaussian PCAs Gm,σ and G̃m,σ (defined in Examples 1
and 3). In Section 3.2.2 we present a Lebesgue-supported PCA called a beta PCA. In Section 3.3
we present first a PCA with alphabet R that simulates a synchronous TASEP on R as defined
by Blank [3] and then a PCA with alphabet R that simulates the first-passage percolation as
presented by Kesten [12] on a particular graph G. Unfortunately, Theorems 1 and 2 do not
apply to these two PCAs.

In Section 4, Theorems 1 and 2 and Proposition 1, the main contributions of this paper, are
proved.

Section 5 is devoted to extensions of Theorems 1 and 2 for PCAs on Z and Z/nZ. First,
we extend in both cases the notion of HZMC: HZMCZ on Z and cyclic-HZMC (CHZMC) on
Z/nZ (if E is finite, a CHZMC is a HZMC conditioned to be periodic and, in the general case,
it is a Gibbs measure). Then we characterize PCAs allowing the HZMCZ to be invariant, and
also PCAs allowing the CHZMC to be invariant.

2. Main results

We start with a generalization to Polish space alphabets of [6, Lemma 2.3].

Theorem 1. Let μ be a σ -finite measure on a general alphabet E. Let A := (N, E, N, T ) be
a μ-supported PCA and (ρ0, D, U) a μ-supported HZMC with support Ẽ. The (ρ0, D, U)-
HZMC is invariant by A if and only if the following three conditions are satisfied.

(C.1) For μ3-a.e. (a, b, c) ∈ Ẽ3, t (a, b; c)du(a; b) = d(a; c)u(c; b).

(C.2) For μ2-a.e. (a, b) ∈ Ẽ2, du(a; b) = ud(a; b).

(C.3) The Markov chain with transition kernel D possesses ρ0 as an invariant distribution, i.e.
for μ-a.e. c, r0(c) = ∫

E
r0(a)d(a; c) dμ(a).

We arrive at our main result, Theorem 2. When a PCA with transition kernel T is μ-positive,
we can go further and reduce the existence of an invariant HZMC for the PCA to the existence
of a function η that is a solution to a cubic integral equation on T . In case of existence, we can
express the kernels of the invariant HZMC using η and T . Let us first provide an introduction.

Let A be a PCA with transition kernel T whose μ-density is t . Define, for any positive
measurable function φ ∈ L1(μ) (i.e. for μ-a.e. x ∈ E, φ(x) > 0, and

∫
E

φ(x) dμ(x) < ∞),
the two μ2-measurable functions dφ : E2 �→ R and uφ : E2 �→ R by

dφ(a; c) =
∫

E

φ(x)

t (a, x; c0)
t (a, x; c) dμ(x)

{∫
E

φ(x)

t (a, x; c0)
dμ(x)

}−1

(3)

and

uφ(c; b) = φ(b)

t (a0, b; c0)
t (a0, b; c)

{∫
E

φ(x)

t (a0, x; c0)
t (a0, x; c) dμ(x)

}−1

. (4)
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Theorem 2. Let μ be a σ -finite measure on a general alphabet E. Let A := (N, E, N, T )

be a μ-positive PCA. It holds that A admits a μ-positive invariant HZMC if and only if the
following three conditions are satisfied.

(C.4) There exists a triplet (a0, b0, c0) ∈ E3 such that T (a0, b0; ·) and μ are positive equivalent
and, for μ3-a.e. (a, b, c),

t (a, b; c)t (a0, b0; c)t (a0, b; c0)t (a, b0; c0)

= t (a0, b0; c0)t (a, b; c0)t (a, b0; c)t (a0, b; c). (5)

(C.5) There exists a positive function η ∈ L1(μ) that is a solution to, for μ2-a.e. (a, b) and for
the (a0, c0) of (C.4),

η(b)

t (a, b; c0)

{∫
E

η(x)

t (a, x; c0)
dμ(x)

}−1

=
∫

E

[
η(c)

t (a0, c; c0)
t (a0, c; a)

{∫
E

η(x)

t (c, x; c0)
dμ(x)

}−1

×
∫

E

η(x)

t (c, x; c0)
t (c, x; b) dμ(x)

×
{∫

E

η(x)

t (a0, x; c0)
t (a0, x; a) dμ(x)

}−1]
dμ(c). (6)

(C.6) The Markov chain with transition kernel Dη, whose μ-density is dη given by (3) and (4),
possesses a (unique) invariant probability distribution ρ0 such that ρ0 and μ are positive
equivalent.
In this case, the (ρ0, D

η, Uη)-HZMC, where Dη and Uη are transition kernel of μ-
densities given by (3) and (4) is invariant by A.

Remark 3. The uniqueness of ρ0 comes from Lemma 1 presented below. It implies that the
μ-positive (ρ0, D

η, Uη)-HZMC is necessarily taken under its invariant probability distribution,
i.e. for any i ∈ L, ρi = ρ0.

If (C.4) and (C.5) hold and if E is finite, the Markov chain with transition kernel Dη is
irreducible and aperiodic (because, for any a, c ∈ E, Dη(a, c) > 0) and, so it possesses a
unique invariant distribution, i.e. (C.6) always holds. If E is not finite, we refer the reader to
the book of Meyn and Tweedie [16] for the conditions on Dη for which the Markov chain with
transition kernel Dη possesses an invariant distribution.

When the alphabet is finite, we can go further and show that η satisfying (6) is, in fact, an
eigenvector of a computable matrix [6]. That allows us to simplify (C.5). For a PCA with a
general alphabet, this cannot be performed because we are not permitted to take a = b in (6)
in general. Nevertheless, under stronger conditions on t , we can characterize a set of functions
that contains the set of functions η that are solutions to (6).

Proposition 1. Let μ be a σ -finite measure on a general alphabet E. Let A := (Z, E, N, T )

be a μ-positive PCA. Suppose that (C.4) and the following two conditions are satisfied.

(C.7) For the same triplet (a0, b0, c0) of (C.4), for μ2-a.e. (a, c),

t (a, a; c)t (a0, b0; c)t (a0, a; c0)t (a, b0; c0)

= t (a0, b0; c0)t (a, a; c0)t (a, b0; c)t (a0, a; c).
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(C.8) There exists a positive function η ∈ L1(μ) that is a solution to, for μ-a.e. a and for the
(a0, c0) of (C.4),

η(a)

t (a, a; c0)

{∫
E

η(k)

t (a, x; c0)
dμ(x)

}−1

=
∫

E

[
η(c)

t (a0, c; c0)
t (a0, c; a)

{∫
E

η(x)

t (c, x; c0)
dμ(x)

}−1

×
∫

E

η(x)

t (c, x; c0)
t (c, x; a) dμ(x)

×
{∫

E

η(x)

t (a0, x; c0)
t (a0, x; a) dμ(x)

}−1]
dμ(c).

Then η is a positive eigenfunction of

A2 : f �→
(

A2(f ) : a �→
∫

E

f (k)
t (a, a; c0)

t (a, x; c0)
ν(a) dμ(x)

)
,

where ν is a positive eigenfunction (unique up to a multiplicative constant) in L1(μ) of

A1 : f �→
(

A1(f ) : a �→
∫

f (c)t (c, c; a) dμ(c)

)
.

Remark 4. Any positive PCA with finite alphabet E (i.e. for all a, b, c, T (a, b; c) > 0) is
a μE-positive PCA, where μE is the counting measure on E. Hence, (C.7) and (C.8) are
necessarily implied by (C.4) and (C.5) in the case of finite alphabets. Moreover, in this case,
A1 and A2 have their own unique eigenfunction (due to the Perron–Frobenius theorem) and
(C.6) holds necessarily. So, applying Theorem 2 and Proposition 1 to a positive PCA gives [6,
Theorem 2.6].

Let E = R and μ be the Lebesgue measure. In the case where t is continuous at any point
of E3, then (C.4) and (C.5) imply (C.7) and (C.8), respectively, by continuity. So a solution η

to (6) is a function η given by Proposition 1.
If for a PCA A the conditions of Proposition 1 do not hold, it is in general a complex task to

find a function η that is a solution to (6). But it may happen that a μ-equivalent PCA A′ to A

(see Remark 2) satisfies the conditions of Proposition 1. Hence, in the best-case scenario, we
can characterize a (ρ0, D

η, Uη)-HZMC invariant by A′ using Proposition 1. This HZMC is
also invariant by A. The μ-equivalence gives us some ‘degrees of freedom’ to solve the ‘rigid’
integral cubic equation (6). An application of this method is shown in Section 3.2.1, where it
is proved that the AR(1) process is an invariant distribution of G̃m,σ (defined in Example 3).

The uniqueness (up to a multiplicative constant) of the eigenfunction ν (in Proposition 1) is
a consequence of the following lemma.

Lemma 1. (Durrett [9, Theorem 6.8.7].) Let A : f �→ (A(f ) : y �→ ∫
E

f (x)m(x; y)μ(dx))

be an integral operator of kernel m. If m is the μ-density of a μ-positive transition kernel M from
E to E, then A possesses at most one positive eigenfunction in L1(μ) (up to a multiplicative
constant).
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3. Examples

Our first examples are PCAs with finite alphabets. Then we introduce two new models:
Gaussian PCAs and beta PCAs to illustrate our theorems. Finally, we present PCAs with infinite
alphabets that model existing problems in the literature. One PCA models a synchronous TASEP
on R as defined by Blank [3] and another one a variant of directed first-passage percolation.

All PCAs presented in this section are PCAs on N (except the PCA modeling the TASEP
that is on Z) and neighborhood N(i) = (i, i + 1).

3.1. PCAs with finite alphabets

For positive PCAs, see the first paragraph of Remark 4. For any finite set E denote by
μE = ∑

x∈Eδx the counting measure on E. In the following example, we focus on the PCAs
that are not positive and we take a PCA not μE-positive, but μF -positive for some F subsets
of E.

Let A be the PCA with alphabet E = {0, 1, 2} and transition matrix:

• T (0, i; i) = T (i, 0; i) = 1 for all i ∈ {0, 1, 2};
• T (1, 1; 1) = T (1, 1; 2) = T (2, 2; 1) = T (2, 2; 2) = 1

2 ;

• T (1, 2; 1) = T (2, 1; 2) = 4
5 ;

• T (1, 2; 2) = T (2, 1; 1) = 1
5 .

This PCA is not positive (T (0, 1; 0) = 0), nevertheless it is μ{0}-positive (T (0, 0; ·) =
μ{0}(·)) and also μ{1,2}-positive. These two measures are singular as ‘predicted’ by Re-
mark 1(iii).

An application of Theorem 2 and Proposition 1 to A seen as a μ{0}-positive (respectively
μ{1,2}-positive) PCA allows us to compute an invariant μ{0}-positive (respectively μ{1,2}-
positive) HZMC. They are the only possible invariant HZMCs for A. In fact, these invariant
HZMCs could also be obtained using [2, Theorem 3] and [6, Theorem 2.6] to A restricted to
having its value in alphabet {0} or {1, 2}.

A μ-supported PCA. Let A be the PCA with alphabet E = Z/κZ with transition kernel T

such that T (a, b; ·) is the uniform distribution on E if b = a or b = a + 1 (mod κ), and on
the circular interval {a + 1, . . . , b − 1} otherwise. This PCA is a μE-supported PCA, but
not μ-positive for any measure μ on E. It has an invariant (ρ0, D, U)-HZMC with D(a; a +
1 (mod κ)) = U(a; a + 1 (mod κ)) = 1 for all a ∈ Z/κZ and for any a ∈ Z/κZ, ρ0(κ) = 1/κ .
This invariant HZMC seems to be the unique invariant HZMC for A (proved for κ = 3, 4, 5
by Theorem 1 and MAPLE� to solve the conditions of this theorem). But we do not know if
there exists some other invariant distribution(s) (which would not be a HZMC) for A.

3.2. Two new models of PCAs with infinite alphabet

3.2.1. Gaussian PCAs. Denote by g[m, σ ] the density of the Gaussian distribution of mean m

and variance σ 2.
Gaussian PCA Gm,σ . For Gm,σ , it can be checked that (C.4) holds for any triplet (a0, b0, c0)

in R
3, so let us choose (a0, b0, c0) = (0, 0, 0). We use Proposition 1 to obtain a function η.

The first step consists of studying the eigenfunctions of

A1 : L1 −→ L1, f �−→ A1(f ) : c �→
∫

R

f (a)g

[
2a

m
, σ

]
(c) da.
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The function ν(x) = exp(−(cm/2σ 2)x2) is a positive eigenfunction of A1 for cm = 1 − 4/m2.
Moreover, we need ν to be in L1, hence cm must be positive and so we need |m| > 2. Without
this condition, for any i, the function t → var(S(i, t)) increases and goes to ∞ with t . When
|m| > 2, we can go further with Proposition 1 and study the eigenfunctions of

A2 : L1 −→ L1, f �−→ A2(f ) : a �→
∫

R

f (b)
t (a, a; 0)ν(a)

t (a, b; 0)
db

with
t (a, a; 0)ν(a)

t (a, b; 0)
= exp

(
− b2

2σ 2

)
exp

(
((a + b)/m)2

2σ 2

)
.

One can check that η(x) = exp (−(1 + √
cm)x2/4σ 2) is a positive eigenfunction of A2

associated to the eigenvalue
√

πσ 2/(1 + √
cm)2. Moreover, η satisfies (6) (this is an example

where Proposition 1 allows us to compute a solution η to (6)). We obtain

dη(a; c) = g

[
2

ml
a,

√
2

l
σ

]
(c), uη(c; b) = g

[
2

ml
c,

√
2

l
σ

]
(b) for l = 1 + √

cm.

To end, we need to find an invariant probability distribution ρ0 for the Markov chain of
transition kernel Dη (with density dη). The measure ρ0 with density r0 is satisfactory: r0(x) =
g[0, c

−1/4
m σ ](x).

This allows us to conclude that the (ρ0, D
η, Uη)-HZMC is an invariant measure for the

Gaussian PCA. In fact, this invariant HZMC is an AR(1) process (see [22]) that is a process
(Xi) such that Xi = θ + φXi−1 + εi , where θ and φ are two real numbers and (εi) are
independent and identically distributed (i.i.d.), of Gaussian law N (0, σ ′2). In our case, the
invariant HZMC is an AR(1) process on HZN with θ = 0, φ = 2/ml, and σ ′2 = 2σ 2/l.

Gaussian PCAs except on diagonal G̃m,σ . As already seen in Remark 1(ii), this PCA is
Lebesgue-positive and also μ{a}-positive for any a ∈ R.

When we consider G̃m,σ as a Lebesgue-positive PCA, Proposition 1 cannot be used to find
a solution η to (6). Hopefully, G̃m,σ is Lebesgue-equivalent to Gm,σ . Hence, by Remark 2,
the invariant Lebesgue-positive (ρ0, D

η, Uη)-HZMC that corresponds to an AR(1) process
obtained for Gm,σ is also invariant for G̃m,σ . Besides, for any a ∈ R, the constant process
equal to a everywhere is also an invariant measure to G̃m,σ .

3.2.2. Beta PCAs. We define a class of PCAs with alphabet R depending on three positive real
parameters α, β, and m. The transition kernel is as follows. For all a, b ∈ R and C ∈ B(R),

T (a, b; C) = P((b − a)X + a − m ∈ C),

where X is a beta(α, β) random variable. In words, the PCA takes a random (following a beta
law) number between the two values of its two neighbors and subtracts m from it.

This PCA is Lebesgue-supported but not Lebesgue-positive.
Now we try to search for an invariant (ρ0, D, U)-HZMC to this PCA. Let θ be a positive real

number. Let D1(a; C) = P(X1 + a − m ∈ C) and U1(c; B) = P(X2 + c + m ∈ B), where X1
(respectively X2) is a gamma(α, θ) (respectively gamma(β, θ)) random variable. For D = D1
and U = U1, (C.1) and (C.2) hold; unfortunately, there does not exist a probability distribution
ρ0 that satisfies (C.3). Hence, this PCA does not possess a Lebesgue-supported HZMC as an
invariant distribution. Nevertheless, the image of a Lebesgue-supported (ρ, D1, U1)-HZMC by
this PCA is the (ρD1, D1, U1)-HZMC, meaning that one can describe simply the distribution
of the successive image of a (ρ, D1, U1)-HZMC by this PCA.

https://doi.org/10.1017/apr.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.5


Probabilistic cellular automata 381

3.3. PCAs with infinite alphabet in the literature

3.3.1. PCAs modeling TASEP. We model the synchronous TASEP on R introduced by Blank [3]
by a PCA on Z with alphabet R. In the following, when we say the TASEP, we refer to this
variant of the TASEP. The TASEP models the behavior of an infinite number of particles of the
same radius r ≥ 0 on the real line, that move to the right that do not bypass, that do not overlap,
and, at each step of time, each particle moves with probability p (0 < p ≤ 1), independently
of each others. When a particle moves, it travels a distance v ≥ 0 to the right, except if it can
create a collision with the next particle; in that case, it moves to the rightmost allowed position.
In this model, the state of a cell i at time t is the position xt

i of the ith particle at time t . Formally,
the evolution of (xt

i ) is defined as

xt+1
i =

{
min(xt

i + v, xt
i+1 − 2r) with probability p,

xt
i with probability 1 − p.

Here we propose to model this TASEP by a PCA A on Z with alphabet R. The transition
kernel of the PCA is as follows. For any a, b ∈ R such that a+r ≤ b−r and for any C ∈ B(R),

T (a, b; C) =
{

(1 − p)δa(C) + pδa+v(C) if a + v ≤ b − 2r,

(1 − p)δa(C) + pδb−2r (C) if a + v > b − 2r.

The transition kernel for other pairs (a, b) is not specified since they concern forbidden con-
figurations. Hence, if we start with an admissible configuration at time 0 for the PCA (i.e. for
any i ∈ Z, S(i, 0) + r ≤ S(i + 1, 0) − r), then the PCA models the TASEP.

We remark that if v = 2r and, for any i ∈ Z, xi(t) ∈ 2rZ, then xi(t + 1) ∈ 2rZ for any i.
In terms of the PCA, this says that the PCA A is μ-supported for μ = ∑

i∈Z
δ2ri . Rescaling

this alphabet by 1/(2r), this PCA models a synchronous TASEP on Z [14, Section 2.3]. It
is known that this TASEP possesses a family of invariant Markov chain distributions indexed
by a parameter q ∈ (0, p) [14, Section 4.3]. As a consequence, the corresponding PCA owns
some ‘quasi’ invariant distributions (see below to understand the exact meaning of ‘quasi’). It
appears that these ‘quasi’ invariant distributions are HZMCZs (see Section 5.1). The transition
kernels of the HZMCZ are D and U defined by, for any a ∈ Z, C ∈ B(Z),

D(a; C) = 1 − p

1 − q
δa(C) + p − q

1 − q
δa+1(C), U(a; C) =

∞∑
m=1

q
(p − q)m−1

pm
δa+m(C).

One can verify that these two transition kernel satisfy (C.1) and (C.2) in the context of Theorem 3
(see Section 5.1). In Theorem 3, (C.10) holds only in the degenerated case where q = p. In that
case, all the (deterministic) HZMCZs which satisfy S(i + 1, t) = S(i + 1, t + 1) = S(i, t) + 1
for any i and t are invariant by A. They correspond to the infinite traffic jam where nobody can
move. Otherwise, for q ∈ (0, p), D does not possess an invariant probability measure and so
(C.10) cannot hold. Nevertheless, the image of a (R, D, U)-HZMCZ is the (R′, D, U)-HZMCZ

with ρ′
i = ρiD, meaning that we can describe simply the distribution of the successive images

of a (R, D, U)-HZMCZ by A (that is the sense of the ‘quasi’). In addition, with this view of the
TASEP, the mean speed of particles is simple to obtain: it is D(a; a + 1) = (p − q)/(1 − q).

3.3.2. PCAs modeling a variant of first-passage percolation. We propose a model of directed
first-passage percolation on a directed graph which can be seen as a PCA with alphabet [0, ∞).
We use the same notation as [12] to present the classical model of first-passage percolation.

https://doi.org/10.1017/apr.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.5


382 J. CASSE

The set of nodes of G is N
2 and the set of directed edges is E = {((i, j), (i, j + 1)) : i, j ∈

N} ∪ {((i + 1, j), (i, j + 1)) : i, j ∈ N}. We let L0 = {(i, 0) : i ∈ N} the set of the nodes of
the first line. Now associate with the edges some i.i.d. weights (t (e), e ∈ E) with common
distribution F , where t (e) is the time needed to pass through edge e. The passage time of a
directed path r = (e1, . . . , en) on G is T (r) = ∑n

i=1 t (ei). The travel time from a node u

to a node v is defined as T (u, v) = inf{T (r) : r is a directed path from u to v}. If there is no
directed path from u to v then T (u, v) = ∞. We define the travel time from U ⊂ N

2 to a
node v by T (U, v) = inf{T (u, v) : u ∈ U}. Finally, we define V(t) = {v ∈ N : T (L0, v) ≤ t}
as the set of nodes visited at time t . The object of study in the first-passage percolation is this
set V(t).

The first-passage percolation on G can be seen as a PCA A on N with alphabet [0, ∞) as
follows. Let S(i, j) represent the travel time T (L0, (i, j)) from L0 to the node (i, j). The
transition kernel of the PCA is as follows. For any a, b ∈ [0, ∞), for any C ∈ B([0, ∞)),
T (a, b; C) = La,b(C), where La,b is the distribution of the random variable X = min{(a +
T1), (b + T2)}, where T1 and T2 are i.i.d. with common law F .

If F is nontrivial, A cannot have an invariant distribution because E[S(i, j)] −→ ∞ as
j → ∞ for all i. Nevertheless, (for some F ) two transition kernel D and U could exist
such that if at time 0, the initial distribution is a (ρ0, D, U)-HZMC, then at time 1 it is the
(ρ0D, D, U)-HZMC. Such a property should allow us to describe the evolution of A as in
Section 3.2.2.

4. Proofs of the main results

Proof of Theorem 1. First, let (ρ0, D, U) be a μ-supported HZMC invariant by A with
transition kernel T , a μ-supported PCA. For all A, B, C ∈ B(E), and for all i ∈ N,

P(S(i, t) ∈ A, S(i + 1, t) ∈ B, S(i, t + 1) ∈ C)

=
∫

A×B×C

ri(a)d(a; c)u(c; b) dμ3(a, b, c)

=
∫

A×B×C

ri(a)du(a; b)t (a, b; c) dμ3(a, b, c),

where ρi is the law of cell i of μ-density ri . Taking the difference, we obtain, for all A, B, C ∈
B(E), ∫

A×B×C

(ri(a)d(a; c)u(c; b) − ri(a)du(a; b)t (a, b; c)) dμ3(a, b, c) = 0.

Hence, since this holds for any Borel set A × B × C,

ri(a)d(a; c)u(c; b) = ri(a)du(a; b)t (a, b; c) for μ3-a.e. (a, b, c) ∈ E3.

If a ∈ Ẽ, there exists i such that ri(a) > 0 almost surely and then (C.1) holds.
We also have, for all A, B ∈ B(E), on the one hand,

P(S(i, t + 1) ∈ A, S(i + 1, t + 1) ∈ B)

= P(S(i, t + 1) ∈ A, S(i + 1, t + 1) ∈ B, S(i + 1, t) ∈ E)

=
∫

A×B

ri(a)ud(a; b) dμ2(a, b)
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because (S(0, t), S(0, t + 1), S(1, t), . . . ) is a (ρ0, D, U)-HZMC and, on the other hand,

P(S(i, t + 1) ∈ A, S(i + 1, t + 1) ∈ B)

= P(S(i, t + 1) ∈ A, S(i + 1, t + 1) ∈ B, S(i, t + 2) ∈ E)

=
∫

A×B

ri(a)du(a; b) dμ2(a, b)

because (S(0, t + 1), S(0, t + 2), S(1, t + 1), . . . ) is also a (ρ0, D, U)-HZMC due to its
invariance by A. Then, as before, ri(a)ud(a; b) = ri(a)du(a; b) for μ2-a.e. (a, b) ∈ E2

and so (C.2) holds.
Moreover, the law of S(0, t) and S(0, t +1) must be the same because (ρ0, D, U) is invariant

by the PCA. Hence, the law of S(0, t + 1) of μ-density
∫
E

r0(a)d(a; c) dμ(a) must be equal
to ρ0 of μ-density r0(c), i.e. (C.3) holds.

Conversely, suppose that (C.1), (C.2), and (C.3) are satisfied. Suppose that the horizontal
zigzag HZN(t) is distributed as a (ρ0, D, U)-HZMC. Now, compute the push forward measure
of this HZMC by A. For any n ≥ 0, and for any

F2n+1 = B0 × · · · × Bn+1 × C0 × · · · × Cn ∈ B(E)2n+1,

we have

P(S(0, t + 1) ∈ B0, S(0, t + 2) ∈ C0, . . . , S(n + 1, t + 1) ∈ Bn+1)

=
∫

En+2×F2n+1

r0(a0)

n+1∏
i=0

d(ai; bi)u(bi; ai+1)t (bi, bi+1; ci)

× dμ3n+6(a0, . . . , an+2, b0, . . . , bn+1, c0, . . . , cn)

=
∫

F2n+1

(∫
E

r0(a0)d(a0; b0) dμ(a0)

) n∏
i=0

(∫
E

u(bi; ai+1)d(ai+1; bi+1) dμ(ai+1)

)

×
(∫

E

u(bn+1; an+2) dμ(an+2)

) n∏
i=0

t (bi, bi+1; ci) dμ2n+3(b0, . . . , bn+1, c0, . . . , cn)

=
∫

F2n+1

r0(b0)

n∏
i=0

ud(bi; bi+1)t (bi, bi+1; ci) dμ2n+3(b0, . . . , bn+1, c0, . . . , cn)

=
∫

F2n+1

r0(b0)

n∏
i=0

d(bi; ci)u(ci; bi+1) dμ2n+3(b0, . . . , bn+1, c0, . . . , cn).

This shows that the push forward measure of a (ρ0, D, U)-HZMC is a (ρ0, D, U)-HZMC.
Hence, the (ρ0, D, U)-HZMC is an invariant measure of A. �

In the case of a μ-positive HZMC, taking Ẽ or E does not make any difference in Theorem 1.
Indeed, by the basic properties of measurability for any property P , P(x) holds for μ-a.e. x ∈ E

if and only if P(x) holds for μ-a.e. x ∈ supp(μ) ∩ E (set equal to Ẽ here). In addition, for a
μ-positive (ρ0, D, U)-HZMC for μ2-a.e. (a, b) ∈ E2, du(a, b) > 0.

To prove Theorem 2, we first prove Lemmas 2 and 3.
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Lemma 2. Let A be a μ-positive PCA with transition kernel T . The three conditions (C.1),
(C.4), and

(C.9) for μ6-a.e. (a, a′, b, b′, c, c′),
t (a, b; c)t (a, b′; c′)t (a′, b; c′)t (a′, b′; c)

= t (a′, b′; c′)t (a′, b; c)t (a, b′; c)t (a, b; c′) (7)

are equivalent.

Proof. From (C.1) to (C.9), replace in (C.9) the expressions of t by the ones given in (C.1).
From (C.9) to (C.4), we prove its contrapositive. Suppose that, for all (a0, b0, c0), (C.4) does

not hold. Hence, for all (a0, b0, c0) ∈ E3, either T (a0, b0; ·) and μ are not positive equivalent,
or

μ3({(a, b, c) such that (5) does not hold}) > 0. (8)

But, by the definition of μ-positivity, the set of (a0, b0) such that T (a0, b0; ·) and μ are not
positive equivalent is μ2-negligible. Hence, for μ3-a.e. (a0, b0, c0), (8) holds. But, by Fubini’s
theorem,

μ6({(a, b, c, a′, b′, c′) such that (7) does not hold})
=

∫
E3

μ3({(a, b, c) such that (5) does not hold}) dμ(a0, b0, c0)

> 0

and, on the other hand, (C.9) is equivalent to

μ6({(a, b, c, a′, b′, c′) such that (7) does not hold}) = 0.

From (C.4) to (C.1), set

d(a; c) = Ka

t(a, b0; c)

t (a0, b0; c)

∫
E

t (a0, b; c) dμ(b)

{∫
E

t (a, b0; x)

t (a0, b0; x)
dμ(x)

}−1

and

u(c; b) = t (a0, b; c)

{∫
E

t (a0, x; c) dμ(x)

}−1

,

where Ka is a normalization constant such that
∫
E

d(a; c) dμ(c) = 1. Then

du(a; b) = Ka

∫
E

t (a, b0; c)t (a0, b; c)

t (a0, b0; c)

{∫
E

t (a, b0; x)

t (a0, b0; x)
dμ(x)

}−1

dμ(c)

and

d(a; c)u(c; b)

du(a; b)
= t (a, b0; c)t (a0, b; c)

t (a0, b0; c)

{∫
E

t (a, b0; x)t (a0, b; x)

t (a0, b0; x)
dμ(x)

}−1

(9)

= t (a, b0; c)t (a0, b; c)

t (a0, b0; c)

{∫
E

t (a, b; x)
t (a, b0; c0)t (a0, b; c0)

t (a0, b0; c0)t (a, b; c0)
dμ(x)

}−1

(10)

= t (a, b0; c)t (a0, b; c)t (a0, b0; c0)t (a, b; c0)

t (a0, b0; c)t (a, b0; c0)t (a0, b; c0)

{∫
E

t (a, b; x) dμ(x)

}−1

(11)

= t (a, b; c). (12)

In this computation, we pass from (9) to (10) and from (11) to (12) by using (C.4). �
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Lemma 2 says that (C.1) is equivalent to (C.4) for μ-positive PCA. In the next lemma we
give some necessary conditions for a (ρ0, D, U)-HZMC to be invariant by a μ-positive PCA.

Lemma 3. Let A be a μ-positive PCA. If A satisfies the conditions of Lemma 2 then there
exists H , a μ-positive probability distribution on (E, B(E)) of μ-density η such that the
respective μ-densities of D and U are, for μ3-a.e. (a, b, c), dη, and uη as defined in (3) and
(4).

Proof. Suppose that, for μ3-a.e. (a, b, c),

du(a; b) = d(a; c)u(c; b)

t (a, b; c)
= d(a; c0)u(c0; b)

t (a, b; c0)
.

Then d(a; c)u(c; b) = d(a; c0)(u(c0; b)/t (a, b; c0))t (a, b; c). Integrating with respect to b,
we have

d(a; c) = d(a; c0)

∫
E

u(c0; b)

t (a, b; c0)
t (a, b; c) dμ(b)

and then

u(c; b) = u(c0; b)

t (a, b; c0)
t (a, b; c)

{∫
E

u(c0; x)

t (a, x; c0)
t (a, x; c) dμ(x)

}−1

. (13)

Then (C.4) and (C.9) allow us to replace a by a0 on the right-hand side of (13). Then taking
η(b) = u(c0; b) completes the proof. �

Now we end with the proof of Theorem 2.

Proof of Theorem 2. Let A be a μ-positive PCA. If (ρ0, D, U) is an invariant HZMC for A

then there exists η ∈ L1(μ) such that (3) and (4) hold by (C.1), Lemma 2, and Lemma 3.
Moreover, u and d satisfy (C.2). Hence, writing du and ud in terms of η, we obtain

du(a; b) =
∫

E

[∫
E

η(x)

t (a, x; c0)
t (a, x; c) dμ(x)

{∫
E

η(x)

t (a, x; c0)
dμ(x)

}−1

× η(b)

t (a0, b; c0)
t (a0, b; c)

{∫
E

η(x)

t (a0, x; c0)
t (a0, x; c) dμ(x)

}−1]
dμ(c) (14)

=
∫

E

[∫
E

η(x)

t (a, x; c0)
t (a, x; c) dμ(x)

{∫
E

η(x)

t (a, x; c0)
dμ(x)

}−1

× η(b)

t (a, b; c0)
t (a, b; c)

{∫
E

η(x)

t (a, x; c0)
t (a, x; c) dμ(x)

}−1]
dμ(c) (15)

= η(b)

t (a, b; c0)

{∫
E

η(x)

t (a, x; c0)
dμ(x)

}−1

.

We pass from (14) to (15), replacing t (a0, b; c)t (a0, x; c0)/t (a0, b; c0)t (a0, x; c) by t (a, b;
c)t (a, x; c0)/t (a, b; c0)t (a, x; c) using (C.4) and (C.9); and

ud(a; b) =
∫

E

[
η(c)

t (a0, c; c0)
t (a0, c; a)

{∫
E

η(x)

t (a0, x; c0)
t (a0, x; a) dμ(x)

}−1

×
∫

E

η(x)

t (c, x; c0)
t (c, x; b) dμ(x)

{∫
E

η(x)

t (c, x; c0)
dμ(x)

}−1]
dμ(c).

Hence, η is a solution of (6) which implies (C.5).
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Finally, we need a distribution ρ0 to satisfy (C.3) with D = Dη. This is possible only if
(C.6) holds.

Conversely, if we suppose that (C.4), (C.5), and (C.6) hold, then all the previous computations
hold and then we obtain (C.1), (C.2), and (C.3) for D = Dη, U = Uη, and ρ0. Then we conclude
the proof by using Theorem 1. �

Proof of Proposition 1. Let A be a PCA and suppose that (C.4), (C.7), and (C.8) hold. Then
we can replace in (C.5) the a0 by c using (C.4) and (C.7). Then η must verify the following
equation. For μ-a.e. a, and for the c0 of (C.4),

η(a)

t (a, a; c0)

{∫
E

η(x)

t (a, x; c0)
dμ(x)

}−1

=
∫

E

[
η(c)

t (c, c; c0)

{∫
E

η(x)

t (c, x; c0)
dμ(x)

}−1]
t (c, c; a) dμ(c).

So, we see that (
a �→ η(a)

t (a, a; c0)

{∫
E

η(x)

t (a, x; c0)
dμ(x)

}−1)
is an eigenfunction of the operator A1 : f �→ (A1(f ) : a �→ ∫

E
f (c)t (c, c; a) dμ(c)). Hence,

by Lemma 1, if there exists a positive eigenfunction ν in L1(μ) for A1, it is unique up to a
multiplicative constant. Hence, there exists λ > 0 such that, for μ-a.e. a,

η(a)

t (a, a; c0)

{∫
E

η(x)

t (a, x; c0)
dμ(x)

}−1

= λν(a),

which is equivalent to

η(a) = λ

∫
E

η(x)
t (a, a; c0)

t (a, x; c0)
ν(a) dμ(x).

Hence, η is an eigenfunction of

A2 : f �→
(

A2(f ) : a �→
∫

E

f (x)
t (a, a; c0)

t (a, x; c0)
ν(a) dμ(x)

)
. �

5. Extension to Z and Z/nZ

5.1. PCAs on Z

In this section we extend Theorems 1 and 2 to Z. The main change is that ρ0, the initial
probability distribution for a HZMC on N, is replaced on Z by a sequence of probability
distributions R = (ρi)i∈Z indexed by Z.

Let us define a HZMCZ on Z. The geometrical structure is now

HZZ(t) =
{(⌊

i

2

⌋
, t + 1 + (−1)i+1

2

)
, i ∈ Z

}
;

see Figure 2 for a graphical representation. On this structure, a (R, D, U)-HZMCZ is a Markov
chain with two transition kernels D and U and a family of probability distributions R = (ρi)i∈Z

such that
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Figure 2: Shown in bold is HZZ(t), the t th horizontal zigzag on Z on a space–time diagram.

• for all i ∈ Z, the distribution of state S(i, t) is ρi ,

• the distribution of S(i, t + 1) knowing S(i, t) is given by D, and that of S(i + 1, t)

knowing S(i, t + 1) is given by U .

Hence, for any i ∈ Z, the distributions ρi , ρi+1, D, and U are constrained such that
ρiDU = ρi+1. In the case of a μ-supported (R, D, U)-HZMCZ (i.e. for all i ∈ Z, ρi � μ, D

and U are μ-supported transition kernel), we have

ri+1(xi+1) =
∫

E

ri(xi)du(xi; xi+1) dμ(xi). (16)

A family of probability distributions R with this property is said to be compatible with (D, U).
As before, we define the support Ẽ = ⋃

i∈Z
supp(ρi) of a HZMCZ. If the HZMCZ is μ-

supported then, for μ-a.e. a ∈ E, there exists i such that ri(a) > 0 and, in the case of a
μ-positive HZMCZ (i.e. for all i ∈ Z, ρi and μ are positive equivalent and D and U are
μ-positive transition kernels), Ẽ = supp(μ).

The following theorem is an extension of Theorem 1 for the PCA on Z.

Theorem 3. Let μ be a σ -finite measure on E. Let A := (Z, E, N, T ) be a μ-supported PCA
and (R, D, U) a μ-supported HZMCZ. The (R, D, U)-HZMCZ is invariant by A if and only
if (C.1), (C.2), and the following condition are satisfied.

(C.10) The distribution ρ is invariant by transition kernel D, i.e. for all i ∈ Z, ρiD = ρi , i.e.
for all i ∈ Z, ri(c) = ∫

E
ri(a)d(a; c) dμ(a).

Proof. This is an immediate consequence of Theorem 1 because we just need, for all i ∈ Z,
the (ρi, D, U)-HZMC to be invariant by A. �

As in Theorem 2 where we go further for μ-positive PCA on N, we obtain a necessary and
sufficient condition on μ-positive PCA to have an invariant HZMCZ.

Theorem 4. Let μ be a σ -finite measure on E. Let A := (Z, E, N, T ) be a μ-positive PCA. It
holds that A admits a μ-positive invariant HZMCZ if and only if (C.4), (C.5), and (C.6) hold.

In this case, the (R, D, U)-HZMCZ has for μ-densities dη and uη as defined in (3) and (4)
and, for any i ∈ Z, ρi = ρ0.

Proof. It is an immediate consequence of Theorem 2. The only new thing to verify is that
R = ρZ

0 is (D, U) compatible, i.e. r0 satisfies (16) in order to check that (R, D, U) defines a
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HZMCZ. By (C.6), for μ-a.e. yi ,∫
E

r0(xi)d(xi; yi) dμ(xi) = r0(yi). (17)

But, satisfying (16) and (17) is equivalent to satisfying, for μ-a.e. xi+1,∫
E

r0(yi)u(yi; xi+1) dμ(yi) = r0(xi+1).

Now, from (17), for μ-a.e. xi+1,∫∫
E2

r0(xi)d(xi; yi)u(yi; xi+1) dμ(xi) dμ(yi) =
∫

E

r0(yi)u(yi; xi+1) dμ(yi).

But as du = ud,∫
E

(∫
E

r0(xi)u(xi; yi) dμ(xi)

)
d(yi; xi+1) dμ(yi) =

∫
E

r0(yi)u(yi; xi+1) dμ(yi).

So f : y → ∫
E

r0(x)u(x; y) dμ(x) is a positive eigenfunction of the integral operator A of
kernel d. By Lemma 1, this eigenfunction is unique (up to a multiplicative constant) equal to
r0, so

∫
E

r0(x)u(x; y) dμ(x) = λr0(y) and λ = 1 because they both integrate (with respect to
μ) to 1. This completes the proof. �

Due to the uniqueness of ρ0 in (C.6) (deduced from Lemma 1), the (R, D, U)-HZMCZ is,
in fact, necessarily taken under its invariant probability distribution.

In that case, Proposition 1 still holds and Remark 2 also holds if the (ρ0, D, U)-HZMC is
replaced by the (R, D, U)-HZMCZ.

5.2. PCAs on Z/nZ

In this section we have results, similar to Theorems 1 and 2, on the lattice Z/nZ. The
main change is that we characterize the PCA whose invariant distribution is a cyclic-HZMC
(CHZMC).

Consider, as represented in Figure 3,

CHZ(t) =
{(⌊

i

2

⌋
, t + 1 + (−1)i+1

2

)
, i ∈ Z

(2n)Z

}
.

Let (D, U) be two μ-supported transition kernel from E to E such that

Z(D, U)

=
∫

E2n

u(yn−1; x0)d(x0; y0) . . . d(xn−1; yn−1) dμ2n(x0, y0, x1, . . . , yn−1) /∈ {0, +∞}.

We define the measure M on the cyclic horizontal zigzag (CHZ) called a (μ-supported) (D, U)-
CHZMC by its μ2n-density m, that is, for μ-a.e. x0, y0, . . . , yn−1 ∈ E,

m(x0, y0, . . . , yn−1) = u(yn−1; x0)d(x0; y0) . . . d(xn−1; yn−1)

Z(D, U)
.

For simplicity, we define, formally, only μ-supported (D, U)-CHZMCs (D and U are μ-
supported transition kernels from E to E).
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Figure 3: Shown in bold is CHZ(t), the t th cyclic horizontal zigzag on a space–time diagram.

When E is finite, a CHZMC is a HZMC conditioned to be periodic. In general, a CHZMC
is a Gibbs measure in the cyclic horizontal zigzag the CHZ.

The denomination ‘cyclic Markov chain’ were first introduced by Albenque [1] to define a
periodic Markov chain on Z/nZ. This notion is the same as Markovian fields in [4].

The distribution of the line St (respectively St+1) is denoted M(1) (respectively M(2)) and
its μn-density is obtained by integration of m with respect to the n variables y0, . . . , yn−1
(respectively to the n variables x0, . . . , xn−1). The distribution of the state S(i, t) is denoted
M

(1)
i and its μ-density is obtained by integration of m with respect to the 2n − 1 variables

x0, y0, . . . , xi−1, yi−1, yi, xi+1, . . . , xn−1.
For any j ∈ N, for μ-a.e. a, b, we let

(du)j (a; b) =
∫

E2j−1
d(a; y0)u(y0; x1) · · · u(yj−1; b) dμ2j−1(y0, x1, . . . , yj−1).

First, we obtain a theorem about μ-supported PCAs having μ-supported CHZMC.

Theorem 5. Let μ be a σ -finite measure on E. Let A := (Z/nZ, E, N, T ) be a μ-supported
PCA and (D, U) a μ-supported CHZMC. The (D, U)-CHZMC is invariant by A if and only if
the two following conditions are satisfied.

(C.11) For μ-a.e. a, b, c ∈ E,

du(a; b)t (a, b; c) = d(a; c)u(c; b) or (du)n−1(b; a) = 0.

(C.12) For μ-a.e. x0, x1, . . . , xn−1 ∈ Ẽ,

du(x0; x1)du(x1; x2) · · · du(xn−1; x0) = ud(x0; x1)ud(x1; x2) · · · ud(xn−1; x0).
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Proof. Let a (D, U)-CHZMC be invariant by A. For all A, B, C ∈ B(E), and for all
i ∈ Z/nZ,

P(S(i, t) ∈ A, S(i + 1, t) ∈ B, S(i, t + 1) ∈ C)

= 1

Z(D, U)

∫
A×C×B

d(xi; yi)u(yi; xi+1)(du)n−1(xi+1; xi) dμ3(xi, yi, xi+1)

= 1

Z(D, U)

∫
A×C×B

du(xi; xi+1)t (xi, xi+1; yi)(du)n−1(xi+1; xi) dμ3(xi, yi, xi+1).

Hence, for μ-a.e. xi, yi, xi+1 ∈ E,

du(xi; xi+1)t (xi, xi+1; yi)(du)n−1(xi+1; xi) = d(xi; yi)u(yi; xi+1)(du)n−1(xi+1; xi),

i.e. (C.11).
To prove (C.12), we use the fact that the second line of the (D, U)-CHZMC at time t is the

first line at time t + 1 and, since the CHZMC is invariant, the law of the CHZMC at time t and
at time t + 1 is the same M . But M(1) is the law of the first line and M(2) of the second, so
M(1) = M(2). In terms of μn-densities, m(1) = m(2). But

m(1)(x0, . . . , xn−1) = 1

Z(D, U)
du(x0; x1) · · · du(xn−1; x0)

and

m(2)(x0, . . . , xn−1) = 1

Z(D, U)
ud(x0; x1) · · · ud(xn−1; x0),

and we obtain (C.12).
Conversely, we suppose that (C.11) and (C.12) are satisfied. Then the push forward mea-

sure of the (D, U)-CHZMC by A is also the (D, U)-CHZMC (the computation is an adaptation
of that performed in the proof of Theorem 1 to compute the push forward measure of a HZMC).
This completes the proof. �

For μ-positive PCAs, (C.11) could be exploited a little more.

Theorem 6. Let μ be a σ -finite measure on E. Let A := (Z/nZ, E, N, T ) be a μ-positive
PCA. It holds that A admits a μ-positive invariant CHZMC if and only if (C.4) and the following
condition are satisfied.

(C.13) There exists a positive function η ∈ L1(μ) that is a solution of

dηuη(x0; x1)dηuη(x1; x2) · · · dηuη(xn−1; x0)

= uηdη(x0; x1)uηdη(x1; x2) · · · uηdη(xn−1; x0)

for μ-a.e. x0, . . . , xn−1 ∈ E with dη and uη as defined in (3) and (4). In this case, the
(D, U)-CHZMC holds for μ-densities dη and uη as defined in (3) and (4).

Proof. First, when a PCA is μ-positive, (C.11) can be written, for μ-a.e. a, b, c, as

t (a, b; c) = d(a; c)u(c; b)du(a; b)

because both du(a; b) and (du)n−1(b; a) are positive. Hence, we use Lemma 2 to prove that
(C.11) is equivalent to (C.4). Moreover, Lemma 3 still applies and the state space of possible
solutions for (D, U) is parametrized by η, a function in L1(μ). With (C.12) applied on dη

and uη, we obtain (C.13). �
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