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Abstract

Subclinical (SCK) and clinical (CK) ketosis are metabolic disorders responsible for big losses
in dairy production. Although Fourier-transform mid-infrared spectrometry (FTIR) to predict
ketosis in cows exposed to great metabolic stress was studied extensively, little is known about
its suitability in predicting hyperketonemia using individual samples, e.g. in small dairy herds
or when only few animals are at risk of ketosis. The objective of the present research was to
determine the applicability of milk metabolites predicted by FTIR spectrometry in the
individual screening for ketosis. In experiment 1, blood and milk samples were taken every
two weeks after calving from Holstein (n = 80), Brown Swiss (n = 72) and Swiss Fleckvieh (n
= 58) cows. In experiment 2, cows diagnosed with CK (n = 474) and 420 samples with blood
β-hydroxybutyrate [BHB] <1.0mmol/l were used to investigate if CK could be detected by
FTIR-predicted BHB and acetone from a preceding milk control. In experiment 3, correlations
between data from an in farm automatic milk analyser and FTIR-predicted BHB and acetone
from the monthly milk controls were evaluated. Hyperketonemia occurred in majority during
the first eight weeks of lactation. Correlations between blood BHB and FTIR-predicted BHB
and acetone were low (r = 0.37 and 0.12, respectively, P < 0.0001), as well as the percentage
of true positive values (11.9 and 16.6%, respectively). No association of FTIR predicted ketone
bodies with the interval of milk sampling relative to CK diagnosis was found. Data obtained
from the automatic milk analyser were moderately correlated with the same day FTIR-predicted
BHB analysis (r = 0.61). In conclusion, the low correlations with blood BHB and the small
number of true positive samples discourage the use of milk mid-infrared spectrometry analyses
as the only method to predict hyperketonemia at the individual cow level.

The onset of lactation exposes dairy cows to various metabolic challenges (reviewed by Gross
and Bruckmaier, 2019a). Among these challenges the imbalance between energy intake and
expenditure in early lactation is most critical because dairy cows undergo a state of negative
energy balance (NEB), which leads to an often dramatic catabolic metabolic and endocrine
status at simultaneously high milk production (Butler et al., 2003; Gross et al., 2011a). The
prerequisite for this status is a temporary prioritization of nutrients towards the mammary
gland independent of homeostatic regulatory mechanisms by insulin and other endocrine sys-
tems in early lactation (Bauman and Currie, 1980; Bruckmaier and Gross, 2017; Gross and
Bruckmaier, 2019a). Particularly, the availability of glucose for other than mammary tissues
is reduced along with decreased insulin and elevated growth hormone concentrations,
which enhances lipolysis in adipose tissue and results consequently in greater concentrations
of non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in the bloodstream
(Contreras et al., 2017; van der Kolk et al., 2017; Gross and Bruckmaier, 2019a). Until the
energy balance is restored, dairy cows are exposed to an increased risk of infectious and meta-
bolic diseases (Ingvartsen et al., 2003; Mulligan and Doherty, 2008).

Ketosis, a mostly transient metabolic disorder originating mainly from the incomplete oxi-
dation of NEFA in the liver, is characterized by elevated concentrations of ketone bodies (acet-
oacetate, acetone, and BHB) in body fluids (Schultz, 1968; Duffield et al., 2009). Besides the
decline in feed intake and milk production (Laeger et al., 2010), the signs of subclinical ketosis
(SCK) are subtle, but the impact of SCK can trigger the development of further health issues
associated with reduced animal performance, such as clinical ketosis (CK; Suthar et al., 2013),
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displaced abomasum (LeBlanc et al., 2005; Ospina et al., 2010),
metritis (Galvão et al., 2010), retained placenta and lower concep-
tion rates (Chapinal et al., 2012; LeBlanc, 2012), and an elevated
risk for mastitis due to the impairment of the innate immune
function of the mammary gland (Zarrin et al., 2014; Hillreiner
et al., 2016), all increasing the likelihood of culling (Seifi et al.,
2011). The average prevalence of CK and SCK in the first three
weeks of lactation in dairy herds varies between 20 and 41%
(Suthar et al., 2013; Berge and Vertenten, 2014; Brunner et al.,
2019), causing considerable economic losses for dairy farmers
(Raboisson et al., 2015).

Currently, the gold standard for SCK and CK diagnosis is the
measurement of BHB in blood. However, it is an invasive method
requiring extra labour and instructed persons, and not suitable for
frequent sampling to allow an early detection of animals at risk.
Milk that is non-invasively and frequently obtained (i.e. 2 to 3
times daily) is a favourable medium, especially with regard to
established routine analysis of milk components (Gross and
Bruckmaier, 2019b). The intense lipid mobilization after partur-
ition results in an increase in milk fat and decrease in milk protein
contents. Thus, an elevated fat to protein ratio (FPR) has a posi-
tive correlation with metabolic load in dairy cows (Heuer et al.,
1999; Buttchereit et al., 2010; Gross et al., 2011a). Based on
milk recording data, the milk FPR represents a practical method
to indicate cows at risk for SCK, albeit sensitivity and specificity
are not very high (Duffield et al., 1997).

Fourier-transform mid-infrared spectrometry (FTIR) is an
indirect and non-destructive detection method used worldwide
since years to reliably determine milk gross composition (fat, pro-
tein, and lactose; De Marchi et al., 2014; Overton et al., 2017).
Due to its low-cost and fast output of results and the increase
in computing capacity, the interest in using mid-infrared (MIR)
spectra wavelengths for estimating health traits by measuring
milk characteristics has sparked (de Roos et al., 2007; Grelet
et al., 2016). In the past few years, a considerable number of arti-
cles with focus on milk MIR spectra has been published, varying
from their potential application in prediction of methane emis-
sions (Dehareng et al., 2012), cheese making characteristics (De
Marchi et al., 2009; McDermott et al., 2016), individual fatty
acids (Soyeurt et al., 2006; Maurice-Van Eijndhoven et al.,
2013), protein composition (Rutten et al., 2011), feed intake
(Wallén et al., 2018), to cow’s energy status (McParland et al.,
2011; Grelet et al., 2016). Although recent publications suggest
FTIR spectrometry a valuable tool for monitoring hyperketone-
mia (de Roos et al., 2007; van Knegsel et al., 2010; Grelet et al.,
2016; Chandler et al., 2018), most of the studies showing results
on milk BHB and acetone based on MIR spectra included a con-
siderable number of animals with blood BHB concentrations
above the thresholds for SCK and CK diagnosis.

The primary aim of this study was to evaluate the suitability of
MIR spectra-predicted acetone and BHB in milk for early detec-
tion of elevated blood BHB concentrations in individual cows or
at herd level. Special attention is put on the relevance for the
detection of individual cow SCK in small scale dairy farms
under consideration of the low sampling frequency (approx.
once/month) within the regular DHI recordings.

Materials and methods

Experimental procedures followed the guidelines of the Swiss Law
on Animal Protection and were approved by the Veterinary
Offices of the involved cantons.

Experiment 1 – field trial

Between April 2016 toMay 2017, blood andmilk samples from 210
dairy cows were taken concomitantly every 2 weeks from calving
until approximately 125 d post-partum and once at around 200 d
in milk (nine samples per cow) from three different breeds:
Holstein (n = 80), Brown Swiss (n = 72) and Swiss Fleckvieh
(Simmental × Red Holstein; n = 58). From each breed two farms
were enrolled. More detailed information on animals and farms
are presented in online Supplementary Table S1. At each sampling
we collected 9 mL of blood (obtained approximately one hour after
the morning milking) from the coccygeal vein into a tube contain-
ing EDTA (Vacuette EDTA blood collection tubes, Greiner
Bio-One GmbH, 4550 Kremsmuenster, Austria) and 100 mL of
milk from the morning milking (50 mL with a tablet preservative
containing a combination of Bronopol and Natamycin (Broad
Spectrum Microtabs II), and 50 mL stored at −20°C for later ana-
lysis), both immediately placed on ice until further processing. In
total, we obtained 1,766 blood and milk samples in parallel. Blood
was centrifuged at 2,500 × g (4°C, 20 min) and the harvested plasma
was stored at−20°C until analysis. Data onmilk yield were obtained
from the official DHI milk recordings during the sampling period.

Experiment 2 – clinical ketosis cases

Data of 474 cows (66Holstein, 408 Brown Swiss) diagnosedwithCK
by veterinarians during the first 60 d post-partum were obtained
from the central database of Qualitas AG (Zug, Switzerland). Data
included the date of CK diagnosis relative to parturition, and results
of the previous DHI recording with MIR spectra-predicted acetone
and BHB concentrations inmilk. These results were contrasted with
the measurements of MIR spectra-predicted BHB and acetone in
milk of 420 control samples from experiment 1 (cows without
SCK, blood BHB concentration at sampling <1.0 mmol/l, similar
date of sampling relative to parturition compared with the DHI
recordings, similar proportion of Brown Swiss and Holstein milk
samples) to investigate if deviations in milk composition would
allow prediction of CK prior to the diagnosis of a veterinarian
based on clinical signs.

Experiment 3 – measurements of BHB in milk by an automatic
in-line analyser on-farm

Milk BHB data from an automatic on-farm milk analysis system
(Herd Navigator (HN), DeLaval, Tumba, Sweden) that frequently
samples and colorimetrically measures milk BHB, were collected
in three farms using robotic milking systems (Voluntary
Milking System VMS, DeLaval, Tumba, Sweden). Machine set-
tings were adjusted to measure milk BHB daily from days 4 to
21, and every 4 d from days 22 to 62 post-partum. Milk BHB con-
centrations greater than 0.12 mmol/l appear as an alert in the herd
management software. In total, milk BHB profiles of 175 cows
(Holstein, Brown Swiss, and Swiss Fleckvieh) were evaluated. In
addition, 136 direct comparisons of BHB measurements in
milk, both from the HN device and predicted by milk MIR spec-
tra derived from a concomitant DHI control (11 times per year)
on the same day, were conducted.

Blood and milk analyses

Blood samples were analysed for BHB with an automated analyser
(Cobas Mira 2, Hoffmann-La Roche, Basel, Switzerland) using an
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enzymatic kit from Randox Laboratories Ltd. (Schwyz,
Switzerland; kit no. RB1007). Chemical measurement of acetone
concentration in milk was done on an AutoAnalyzer 3 (BRAN
+LUEBBE). MIR-spectrum based measurement of fat and protein
content, as well as prediction of BHB and acetone concentrations
in milk were done on a MilkoScan FT 6000 analyser (FOSS,
Hilleroed, Denmark) using the corresponding prediction models
from FOSS (Foss, Hilleroed, Denmark).

Statistical analyses

Data analysis was performed using SAS (version 9.4; SAS Institute
Inc., Cary, NC, USA). We used Pearson’s correlation coefficients
(CORR procedure) to investigate the relationship between blood
BHB concentration, FPR in milk, the chemically determined acet-
one concentration in milk, and the MIR spectra-predicted milk
BHB and acetone concentrations. All variables were checked for
normal distribution using the UNIVARIATE procedure.
Concentrations of blood BHB, MIR spectra-predicted milk BHB
and acetone, and FPR required normalisation. The TRANSREG
procedure was used to perform a Box-Cox transformation for
each variable. The repeated measures mixed model analysis
using the MIXED procedure was performed to examine the effects
of breed, farm, and parity number. The individual cow was con-
sidered as repeated subject. The Tukey–Kramer post hoc test was
used for detection of significances at P < 0.05.

Receiver operating characteristic (ROC) curves were created
using SigmaPlot (version 12.5, Systat Software Inc., Erkrath,
Germany) to calculate the accuracy of milk acetone measured
chemically, FPR, MIR spectra-predicted BHB and acetone to dis-
criminate SCK (blood BHB concentration≥ 1.0 mmol/l) and
non-SCK (blood BHB concentration <1.0 mmol/l) cows.
Optimal threshold values for the variables were defined according
to the greatest sum of sensitivity (Se) and specificity (Sp) values.
The Se, Sp, positive predictive value (PPV) and negative predict-
ive value (NPV) were calculated based on the optimal threshold

for each variable. Data on CK diagnosis and related previous
DHI recordings including MIR spectra-predicted acetone and
BHB concentrations in milk were summarized by breed on a
weekly basis relative to the date of CK diagnosis. Contrasting of
weekly summarized milk BHB concentrations predicted from
DHI samples in CK cows against appropriate controls without
CK was performed by paired t-tests.

Results

Experiment 1 – field trial

Only 63 (3.6%) out of the 1,766 samples from 210 animals
obtained biweekly in the field study had blood BHB concentra-
tions ≥ 1.0 mmol/l, considered in this paper the lowest cut-point
for SCK (online Supplementary Table S1). Samples with blood
BHB concentrations <1.0 mmol/l were considered non-SCK.
Cows classified SCK had a blood BHB concentration of 1.59 ±
0.08 mmol/l, whereas non-SCK cows averaged 0.50 ± 0.00 mmol/
l (mean ± SEM). The MIR spectra-predicted BHB and acetone as
well as milk acetone measured chemically and FPR were also
increased in SCK compared with the non-SCK group (P <
0.0001: data in online Supplementary Table S2). The distribution
of the SCK samples overtime is shown in Figure 1. The incidence
of SCK in cows of all breeds was detected mostly during the first
eight weeks post-partum.

In the field trial we examined effects of breed and parity, and
the data are shown in online Supplementary Table S3. There was
no effect of breed on blood BHB concentrations (P = 0.48) and
milk acetone measured chemically (P = 0.28). However, Holstein
cows had lower (P < 0.05) MIR spectra-predicted BHB and acet-
one than either Swiss Fleckvieh or Brown Swiss. Regarding
FPR, Brown Swiss had the lowest ratio compared to similar values
in Holstein and Swiss Fleckvieh. Multiparous cows (parity≥ 2)
had greater blood BHB concentrations, MIR spectra-predicted
BHB and milk acetone measured chemically compared to prim-
iparous cows. Milk yield in Holstein and Swiss Fleckvieh was

Fig. 1. Blood BHB concentrations in Holstein, Swiss
Fleckvieh, and Brown Swiss dairy cows after partur-
ition (n = 1,766 samples). A blood BHB concentration
of 1.0 mmol/l was considered as threshold for subclin-
ical ketosis (SCK).
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higher compared to Brown Swiss (P < 0.05) and, as expected, first
parity cows had a lower milk production than multiparous cows
(P < 0.0001).

The correlation between blood BHB and milk MIR spectra-
predicted BHB was low (r = 0.37; Fig. 2a), although significant
(P < 0.0001). The optimal threshold value to differentiate SCK
from non-SCK cows (calculated upon the highest sum of Se
and Sp) was 0.05 mmol/l for MIR spectra-predicted BHB in
milk. At this cut-off value, Se was 82.5% and Sp 77.3%. The
PPV (true positive values) and NPV (true negative values) were
11.9% and 99.2%, respectively. In terms of MIR spectra-predicted
acetone in milk, the overall correlation with blood BHB concen-
tration was low (r = 0.12; P < 0.0001; Fig. 2b). With the optimal
threshold of 0.05 mmol/l acetone in milk obtained from the
ROC analysis, Se and Sp were 77.8 and 85.5%, while PPV and
NPV were 16.6 and 99.0%, respectively. Even when MIR spectra-
predicted acetone was contrasted with the concomitant chemical
measures of milk acetone, the correlation was low (r = 0.12; P <
0.0001; Table 1). However, milk acetone concentrations measured

chemically correlated quite well with blood BHB concentration
(r = 0.69; P < 0.0001; Fig. 2c). The ROC analysis revealed an opti-
mal threshold of 0.08 mmol/l for the chemical measures of milk
acetone to predict SCK with a Se and Sp of 74.6% and 94.0%,
respectively. The PPV for the chemically determined acetone con-
tent in milk was the greatest of all variables analysed (30.3%,
NPV = 99.1%). The milk fat to protein ratios correlated poorly
with blood BHB concentrations (r = 0.16; P < 0.0001; Fig. 2d).
The optimal threshold for differentiation of SCK and non-SCK
was 1.25, and Se, Sp, PPV and NPV were the lowest compared
with the previous analysed variables: 54.0%, 74.6%, 7.0% and
97.7%, respectively.

Experiment 2 – clinical ketosis cases

Holstein cows that were diagnosed with CK (n = 66) had greater
MIR spectra-predicted BHB and acetone concentrations in milk
(0.15 ± 0.03 mmol/l and 0.22 ± 0.04 mmol/l, respectively) com-
pared with non-ketotic Holstein cows of similar performance

Fig. 2. Relationships between blood BHB concentration and mid-infrared (MIR) spectra predicted BHB (a) and acetone (b) concentrations in milk, milk acetone
measured chemically (c) and the milk fat to protein ratio (d). Data on correlation coefficients (r), number of samples (n) and respective P-values are added to
the graphs.
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and lactational stage (−0.01 ± 0.00 mmol/l and −0.03 ± 0.00
mmol/l; P < 0.05). Similar results were found in Brown Swiss
cows identified with CK (n = 408), which had greater values of
MIR spectra-predicted milk BHB and acetone (0.18 ± 0.01
mmol/l and 0.24 ± 0.02 mmol/l, respectively; P < 0.05) compared
with respective controls (0.02 ± 0.00 mmol/l and 0.00 ± 0.01
mmol/l, respectively). The MIR spectra-predicted BHB and acet-
one concentrations in milk varied considerably in Brown Swiss
and Holstein cows (Fig. 3) at DHI controls in the days and
weeks prior to diagnosis of CK. Even on the day of CK diagnosis,
the high variation of estimated ketone body concentrations in
milk did not reliably indicate hyperketonemia (Fig. 3).

Experiment 3 – measurements of BHB in milk by an automatic
in-line analyser on-farm

Approximately 19 d post-partum, the threshold of 0.12 mmol/l
BHB in milk was exceeded for the first time when analysed across
all cows in all herds. The analysis of individual milk BHB profiles
based on HN measurements indicated that 15.6% of all cows had
at least one milk BHB concentration greater than 0.12 mmol/l in
early lactation. Milk BHB was higher than 0.12 mmol/l on three
consecutive days on average.

A moderate positive correlation was found between the direct
enzymatic milk BHB measurements by the on-farm analyser
(Herd Navigator) and the indirect MIR spectra-predicted milk
BHB content obtained from concomitantly DHI recordings on
the same day (r = 0.61; P < 0.0001). However, this correlation
falls to r = 0.44 (P < 0.0001) when only milk samples with BHB
concentrations <0.15 mmol/l analysed by the Herd Navigator
are considered. Assuming the HN alarms at milk BHB concentra-
tions of 0.12 mmol/l as reference criterion, approximately 90% of
the hyperketonemia cases would have been missed by the DHI
control performed approximately only once per month.

Discussion

Fast, accurate, and non-invasive methods for early and automated
detection of SCK or CK are a crucial goal in the establishment of
precision dairy farming methods. Ideally, these methods would be
implemented in routine procedures such as milking: in contrast to
blood, milk is obtained non-invasively at each milking, and
changes in milk composition closely reflect alterations in meta-
bolic status of cows. FTIR spectrometry has doubtlessly evolved
into an essential and useful tool in the routine analyses of gross
milk composition (fat, protein, lactose; reviewed by Gross and
Bruckmaier, 2019b). Furthermore, diverse health and perform-
ance traits can be associated with defined regions of the milk
MIR spectrum (Grelet et al., 2016). Two of these traits are acetone
and BHB in milk. But, ketone bodies in milk cannot be measured
directly by FTIR analysis (De Marchi et al., 2014). Instead, MIR
spectra are used for indirectly predicting their content, based on
algorithms measuring changes in milk composition that are asso-
ciated with SCK and CK (e.g., contents of milk fat, protein, com-
position of fatty acids in milk etc.; Gross et al., 2011b; Gross and
Bruckmaier, 2019b). Most research on the use of milk MIR spec-
trometry to detect the risk of hyperketonemia has been done in
larger dairy herds with Holstein cows experiencing marked meta-
bolic stress (de Roos et al., 2007; van Knegsel et al., 2010). Rather
limited data is available to assess the ability to predict SCK at the
individual cow level, in cows with moderate metabolic load and of
different breeds. Additionally, in small and well-managed herds,
only a few cows with a considerable metabolic load can be
expected to be present at the same time for a reliable detection
of cows at risk for SCK.

Only a small percentage (less than 4%) of the blood samples in
the present field study exceeded the threshold of BHB concentra-
tions of 1.0 mmol/l that we used for classification of SCK. This
result to some extent contradicts the averages of prevalence
rates of SCK reported in Europe (22 to 41%) by Suthar et al.

Table 1. Pearson’s correlation coefficients of blood BHB concentrations with milk ketone bodies (predicted by mid-infrared spectrometry (MIR) or chemically
determined) and the milk fat to protein ratio (FPR) measured during the first 200 d post-partum

Blood
BHB

Milk MIR spectra-predicted
BHB

Milk MIR spectra-predicted
acetone

Milk acetone (chemically
measured) Milk FPR

Blood BHB 1.00

n = 1766

Milk MIR spectra-predicted BHB 0.37 1.00

P < 0.0001

n = 1762 n = 1762

Milk MIR spectra-predicted
acetone

0.12 0.23 1.00

P < 0.0001 P < 0.0001

n = 1762 n = 1762 n = 1762

Milk acetone (chemically
measured)

0.69 0.33 0.12 1.00

P < 0.0001 P < 0.0001 P < 0.0001

n = 1735 n = 1734 n = 1734 n = 1735

Milk FPR 0.16 0.20 <0.01 0.08 1.00

P < 0.0001 P < 0.0001 P = 0.98 P < 0.01

n = 1762 n = 1762 n = 1762 n = 1734 n = 1762
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(2013) and Berge and Vertenten (2014). We selected well-
managed farms that are representative in terms of feeding and
performance for the herd size of 40–50 dairy cows in
Switzerland. However, this does not imply that SCK is not an
issue for Swiss dairy cows, given the fact that variation of meta-
bolic load between individual cows kept on the same farm can
be remarkable (Kessel et al., 2008; Gross and Bruckmaier,
2015). Blood ketone bodies are established markers for poor
metabolic adaptation (Zbinden et al., 2017; Gross and
Bruckmaier, 2019a, 2019b) and recognised as the gold standard
or reference for SCK and CK diagnosis. Our findings confirm
earlier results that hyperketonemia occurs mostly during the
first weeks of lactation (Duffield et al., 2009; Gross et al., 2011a;
Gross and Bruckmaier, 2015; Zbinden et al., 2017).

In contrast to findings of Urdl et al. (2015) with Brown Swiss
cows having greater blood BHB concentrations and lower milk
production compared with Holstein, our results showed no
breed effect on blood BHB concentrations. Primiparous cows
had lower concentrations of blood BHB compared with multipar-
ous cows. This can be attributed to the lower milk production and
consequently lower metabolic load compared with multiparous
animals (Lee and Kim, 2006; McArt et al., 2012; Morales
Piñeyrúa et al., 2018).

Our results revealed only a low correlation between the
gold standard method of analysing blood BHB and MIR
spectra-predicted BHB in milk, as well as less than 12% of true

positive values indicated by the estimated milk BHB content. The
correlation between blood BHB concentration and MIR spectra-
predicted acetone or FPR was even lower. When BHB concentra-
tions in blood are low, likewise less ketone bodies are expected to
appear in milk. Together with the indirect assessment and estima-
tion of milk ketones by the FTIR analysis, its suitability for SCK
detection viamilk is further limited in cows below the SCK thresh-
old of ketone body concentration. Although the sensitivity in our
field study was fairly good, the small number of samples correctly
identified as true positive and the low correlationswith the reference
analysis of blood BHB discourage the use of milk MIR spectra-
predicted ketone bodies to predict SCK in individual cows. Van
Knegsel et al. (2010) reported a high sensitivity of milk BHB and
acetone estimated by FTIR spectrometry in predicting SCK with
similar low percentage of true positive samples (≤18%), but
included cows with greater blood BHB concentrations compared
with our present study. In a more recent study by Grelet et al.
(2016), evaluations included samples with greater BHB and acetone
contents in milk, and consequently more SCK and CK cows than
ours. In our study, the closest correlation was found between the
two reference methods, enzymatic measurement of BHB in blood
and chemical measurement of acetone in milk.

Several authors showed a strong association of increased
ketone bodies and the occurrence of CK (Nielsen et al., 2005;
Seifi et al., 2011; Suthar et al., 2013; Berge and Vertenten,
2014). Although milk MIR spectra-predicted BHB and acetone

Fig. 3. Milk mid-infrared (MIR) spectra-predicted BHB and acetone concentrations in milk of Holstein (a, b, respectively) and Brown Swiss cows (c, d, respectively)
and days from official DHI milk sampling to clinical ketosis (CK) diagnosis.
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were elevated in our SCK cows, interestingly, there was no
increase in MIR-based estimates of ketone bodies the closer the
analysed milk sample was obtained to the CK diagnosis. Even
repeated and more frequent milk sampling did not improve the
correlation of milk MIR spectra-predicted ketone bodies with
the same day enzymatic measurement of BHB measured by the
HN. However, the frequent analysis by automated in-line devices
is more suited to early detection and monitoring of individual
cows at risk of hyperketonemia (Nielsen et al., 2005) compared
with monthly results provided by the DHI controls only.
Depending on the time of the first DHI control post-partum,
most of the metabolic adaptation responses taking place within
2–3 weeks may not be captured. As our field study showed, the
elevated risk of cows to develop ketosis during early lactation
requires a higher frequency of sampling though detection of
cows with SCK was still scarce as indicated by MIR-based estima-
tions of milk ketone bodies every 2 weeks.

Although our selected farms were on the upper range of cur-
rent herd sizes in Switzerland, they are still small compared with
farms of major milk producing countries. Assuming common
herd sizes of 20–30 dairy cows in many European family operated
farms, only very few animals are at a similar lactation stage on a
farm. Consequently, in small herds an early detection of SCK via
MIR spectra-based prediction of milk ketones using monthly DHI
controls is unlikely. However, in larger dairy herds, monthly MIR
spectra-predicted ketones in combination with milk components
and milk fatty acids can be indicative for metabolic status at herd
level, particularly in early lactation, although an indirect assess-
ment of milk ketones by FTIR spectrometry does not seem to
diagnose SCK in individual cows. Thus, management of cows at
risk can be adjusted by interventions such as improved feeding,
more frequent observations and earlier veterinary interventions.
Large pools of datasets as created by breeding associations, com-
bining DHI control data, veterinary treatment records, different
breeds, information on cows’ genotypes etc. provide a better pos-
sibility for implementing milk MIR spectra-predicted traits.
Associations between predicted traits of interest and measured
variables can be calculated and implemented in breeding pro-
grams (Koeck et al., 2014; Bastin et al., 2016), bearing in mind
that causal relationships with physiology must be critically
evaluated.

In conclusion, our study shows that the predictive value of
MIR spectra-predicted concentrations of ketone bodies in milk
is limited in terms of an early detection of SCK when dairy
cows are experiencing a moderate metabolic load. Particularly
when only a few animals at risk are present (e.g. in small herds
or good management conditions) and corresponding intervals
of milk sampling are rather wide, the likelihood for detecting
those animals is marginal. The indirect assessment of milk
ketones by FTIR spectrometry does not reliably detect hyperketo-
nemia in individual samples, but improves if actual circulating
blood BHB exceeds the thresholds of SCK and CK diagnosis.
Automatic in-line analysers directly measuring BHB in milk are
superior in detecting hyperketonemia due to their frequent sam-
pling. In contrast to small dairy herds, however, MIR spectra-
predicted ketones in milk can provide additional information
on the metabolic status of early lactating cows in larger dairy
farms.
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be found at https://doi.org/10.1017/S0022029920000230
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