
Robotica (2024), 42, pp. 2761–2780
doi:10.1017/S0263574724001097

RESEARCH ARTICLE

Dynamic modeling and simulation of a torque-controlled
spatial quadruped robot
Daniel Teixeira de Paula , Eduardo Paciencia Godoy and Mauricio Becerra-Vargas

São Paulo State University (Unesp), Institute of Science and Technology, Sorocaba, São Paulo, Brasil
Corresponding author: Daniel Teixeira de Paula; Email: daniel.t.paula@unesp.br

Received: 8 January 2024; Revised: 30 April 2024; Accepted: 31 May 2024; First published online: 11 September 2024

Keywords: quadruped robot; dynamic model; legged locomotion; contact dynamics; prototyping

Abstract
Evolution has shown that legged locomotion is most adequate for tasks requiring versatile movement on land,
allowing animals to traverse a wide variety of environments ranging from natural terrain to artificial, man-made
landscapes with great ease. By employing well-designed control schemes, this ability could be replicated for legged
robots, enabling them to be used in critical situations that still pose great danger to human integrity, such as
search and rescue missions, inspection of hazardous areas, and even space exploration. This work characterizes the
quadruped robot and contact dynamics that will compose our in-house simulator to be used for prototyping locomo-
tion control schemes applied to quadruped robots. The proposed simulator computes the robot dynamics using the
Recursive Newton-Euler and Composite-Rigid-Body algorithms with a few modifications to make certain aspects
relevant for contact detection and control more easily accessible; furthermore, a compliant contact force method
alongside stick-slip friction modeled the contact dynamics. To allow the robot to move, a simple PD-independent
joint controller was implemented to track a desired leg trajectory. With the same robot and controller implemented
using the MuJoCo simulation software, this work evaluates the proposed simulator by comparing characteristic
locomotion signals such as the trunk pose and the ground reaction forces. Results showed similar behavior for both
simulators, especially with regard to the contact detection, despite the significantly different contact models. Lastly,
final remarks to enhance our simulator’s performance are suggested to be explored in future works.

1. Introduction
Over the past decade, legged robotics has seen a dramatic growth in popularity largely due to showcases
of impressive acrobatic stunts brought by many research groups as well as an ever-growing number of
companies. However, beyond feats of agility, one major aspect that sparks the interest in legged robots
is their capability to traverse natural (e.g., dirt, sand, snow, and gravel) or man-made landscapes (e.g.,
rubble and stairs) with great ease. Mastering locomotion would allow these robots to be effectively
used in critical applications which currently still pose great danger to human lives, such as search and
rescue operations in disaster areas, inspection of hazardous areas, and even space exploration. Legged
locomotion is achieved by not only having well-built legs and body but also control systems that take
locomotion principles into account. Effective control design inherently requires some knowledge of the
expected system behavior to achieve a desired effect. This aspect is especially relevant for model-based
control, where a model of the system dynamics is used to generate the control signals.

The model of the system dynamics can be obtained by applying first principles (e.g., Newton-Euler
and Euler-Lagrange), using derived algorithms (e.g., Articulated Body Algorithm [1]), or by performing
system identification. In any case, the chosen method should reflect the project requirements, which must
take into account aspects such as system complexity and controller restrictions.

In recent years, Model Predictive Control (MPC) has become a popular scheme for legged loco-
motion planning and control, being extensively used by well-known research groups in the field [2–9].

C© The Author(s), 2024. Published by Cambridge University Press

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574724001097
https://orcid.org/0009-0005-0684-150X
https://orcid.org/0000-0003-3375-096X
https://orcid.org/0000-0002-2810-3269
mailto:daniel.t.paula@unesp.br
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2762 Daniel Teixeira de Paula et al.

With MPC, dynamic model complexity plays a critical role in run-time performance. Neunert et al. [8]
employ a whole-body nonlinear MPC with an explicit soft contact model implemented by the Control
Toolbox [10] and full robot dynamics obtained from the RobCoGen [11, 12] code generation frame-
work. Hardware experiments done with two robots, HyQ [13] and ANYmal [14], showed that despite
the use of full robot dynamics, software design optimization and simplified contact dynamics allowed
the proposed method to run at update rates over an order of magnitude higher than existing methods. As
an alternative to full robot dynamics, approximations such as the centroidal [2], single rigid body [3–5,
7, 9], and template-based dynamics (e.g., spring-loaded inverted pendulum and cart-table with flywheel
[6]) have been used to reduce complexity at the cost of accuracy. Rathod et al. [9] employ nonlinear
MPC with an implicit hard contact model and single rigid body dynamics for locomotion planning. The
use of a simplified model was key to decrease computational cost and allow for faster online re-planning
that is required to deal with dynamic environments. Di Carlo et al. [3] go a step further into simplifying
the model, using MPC with linearized single rigid body dynamics. This choice allowed the controller
to be formulated as a single convex optimization problem, which greatly improved solution speed and
reliability as demonstrated in hardware experiments done with the MIT Cheetah 3 robot [2]. One way to
mitigate the reduced accuracy originated from using simplified models while not exactly fulfilling the
simplifying assertions (e.g., massless legs) is by improving robustness. Grandia et al. [4] and Minniti
et al. [7] incorporate robustness mechanisms into MPC while using a kinodynamic model. Even though
this model considers only the floating-base dynamics (single rigid body) along with the kinemat-
ics of each leg, the added robustness was able to compensate for modeling mismatches and external
disturbances.

Contrasting with MPC, Whole Body Control (WBC), a powerful legged locomotion control scheme,
strives for high model accuracy to generate consistent output signals, typically requiring the use of
complete robot dynamics. Fahmi et al. [15] use WBC to directly compute the actuation torques based
on user velocity input and planned contact sequence while considering the full robot dynamics and
an implicit hard contact model. Compared to their previous work using a simplified model (centroidal
dynamics), hardware experiments showed enhanced locomotive capability, with the robot successfully
traversing a wide range of challenging terrain. On the other hand, Kim et al. [5] employ WBC to compute
the actuation torques based on the planned reaction force profile instead of body trajectories. This choice
accommodates locomotion patterns with significant aerial phases, an important characteristic for high-
speed running as demonstrated by experiments using the MIT Mini Cheetah [16].

Few of the recent works from well-known research groups in the field utilize a dynamic model pro-
vided by readily available external libraries (e.g., RBDL [17]) or simulation software (e.g., MuJoCo
[18], Raisim [19]), with most relying on custom in-house solutions. “Poor” computational performance
with respect to specific practical requirements and inflexible model complexity of existing solutions are
among the reasons which may justify this dependence. However, employing ready-to-use software still
holds the potential benefit of abstraction, which can overcome the need to worry about implementation
details, saving time, and effort. Abstraction works in our favor if it can be asserted that the software
will function as intended, a condition that can be fulfilled by offering enough clarity with regard to its
inner workings, such as providing comprehensive and well-founded documentation, practical working
examples, and referring to comparative analyses with well-established methods.

In this paper, we characterize the quadruped robot and contact dynamics that will compose our in-
house simulator to be used for prototyping locomotion control schemes applied to quadruped robots.
The proposed simulator computes the robot dynamics using the Recursive Newton-Euler Algorithm
(RNEA) along with the Composite-Rigid-Body Algorithm (CRBA), similar to their definition in ref.
[1] but with a few modifications to make certain aspects relevant for contact detection and control more
easily accessible. With respect to the contact dynamics, it uses a compliant (nonlinear spring-damper)
contact force model alongside stick-slip friction. Evaluation of the proposed simulator was done by
implementing a simple PD-independent joint controller to track a desired leg trajectory, synthesized
by a foot trajectory generator we proposed in our previous work [20], and comparing characteristic
locomotion signals such as the trunk pose and the contact forces, with the same robot and controller
implemented using the MuJoCo simulation software. Results showed very similar behavior for both

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2763

simulators, especially with regard to the contact detection, despite the significantly different contact
models.

1.1. Main contributions
Since our objective is to develop a ready-to-use software that embraces the benefits of abstraction while
asserting that it will function as intended, our work’s main contribution can be stated as defining a
transparent and well-founded simulator that is capable of being used for prototyping locomotion control
schemes applied to legged robots. Additionally, with a focus on easing the development of model-based
control schemes, we consider two minor contributions: (1) the definition of algorithms derived from the
RNEA that separately compute the quadratic velocity and gravity terms, making them easily accessible
for use in specialized control schemes (e.g., gravity compensation); and (2) definition of an algorithm to
compute the (geometric) Jacobian matrix of the feet, typically required when a task space specification
(e.g., desired cartesian coordinates of the feet) must be converted into a joint torque command, by means
of a recursive formulation that relies on traversing the support path of each leg of the robot.

2. Definitions and notation
In this work, scalar quantities are depicted with medium italic lowercase Latin or Greek letters (e.g.,
gravitational acceleration g and friction coefficient μ), vectors are depicted with bold-face upright (or
italic for three-dimensional vectors) lowercase Latin or Greek letters (e.g., spatial velocity v, position p,
and angular velocity ω), and matrices are depicted with bold-face upright uppercase Latin letters (e.g.,
rotation matrix R). As an exception, bold-face lowercase Latin or Greek letters with a tilde represent the
skew-symmetric matrix (as defined in Appendix A) correspondent to that vector (e.g., ω̃ is the skew-
symmetric matrix of vector ω). In the absence of the right superscript, which denotes the frame of
reference, consider the variable expressed in its respective body frame. Additionally, 0 represents either
a zero vector or zero-filled matrix (depending on the context), while 1 represents the identity matrix.

2.1. Quadruped robot
The quadruped robot model described in this section is based on the 18 degrees-of-freedom (DOF)
torque-controlled MIT Mini Cheetah [16], a small and low-cost robot designed and built for dynamic
locomotion with readily available geometrical and inertial data through the MIT Biomimetic Robotics
Lab GitHub repository [21]. Figure 1 presents a three-dimensional rendering of the quadruped robot
showing its geometrical structure, two of its frames of reference (the trunk frame and the world frame),
and the characteristic DOF of the leg. The trunk frame {0} represents a frame of reference attached to
the robot’s trunk, while the world frame {W} is an inertial frame of reference attached to the ground.
The four legs are identical, each having a 3-DOF open kinematic chain topology with the base attached
to the robot’s trunk.

As illustrated in Fig. 1, from the base to the feet of a single leg, we have the abduction/adduction
joint, the hip joint, and the knee joint. In this work, each leg is identified by a unique two-letter acronym
based on the relative position of its base frame with respect to the trunk frame; that is, LF, RF, LH,
and RH, referring to the left foreleg, to the right foreleg, to the left hindleg, and to the right hindleg,
respectively.

2.2. Rigid bodies and connectivity
Figure 2a presents a simplified diagram with the corresponding numbers used to represent the 13 rigid
bodies (nb = 13) that compose the quadruped robot. The system topology can be expressed as a con-
nectivity graph, an undirected and connected graph where the nodes represent bodies and line segments

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2764 Daniel Teixeira de Paula et al.

Figure 1. Three-dimensional rendering of the quadruped robot model with two of its frames of reference
and the characteristic degrees-of-freedom of the leg.

Figure 2. Simplified diagrams showing the body numbering scheme and the connectivity graph
respective to the quadruped robot model.

represent the joints. The floating-base connectivity graph respective to the quadruped robot is presented
in Fig. 2b. Note that the robot has 13 joints numbered from 0 to 12, where joint 0 (not shown in the
graph) is a spatial 6-DOF joint while the remaining are all revolute joints.

The floating-base system with open-chain limbs that composes the quadruped robot has a tree-
structured kinematic chain where each branch of the tree can be intuitively traversed using recursion.
A systematic method to index the bodies in the rigid-body system must be established to convert this
recursion into an iterative process, which is more computationally efficient. Based on the connectivity
graph, the predecessor array pred and successor array succ can be defined. Starting from joint 1, each
element of the predecessor array pred(i) represents the body preceding joint i, while for the successor
array each element succ(i) represents the body succeeding joint i. From the connectivity graph (Fig.
2b), the predecessor and successor arrays can be defined as:

pred= {0, 1, 2, 0, 4, 5, 0, 7, 8, 0, 10, 11},
succ= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

(1)

When combined, the predecessor and successor arrays describe all the connected pairs of rigid bodies
in the tree-structured kinematic chain. One such combination yields the parent array λ. Each element
λ(i) represents the parent of body i, being calculated as [1]:

λ(i)=min
(
pred(i), succ(i)

)
, i ∈ [1, nb − 1]. (2)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2765

Applying relation (2) to predecessor and successor arrays defined in (1) results in the parent array:

λ= {0, 1, 2, 0, 4, 5, 0, 7, 8, 0, 10, 11}. (3)

Three other useful parameters which can be defined are the support set κ(i), the set of all joints in
between body i and the root, the child set μ(i), the set of children of body i, and the subtree set ν(i), the
set of bodies in the subtree rooted at body i.

2.3. Traversing the kinematic chain
Given the robot’s tree-structured kinematic chain, traversal is done using either an outward or an inward
pass. In an outward pass, we start at the root, going from parent body λ(i) to child body i until all the
leaf nodes have been reached. For an inward pass, we begin at the leaf nodes and follow the opposite
path, going from child body i to its parent body λ(i) until all paths have arrived at the root. Only a single
outward pass is used for the kinematics, while both an inward and outward pass are required for the
dynamics.

2.4. Motion and force transforms
Let {A} and {B} be coordinate frames fixed to a single rigid body and let vA = (ωA, vA) and vB = (ωB, vB)
be their respective spatial velocity vectors, where v is the linear velocity and ω is the angular velocity.
The spatial velocity vB can be computed from vA by means of the motion transformation matrix XB

A,
which applies the required translation and rotation procedures to transform the spatial velocity vector
from {A} to {B}; that is,

vB =XB
AvA. (4)

Given the rotation matrix RB
A and the absolute position vectors of the origins of each frame pA

OA
and pA

OB

expressed in {A}, the motion transformation matrix XB
A can be expressed as:

XB
A =

[
RB

A 03×3

−RB
Ar̃A

OAOB
RB

A

]
, (5)

where 03×3 is a zero-filled 3-by-3 matrix and r̃A
OAOB

is the skew-symmetric matrix (Appendix A)
associated with the displacement vector rA

OAOB
= pA

OB
− pA

OA
.

With respect to spatial forces, a similar relation can be established. The force transformation matrix
X

B

A correlates spatial force vector fB = (nB, f B) to fA = (nA, f A), where n is the moment and f is the force
acting at origin of their respective frame of reference, such that

fB =X
B

AfA. (6)

Following the same assumptions used to compute the motion transformation matrix (5), the force
transformation matrix X

B

A can be expressed as:

X
B

A =
[

RB
A −RB

Ar̃A
OAOB

03×3 RB
A

]
. (7)

Note that the force transformation matrix can be computed from the motion transformation matrix and
vice versa, that is,

X
B

A =
(
XB

A

)−T = (
XA

B

)T
. (8)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2766 Daniel Teixeira de Paula et al.

Algorithm 1. Kinematics computation
1: for i= 1, 2, . . . , nb − 1 do
2: j← λ(i)
3: Xi

j←Xi
j,iX

j,i
j

4: if j �= 0 then
5: Xi

0←Xi
jX

j
0

6: end if
7: vi←Xi

jvj + Siq̇i

8: end for

3. Tree-structured kinematics
The kinematics requires an outward pass to traverse the kinematic chain and calculate the spatial velocity
of each body in the system with respect to the root node. Computing the motion transformation matrix
(5) can be done in two consecutive stages: (i) a translation to the location of the next active joint, here
represented by the fictitious joint frame {λ(i), i} which represents joint i fixed to body λ(i), followed by
(ii) a rotation to account for the joint motion (and possible offset). Letting j= λ(i) represent the parent
body, the first stage transform Xj,i

j can be defined as:

Xj,i
j =

[
13 03×3

−r̃j
OjOi

13

]
, (9)

where 13 is a 3× 3 identity matrix. The following second stage transform Xi
j,i can be expressed as:

Xi
j,i =

[
Ri

j,i 03×3

03×3 Ri
j,i

]
. (10)

Note that the first stage yields a constant matrix that depends only on the system’s geometry, while the
second stage is a function of the corresponding joint variable (e.g., the joint angle for revolute joints).
The resulting motion transformation Xi

j from the parent body frame {j} to the current body frame {i} is
given by:

Xi
j =Xi

j,iX
j,i
j . (11)

With this transform, the motion transformation matrix Xi
0 from body 0 (in this case the root node) to

each body i can be computed as:

Xi
0 =Xi

jX
j
0. (12)

Given the joint motion subspace matrix Si, which confines the spatial joint velocity i to the motion
subspace defined by the joint DOF, the spatial velocity vi of body i can be formulated as:

vi =Xi
jvj + Siq̇i, (13)

where q̇i is the joint velocity vector. In the case of a spatial 6-DOF joint, Si = 16 and the joint velocity
is a six-dimensional vector (angular and linear velocity), while for a revolute joint, the joint velocity is
a scalar (equivalent to the joint angle derivative) and Si = [0 0 1 0 0 0]T assuming the axis of rotation and
its sense matches the z-axis of the body coordinate system.

Algorithm 1 presents the outward pass traversal used to compute each motion transformation matrix
Xi

j and Xi
0 as well as the spatial velocity vi. Note that the conditional statement in line 4 is required only

because the expression in line 3 already handles the transforms relative to the bodies directly connected
to the body 0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2767

Figure 3. Foot frame pose components for the left foreleg in the quadruped robot.

3.1. Transform to the world frame
To correlate the motion transformation matrices to the inertial world frame, we define the motion
transformation matrix X0

W from the world frame {W} to the trunk frame {0} as:

X0
W =

[
R0

W 03×3

−R0
W r̃W

OW O0
R0

W

]
, (14)

where rW
OW O0

represents the displacement vector from the world frame to the trunk frame (cartesian
coordinates of the trunk frame origin expressed in the world frame) and RW

0 =
(
R0

W

)T represents the
orientation of the trunk frame with respect to the world frame. With X0

W , the motion transformation
matrix from the world frame {W} to each body i can be computed by pre-multiplying Xi

0, that is,

Xi
W =Xi

0X
0
W =

[
Ri

W 03×3

−Ri
W r̃W

OW Oi
Ri

W

]
. (15)

3.2. Foot position
As the contact dynamics algorithm uses the foot position for contact detection and contact force genera-
tion, its relation to the joint variables must be established. Let the feet index array ϕ represent the bodies
rigidly attached to each foot frame, where i= ϕ(k) is the body correspondent to foot k, and let the foot
frame {fk} be located where the ground contact forces will act upon, with its orientation being the same
as its respective body frame (as shown in Fig. 3 for the left foreleg). Then, the motion transformation
matrix from the body frame {i} to the foot frame {fk} can be seen as a pure translation, that is,

Xfk
i =

[
13 03×3

−r̃i
OiOfk

13

]
, (16)

where |ri
OiOfk
| is equivalent to the length of the last link of leg k. As a result, the motion transformation

matrix from the world frame to the foot frame can be expressed as:

Xfk
W =Xfk

i Xi
W =

[
Ri

W 03×3

−Ri
W r̃W

OW Ofk
Ri

W

]
. (17)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2768 Daniel Teixeira de Paula et al.

Note that the foot displacement vector rW
OW Ofk

can be extracted from the first block-column, second
block-row term of (17) by deconstructing its skew-symmetric matrix which can be formulated as:

r̃W
OW Ofk
=− (

Ri
W

)T
(
−Ri

W r̃W
OW Ofk

)
. (18)

4. Tree-structured dynamics
The proposed simulator builds the quadruped robot’s equations of motion (EoM) using the RNEA to
compute the bias force (i.e., quadratic velocity, gravitational, and external wrench terms) and the CRBA
to compute the inertia matrix. Our approach is very similar to the inertia matrix method presented in
ref. [1] applied to floating-base robots, with the exception that the RNEA was partitioned into separate
modules to isolate the contribution of the quadratic velocity terms, gravitational terms, and external
forces, making them more accessible for future control applications. Note that throughout this section,
we consider that the velocity transformation matrices and spatial velocities of each body are readily avail-
able, being previously computed using Algorithm 1. In this section, unless explicitly stated otherwise,
consider index j as representing the parent body index, that is, j= λ(i).

4.1. Quadratic velocity terms
As the name implies, the quadratic velocity terms are quadratic (nonlinear) functions of spatial velocity
which comprise wrenches in the EoM. In our case, these terms originate only from inertial effects (i.e.,
centrifugal and Coriolis forces). For body i with spatial velocity vi, the spatial acceleration ai due to the
quadratic velocity terms, assuming that the motion subspace matrix Si is constant, can be computed as:

ai =Xi
jaj + vi ∗ Siq̇i, (19)

where ∗ is the twist cross-product operator described in Appendix A. From the spatial velocity vi and
the spatial acceleration ai, the wrench fi, which accounts for the contribution of body i to the quadratic
velocity terms, results from

fi = Iiai + vi � Iivi, (20)

where� is the wrench cross-product operator described in Appendix A and Ii is the spatial inertia tensor
of body i referred to its respective body frame.1

The preceding computations can be done in the outward pass alongside the forward kinematics. To
obtain the net force acting on each body due to quadratic velocity terms, an additional inward pass is
required to propagate wrenches applied to each child body in the kinematic chain. This operation can
be interpreted as an update to the quadratic velocity terms, being expressed as:

fj← fj +
(
Xi

j

)T
fi. (22)

With the help of the joint motion subspace matrix Si, it is possible to convert the quadratic velocity
terms into their joint-space counterpart ci, such that

ci = ST
i fi. (23)

Algorithm 2 summarizes the joint-space quadratic velocity terms computation, defining the function
used to compute the system joint-space quadratic velocity vector c= (c0, c1, c2, . . . , c12). It is worth

1The spatial inertia tensor Ii of body i stores its mass mi and its inertia tensor Ii, both constant terms obtained from the material
and geometrical properties of each body, being defined as:

Ii =
[

Ii 03×3

03×3 mi13

]
. (21)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2769

Algorithm 2. Quadratic velocity terms
a0← (03,−ω̃0v0)
f0← I0a0 + v0 � I0v0

for i= 1, 2, . . . , nb − 1 do
j← λ(i)
ai←Xi

jaj + vi ∗ Siq̇i

fi← Iiai + vi � Iivi

end for
for i= nb − 1, . . . , 2, 1 do

j← λ(i)
ci← ST

i fi

fj← fj +
(
Xi

j

)T
fi

end for
c0← ST

0 f0

noting that at the start of the algorithm, we explicitly initialize the trunk spatial acceleration with only
its the velocity-product term.

4.2. Gravitational terms
The procedure required to compute the gravitational forces is very similar to the quadratic velocity terms
computation, relying on an outward pass to account for the individual contribution of each body and an
inward pass to propagate the succeeding wrenches and generate the joint-space terms. The outward pass
involves computing the spatial acceleration ai and the resulting wrench fi such that

ai =Xi
jaj, fi = Iiai, (24)

while the inward pass updates each wrench exactly as (22), with the joint-space gravity terms being
expressed as:

gi = ST
i fi. (25)

Algorithm 3 summarizes the joint-space gravity terms computation, defining the function used to
compute the system joint-space gravitational forces vector g= (g0, g1, g2, . . . , g12). Note that as in ref.
[1], gravity is not added as an external force but instead is introduced through a fictitious upward
acceleration applied to the trunk a0 =−(03, R0

Wg0), where g0 = (0, 0,−9.807) m/s2. Since the gravity
acceleration vector g0 is expressed in the world frame, it must first be transformed into the body frame
to be included in the algorithm.

4.3. External wrenches
Computing the external wrenches (Algorithm 4) is even simpler than the gravitational terms. The out-
ward pass computes the resulting external wrenches fi applied to body i at Oi expressed in frame {i}
from those applied at OFi expressed in frame {Fi}, that is, fFi

exti. The inward pass performs the wrench
propagation and generates the joint-space terms τ ei. In this work, only the external forces originated
from the contact dynamics and the active joint torques τ are accounted for, with a detailed discussion
regarding how to compute the former presented in Section 5. Note that the active joint torques τ are
directly added to the EoM using the selection matrix of actuated joints Sact = [012×6 112].

There is an alternative method to compute the joint-space terms τ e that relies on multiplying the
transpose of the system Jacobian matrix J (as derived in Appendix B for the contact forces applied to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2770 Daniel Teixeira de Paula et al.

Algorithm 3. Gravitational terms
a0←−(03, R0

Wg0)
f0← I0a0

for i= 1, 2, . . . , nb − 1 do
j← λ(i)
ai←Xi

jaj

fi← Iiai

end for
for i= nb − 1, . . . , 2, 1 do

j← λ(i)
gi← ST

i fi

fj← fj +
(
Xi

j

)T
fi

end for
g0← ST

0 f0

Algorithm 4. External wrenches
for i= 0, 1, . . . , nb − 1 do

fi←X
i

Fi
fFi
exti

end for
for i= nb − 1, . . . , 2, 1 do

j← λ(i)
τ ei← ST

i fi

fj← fj +
(
Xi

j

)T
fi

end for
τ e0← ST

0 f0

the feet) to the applied wrenches fext = (fext1, fext2, . . .), that is, τ e = JTfext. Though this method is not used
in our simulator, having the Jacobian matrix available is required to implement control schemes based
on impedance control which are commonly employed in legged robotics locomotion controllers.

4.4. Joint-space inertia matrix
The CRBA used to derive the joint-space inertia matrix revolves around the concept of composite-rigid-
body inertia, the spatial inertia matrix of the subtree rooted at a given body. For body i, its composite-
rigid-body inertia Ici is the spatial inertia matrix of the subtree rooted at body i represented by the child
set μ(i), being defined as:

Ici = Ii +
∑
j∈μ(i)

(
Xi

j

)T
IcjXi

j. (26)

Having defined the composite-rigid-body inertia, each block-row i and block-column j submatrix Hij

from the leg joint-space inertia matrix H can be calculated as:

Hij

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Fj

i

)T
Sj if i ∈ ν(j),

HT
ji if j ∈ ν(i),

0 otherwise,

(27)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2771

Algorithm 5. Joint-space inertia
H← 0
for i= 0, 1, . . . , nb − 1 do

Ici← Ii

end for
for i= nb − 1, . . . , 2, 1 do

j← λ(i)
Icj← Icj +

(
Xi

j

)T
IciXi

j

Fi← IciSi

Hii← ST
i Fi

j← i
while λ(j) �= 0 do

Fi←
(
Xj
λ(j)

)T
Fi

j← λ(j)
Hij← FT

i Sj

Hji←HT
ij

end while
Fi←

(
Xj

0

)T
Fi

end for

where F is a matrix whose block-columns Fi are the spatial forces required at the floating base to support
unit accelerations about joint variable i [1], with each of these block-columns being defined as:

Fi = IciSi. (28)

Finally, by applying the force transformation matrix to Fi we obtain Fj
i =X

j

iFi =
(
Xi

j

)T
Fi.

As can be seen in Algorithm 5, the outward pass involves storing the spatial inertia terms for each
body, while the inward pass computes the resulting composite-rigid-body inertia and the joint-space
inertia matrix.

4.5. Joint-space equations of motion
With all its elements defined, the equations of motion can be formulated as:

[
Ic0 F

FT H

] [
a0

q̈

]
+

[
c0

cl

]
+

[
g0

gl

]
=

⎡
⎣06

τ

⎤
⎦+

[
τ e0

τ el

]
. (29)

The first block-row portrays the dynamics of the trunk (floating base), with the second block-row char-
acterizing the leg dynamics. By aggregating common terms as single matrices and vectors, the EoM can
be expressed as:

Ma+ c+ g= ST
actτ + τ e, (30)

where M, c, and g represent the joint-space inertia matrix, quadratic velocity force vector, and grav-
itational force vector, respectively, and τ e represents the joint-space external forces vector. Vector a
represents the generalized acceleration vector which is composed of the trunk acceleration a0 along
with the leg joint acceleration q̈, that is, a= (a0, q̈).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2772 Daniel Teixeira de Paula et al.

Figure 4. Required components to compute the sphere-to-plane distance dck used for contact detection.

5. Contact dynamics
Compliant contact dynamics is composed of two consecutive steps, contact detection and contact force
generation. For contact detection, we use the sphere-to-plane distance dck between the spherical shell
(with radius r, centered at the foot frame origin) and the ground plane to check whether the foot is in
contact, with dck ≤ 0 implying there is contact between foot k and the ground. As illustrated in Fig. 4, the
sphere-to-plane distance dck can be obtained by computing the signed distance dfk between the ground
plane and foot frame origin and subtracting the spherical shell radius. The signed distance dfk is computed
as the projection of the foot position vector relative to point P on the ground plane onto the surface
normal (defined by the z-axis of the contact frame ẑW

Ck
), that is,

dfk =
(
ẑW

Ck

)TrW
OPOfk

, dck = dfk − r. (31)

We chose to model the ground as a horizontal plane, allowing point P to be defined as the origin of the
world frame and the ground plane orientation to be equal to the world frame, that is, RCk

W =RW
Ck
= 13.

Note that this procedure is also applicable when the ground plane is not horizontal.
Given the point contact assumption, only the linear force element from the external wrench acting

on each leg k in contact is nonzero. This contact force is made up of three components, the normal
component fn which acts on the z-axis of the contact frame, and frictional components ftx and fty which
act on the x- and y-axis of the contact frame.

Respective to leg k, the contact frame {Ck} is located at the point on the foot that is closest to the
ground plane. Each contact frame is equivalent to frame {Fi} in Algorithm 4, where i is the body respec-
tively attached to foot k (e.g., i= 3 for k= 1). The force transformation matrix used to transform the
contact wrench from {Ck} to {i} is defined as:

X
i

Ck
= (

XCk
i

)T = (
XCk

fk Xfk
i

)T
, (32)

where Xfk
i is a known constant factor obtained from (16) and XCk

fk is the motion transformation matrix
from the foot frame to the contact frame, which can be expressed as:

XCk
fk =

[
RCk

fk 03×3

r̃Ck
OCk Ofk

RCk
fk RCk

fk

]
, rCk

OCk Ofk
=

⎡
⎢⎣

0

0

r

⎤
⎥⎦ , (33)

where RCk
fk =

(
Rfk

WRW
Ck

)T, with Rfk
W being the rotation matrix which can be extracted from (17) and RW

Ck

the rotation matrix which defines the ground plane orientation (in our case, RW
Ck
= 13).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2773

5.1. Normal contact force
The normal contact force fn results from the sum of an elastic and a damping term (fn = fs + fd). The
elastic term fs is computed using a nonlinear Hertz model, that is,

fs =−Kδe, (34)

where K is the stiffness, δ = dck is the ground penetration, and e is the force exponent. The damping term
fd can be expressed as:

fd =−cδ̇, c= c(δ, cmax, w), (35)

where δ̇ is the ground penetration rate, c is the effective damping coefficient, cmax is the nominal damping
coefficient, and w is the ramp-up distance. An effective damping coefficient is used to avoid the natural
discontinuity on impact. This term is computed through a smoothstep function used to ramp up the
damping coefficient from 0 to cmax over the range δ ∈ [−w, 0].

As a result of taking the derivative of (31), the ground penetration rate δ̇ is found to be equivalent to
the foot linear velocity component in the z-axis of the contact frame, that is,

δ̇ = (
ẑW

Ck

)TvW
fk . (36)

Note that vW
fk is the linear velocity component of the spatial velocity vector vW

fk = (ωW
fk , vW

fk), which can be
computed from the spatial velocity of the last link i of leg k such that

vW
fk =

[
RW

fk 03×3

03×3 RW
fk

]
Xfk

i vi, (37)

where Xfk
i is a known constant factor (16) and RW

fk is obtained from the inverse of (17).

5.2. Friction contact force
The frictional components fx and fy of the contact force are computed using a Coulomb friction model
such that

ftx =μx fn

fty =μy fn

}
, μ=μ(vrel,μs, vs,μd, vd), (38)

where μ is the effective friction coefficient, vrel is the relative velocity (either x or y component of vCk ,
the linear component of the contact frame velocity defined as vCk =XCk

i vi), μd is the dynamic friction
coefficient, vd is the stiction-sliding transition velocity, μs is the static friction coefficient, and vs is the
velocity where μ=μs. The effective friction coefficient is computed through a smoothstep function
used to transition from the negative to the positive static friction coefficient (which occurs when the
relative velocity sense is reversed) and from the static to the sliding friction coefficient.

6. Simulation setup
To evaluate the proposed method, the algorithms were implemented in Simulink using a Level-2
MATLAB S-Function block. Although the algorithms do not imply any specific coding language,
Simulink was used due to the authors’ familiarity with the tool. Given that it can model continuous state
behavior including state dynamics, the MATLAB S-Function block is the preferred method to implement
continuous-time dynamic systems, such as our rigid-body mechanical system, within Simulink.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2774 Daniel Teixeira de Paula et al.

6.1. State-space formulation
Implementing the system in Simulink required a state-space representation of the EoM. Let x be the
state vector such that

x= (x0, q, v0, q̇), (39)

where x0 are the spatial coordinates (orientation and position) of the trunk, q are the leg joint angles, v0

is the spatial velocity (angular and linear velocity) of the trunk, and q̇ are the leg joint velocities. The
state vector time derivative is defined as:

ẋ= (ẋ0, q̇, a0, q̈). (40)

Note that the derivative of the orientation is not equivalent to the angular velocity, that is, ẋ0 �= v0. Given
that the state derivative must be a function of the inputs, of the states, and possibly of time, this must be
addressed by performing a conversion from angular velocity (which is part of the state vector) to Euler
Angle rate. For a body-fixed ZYX Euler Angle sequence ξ = (ψ , θ , φ), the conversion matrix G from
Euler Angle rate ξ̇ to angular velocity ω0 is formulated as:

G=
⎡
⎢⎣

0 − sin(ψ) cos(θ) cos(ψ)

0 cos(ψ) cos(θ) sin(ψ)

1 0 − sin(θ)

⎤
⎥⎦ , ω0 =Gξ̇ . (41)

Taking the inverse of this conversion matrix, ẋ0 can be expressed as a function of v0 such that

ẋ0 =Tv0, T=
[

G−1 03×3

03×3 13

]
. (42)

With the state vector and its first time derivative defined, by substituting the EoM (30) into the last two
block-rows of (40), the state-space equations of the system can be expressed as:

ẋ=
⎡
⎢⎣

Tv0

q̈

M−1
(
ST

actτ + τ e − (c+ g)
)
⎤
⎥⎦ . (43)

6.2. Locomotion control
To make the quadruped robot move, a foot trajectory was established and a control scheme to track it
was defined. The former was implemented using a foot trajectory generator defined in our previous work
[20], while the latter was defined to be a PD-independent joint controller for each leg implemented using
a MATLAB Function block. The foot trajectory generator is comprised of a Central Pattern Generator
to synthesize rhythmic signals matching a quadruped gait (in this case, the trot gait) that drive Bézier
curves respective to the two stages of locomotion (i.e., stance and swing phase). Given that the result-
ing curves are planar, inverse kinematics was used to compute the hip and knee joint angles, with the
abduction/adduction joints always set to 0. Regarding control, for active joint i, its control law can be
expressed as:

τi = kp(qi − qdi)+ kdq̇i. (44)

where kp is the proportional gain, kd is the derivative gain, qi is the measured joint angle, qdi is the
desired joint angle computed from the inverse kinematics of the leg trajectory, and q̇i is the measured
joint velocity. Note that the derivative component was added as a feedforward term to increase stability.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2775

Table I. Simulation parameters used for our simulator and the MuJoCo physics engine.

Parameter Our simulator MuJoCo
Integration method Explicit-2nd-order Euler Implicit-1st-order Euler
Time step 1× 10−4 s 1× 10−4 s
Simulation time 10 s 10 s

Dynamic friction coeff. (μd) 2.0 1.6
Stiction-sliding trans. vel. (vd) 0.2 mm/s –
Static friction coeff. (μs) 2.0 1.6
Stiction velocity (vs) 0.1 mm/s –
Contact stiffness (K) 1.0× 104 N/m 1.6× 103 N/m†

Contact exponent (e) 2.2 –
Nom. contact damping (cmax) 10 N/(m/s) 100 N/(m/s)†

Ramp-up distance (w) 0.1 mm –

Proportional gain (kp) 40.0 N.m 40.0 N.m
Derivative gain (kd) 1.0 N.m.s 1.0 N.m.s
† For MuJoCo, stiffness and damping terms have a distinct meaning from those defined for our simulator’s
contact model. MuJoCo employs these parameters alongside an impedance parameter [18] to compute the
regularization term used to incorporate the geometric constraints that model the contact dynamics.

6.3. Baseline behavior
A comparative analysis with same robot implemented using the readily available physics engine MuJoCo
[18] was performed to evaluate the implementation of the algorithms. While the quadruped robot model
was the same in both software, the contact model was not. Unlike the compliant method described
in Section 5, MuJoCo uses an augmented non-smooth method that models contact as geometric con-
straints with an added regularization term. Even though different methods were used to model the contact
dynamics, this analysis serves as a way to show if the system behavior was at least similar. Table I summa-
rizes the simulation parameters used for our simulator and MuJoCo, including the integration method,
time step, simulation time, contact parameters, and controller gains. Note that both approaches use a
three-component contact dimension (point contact) and have an elliptic friction cone shape.

Since the simulation is composed of the robot and the contact dynamics, aspects related to each of
these elements were analyzed. The trunk pose was used to represent the robot behavior as its observed
state reflects the states from all the legs and their interaction with the ground. Regarding the contact
dynamics, contact activation, a binary signal where 1 (one) indicates when contact forces are nonzero,
and the measured ground reaction forces from a single leg were used. To quantify the disparity between
MuJoCo and our simulator, both the respective time series and mean absolute error of each scalar
component were used.

7. Results
Figure 5 shows the trunk’s position and orientation obtained in simulation. Very similar trunk pose
was observed in both simulators, registering (63, 17, 4.6) mm mean absolute error for the position
components and (1.5, 1.3, 2.7) deg for the Euler Angles. Despite using the same robot and controller,
the trunk pose was not expected to be a perfect match due to the distinct methods used to model the
contact dynamics, which affect how contact force generation is performed and, consequently, how a
particular motion evolves in time.

Figure 6 shows the left forelimb’s contact activation and the vertical (normal) ground reaction force.
Very similar activation time was observed, with MuJoCo having a few spurious impulsive signals at 2.8,
4.6, 5.0, 5.9, and 6.4 s. Regarding the ground reaction forces, our approach resulted in slightly higher
peak values, yielding a mean absolute contact force error of 5.65 N. The higher peak values can be

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2776 Daniel Teixeira de Paula et al.

Figure 5. Quadruped robot trunk position and orientation obtained in simulation.

Figure 6. Contact activation and vertical contact forces applied to the left foreleg obtained in
simulation.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2777

traced to the higher effective contact stiffness and lower damping defined for our contact model. Note
that in MuJoCo, the stiffness and damping terms presented in Table I are used to compute a reference
acceleration term, which is only a single component of the cost function that is optimized to generate
the constraint forces and update the joint acceleration while accounting for the constraints. Also, with
regard to processing time, simulating 10 s took 300 s using our implementation, while it took only 20 s
with MuJoCo. This order of magnitude discrepancy can have a multitude of reasons, from the intrinsic
overhead of the Level-2 MATLAB S-Function to the limitations of the contact dynamics method when
using a high stiffness coefficient. Since simulation speed (though always desirable) was not a critical
feature for this work, we restricted ourselves to only noting the issue here until we can address it in
future works.

8. Conclusion
In this paper, we characterized the quadruped robot and contact dynamics that will compose our in-house
simulator. The robot dynamics was derived using the RNEA and CRBA, ensuring each component of
the bias term was explicit to allow for ease of usage in control systems. Contact dynamics was modeled
using a compliant method composed of a nonlinear spring-damper model for the normal component and
a smooth stick-slip model for the friction components. We used a simple PD-independent joint controller
to track a desired leg trajectory and allow for the robot locomotion to be evaluated. When comparing the
characteristic locomotion signals with the same robot and controller implemented using MuJoCo, we
observed similar behavior for both simulators despite the significantly different contact models. Though
activation timing was a very close match, the distinct methods used to generate the contact forces ended
up causing differences in the contact forces and the resulting trunk pose. Despite our implementation
being an order of magnitude slower than MuJoCo, the fact that it resulted in similar behavior shows that
the underlying mechanics were sound, allowing for the next steps to be focused on improving aspects
such as simulation speed. Future works can try to optimize the existing implementation to increase
computational speed while maintaining an acceptable level of accuracy, making it applicable for both
rapid prototyping and real-time legged robot control.

Author contributions. Conceptualization, provision of resources, software development, and data collection were carried out by
Mauricio Becerra-Vargas. Data curation and analysis, visualization, and manuscript revision were performed by Daniel Teixeira
de Paula. Supervision and project administration were done by Eduardo Paciencia Godoy. All authors have read and approved the
final manuscript.

Financial support. This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.

Competing interests. The authors declare no conflicts of interest exist.

Ethical approval. None.

References
[1] R. Featherstone. Rigid Body Dynamics Algorithms (Springer, New York, NY, 2008).
[2] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing and S. Kim, “MIT Cheetah 3: Design and Control of a Robust,

Dynamic Quadruped Robot,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Madrid,
Spain, IEEE, 2018) pp. 2245–2252.

[3] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt and S. Kim, “Dynamic Locomotion in the MIT Cheetah 3 Through Convex
Model-Predictive Control,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Madrid,
Spain, IEEE, 2018) pp. 1–9.

[4] R. Grandia, F. Farshidian, R. Ranftl and M. Hutter, “Feedback MPC for Torque-Controlled Legged Robots,” In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), (Macau, China, IEEE, 2019) pp. 4730–4737.

[5] D. Kim, J. D. Carlo, B. Katz, G. Bledt and S. Kim, Highly dynamic quadruped locomotion via whole-body impulse control
and model predictive control, (2019).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2778 Daniel Teixeira de Paula et al.

[6] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell and C. Semini, “Motion planning for quadrupedal locomotion: Coupled
planning, terrain mapping, and whole-body control,” IEEE Trans Robot 36(6), 1635–1648 (2020).

[7] M. V. Minniti, R. Grandia, F. Farshidian and M. Hutter, “Adaptive CLF-MPC with application to quadrupedal robots,” IEEE
Robot Automa Lett 7(1), 565–572 (2022).

[8] M. Neunert, M. Stauble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter and J. Buchli, “Whole-body
nonlinear model predictive control through contacts for quadrupeds,” IEEE Robot Automa Lett 3(3), 1458–1465 (2018).

[9] N. Rathod, A. Bratta, M. Focchi, M. Zanon, O. Villarreal, C. Semini and A. Bemporad, “Model predictive control with
environment adaptation for legged locomotion,” IEEE Access 9, 145710–145727 (2021).

[10] M. Giftthaler, M. Neunert, M. Stäuble and J. Buchli, “The Control Toolbox - An Open-Source C++ Library for Robotics,
Optimal and Model Predictive Control,” In: IEEE International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), (Brisbane, QLD, Australia, IEEE, 2018) pp. 123–129.

[11] M. Frigerio, J. Buchli and D. G. Caldwell, “Code Generation of Algebraic Quantities for Robot Controllers,” In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, (Vilamoura-Algarve, Portugal, IEEE, 2012) pp. 2346–2351.

[12] M. Giftthaler, M. Neunert, M. Stäuble, M. Frigerio, C. Semini and J. Buchli, “Automatic differentiation of rigid body
dynamics for optimal control and estimation,” Adv Robotics 31(22), 1225–1237 (2017).

[13] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella and D. G. Caldwell, “Design of HyQ: A hydraulically
and electrically actuated quadruped robot,” Proceed Inst Mech Eng, Part I: J Syst Control Eng 225(6), 831–849 (2011).

[14] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R.
Diethelm, S. Bachmann, A. Melzer and M. Hoepflinger, “ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot,”
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Daejeon, Korea (South), IEEE, 2016)
pp.38–44.

[15] S. Fahmi, C. Mastalli, M. Focchi and C. Semini, “Passive whole-body control for quadruped robots: Experimental validation
over challenging terrain,” IEEE Robot Automa Lett 4(3), 2553–2560 (2019).

[16] B. Katz, J. D. Carlo and S. Kim, “Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control,”
In: International Conference on Robotics and Automation (ICRA), (Montreal, QC, Canada, IEEE, 2019) pp.6295–6301.

[17] M. L. Felis, “RBDL: An efficient rigid-body dynamics library using recursive algorithms,” Auton Robot 41(2), 495–511
(2017).

[18] E. Todorov, T. Erez and Y. Tassa, “MuJoCo: A Physics Engine for Model-Based Control,” In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, (Vilamoura-Algarve, Portugal, IEEE, 2012) pp. 5026–5033.

[19] J. Hwangbo, J. Lee and M. Hutter, “Per-contact iteration method for solving contact dynamics,” IEEE Robot Automa Lett
3(2), 895–902 (2018).

[20] D. T. De Paula, E. P. Godoy and M. Becerra-Vargas, “Towards Dynamic Quadruped Locomotion: Development of a CPG-
driven Foot Trajectory Generator,” In: Proceedings of the 30th Mediterranean Conference on Control and Automation,
(Vouliagmeni, Greece, IEEE, 2022) pp. 988–993.

[21] MIT Biomimetic Robotics Lab, Cheetah-software, (2019). https://github.com/mit-biomimetics/Cheetah-Software.

Appendix
A. Definitions
A.1. Skew-symmetric matrix
Let v be a vector with components v1, v2, and v3. The skew-symmetric matrix ṽ is defined as:

ṽ=

⎡
⎢⎢⎣

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤
⎥⎥⎦ . (A1)

A.2. Twist cross product
Given the spatial velocity v= (ω, v) composed of the angular velocity ω and linear velocity v, the twist
cross-product operator v∗ can be defined as:

v∗=
[
ω̃ 03×3

ṽ ω̃

]
. (A2)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://github.com/mit-biomimetics/Cheetah-Software
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

Robotica 2779

A.3. Wrench cross product
Given the spatial force f= (n, f) composed of the couple moment n and linear force f , the wrench
cross-product operator f� can be defined as:

f�=−(f∗)T =
[

ñ f̃

03×3 ñ

]
. (A3)

B. Jacobian matrix computation
Let the geometric Jacobian matrix of the feet Jfeet be a map from the joint velocities w= (v0, q̇) to the
feet frame velocities vfeet, such that vfeet = Jfeetw, and let its transpose be a map from the forces applied
to the foot frames ffeet to the joint-space torques τ e, such that τ e = Jfeet

Tffeet. For nJ joints and m feet, the
geometric Jacobian matrix of the feet Jfeet is defined as:

Jfeet =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jfeet,1

...

Jfeet,k

...

Jfeet,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Jfeet,k =
[
Jfeet,k1 · · · Jfeet,knJ

]
, k ∈ [1, m], (B1)

where each block-row Jfeet,k is associated with the spatial velocity vfk of foot k such that vfk = Jfeet,kw.
Given that each foot is attached to a specific body in the kinematic tree, we define a feet index array ϕ
that stores the bodies correspondent to each foot, where ϕ(k) is the body index respective to foot k.

The spatial velocity vfk can be computed from the spatial velocity of its attached body vi, where
i= ϕ(k), which can be expressed as a function of the joint velocities, that is,

vfk =Xfk
i vi =Xfk

i

∑
j∈κ(i)

Xi
jSjq̇j, (B2)

where κ(i) is the support set of body i (which contains all the joints between body i and the root node, in
this case the ground). Note that index j is not necessarily λ(i); therefore, not all motion transformation
matrices will be available from the standard kinematics loop presented in Algorithm 1. Here, we assume
that the necessary modifications were done and that all motion transformation matrices are available.

From (B2), we can infer that each term multiplying a joint velocity q̇j is equivalent to a block-column
Jfeet,kj of (B1), that is,

Jfeet,kj =Xfk
i

(
Xi

jSj

)
. (B3)

This expression suggests that we can compute the Jacobian matrix by traversing the support path defined
for each foot as presented in Algorithm 6. Note that the first transform Xfk

i is applied only once per foot
to the entire block-row matrix Jfeet,k. If the measured contact forces or the desired spatial velocities are
expressed in the contact frame {Ck}, transform XCk

fk defined in (33) can be pre-multiplied to (B3).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

2780 Daniel Teixeira de Paula et al.

Algorithm 6. Jacobian computation
1: Jfeet = 0
2: for k= 1, 2, . . . , m do
3: i← ϕ(k)
4: for j ∈ κ(i) do
5: Jfeet,kj←Xi

jSj

6: end for
7: Jfeet,k←Xfk

i Jfeet,k

8: end for

Cite this article: D. Teixeira de Paula, E. P. Godoy and M. Becerra-Vargas (2024). “Dynamic modeling and simulation of a
torque-controlled spatial quadruped robot”, Robotica 42, 2761–2780. https://doi.org/10.1017/S0263574724001097

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001097
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 13:27:25, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001097
https://www.cambridge.org/core

	Dynamic modeling and simulation of a torque-controlled spatial quadruped robot
	Introduction
	Main contributions

	Definitions and notation
	Quadruped robot
	Rigid bodies and connectivity
	Traversing the kinematic chain
	Motion and force transforms

	Tree-structured kinematics
	Transform to the world frame
	Foot position

	Tree-structured dynamics
	Quadratic velocity terms
	Gravitational terms
	External wrenches
	Joint-space inertia matrix
	Joint-space equations of motion

	Contact dynamics
	Normal contact force
	Friction contact force

	Simulation setup
	State-space formulation
	Locomotion control
	Baseline behavior

	Results
	Conclusion
	Appendix
	Definitions
	Skew-symmetric matrix
	Twist cross product
	Wrench cross product

	Jacobian matrix computation

