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SUMMARY
This paper extends the models developed previously by
the authors for simulating tip-over stability of mobile
manipulators, to include the friction of the contact between
the base and the ground. Thus, the present model takes into
account the detailed dynamics of the base that can rock
back and forth during the movement of the manipulator,
the combined vehicle suspension and ground-tire compliance
and, the friction between the wheels and the ground. ‘LuGre’
tire friction model is employed, which along with the novel
method of virtual links transforms the system into a fixed
base manipulator with single degree of freedom at each
joint. The model is then used to simulate planar movements
of a 215B Caterpillar excavator-based log-loader machine.
The results are also compared to those obtained by the
simplified model, which was developed previously based on
the assumption that the friction between the base and the
ground is high enough to prevent the base from skidding
forward or backward. The results clearly show that the
friction properties between the wheels and the ground affect
machine stability. Thus, one has to include the frictional
effect in order to accurately predict the tip-over behavior of
mobile manipulators.
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1. INTRODUCTION
In many applications such, as space exploration, toxic waste
clean up, construction, and forestry, mobile manipulators are
required instead of conventional industrial manipulators that
are mounted on fixed bases. A typical example of an industrial
mobile manipulator is an excavator-based log-loader (see
Fig. 1). One issue during the operation of such machines is
the proper monitoring and prevention of tip-over. Presently,
the operators must face the non-intuitive and exhaustive
task of maintaining the machine stability, particularly when
handling heavy loads. Although sensor systems are available
for some mobile manipulators, such as cranes, that detect
whether a static load exceeds the safe operating load, there
is no mechanism available that includes dynamic situations.
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Therefore, the operator must remain alert at all times in order
to accomplish the work efficiently and, at the same time
protect his/her safety and that of others.

In spite of much research on mobile manipulators, dynamic
stability of mobile manipulators in the presence of factors
such as flexibility of the contact between the base and the
ground, the compliance at the manipulator joints, and the
friction between the base and the ground have not been fully
explored. For detailed description of the previous relevant
studies and a discussion on the results achieved, readers
are referred to the previous work by the authors,1 and the
references listed therein. Also, understanding the details of
the base movement during the tipping over, can help to define
an accurate measure of stability and therefore potentially
help to prevent and/or recover from the tipping over. Thus,
the general objectives of this work are to: (i) develop a
simulation model of tip over motion of mobile manipulators,
and (ii) study tip-over mechanisms, and understand various
dynamic situations that promote vehicle instability. Within
this context, the initial model,1 although shown to be capable
of producing valuable information about the movement
of the base, relied on the unrealistic assumption of rigid
contact between the base and the ground. The model was
then improved to include the flexibility of the contact
between the base and the ground.2 Inclusion of the flexibility,
which is due to the suspension and the tires, resulted in
a more realistic model. Using this model, it was shown
that assuming rigid contact between the base of the mobile
manipulator and the ground overestimates the stability and
therefore the flexibility of the contact must be considered
to more accurately predict the stability and simulate the
base motion. The developed simulation model, however,
assumed that the friction between the base and the ground
is large enough to prevent the manipulator from skidding
forward or backward. Furthermore, distinct models had to
be used to describe various phases of the dynamics of the
vehicle and its manipulator. This form of modeling becomes
extremely complicated when applied to three-dimensional
motion simulations.

In this paper, the recently developed model is further
extended to include the effect of the friction between the
wheels and the ground. Here, it is assumed that the wheels
of the mobile manipulator are locked in place. Thus, there is
no rolling and the friction is only due to the stick-slip motion
between the wheels and the ground. The approach taken
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Fig. 1. Typical excavator-based log-loader.

was to first employ an appropriate coulomb (dry) friction
model that is easy to implement, computationally efficient,
and characterizes most of the friction phenomena. ‘LuGre’
friction model3 was used in this work. LuGre friction model
is built upon Dahl friction model,4 and has been used by
others to describe the friction forces between the tire and
the road for vehicle control and simulation studies.5 Next,
the novel method of virtual links was applied to cast the
resulting problem into a fixed base serial link manipulator
with single degree of freedom at each joint. The method
of virtual links was presented earlier by Abo-Shanab and
Sepehri6 to facilitate the derivation of the dynamic equations
of non-fixed base manipulators. The inclusion of the LuGre
friction model also allows the derivation of a single dynamic
model to describe the heave, pitch and skid motion as well
as lifting up of the base from the ground.

The application of this study is directed at industrial
mobile machines that carry human operated hydraulic
manipulators. The development here is therefore exemplified
with a Caterpillar excavator-based log-loader (see Fig. 1).
This machine incorporates many aspects of typical robotic
systems and is the basis of most heavy-duty hydraulic
machines. Thus, the analysis and the development reported
here can be applied to other similar mobile robotic systems.
Particularly, this model provides simulation capabilities
towards the stability analysis of manipulators mounted on
mobile platforms. It also facilitates design of suitable tip
over prevention schemes. This is significant since with the
introduction of computer control, safety, productivity and
lifetime of heavy-duty hydraulic mobile machines could be
improved by automatic prediction, prevention and recovering
from tip over.

2. DEVELOPMENT OF THE MODEL
The schematic of a planar mobile manipulator is shown in
Fig. 2. The base is considered as a rigid body, resting on
two wheels that are longitudinally aligned and are modeled
using the half car representation with a Kelvin-Voigt spring
damping system.7 The system damping is viscous, below the
critical value and invariant with respect to changes of the
kinematics configuration. In addition to undergoing heave

Fig. 2. Schematic diagram of planar mobile manipulator including
ground reaction forces.
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Fig. 3. Friction interface between two surfaces is thought as a
contact between bristles. For simplicity the bristles on the lower
part are shown as being rigid.10

and pitch motions, the base could also skid forward or
backward depending on the nature of forces applied to it
as well as the friction between the wheels and the ground.
With reference to Fig. 2, c and k are the damping and the
stiffness coefficients, respectively. Ff and Fn are the friction
and normal forces, respectively. The subscripts f and r refer
to the front and rear wheels, respectively.

The LuGre friction model is used to model the friction
forces between the wheels and the ground. It describes arbi-
trary steady-state friction characteristics, supports hysteresis
behavior due to frictional lag, and gives a varying break-
away force depending on the rate of change of the applied
force.8,9 The model is inspired by the bristle interpretation
of friction as introduced by Haessig and Friedland10 and is
characterized as the average deflection force of elastic springs
(Fig. 3). When a tangential force is applied, the bristles will
deflect. If the deflection is sufficiently large, the bristles start
to slip over each other. Using the LuGre friction model,
the force, Ff , generated from the bending of the bristles is
described as:

Ff = (σoz + σ1
.
z + σ2ν)Fn (1)

where σo is the normalized lumped stiffness, σ1 is the
normalized lumped damping, σ2 is the normalized viscous
relative damping, Fn is the normal force, and ν is the relative
velocity between the two surfaces in contact. The average
deflection of the bristles is denoted by z and is modeled by
the following relation:

.
z = ν − σo|ν|

η(ν)
z (2)

Function η(ν) contains information about the velocity
dependence of friction. It is positive and depends on
many factors such as material properties, lubrication, and
temperature:

η(ν) = µc + (µs − µc)e−|ν/νs |α (3)

In (3), µc is the Coulomb friction coefficient, µs is the
static friction coefficient and νs is the Stribeck velocity,
which helps to define the velocity dependence of friction.
α is an application-dependent exponent. Canudas de Wit

Fig. 4. Schematic diagram of planar mobile manipulator including
the virtual links, suspension and LuGre friction forces.

and Tsiotras3 suggested α = 0.5 for modeling the friction
between the tires and the ground.

To derive the dynamic equations of the entire machine, two
virtual links6 with prismatic joints are added to represent the
horizontal (skid) and vertical (heave) movements, q1 and q2,
of the base (see Fig. 4). The second virtual link is connected to
the base by a revolute joint characterizing the pitch movement
of the base, q3. Denavit-Hartenberg (DH) coordinate systems
are assigned to the manipulator’s links as shown in Fig.
5. The manipulator link coordinate parameters are listed in
Table I.

The dynamic equations are derived based on the Lagrange
formulation:

τ = M(q)q̈ + C(q, q̇) + G(q) + τ ext (4)

where q ={q1, q2, . . . , q5}T , q̇ and q̈ are vectors of the
joint variables, velocities and accelerations, τ (t) =
{τ1, τ2, . . . , τ5}T is the generalized force vector applied at
the joints. τ ext = {τ ext1, τ ext2, τ ext3, τ ext4, τ ext5}T is the vector
of external forces due to ground reaction forces.

The elements of the 5 × 5 inertial acceleration-related
symmetric matrix, M(q), are derived using the following

Table I. Link coordinate parameters.

Link θi di Ai αI Variables

1 π/2 q1 0 π/2 q1

2 π/2 q2 0 π/2 q2

3a q3 0 A3 −π/2 q3

3 0 d3 0 π/2 −
4 q4 0 a4 0 q4

5 q5 0 a5 0 q5
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Fig. 5. Link coordinate systems pertaining to Fig. 4.

relations:

Mij = Trace

{
�i

[
5∑

p=j

TpJpTT
p

]
�T

j

}
(j ≥ i)

Mji = Mij (i < j )

(5)

The elements of the Coriolis and centrifugal force vector
C(q, q̇) ={c1, c2, . . . , c5}T are determined as follows:

Ci =
5∑

j=1

5∑
i=1

cijk q̇j q̇k

where

cijk = Trace

{
�i

[
5∑

p=j

TpJpTT
p

]
�T

j �T
k

}
(j ≥ i, j ≥ k)

cikj = cijk

ckji = −cijk (j < i, j < k)

(6)

The elements of the gravitational force vector G(q) =
{G1, G2, . . . , G5}T are:

Gi = −(gT ; 0)�i

[
5∑

p=i

mpTp

(
rp
p; 1

)]
(7)

where g is the gravitational acceleration vector in base
coordinate frame, ri

i is the position vector of mass center of
link i in coordinate frame i. In equations (5), (6) and (7), Ti

is the homogeneous transformation matrix from coordinate

frame i to the base coordinate frame. Ji is defined as

Ji =
[

Ji
i + miri

ir
iT

i miri
i

miriT

i mi

]

where Ji
i is a 3 × 3 inertial matrix of link i about its mass

center in coordinate frame i and mi is the mass of link i. �i

is a differential operator; it is defined as:11

�i =
[
λi z̃i−1 [λiP̃i−1 + (1 − λi)I]zi−1

0 0

]
(8)

where zi is z-axis of coordinate frame i, and pi is the position
vector of the origin of coordinate frame i with respect to
the base coordinate. λi = 1 for revolute joints; λi = 0 for
prismatic joints. I is the identity matrix. The symbol ‘˜’ in
(8) denotes a skew symmetric matrix with zero diagonal
values. For example, given a vector u = {ux, uy, uz}T , ũ is
defined as:

ũ =




0 −uz uy

uz 0 −ux

−uy ux 0




The normal forces, Fn
f and Fn

r , and friction forces, F
f

f and
F

f
r , at the rear and the front wheels, are calculated as follows:

Fn
r = −kr (q2 − br sin q3 − xo) − cr ( .q2 − br cos q3

.q3) (9)

Fn
f = −kf (q2 + bf sin q3 − xo) − cf ( .q2 + bf cos q3

.q3)

(10)
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Ff
r = (σorzr + σ1r

.
zr + σ2r

.
xA)Fn

r (11)

F
f

f = (σof zf + σ1f
.
zf + σ2f

.
xB)Fn

f (12)

where xo is the undeformed length of the springs
characterizing the suspension. Further,

.
zr = .

xA − σor| .xA|
ηr ( .

xA)
zr (13)

and

.
zf = .

xB − σof | .xB |
ηf ( .

xB)
zf (14)

where

ηr ( .
xA) = µcr

+ (
µsr

− µcr

)
e
−
∣∣ .
xA
νSr

∣∣0.5

(15)

ηf ( .
xB) = µcf

+ (
µsf

− µcf

)
e
−
∣∣ .
xB
νsf

∣∣0.5

(16)

Then

τext1 = F
f

f + Ff
r

τext2 = −Fn
f − Fn

r

τext3 = Ff
r (q2 − brsinq3) + F

f

f (q2 + bf sinq3)

+Fn
r brcosq3 − Fn

f bf cosq3

τext4 = 0

τext5 = 0 (17)

3. SIMULATION STUDIES
The developed model is now applied to the Caterpillar log-
loader shown in Fig. 1. The machine is a mobile three
degree-of-freedom manipulator with a grapple for holding
and handling objects such as trees. The whole machine can
move forwards or backwards. The upper structure of the
machine rotates on the carriage by a ‘swing’ hydraulic motor
through a gear train. ‘Boom’ and ‘stick’ are the two other
links, which together with the ‘swing’, serve to position the
implement (see also the inset of Fig. 6). Boom and stick
are operated through hydraulic cylinders. The cylinders and
the swing motor are activated by means of pressure and
flow through the main valves. Modulation of the oil flow
in the main valves is presently controlled by the pilot oil
pressure through manually operated pilot control valves. The
equations governing the hydraulic actuation system are given
in details in reference [1] and thus are not repeated here.

Here, the swing is locked. Thus, the movement of
the implement is limited to a planar motion. The
kinematic parameters are a3 = 1.5 m, a4 = 5.2 m, a5 = 1.8 m,
bf = 2.5 m, br = 2.5 m, and d3 = 1.5 m (see Figs. 4 and 5).
The dynamic parameters are listed in Table II. The
parameters indicating the flexibility between the ground
and the base, are chosen as k1 = k2 = 35 × 105 N/m and
B1 =B2 = 15 × 104 Ns/m. These values provide a natural

Fig. 6. Manipulator movement during a pick-and-place operation.

Table II. Dynamic Parameters.

Mass moment
Mass of inertia Center of gravity Coordinate
(kg) (kg m2) (x, y, z) m frame

Base 12,000 90,523 (−2.0, −0.6, 0.0) {x3 y3 z3}
Boom 1,830 15,500 (−2.9, 0.2, 0.0) {x4 y4 z4}
Stick 688 610 (−0.9, 0.1, 0.0) {x5 y5 z5}

frequency of ≈ 3.5 Hz and a damping ratio of ≈ 0.47 in
the vertical direction, which change with the manipulator
configuration and payload.

The friction coefficients were chosen as µsf
= µsr

= 0.05
and µcf

=µcr
= 0.03. The values of other parameters

used in LuGre model were selected as σof
= σor

= 40 l/m,
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Fig. 7. Motion of base during the pick-and-place operation.

σ1f
= σ1r

= 4.9487 s/m, σ2f
= σ2r

= 0.0018 s/m, and νsf
=

νsr
= 12.5 m/s. These values were used by Canudas de Wit

and Tsiotras3 for tire friction models and gave results that
matched reasonably well with their experimental data and
are therefore adopted here.

The simulated task is to have the machine end-effector
to perform a pick-and-place operation. In this task, the end-

Fig. 8. Vertical movements of the front and the rear edges of the
base during the pick-and-place operation.

effector starts from a position close to the base carrying a
5000 kg load. The base is initially stable. The manipulator
extends the end-effector to a possible ‘dumping position’
far from the base. Fig. 6 shows the corresponding motions
of the manipulator’s links (i.e., boom and stick). Fig. 7
shows the movement of the base described by horizontal
and vertical movements of, and its rotation about point G
(see Fig. 4). Fig. 8 shows the vertical movements of the front
(point B) and rear (point A) edges of the base. Note that the
dotted lines represent the undeformed location of the spring
representing the flexibility between the base and the ground.
Any displacement of the edges above the dotted lines denotes
the lifting up of the edge. As it is seen, the front edge did not
lift off, whereas, the rear edge lifted up for a period of time,
but return without causing the whole machine to overturn.
Fig. 9 shows the skidding of the base (represented by the
movement of the front edge point B) as well as the rotation
of the base. With reference to this figure, it is seen that the
base moves horizontally, with respect to the ground mainly
on two occasions; when the manipulator starts to move, and
when the base rocks over the edge A and hit the ground.
The whole task moved the base ≈ 75 mm. Fig. 10 shows the
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Fig. 9. Base rotation and skidding during the pick-and-place
operation.

values of the frictional forces at the front and rear wheels
of the vehicle, which have been determined by the LuGre
model of friction.

The developed model is also compared to the simplified
model, developed in the previous work,2 based on the
assumption that the friction between the base and the ground
is high enough to prevent the base from skidding forward or
backward. Fig. 11 shows the simulation results using the two
models. It is seen that the simplified model underestimates
the stability of the manipulator given the same task. So,
one has to include the frictional effects to more accurately
characterize mobile manipulators during a tip-over.

Finally, the simulation model is further used to investigate
the effect of the variation of the frictional properties between
the base and the ground on the machine tip over stability.
Fig. 12 shows that, for the simulation reported here, reducing
the friction between the base and the ground improves the
machine stability up to a certain limit below which, the
machine starts to also skid noticeably during the tipping
over, causing the machine to become less stable. This is seen
from Fig. 12 where at t ≈ 9 s, the machine starts to slide

Fig. 10. Friction forces at the front and rear wheels.

Fig. 11. Base rotation using different friction models.
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Fig. 12. Base movement (skid and rotation) using LuGre model with
different friction coefficient values: high friction: µs = 0.9, µd =
0.5; medium friction: µs = 0.005, µd = 0.03; low friction: µs =
0.02, µd = 0.012.

significantly for low friction. This motion negatively affects
the machine stability.

4. CONCLUSIONS
In this paper, a dynamic model for a two-link planar mobile
manipulator was developed to study and analyze the tip over
motion of mobile manipulators due to the movement of their
arms. The model takes into account the detailed dynamics
of the base that can rock back and forth, the flexibility and
the friction of the contact between the base and the ground,
and the interaction between the vehicle and the manipulator
including the payload. The ‘LuGre’ tire friction model was
employed to calculate the friction forces between the wheels
and the ground and predict the skidding phenomenon. The
contact between the base and the ground was considered as
a multi-degree-of-freedom joint, and the method of virtual
links was used to formulate the problem into a fixed base
serial-link manipulator with single degree of freedom at
each joint. This process allowed the derivation of differential

equations that describe the dynamics of the entire system, to
be conducted in a more systematic and easier manner.

A Caterpillar excavator-based hydraulic machine was
chosen to demonstrate the development presented in this
paper. This machine incorporates many aspects of typical
robotic systems and is similar to many heavy-duty hydraulic
equipment units. Thus, the analysis, development, and results
reported in this paper can be applied to other similar mobile
robotic systems.

Simulation results were presented to substantiate the
model development here. The results of the developed model
were also compared to those obtained by a simplified model
developed previously by the authors. It was shown that the
simplified model underestimates the stability, therefore, the
friction effect should be included to accurately investigate
the stability of mobile manipulators. Finally, the developed
model was used to investigate the effect of the variation of
the frictional properties between the wheels and the ground
on the manipulator’s stability. The simulations reported here
showed that reducing the friction between the base and the
ground increases the machine stability up to a certain limit,
below which the machine starts to also skid significantly
during the tipping over, causing the machine to become less
stable.
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