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We consider a reflected independent superposition of a Brownian motion and a
compound Poisson process with positive and negative jumipish can be inter-
preted as a model for the content process of a storage system with different types of
customers under heavy traffithe distributions of the duration of a busy cycle and
the maximum content during a cycle are determined in closed.form

1. INTRODUCTION

We consider the the basic jump-diffusion procss (X(t)).=o defined byX(t) =
B(t) + Y(t), where(i) B = (B(t))=c is a Brownian motioBM) with drift y and
variances 2 per unit time andii) Y= (Y(t))=o is @ compound Poisson process with
independent and identically distributédi.d.) positive and negative jumpsThe
process of interest to us is the corresponditayage process W (W(t))=o, Which
isthe reflection oX at zergthatis W(t) = X(t) + L(t), whereL(t) = —infg=c=; X(S).
This storage process has many interpretatibBnsexamplein stochastic financéV
can represent a cash fund serving two types of custorhere are “small” custom-
ers who very frequently withdraw and deposit small amoutitereby contributing
the Brownian component of/. The second type of transactions arises from “big”
firms, which move large sums in and out of the fyrigeir contribution is modeled
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20 D. Perry and W. Stadje

by the compound Poisson procé&&3 he reflection ofX at 0 means thafor the cash
fund, overdraft is not allowedW can be also interpreted as the workload process of
a queuing system that serves three types of custoveey frequent small service
requirementsoccasional big ones whose interarrival times are(axulistributed
and whose service times are nonnegligjlaled occasionalegativebig ones which
remove random amounts of work from the system and whose interarrival times are
exp(n) distributed For related models in queuinge refer to Kella and Whift8,9],
Bardhan[2], Perry and Stadjgl3], and Perry[12]; for applications in stochastic
finance see for exampleschal17], Moeller[11], Bardhan and Chd@&], and Perry
and Stadj¢14]. One can think of several other applications to storage processes
In this article we study two important characteristics \& the duration of a
busy cycleand themaximum valuattained during such a cycl&busy cycle can be
defined as followslt starts when the system(isr becomesempty contains at least
one (positive or negativejump, and ends at the next time of emptinegée will
derive exact solutions for a wide class of phase-type distributions for the jump sizes
Under the assumption that all jumps are posititree problem was addressed in
Perry and StadjgL5] for general distributionsn the two-sided problem considered
here we have to restrict ourselves to the phase-type case to obtain explicit results
Related first-exit problems are important in insurance mathematics and have
therefore been studied from many angles in this conteed for example Picard
and Lefevrd 16], De Wlder and Goovaer{$,6], and Gerber and Shir] and the
references given in these articlés the case when all jumps are posititieere are
also general results for Lévy proces$ék
Let us now specify our modeWithout loss of generality we assume that
o? = 1. The positive(negative jumps have the common distribution functi@
(H) and arrive with intensity rata (7). Thus the arrival rate ofY is A + n and
the common Laplace transforthT) of the jump sizes is

, A n
K*(a) = py G*(a) + Ttm H*(a), (1.1)

whereG*(a) andH *(«) are the LTs ofs andH, respectivelyAn important function
in our derivations is thexponentf X, defined by

2

o
¢(a) = logE(e" W) = o Tves (A+n)[1-K*(a)]. (1.2)
We assume that the LT8* andH* are of the form
Ki

6@ =3 pll al

j=1 My T

m li i
. H(@=Xqll— (1.3)
i=1 j=1Vij

wheren, Ky, ..., Ky, M, I4,...,In €N, py,..., Pnandqg,...q, are positive >, p, =
>itiq =1, andp; > 0 andw; > 0. Thus G andH are finite mixtures of finite
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convolutions of not necessarily identicaéxponential distributiong his class cov-
ers a wide range of phase-type distributioRsr exampleCoxian and hyperexpo-
nential distributions have LTs of this tyeee Asmussdd, p. 74]). GandH possess
probability densitieg andh which are easy to compute by convolution of exponen-
tial functions For simplicity we assume that no twag; 's and no twav;; 's coincidg
so that all poles 06* and ofH* are simplgotherwise we obtain the desired func-
tionals of W by taking a simple limit. We denote by Au and —1/v the expected
positive and negative jump sizeespectivelyand assume that the total drift+
(A/W) — (n/v) is negative so thatW is a regenerative procedset 7 = inf{t =
0|Y(t) > 0} be the arrival time of the first big custom&hen T = inf {t = 7|W(t) =
0} is the length of the first busy cyglendM = sup-.—1 W(t) is the first cycle
maximum Note thatP(T = 7) > 0 because the first jump can be negative with
absolute value greater th&i(7—). In the stochastic finance interpretatjdnis the
time until ruin andM is the maximal value achieved by the cash fund during its
lifetime. We note here thal might be a point of continuity or discontinuity of the
sample patiW(-), depending on whether at tinTdevel 0 is reached by the Brown-
ian component oV or is crossed by a negative jump the latter caseW(T—) >
0> W(T); howeverwe always hav®V(T+) = 0, andT+ is the beginning of a new
cycle

We derive the distribution function & in Section 2 and the LT oF is obtained
in Section 3 Finally, we show how to extend this result to the case of arbitrarily
distributed upward jumps

2. CYCLE MAXIMUM, PHASE-TYPE JUMPS
The first cycle can be partitioned into the two pdfisr) and[ 7, T |, and obviously
M = max(My, M,) whereM; = supy=;=, W(t) andM, = sup.—,—+ W(t). Regarding

the first cycle we need the following two lemmas which have been proved by Yor
[18] and Perry and Stadd.5].

LemmMma 1: Let6, (B) andf_(B) be the positive and the negative root of the equa-
tion92 —y8 — B =0; thatis,0.(B8) =[y = (y?>+ 4B8Y?)]/2. Letd. = 0. (A + 7).
W(7 —) and L(r —) are independent and

W(r =) wexp(l6-]),  L(r =) exp(|6.]).
LEmMMA 2: Forall0=x=Yy,

P(My > y,W(r —) € dx) = T'(A + 1, y)by(x) dx,

where

0.(B) —0-(B)
0.(B)e By —g_(B)e 0+PY

g,y =
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and (-) is the density whose LT is given by

0,.10_|(ae™ %Y -0, e %)
(a=0.)(a+10_])

BJ(a) =

We remark that the probability measure correspondirig, tg is given by
exp([0_|) = exp_(6,) xe, — e Y exp(|6_|) xexp_(0,) —e Y exp(|6_|),

wheree, is the point mass at, * denotes convolutigrand exp.(6-.) is the distri-
bution with densityd,. exp(6. x)1_.. 0 (X). It is thus easy to write down an explicit
formula forby(-).

We now start with the analysis ™. Lemma 3 enables us to express its distri-
butionin terms of those dfl, andM,, conditional onW(7 —) andW(r), respectively

LemMma 3: For all x > 0,

P(M Sx)=JOOP(M1 X|W(r =) =y)|o_|e"lo-lY

x[)ﬁ_ a- G(y))+—fP(M2<x|W(T) w)h(w —y) dw

+

At jy P(M, = x|W(7) =w)g(y —w) dw] dy.

Proor: By the law of total probability and Lemmag 1

PIM=x) = ff P(M; =x,M, = x|W(7 =) =y,W(7) = W)

X P(W(7) € dw|W(r —) =y)|6_|e"1?-IVdy

_ ff P(M, = xIW(r -) = y)P(M, = x|W(r) =)

X P(W(7) € dw|W(7 —) =y)|6_|e"1?-IVdy, (2.1)

where the second equality follows from the strong Markov propert afr, which
implies thatM; andM,, are conditionally independergivenW(r —) andW(r). By
the structure of the jump size distribution

%g(y—w)dw, y>w
P(W(7) € dw|W(r —) =y) =

A
T)\h(w y)dw, y<w.
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Moreoverw < 0 implies thatP (M, = x|W(7) = w) =1 for all x > 0. The assertion
now follows from(2.1). |

By Lemmas 1 and ,2P(M; = y,W(7 —) € dx) has the densityg_|e !*-* —
I'(A + 71, y)by(x), so that

P(M; = y|W(r =) =x) =1—[0_| ™ *I'(A + 1, y)by(X).

By Lemma 3it remains to comput®(M, < x|W(7) = w) for w > 0. The main tool
in the derivation of this distribution is the process

t
Z(t) = (¢(a) = B) f e XA ds 4 e XO —em XA 1=,
0

wheree(«) is given by(1.2) (and(1.1) and(1.3)). We consider the stopping time
Tux = INf{t>0:X(t) =x—w or X(t)=-—w}, X>w=0.

It is easy to check thatZ(t)),~o is a martingale for every satisfying —p <
Re a < v and everyB = 0 (seg e.g., Perry and Stadj¢14]). Applying the op-
tional sampling theorem yields

TW.X
(¢() —,8)E< fo e‘“x<s)‘33ds) — —14 E(e M0 Flux),  (2.2)

By the structure ofG*(-) andH*(-), any jump of W can be thought of as being
generated by first choosing betweénand H with probabilitiesA/(A + 7) and
n/(A + m), respectivelyand depending on this choice selecting either an iridex
from{1,...,n} orfrom{d,..., m} according to the probability distributidip, ..., p,)

or (gy,...,9m) and then carrying out; or |; successive phases which are indepen-
dent and exponentially distributed with meangul,..., 1/l or /v,...,1/v;. .
LetCg,i,j (Cy.i j) be the event that at timg, 4, the levelx — w (—w) is crossed by
an upward(downward phase with distribution exj;;) (exp(;)). At time T, «
there is of course also the possibility of hittingc — w or —w exactly due to the
Brownian component.et CoandC, be the event&X (T, x) = X — w} and{X(T,, x) =
—w}, respectivelyLet h, = h(B|w, x) = E(e"#™x1g, ), k= 0,1, and

hG,i,j = hG,i,j(B|W, X) = E(ei'gTW’xlCG’iyj)? I = 17"'9n7 J = 17"'7ki
hH,i,j = hH,i,j(B|W’ X) = E(eiﬁTW'chH'i'j)’ I = 1,...,m J = 1"-"Ii-

GivenCg j, the overshooK(T,, ) — (x — w) is exp( ;) distributed and indepen-
dent ofT,, .. Similarly, conditional onC, ; j, the undershoaoX(T,,) + wis exp(v;;)
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distributed and independent @f, «. Using the formula of total probabilifyve can
thus rewrite the expected val@ge**(w.X)~ATw.x) on the right-hand side ¢R.2) as

i

Mj + a

n o Kk
2 2 P(Ce,i,j)ew(xfw) E(eiﬁTW'X‘CG,i,j)
i—1j=1

+ P(Cp)e “ " WE(e FTwx|Cy) + P(Cy)e™ (e FTwx|Cy)

+22P(CH|])6W

i=1j=1 ]

E(e P™wx|Cy i j)
—a

n .
—a(x— ) —a(x—
E E a(X—w) —a hG,i,j +e a(x W)ho + eawhl

m I| Vi'
+ e ——hy; (2.3)
i=1j=1 -
The left-hand side 0f2.2) becomes zero for values af satisfying the equation
¢(a) — B = 0, which can be written as

l; az
Iya—?—k/\—l—n—l—/i’. (2.4)

nEQ.

n ki
=A 2 Pi H
i=1  j=1 Uu

=1V —

LetN=k; + --- +kpandM =1, + --- + 1l andletc; < --- <cy<0and 0< d; <

-+ < dy be the values of-l; and;;, respectivelyin ascending ordeSince(2.4)
is equivalent to a polynomial equation of deghte- M + 2 for «, there are exactly
N + M + 2 (possibly complexsolutions each counted with its multiplicityLet
us show thatfor any 8 > 0, (2.4) has a real solution in each of the intervals
(0,d,), (dy,ds),...,(du_1,dy), (dy,o0). The functionl’(«) is continuous on each of
the intervalg0, d,), (dy, dy), ..., (dv_1,dw), (dyu,c0) and satisfies lim .4 I'(a) = oo
and lim, 4 I'(e) = —oo for i = 1,...,M. For anyB > 0, the parabola on the
right-hand side of2.4) takes a larger value thdn«) at@ = 0 and tends to-oo
as ¢ — oo. Thus there is a solution of(2.4) in each of the intervals
(0,dy),(dq,dy),...,(dy—_1,dm), (dy,00). Similarly, it is seen that there is a real solu-
tion in each interval—oo, ¢;), (¢4, Cy), ...,(Cn—1,Cn), (CN,0). Henceall N+ M + 2
solutions 0f2.4) are distinct and realve denote them by, (8) < --- < anims2(B).

By (2.3), the right-hand side of2.2) can be analytically extended © (as a

function ofa). The expected value on the left-hand sidé2®) is also analytic in
everya € C; note that the integrand *X(®~#s is bounded by ex@a|max x —
w,w]) for s € [0, Ty, «). Thereforeafter inserting2.3) in (2.2) we obtain an identity
that is valid for alla € C\{cy,...,Cn,01,...,dw}. In particular let @ = a,(B),
¢=1,...,N+ M + 2 Then the left-hand side ¢2.2) vanishes and we get tix+
M + 2 equations

https://doi.org/10.1017/5026996480216102X Published online by Cambridge University Press


https://doi.org/10.1017/S026996480216102X

EXACT DISTRIBUTIONS AND JUMP DIFFUSION 25

k
D < Hij
= —aBxwW) = R 4 @B W 4 aa(B)Wh
gge b +a(g) o e AL
+22e“f<ﬁ>w Niiojs £=1...,N+M+2 (2.5)
i=1j= i' (f(B)

The restricted Fourier transforning(8), hi(B), hg i,j(B|w, x), andhy ; ;(B|w, X)
can now be computed frof@.5). However this also yields the distribution &, by
the following lemma

LEmmMmA 4:
m i
P(Mz = X|W(7) = W) = h;(0|w,x) + 3 > hyy; (0w, X).
i=1j=1
Summarizingwe have proved the following result

THEOREM 1: The distribution of M is given by

P(M sx):f [16_e 1Y = T'(A + n,y)b(y)]
0

1
X <)‘T(n(1 G(y))

m i
+ nfoy[hl(OIW, X) + > > hyi;(Ofw, x)lh(w_ y) dw

i=1j=1
+ /\f
y

3. THE DURATION OF A BUSY CYCLE

Using the results of Section 2 we can also derive an explicit formula for the IT of
Let hy(B|w) = lim .. hi(Blw, x) andhy i ;(B1W) = lim . i (BIW, X).

THEOREM 2:

m I|
hi(0lw, x) + > > hyy i ;(0lw, X)]h(w— y) dW> d

i=1j=1

A [e/e]
| H(=x)6_|e" " * dx

A n o0 m
—_— o —10_1w
Ata r+nlt, <hl(B|W)+i_Elj21hH"’J(’BW)>|0|e dw

Ax (™ m g
+ J;(hl(18|w)+22hH,i,j(BW)>

A+« A“F’Y] i=1j=1

E(e_BT) =

X 0|e"'W<fWe"sg(s) ds> dw. (3.1)
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Proor: The busy cycl¢0, T) can be decomposed|i, 7) and[ 7, T). Thereforeall
three terms on the right-hand side(8f1) include the LTA/(A + «). According to
the jump size at, three cases can be distinguished

(i) The first jump is negative and its absolute value is greater Wéet—).
By Lemma 1 W(r—) « exp(|6_]). The probability that a negative jump
arrives before a positive jump ig/(A + 7). The absolute value of the
negative jump at is greater thatw(7—) with probability P(|V| > U) =
I P(V < —x)|6_|e 1-X dx, whereU and V are independentJ
exp(|6_]) andV has the distribution functiofd. Multiplying togethey
we get the first term on the right-hand side(8f1).

(ii) The first jump is negative and its absolute value is smaller tVan—).
The conditional distribution ofW(7) given the event{W(r—) >
W(7) > 0} is equal toP(U — |V| € dw|U — |[V| > 0) with U andV
as in(i). But this distribution is exf@_). For anyw > 0, the condi-
tional LT of T — 7, given {W(r) = w}, is equal tohy(8|w) +

i”llZ}‘:l huij(BIw). This case contributes the second summand in
(3.2).

(iii) The first jump is positiveThe probability for this to happen ¥/(A + 1),
and the distribution oW(7) after a positive jump at is the convolution
exp(|6_]) andG. This explains the third term i(8.1). u

If there are no upward jumps and the downward jumps have a phase-type dis-
tribution functionH with LT H* as given in(1.3), the following alternative deriva-
tion of the LT of T and some related functionals is possibée use the Kella—Whitt
[10] martingale for Lévy processes with reflection at zero and optional sampling for
T to obtain the identity

(o(a) —B)E(f e“""(S’ﬁSds) = —1+ E(e"eWM=AT) 4 aE(f eBSdL(s)>,

(3.2)

whereL(t) = —infp_s— X(S) is the associated local time proce$he crossing of
zero at timeT is either due to the Brownian motion part\for to one of the exfy; )
distributed phase$roceeding similarly as in Section®e define

I(B) = E(e " TLwr)—op),
L (B) = E(efmlcij),

whereC; is the event that zero is first crossed by ftrephase of theéth mixture
component of. It is now clear thaE (e *W(M~£T) can be decomposed as follaws

m i Vi
E(e WM FT) = (B) + > X —Ja — al(B). (3.3)

i=1j=1Vij —
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The equatiorp(a) — 8 = 0 can be written as

nH*(a)ZB—}—n—I-ya—%. (3.4)

As in Section 2 it is shown that(3.4) has a root in each of the intervals
(=00,0),(0,d;),(dy,ds),...,(dy—1,dym), (dy,0) and thus hasM + 2 real roots
ai(B) <0< as(B) < -+ < aps2(B). Inserting(3.3) in (3.2) and settingy =

o (B),i=1,...,M + 2, yieldsM + 2 linear equations for th® + 2 unknowns
Io(B) andl(B) (i=1,....,mj=1...1) andE(foTe*BSdL(s)). Thus we obtain
explicit expressions for the functionaB(e “W™~AT) E([, e #*dL(s)), and
E(f, e “W A3 (s).
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