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We consider a reflected independent superposition of a Brownian motion and a
compound Poisson process with positive and negative jumps, which can be inter-
preted as a model for the content process of a storage system with different types of
customers under heavy traffic+ The distributions of the duration of a busy cycle and
the maximum content during a cycle are determined in closed form+

1. INTRODUCTION

We consider the the basic jump-diffusion processX 5 ~X~t !!t$0 defined byX~t ! 5
B~t ! 1 Y~t !, where~i! B 5 ~B~t !!t$0 is a Brownian motion~BM ! with drift g and
variances2 per unit time and~ii ! Y5 ~Y~t !!t$0 is a compound Poisson process with
independent and identically distributed~i+i+d+! positive and negative jumps+ The
process of interest to us is the correspondingstorage process W5 ~W~t !!t$0, which
is the reflection ofXat zero; that is,W~t !5X~t !1L~t !,whereL~t !52inf0#s#t X~s!+
This storage process has many interpretations+ For example, in stochastic finance,W
can represent a cash fund serving two types of customer+ There are “small” custom-
ers, who very frequently withdraw and deposit small amounts, thereby contributing
the Brownian component ofW+ The second type of transactions arises from “big”
firms, which move large sums in and out of the fund; their contribution is modeled
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by the compound Poisson processY+ The reflection ofX at 0 means that, for the cash
fund, overdraft is not allowed+Wcan be also interpreted as the workload process of
a queuing system that serves three types of customer: very frequent small service
requirements, occasional big ones whose interarrival times are exp~l! distributed
and whose service times are nonnegligible, and occasionalnegativebig ones which
remove random amounts of work from the system and whose interarrival times are
exp~h! distributed+ For related models in queuing,we refer to Kella and Whitt@8,9# ,
Bardhan@2# , Perry and Stadje@13# , and Perry@12#; for applications in stochastic
finance, see for example,Schäl@17# ,Moeller@11# ,Bardhan and Chao@3# , and Perry
and Stadje@14# + One can think of several other applications to storage processes+

In this article, we study two important characteristics ofW: the duration of a
busy cycleand themaximum valueattained during such a cycle+A busy cycle can be
defined as follows: It starts when the system is~or becomes! empty, contains at least
one ~positive or negative! jump, and ends at the next time of emptiness+ We will
derive exact solutions for a wide class of phase-type distributions for the jump sizes+
Under the assumption that all jumps are positive, the problem was addressed in
Perry and Stadje@15# for general distributions; in the two-sided problem considered
here, we have to restrict ourselves to the phase-type case to obtain explicit results+

Related first-exit problems are important in insurance mathematics and have
therefore been studied from many angles in this context; see, for example, Picard
and Lefèvre@16# , De Vylder and Goovaerts@5,6# , and Gerber and Shiu@7# and the
references given in these articles+ In the case when all jumps are positive, there are
also general results for Lévy processes@4# +

Let us now specify our model+ Without loss of generality we assume that
s2 5 1+ The positive~negative! jumps have the common distribution functionG
~H ! and arrive with intensity ratel ~h!+ Thus, the arrival rate ofY is l 1 h and
the common Laplace transform~LT ! of the jump sizes is

K *~a! 5
l

l 1 h
G*~a! 1

h

l 1 h
H *~a!, (1.1)

whereG*~a! andH *~a! are the LTs ofG andH, respectively+An important function
in our derivations is theexponentof X, defined by

w~a! 5 log E~e2aX~1! ! 5
a2

2
2 ga 2 ~l 1 h!@12 K *~a!# + (1.2)

We assume that the LTsG* andH * are of the form

G*~a! 5 (
i51

n

pi )
j51

ki µij

µij 1 a
, H *~a! 5 (

i51

m

qi )
j51

l i nij

nij 2 a
, (1.3)

wheren, k1, + + + , kn,m, l1, + + + , lm [ N, p1, + + + , pn andq1, + + +qm are positive,(i51
n pi 5

(i51
m qi 5 1, andµij . 0 andnij . 0+ Thus, G andH are finite mixtures of finite
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convolutions of~not necessarily identical! exponential distributions+ This class cov-
ers a wide range of phase-type distributions+ For example, Coxian and hyperexpo-
nential distributions have LTs of this type~seeAsmussen@1, p+ 74# !+GandH possess
probability densitiesg andh which are easy to compute by convolution of exponen-
tial functions+ For simplicity, we assume that no twoµij ’s and no twonij ’s coincide,
so that all poles ofG* and ofH * are simple~otherwise we obtain the desired func-
tionals ofW by taking a simple limit!+ We denote by 10µ and210n the expected
positive and negative jump sizes, respectively, and assume that the total driftg 1
~l0µ! 2 ~h0n! is negative, so thatW is a regenerative process+ Let t 5 inf $t $
06Y~t ! . 0% be the arrival time of the first big customer+ Then, T5 inf $t $ t6W~t ! #
0% is the length of the first busy cycle, andM 5 sup0#t#T W~t ! is the first cycle
maximum+ Note thatP~T 5 t! . 0 because the first jump can be negative with
absolute value greater thanW~t2!+ In the stochastic finance interpretation, T is the
time until ruin andM is the maximal value achieved by the cash fund during its
lifetime+We note here thatT might be a point of continuity or discontinuity of the
sample pathW~{!, depending on whether at timeT level 0 is reached by the Brown-
ian component ofW or is crossed by a negative jump+ In the latter case,W~T2! .
0 . W~T !; however, we always haveW~T1! 5 0, andT1 is the beginning of a new
cycle+

We derive the distribution function ofM in Section 2 and the LT ofT is obtained
in Section 3+ Finally, we show how to extend this result to the case of arbitrarily
distributed upward jumps+

2. CYCLE MAXIMUM, PHASE-TYPE JUMPS

The first cycle can be partitioned into the two parts@0,t! and@t,T # , and, obviously,
M 5 max~M1,M2! whereM1 5 sup0#t#t W~t ! andM2 5 supt#t#T W~t !+ Regarding
the first cycle, we need the following two lemmas which have been proved by Yor
@18# and Perry and Stadje@15# +

Lemma 1: Let u1~b! andu2~b! be the positive and the negative root of the equa-
tion u2 2 gu 2 b 5 0; that is,u6~b! 5 @g 6 ~g2 1 4b102!#02. Letu6 5 u6~l 1 h! .
W~t 2! and L~t 2! are independent and

W~t 2! Z exp~6u2 6!, L~t 2! Z exp~6u1 6!+

Lemma 2: For all 0 # x # y,

P~M1 . y,W~t 2! [ dx! 5 G~l 1 h, y!by~x! dx,

where

G~b, y! 5
u1~b! 2 u2~b!

u1~b!e2u2~b!y 2 u2~b!e2u1~b!y
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and by~{! is the density whose LT is given by

By
*~a! 5

u1 6u2 6~ae2u1 y 2 u1 e2ay!

~a 2 u1 !~a 1 6u2 6!
+

We remark that the probability measure corresponding toby~{! is given by

exp~6u2 6! * exp2~u1 ! * ey 2 e2u1 y exp~6u2 6! * exp2~u1 ! 2 e2u1 y exp~6u2 6!,

whereey is the point mass aty, * denotes convolution, and exp2~u1! is the distri-
bution with densityu1 exp~u1x!1~2`,0!~x!+ It is thus easy to write down an explicit
formula forby~{!+

We now start with the analysis ofM+ Lemma 3 enables us to express its distri-
bution in terms of those ofM1 andM2, conditional onW~t 2! andW~t!, respectively+

Lemma 3: For all x . 0,

P~M # x! 5E
0

`

P~M1 # x6W~t 2! 5 y!6u2 6e26u2 6y

3 F h

l 1 h
~12 G~ y!! 1

h

l 1 h
E

0

y

P~M2 # x6W~t! 5 w!h~w 2 y! dw

1
l

l 1 h
E

y

`

P~M2 # x6W~t! 5 w!g~ y 2 w! dwG dy+

Proof: By the law of total probability and Lemma 1,

P~M # x! 5E
0

`E
2`

`

P~M1 # x,M2 # x6W~t 2! 5 y,W~t! 5 w!

3 P~W~t! [ dw6W~t 2! 5 y!6u2 6e26u2 6y dy

5E
0

`E
2`

`

P~M1 # x6W~t 2! 5 y!P~M2 # x6W~t! 5 w!

3 P~W~t! [ dw6W~t 2! 5 y!6u2 6e26u2 6ydy, (2.1)

where the second equality follows from the strong Markov property ofWatt,which
implies thatM1 andM2 are conditionally independent, givenW~t 2! andW~t!+ By
the structure of the jump size distribution,

P~W~t! [ dw6W~t 2! 5 y! 5 5
h

h 1 l
g~ y 2 w! dw, y . w

l

h 1 l
h~w 2 y! dw, y , w+
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Moreover, w , 0 implies thatP~M2 # x6W~t! 5 w! 51 for all x . 0+ The assertion
now follows from~2+1!+ n

By Lemmas 1 and 2, P~M1 # y,W~t 2! [ dx! has the density6u2 6e26u2 6x 2
G~l 1 h, y!by~x!, so that

P~M1 # y6W~t 2! 5 x! 5 1 2 6u2 621e6u2 6xG~l 1 h, y!by~x!+

By Lemma 3, it remains to computeP~M2 # x6W~t! 5 w! for w . 0+ The main tool
in the derivation of this distribution is the process

Z~t ! 5 ~w~a! 2 b!E
0

t

e2aX~s!2bs ds1 e2aX~0! 2 e2aX~t !2bt, t $ 0,

wherew~a! is given by~1+2! ~and~1+1! and~1+3!!+We consider the stopping time

Tw, x 5 inf $t . 0 :X~t ! $ x 2 w or X~t ! # 2w%, x . w $ 0+

It is easy to check that~Z~t !!t$0 is a martingale for everya satisfying 2µ ,
Re a , n and everyb $ 0 ~see, e+g+, Perry and Stadje@14# !+ Applying the op-
tional sampling theorem yields

~w~a! 2 b!ESE
0

Tw, x

e2aX~s!2bs dsD 5 211 E~e2aX~Tw, x!2bTw, x !+ (2.2)

By the structure ofG*~{! and H *~{!, any jump ofW can be thought of as being
generated by first choosing betweenG and H with probabilitiesl0~l 1 h! and
h0~l 1 h!, respectively, and depending on this choice selecting either an indexi
from $1, + + + ,n% or from$1, + + + ,m% according to the probability distribution~ p1, + + + , pn!
or ~q1, + + + ,qm! and then carrying outki or l i successive phases which are indepen-
dent and exponentially distributed with means 10µi1, + + + ,10µiki

or 10ni1, + + + ,10nil i
+

Let CG, i, j ~CH, i, j ! be the event that at timeTw, x, the levelx 2 w ~2w! is crossed by
an upward~downward! phase with distribution exp~µij ! ~exp~nij !!+ At time Tw, x

there is, of course, also the possibility of hittingx 2 w or 2w exactly, due to the
Brownian component: LetC0 andC1 be the events$X~Tw, x!5x2w% and$X~Tw, x!5
2w% , respectively+ Let hk 5 hk~b 6w, x! 5 E~e2bTw, x1Ck

!, k 5 0,1, and

hG, i, j 5 hG, i, j ~b 6w, x! 5 E~e2bTw, x1CG, i, j
!, i 5 1, + + + , n, j 5 1, + + + , ki

hH, i, j 5 hH, i, j ~b 6w, x! 5 E~e2bTw, x1CH, i, j
!, i 5 1, + + + ,m, j 5 1, + + + , l i +

GivenCG, i, j , the overshootX~Tw, x! 2 ~x 2 w! is exp~µij ! distributed and indepen-
dent ofTw, x+ Similarly, conditional onCH, i, j , the undershootX~Tw! 1 w is exp~nij !
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distributed and independent ofTw, x+ Using the formula of total probability, we can
thus rewrite the expected valueE~e2aX~Tw, x!2bTw, x ! on the right-hand side of~2+2! as

(
i51

n

(
j51

ki

P~CG, i, j !e
2a~x2w!

µij

µij 1 a
E~e2bTw, x 6CG, i, j !

1 P~C0!e2a~x2w!E~e2bTw, x 6C0! 1 P~C1!eaw~e2bTw, x 6C1!

1 (
i51

m

(
j51

l i

P~CH, i, j !e
aw

nij

nij 2 a
E~e2bTw, x 6CH, i, j !

5 (
i51

n

(
j51

ki

e2a~x2w!
µij

µij 1 a
hG, i, j 1 e2a~x2w!h0 1 eawh1

1 (
i51

m

(
j51

l i

eaw
nij

nij 2 a
hH, i, j + (2.3)

The left-hand side of~2+2! becomes zero for values ofa satisfying the equation
w~a! 2 b 5 0, which can be written as

G~a! [ l (
i51

n

pi )
j51

ki µij

µij 1 a
1 h (

i51

m

qi )
j51

l i nij

nij 2 a
5 ga 2

a2

2
1 l 1 h 1 b+ (2.4)

Let N5 k11 {{{ 1 kn andM 5 l11 {{{ 1 lm and letc1 , {{{ , cN , 0 and 0, d1 ,
{{{ , dM be the values of2µij andnij , respectively, in ascending order+ Since~2+4!
is equivalent to a polynomial equation of degreeN1 M 1 2 for a, there are exactly
N 1 M 1 2 ~possibly complex! solutions, each counted with its multiplicity+ Let
us show that, for any b . 0, ~2+4! has a real solution in each of the intervals
~0,d1!, ~d1,d2!, + + + , ~dM21,dM !, ~dM ,`!+ The functionG~a! is continuous on each of
the intervals~0,d1!, ~d1,d2!, + + + , ~dM21,dM !, ~dM ,`! and satisfies lima;di

G~a! 5`
and lima'di

G~a! 5 2` for i 5 1, + + + ,M+ For any b . 0, the parabola on the
right-hand side of~2+4! takes a larger value thanG~a! at a 5 0 and tends to2`
as a r `+ Thus, there is a solution of~2+4! in each of the intervals
~0,d1!, ~d1,d2!, + + + , ~dM21,dM !, ~dM ,`!+ Similarly, it is seen that there is a real solu-
tion in each interval~2`,c1!, ~c1,c2!, + + + , ~cN21,cN !, ~cN ,0!+ Hence, all N1 M 1 2
solutions of~2+4! are distinct and real;we denote them bya1~b! , {{{ , aN1M12~b!+

By ~2+3!, the right-hand side of~2+2! can be analytically extended toC ~as a
function ofa!+ The expected value on the left-hand side of~2+2! is also analytic in
everya [ C; note that the integrande2aX~s!2bs is bounded by exp~6a6max@x 2
w,w# ! for s[ @0,Tw, x!+ Therefore, after inserting~2+3! in ~2+2! we obtain an identity
that is valid for alla [ C\$c1, + + + ,cN ,d1, + + + ,dM % + In particular, let a 5 a,~b!,
, 51, + + + ,N 1 M 1 2+ Then the left-hand side of~2+2! vanishes and we get theN 1
M 1 2 equations
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1 5 (
i51

n

(
j51

ki

e2a,~b!~x2w!
µij

µij 1 a,~b!
hG, i, j 1 e2a,~b!~x2w!h0 1 ea,~b!wh1

1 (
i51

m

(
j51

l i

ea,~b!w
nij

nij 2 a,~b!
hH, i, j , , 5 1, + + + ,N 1 M 1 2+ (2.5)

The restricted Fourier transformsh0~b!, h1~b!, hG, i, j ~b 6w, x!, andhH, i, j ~b 6w, x!
can now be computed from~2+5!+However, this also yields the distribution ofM2 by
the following lemma+

Lemma 4:

P~M2 # x6W~t! 5 w! 5 h1~06w, x! 1 (
i51

m

(
j51

l i

hH, i, j ~06w, x!+

Summarizing, we have proved the following result+

Theorem 1: The distribution of M is given by

P~M # x! 5E
0

`

@6u2 6e26u2 6y 2 G~l 1 h, y!bx~ y!#

3 S 1

l 1 h
~h~12 G~ y!!!

1 hE
0

yFh1~06w, x! 1 (
i51

m

(
j51

l i

hH, i, j ~06w, x!Gh~w 2 y! dw

1 lE
y

` Fh1~06w, x! 1 (
i51

m

(
j51

l i

hH, i, j ~06w, x!Gh~w 2 y! dwD dy+

3. THE DURATION OF A BUSY CYCLE

Using the results of Section 2 we can also derive an explicit formula for the LT ofT+
Let h1~b 6w! 5 limxr` h1~b 6w, x! andhH, i, j ~b 6w! 5 limxr` hH, i, j ~b 6w, x!+

Theorem 2:

E~e2bT! 5
l

l 1 a

h

l 1 h
E

0

`

H~2x!6u2 6e26u2 6x dx

1
l

l 1 a

h

l 1 h
E

0

`Sh1~b 6w! 1 (
i51

m

(
j51

l i

hH, i, j ~b 6w!D6u2 6e26u2 6wdw

1
l

l 1 a

l

l 1 h
E

0

`Sh1~b 6w! 1 (
i51

m

(
j51

l i

hH, i, j ~b 6w!D
3 6u2 6e26u2 6wSE

0

w

e6u2 6sg~s! dsD dw+ (3.1)
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Proof: The busy cycle@0,T ! can be decomposed in@0,t! and@t,T !+ Therefore, all
three terms on the right-hand side of~3+1! include the LTl0~l 1 a!+ According to
the jump size att, three cases can be distinguished:

~i! The first jump is negative and its absolute value is greater thanW~t2!+
By Lemma 1, W~t2! Z exp~6u26!+ The probability that a negative jump
arrives before a positive jump ish0~l 1 h!+ The absolute value of the
negative jump att is greater thanW~t2! with probabilityP~6V 6 . U ! 5
*0
`P~V , 2x!6u2 6e26u2 6x dx, where U and V are independent; U Z

exp~6u26! and V has the distribution functionH+ Multiplying together,
we get the first term on the right-hand side of~3+1!+

~ii ! The first jump is negative and its absolute value is smaller thanW~t2!+
The conditional distribution ofW~t! given the event$W~t2! .
W~t! . 0% is equal toP~U 2 6V 6 [ dw6U 2 6V 6 . 0! with U and V
as in ~i!+ But this distribution is exp~u2!+ For any w . 0, the condi-
tional LT of T 2 t, given $W~t! 5 w% , is equal to h1~ b 6w! 1

(i51
m (j51

l i hH, i, j ~b 6w!+ This case contributes the second summand in
~3+1!+

~iii ! The first jump is positive+ The probability for this to happen isl0~l 1 h!,
and the distribution ofW~t! after a positive jump att is the convolution
exp~6u26! andG+ This explains the third term in~3+1!+ n

If there are no upward jumps and the downward jumps have a phase-type dis-
tribution functionH with LT H * as given in~1+3!, the following alternative deriva-
tion of the LT ofT and some related functionals is possible+We use the Kella–Whitt
@10# martingale for Lévy processes with reflection at zero and optional sampling for
T to obtain the identity

~w~a! 2 b!ESE
0

T

e2aW~s!2bs dsD 5 211 E~e2aW~T !2bT! 1 aESE
0

T

e2bs dL~s!D,
(3.2)

whereL~t ! 5 2inf0#s#t X~s! is the associated local time process+ The crossing of
zero at timeT is either due to the Brownian motion part ofWor to one of the exp~nij !
distributed phases+ Proceeding similarly as in Section 2, we define

G0~b! 5 E~e2bT1$W~T !50% !,

Gij ~b! 5 E~e2bT1Cij
!,

whereCij is the event that zero is first crossed by thejth phase of thei th mixture
component ofH+ It is now clear thatE~e2aW~T !2bT! can be decomposed as follows:

E~e2aW~T !2bT! 5 G0~b! 1 (
i51

m

(
j51

l i nij

nij 2 a
2 aGij ~b!+ (3.3)
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The equationw~a! 2 b 5 0 can be written as

hH *~a! 5 b 1 h 1 ga 2
a

2
+ (3.4)

As in Section 2, it is shown that~3+4! has a root in each of the intervals
~2`,0!, ~0,d1!, ~d1,d2!, + + + , ~dM21,dM !, ~dM ,`! and, thus, has M 1 2 real roots
a1
*~b! , 0 , a2

*~b! , {{{ , aM12
* ~b!+ Inserting~3+3! in ~3+2! and settinga 5

ai
*~b!, i 5 1, + + + ,M 1 2, yields M 1 2 linear equations for theM 1 2 unknowns

G0~b! andGij ~b! ~i 5 1, + + + ,m, j 5 1, + + + , l i ! andE~*0
T e2bs dL~s!!+ Thus, we obtain

explicit expressions for the functionalsE~e2aW~T !2bT!, E~*0
T e2bs dL~s!!, and

E~*0
T e2aW~s!2bs ds!+
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