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An algorithm, based on a discrete nonlinear model, is presented for evaluation of the critical

shear stress required to move a dislocation through a lattice. The stability of solutions of the

corresponding evolution problem is analysed. Numerical results provide upper and lower

bounds for the critical shear stress.

1 Introduction

The classical linear continuum approach of Taylor [1] and Hirth & Lothe [2] for modelling

an edge dislocation in a crystal yields singularities of stress and strain at the dislocation line.

An alternative semi-continuum model was constructed by Peierls [3] and Nabarro [4], who

assumed a nonlinear discrete sinusoidal interaction between the layers of atoms on each

side of the glide plane. In the latter case the strain components are bounded at the

dislocation and a defined dislocation core exists. Variations of the simple sinusoidal

interatomic force law for the Peierls model were considered by Foreman, Jaswon & Wood

[5], and the numerical analysis of the integral equation associated with a vertical array of

dislocations was presented by Bullough, Movchan & Willis [6].

A dislocation exists in a discrete atomic lattice, and, therefore, a physical model of such

a dislocation should have some correspondence to such a discrete lattice. As the external

shear stress reaches a certain critical value (the so-called Peierls stress), the dislocation

moves through the lattice. The algorithm for evaluation of the Peierls stress, developed by

Nabarro [4], involves a combination of a discrete representation for the misfit energy and

a solution of a homogeneous hypersingular integral equation (continuum model).

To obtain the Peierls stress it would be natural to introduce a non-zero constant term

(corresponding to an external shear stress) and to solve the non-homogeneous Peierls

equation for increasing external shear stress and thereby hope to identify the critical

external shear stress for motion of the dislocation (the true Peierls stress). However, the

Peierls solution does not allow for small perturbations corresponding to an additional

infinitesimal constant term in the equation. This situation explains the reason for Nabarro’s

choice to use the lattice model for evaluation of the misfit energy and to employ the solution

of the homogeneous Peierls equation, to provide the corresponding ‘atomic’ configuration.

There are many papers on discrete models of dislocations in the physics literature, where

the authors observe so-called ‘trapping effects ’ corresponding to the situation when a

certain critical load is required to break the resistance of a lattice and to move a dislocation.
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One of the simplest approaches corresponds to the discrete one-dimensional model of

Frenkel & Kontorova [7], which describes the local interactions between atoms. Hobart [8],

for example, performed an equilibrium calculation within the framework of Frenkel and

Kontorova, to investigate the modification to the core structure induced by applied

stresses. Lombdahl & Srolovitz [9] employed a generalization to two dimensions of the

Frenkel–Kontorova model with a molecular dynamics simulation to investigate the

nucleation and the motion of dislocations. A limitation of the Frenkel–Kontorova model

is its restriction to linear elastic interaction within a single layer of atoms. This precludes

consideration of the non-local interactions between these atoms which are associated with

the transmission of stress via neighbouring layers. A more rigorous approach would be to

allow for nonlinear interactions between atoms, in a fully three-dimensional simulation.

Early examples of such calculations are those of Vitek, Perrin & Bowen [10] and Basinski,

Duesbery & Taylor [11] (without additional applied stress). During the same period,

Basinski, Duesbery & Taylor [12] performed similar equilibrium calculations with

allowance for applied stress. The recent work by Carpio et al. [13] presents a review of

results on dynamics of line singularities ; this paper includes examples related to problems

of fluid mechanics as well as formulations of dislocation theory.

In the present work we develop a discrete analogue of the Peierls–Nabarro model which

describes simply and accurately the nonlinear interaction of two harmonic lattice half-

spaces. One of the important issues is the evaluation of the critical stress required to move

the dislocation through the lattice and the dependence of the critical stress on the

dislocation width (see, for example, Nabarro [4], Foreman, Jaswon & Wood [5] and Hobart

[8]). This can be done systematically on the basis of stability analysis of solutions of a

certain evolution problem; this approach is different from that employed by Nabarro [4],

and it is mathematically rigorous.

We construct discrete lattice models for edge and screw dislocations and use the

iteration procedure to obtain the relative displacement across the slip plane. The model

allows one to introduce a constant term, corresponding to an external shear stress, directly

into the equations. This approach requires a stability analysis for an auxiliary evolution

system of nonlinear differential equations. As a result, we obtain lower and upper bounds

for the critical shear stress required to move the dislocation through the lattice. Also, we

consider the lattice problem for a pair of edge dislocations of opposite sign located on the

same glide plane. The lattice model provides an interval for values of an external shear

stress associated with a stable equilibrium of this system.

In §2 we give the mathematical formulations of the problem. Having discussed the

necessity for the incorporation of discrete components into the model in §3, we proceed in

§4 to write down such a model based on discretization and regularization of the

Peierls–Nabarro model. Our approach in this section may thus be described as an

‘artificial ’ atomistic model for the dislocation evolution and we find that it does in fact

produce interesting predictions for σ
c
. In §5 we present numerical results based on the

discrete model for different values of the discretization parameter and different types of the

force law. We then proceed in §6 to consider a more physically-based discrete model for

edge and screw dislocations in which the continuum elasticity of the Peierls–Nabarro

theory is replaced by the use of the lattice Green’s function. This allows us to make more

realistic predictions in §§7 and 8 for σ
c
and for the force-velocity law for the dislocations.
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2 The governing equations

We deal with a one-dimensional model describing an edge (or screw) dislocation. The

magnitude of the Burgers vector is denoted by b. The model of Peierls & Nabarro [3, 4]

postulates the relation

σ(x)¯
µ

2π
sin 02πΦ(x)

b 1B
µ

2π
F(Φ(x),b) (1)

between the shear stress σ(x) and the difference in displacement Φ(x) between atoms on

either side of the glide plane, assumed to be separated by a distance b. According to this

model, the theoretical limit of resistance to shear is the maximum value of σ(x), namely,

σ
t
¯

µ

2π
.

The model envisages two elastic half-spaces joined by a continuous distribution of elastic

springs modelled by Eq. (1). Equilibrium in the absence of other forces then requires that

Φ should satisfy the hypersingular integral equation

F(Φ(x), b)¯®
1

1®ν&
¢

−¢

Φ(x«)
(x®x«)#

dx«, (2)

where ν is the Poisson ratio; F(s, b) is as defined in Eq. (1) but, more generally, could be

taken as any b-periodic function of s, chosen to represent the interatomic force law. The

same equation describes a screw dislocation, if the factor (1®ν)−" is omitted. Equation (2),

and succeeding equations, are normalized so that stress is measured in units of the

theoretical limit of resistance to shear σ
t
; thus, the physical stress corresponding to F is"

σ
t
F. The integral in Eq. (2) is defined in the Hadamard finite part sense. The solution of

Eqs. (2), (1), employed in Nabarro [4], has the explicit form

Φ(x)¯®
b

π
tan−"

2(1®ν)x

b
. (3)

It is evident that the solution is not unique. For example, any constant bk}2, where k is an

integer, also satisfies Eqs. (2), (1). The distinctive property of the solution (3) is that Φ(x)

is monotonic and

Φ(®¢)" 0, Φ(¢)! 0, Φ(®¢)®Φ(¢)¯ b. (4)

To move the dislocation through the crystal lattice one has to apply an external shear

stress. In accordance with Nabarro [4], the Peierls critical stress is specified by

σ
c
¯max

α
9® 1

b#

dE

dα
(α): , (5)

where

E¯
b#µ

8π#
3
¢

n=−¢

G[®2πΦ[(α­n}2) b]] (6)

" This normalization was originally introduced by Peierls and Nabarro, and is adopted here for

consistency with their work.
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is the varying part of the misfit energy associated with the dislocation, which moves

through the distance αb, and

G(x)¯
2π

b &
x

!

F(s, b) ds. (7)

For the sinusoidal law (1) the quantity (5) is evaluated (see Nabarro [4]) in the form

σ
c
¯

2µ

1®ν
e−

#
π

"−
ν, (8)

where µ is the shear modulus. In particular, for ν¯ 0±3

σ
c
¯ 3±6¬10−%µ, (9)

which gives a small (but non-zero) value for the critical shear stress required to move the

dislocation through the lattice.

We note that the solution Φ of the continuum model is used in the discrete

approximation (6) of the misfit energy.

To evaluate the critical (Peierls) stress necessary to move the dislocation, one could try

to modify the scheme adopted by Peierls and Nabarro, and consider the non-homogeneous

equation

σ­(1®ν)F(Φ(x), b)¯®&
¢

−¢

Φ(x«)
(x®x«)#

dx«, 0!σ' 1. (10)

If Φ(x)¯Φ*, constant, the integral in Eq. (10) vanishes, and therefore Φ¯Φ* is a solution

of Eq. (10), if
σ­(1®ν)F(Φ*, b)¯ 0.

The function F is assumed to be periodic (with period b) with respect to its first argument,

and we remark that the Eq. (10) has an infinite set of constant solutions (since rσr' 1).

However, if we assume that Φ satisfies simultaneously the conditions (4), then all constant

solutions will be eliminated. It turns out (see §3) that for any positive σ the problem (10),

(4) does not have a solution, and, therefore, the continuum model for a non-homogeneous

equation cannot be used for evaluation of the critical Peierls stress.

In the present work, we propose an alternative discrete model and evaluate upper and

lower bounds for the critical load. Namely, instead of a continuous function Φ we

introduce an array of values associated with the displacement jump function evaluated on

a countable set, and the hypersingular integral (in the right-hand side of Eq. (2)) is

approximated by a series. In addition, Φ is assumed to depend on the time-like variable t,

and a stabilization algorithm is employed to obtain a solution. The objective is to study the

stability of an edge dislocation in a discrete lattice. The following non-homogeneous system

of nonlinear differential equations is introduced for the displacement jump Φ(x
j
, t) on the

glide plane:

¥
¥t

Φ(x
j
, t)¯σ­(1®ν)F(Φ(x

j
, t), b)­ 3

n

i=−n+"

a(x
i
,x

j
)Φ(x

i
, t), (11)

j¯ 1,… , n, n( 1,

where x
j

is an element of a discrete set of points on the slip line, and the coefficients
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a(x
i
,x

j
) are specified below (see §4). For any t" 0 the jump function Φ is subjected to the

following conditions specified at the ends of a large interval

Φ(®n­1, t)" 0, Φ(n, t)! 0. (12)

The constant term σ in Eq. (11) characterizes the applied shear stress.

3 The continuum approach

Here we consider the classical continuum model for a single dislocation and show that it

is essential that the Peierls–Nabarro algorithm deals with a homogeneous hypersingular

integral equation. Any attempt to introduce an additional non-zero constant term fails : the

dislocation becomes unstable and moves through the lattice.

3.1 The solution (3) is unstable

It is shown here that for any non-zero infinitesimal σ a solution of Eq. (10) fails to satisfy

conditions (4).

Let Φ
!

denote a function, which satisfies the homogeneous Eq. (10) (σ¯ 0) and

conditions (4) specified at infinity. Assume that for small values of σ" 0 there exists a

function
Φ¯Φ

!
­σΦ

"
­O(σ#) (13)

that also satisfies Eqs. (10), (4). The term σΦ
"

represents a small smooth perturbation.

Then the following asymptotic equality holds:

σ­(1®ν) (F(Φ
!
(x), b)­

d

dΦ
F(Φ

!
(x), b)σΦ

"
(x)­O(σ#))

¯®(&
¢

−¢

Φ
!
(x«)

(x®x«)#
dx«­σ&

¢

−¢

Φ
"
(x«)

(x®x«)#
dx«* .

For terms of order O(σ) we obtain

1­(1®ν)Φ
"
(x)

d

dΦ
F(Φ

!
(x), b)¯®&

¢

−¢

Φ
"
(x«)

(x®x«)#
dx«. (14)

The Eq. (14) can be multiplied by Φ!

!
(x) and then integrated over (®¢,¢), to give

&
¢

−¢

Φ!

!
(x) dx­(1®ν)&

¢

−¢

Φ
"
(x)Φ!

!
(x)

dF

dΦ
(Φ

!
(x)) dx

¯®&
¢

−¢

Φ!

!
(x) dx&

¢

−¢

Φ
"
(x«)

(x®x«)#
dx«.

This yields

[Φ
!
(x)]¢

−¢­(1®ν)&
¢

−¢

Φ
"
(x)

dF

dx
(Φ

!
(x)) dx¯&

¢

−¢

Φ!

"
(x«) dx«&

¢

−¢

Φ!

!
(x)

x®x«
dx.

Taking into account Eq. (2) (with respect to Φ
!
) and integrating by parts, we obtain

[Φ
!
(x)]¢

−¢ ¯ 0

which contradicts (4). Thus, the assumption (13) is not valid. In other words, if we follow
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F 1. (a) Solutions of the equation φ
,t

¯ 0±7 sinφ­σ for the cases when σ¯ 0±701 (solid line)

and σ¯ 0±71 (dashed line). These curves oscillate about straight lines ; the slope of these lines is

denoted by � ; (b) the plot of σ versus � for small values of � ; (c) the plot of σ versus � for larger values

of �.

the continuum approach and introduce even an infinitesimal additional constant term in

the equation, no equilibrium solutions adjacent to the Peierls solution (corresponding to

zero applied stress) exist. This is why Nabarro [4] injected a partial discretization into his

evaluation of critical stress. Equation (6) estimates the energy of the dislocation due to

interaction between atoms on either side of the slip plane, situated at points whose x-

coordinates are integers multiplied by b}2. The solution Φ(x) of the continuum Eq. (2) was

employed to approximate the relative separation of atoms, whether in or out of

equilibrium.

3.2 The evolution model

Now assume that Φ¯Φ(x, t) with t being the time-like variable, and instead of Eq. (10)

consider

¥
¥t

Φ(x, t)¯&+¢

−¢

Φ(x«, t) dx«
(x®x«)#

­(1®ν)F(Φ(x, t), b)­σ, σ" 0. (15)
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Also, assume that

Φ(x, 0)¯Φ
!
, (16)

where Φ
!

satisfies the homogeneous Eq. (10) and the conditions (4). The results of

numerical calculations show (consistently with §3.1) that for any positive σ

Φ(x, t)UΦ* as tU¢, (17)

where Φ* represents a constant solution of the equation

(1®ν)F(Φ*, b)­σ¯ 0, (18)

provided the latter is solvable. Physically it means that the dislocation has moved to

infinity. To illustrate this, we refer to Fig. 7, which shows the dislocation motion for the

case of the discrete model.

We note that if Eq. (18) does not have real roots, then the x-independent solution of the

equation

¥
¥t

Φ4 ¯αF(Φ4 , b)­σ, (19)

α¯ (1®ν),

diverges as tU¢.

For the purpose of illustration, we analyse the behaviour of the solution of the evolution

Eq. (19) when tU¢ and when σ is sufficiently large. The reader should not regard this

simple example as a physical model. Consider the case when the function F is given by Eq.

(1) with b¯ 2π, so that

F¯F(Φ4 (t))¯ sinΦ4 (t),

and let ν¯ 0±3. We also assume that Φ4 (0)¯β. The solution Φ4 of Eq. (19) admits the

following explicit form:

Φ4 (t)¯ 2 tan−"
1

σ (®α­oσ#®α# tan 0(1­C
k
)

2
oσ#®α#1*

­2π(l
!
­k), t ` (t

k−"
, t

k
), k¯ 0, 1, 2,… , (20)

where

t
k
¯

1

oσ#®α#
(π(2k­1)®2 tan−" (σ tan(β}2)­α

oσ#®α#
** , k& 0; t

−"
¯ 0,

C
k
¯π(σ#®α#)−"/#®t

k
,

and the integer constant l
!

is specified by

l
!
¯ [(2π)−" rβ®2 tan−"(tan(β}2))r].

The graphs of the solution of Eq. (19) are given in Fig. 1(a) for the cases when σ¯ 0±701

and σ¯ 0±71, taking the initial value β¯ 0. We observe that the solution tends to infinity
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as tU­¢ and oscillates about some straight line.# The frequency of oscillation increases

for bigger values of σ, and the slope increases too when σ is growing (see Fig. 1(b)).

Later in the text a discrete operator of convolution type will be introduced instead of the

integral operator (see Eq. (10)), and the critical value of σ producing unstable solutions will

be evaluated. We shall see that the shape of the ‘dislocation trajectory’ in the lattice looks

similar to one presented in Fig. 1(a), but due to the presence of the operator of convolution

type, the values of the critical load will be much smaller than those given in the above

elementary example.

4 Discretization

Let x
j
, j¯®n­1,… , n be nodes uniformly distributed on the interval (®a, a) ; N¯ 2n

denotes the total number of points. The following notation is adopted:

Φ
j
(t)¯Φ(x

j
, t),

where t is the time-like variable. The value b¯ 1 is used for the interatomic space parameter

(the modulus of Burgers vector) in all calculations.

We consider a system of differential equations

¥
¥t

Φ¯LΦ­bΦ­Σ # I. (21)

Here σ¯Σ #1 0 specifies the external load, I is the identity matrix, the vector Φ is defined

by

Φ¯ (Φ
−n+"

,Φ
−n+#

,… ,Φ
n−"

,Φ
n
)T ;

the operator L is linear, and b is a nonlinear diagonal matrix function.

4.1 The linear part : regularization

The linear operator L is specified as follows:

(LΦ)
j
¯m 3

n

i=−n+"

+(i®j,µk,λk)Φ
i
­3

³

mR( j)
³ , (22)

where m is the discretization parameter (in particular, m¯ 2 corresponds to a half-integer

step of the discretization). The function + is defined by the equality

+(ξ ;α,β)¯
ξ #®α#

(ξ #­β#)#
. (23)

The parameters λk, µk satisfy the relation

µ#

$

¯ ( 3
$n

i=−$n+"

1

(i#­λ#

$

)#*
−"

3
$n

i=−$n+"

i#

(i#­λ#

$

)#
. (24)

# The reader should not regard this simple example as a physical model. It is presented for the

purpose of illustration, so that one can see the behaviour of the solution of the evolution Eq. (19)

when tU¢ and when σ is sufficiently large.
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It will be shown later in the text that the function (23) enables one to approximate the stress

produced on the x-axis by the lattice Green’s function. The choice of the parameters λk,

µk is made in such a way that the operator L applied to a constant vector gives zero. The

terms R( j)
³ take into account the asymptotic behaviour of the solution at infinity.

The correction terms at the ends of the interval (®a, a) are

R( j)

+
¯Φ

n
3
$n

i=n+"

(i®j)#®µ#

$

((i®j)#­λ#

$

)#
,

R( j)

−
¯Φ

−n+"
3
−n

i=−$n+"

(i®j)#®µ#

$

((i®j)#­λ#

$

)#
. (25)

Thus, LΦ gives a discrete analogue of the finite-part integral in Eq. (2). In particular,

LΦ¯ 0,

for any constant Φ, and in addition we note that

®
1

π
+(ξ ;α,α)¯&[rxr e−αrxr ; ξ], (26)

where

&[ f(x) ; ξ ]¯
1

2π&
¢

−¢

f(x) eixξ dx

denotes the Fourier transform. The presence of the exponentially decaying factor in Eq.

(26) corresponds to the regularization of

®
1

πξ #

¯&[rxr ; ξ ],

wher the right-hand side is defined in terms of distributions (compare with the Debye cut-

off procedure [14]).

4.2 The nonlinear part ; stability of the solution

The nonlinear part bΦ for the discretized system (21) is defined by the equality

(bΦ)
j
¯ (1®ν)F(2πΦ

j
), (27)

where F is a 1-periodic smooth function.

We are looking for a vector function which satisfies the following condition at infinity:

sign(Φ
n
(t)Φ

−n+"
(t))¯®1 as tU¢. (28)

Suppose that ¥}¥tΦU 0 as tU¢. Then in the limit we obtain a vector function, which

satisfies the system

LΦ­bΦ­Σ # I¯ 0. (29)
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Consider the following evolution system:

1

2

3

4

¥
¥t

Φ¯UΦ­Σ # I,

¥
¥t

Σ¯ 0,

(30)

where
UΦ¯LΦ­bΦ.

The vector Φ(!) is assumed to be a non-trivial solution of the homogeneous system

UΦ(!) ¯ 0, (31)

and to satisfy the conditions

lim
KU¢

[Φ(!)

j
]j=K

j=−K
¯ b, sign(Φ(!)

−K
Φ(!)

K
)¯®1 for K( 1. (32)

For small Σ we use the representation

Φ¯Φ(!)­Ψ, sΨs' 1,

and analyse stability of the zero solution of the system

1

2

3

4

¥
¥t

Ψ¯LΨ­
Db

DΦ
(Φ(!))Ψ­Σ # I­H(Ψ),

¥
¥t

Σ¯ 0,

(33)

where

H(Ψ )¯b(Φ(!)­Ψ )®
Db

DΦ
(Φ(!))Ψ®b(Φ(!))¯O(sΨs#) as sΨsU 0.

Our numerical calculations show that there exists a solution Φ(!) of the discrete

homogeneous model such that the matrix of the linearized system has one zero eigen�alue,

and other eigen�alues are negati�e.

In terms of Carr [15], the system (33) has a one-dimensional centre manifold defined by

the equality
Ψ¯ g(Σ ), (34)

where g is to be determined. We introduce the operator

-(Ψ,Σ )¯LΨ­
Db

DΦ
(Φ(!))Ψ­Σ # I­H(Ψ )

and observe that if

Ψ¯®9L­
Db

DΦ
(Φ(!)):−"Σ # I,

then
saΨs¯O(Σ %).
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F 2. Solutions of the homogeneous problem with the sinusoidal force law (we assume zero

external stress). The solid line corresponds to the semi-continuum model solution; the dashed line

shows the discrete model solution.

We obtain that

g(Σ )¯®9L­
Db

DΦ
(Φ(!)):−"Σ # I­O(Σ %),

and the equation that governs stability of the zero solution of the system (33) is

¥Σ
¥t

¯ 0.

This proves that the zero solution of the system (33) is stable.

In the next section we discuss numerical results obtained in accordance with the

stabilization algorithm applied to the discrete model.

5 Numerical results for the case of small λk

We would like to obtain bounds for the critical load required to move the edge dislocation

through the lattice, and to compare our results with those presented by Peierls & Nabarro

[3, 4].
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(solid line) for the sinusoidal force law.
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F 4. The displacement jump versus time calculated for the sinsusoidal force law at five points

on the glide line : A¯ (®1±0, 0), B¯ (®0±5, 0), C¯ (0, 0), D¯ (0±5, 0), E¯ (1±0, 0) ; σ¯ 2±0[10−$.

5.1 Comparison with the continuum model

Let the function F, describing the interatomic force law, have the form

F(s)¯ sin(2πs),

as in the Peierls model [3]. Equilibrium solutions of the discrete model (21) must satisfy (29).

First, we note that the relative displacement across the glide plane, obtained by solving (21)

with σ¯Σ #¯ 0, is different from Eq. (3). In Fig. 2 we present the numerical solution for
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t
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x

–25

0

25

Φ (x, t)

F 5. The displacement jump as a function of x and t for the sinusoidal force law;

σ¯ 2±0[10−$ (contour lines and the corresponding three-dimensional surface).

different values of λk" 0, with the symmetry Φ
−j

¯Φ
j

imposed. This solution was

obtained using the NAG subroutine C05NBF (the Newton–Raphson method). It turns out

that as λk increases we obtain the greater discrepancy between Eq. (3) and the solution Φ(!)

associated with the discrete model. On the other hand, when λk is decreasing, the

discrepancy tends to some non-zero quantity which depends on the discretization

parameter m (see Eq. (22)). In the stability analysis, presented here, we use λk¯ 10−#,

m¯ 2. In all calculations we assume that the Poisson ratio ν is equal to 0±3. We deliberately

use the half-integer step of discretization to make the numerical scheme close enough to the

model of Nabarro [4].
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5.2 Stability of solutions of the discrete model

We are looking for a stable equilibrium solution Φ(!) associated with the discrete model.

First, for the sinusoidal force law we find that the skew-symmetric solution, which is close

to Eq. (3), is unstable. Numerical results show that the Jacobi matrix

J¯L­
D.

DΦ
(Φ(!)) (35)

has one positive eigenvalue, other eigenvalues being negative.

However, the solution is not unique. There exists another solution of the discrete

problem, which satisfies the required conditions at infinity, and it is stable. Numerically it

can be traced by C05NBF as well as by the stabilization algorithm based on the solution

of Eq. (21) by Euler’s method. Both solutions are presented in Fig. 3. In the vicinity of the

origin the curve corresponding to the stable solution is shifted by a half-step of

discretization with respect to the unstable one.

Now we estimate the bounds for the critical shear stress required to move the edge

dislocation through the lattice. For the sinusoidal force law and applied load with σ¯
2±0[10−$ we obtain (see Figs. 4 and 5) that as tU¢ the solution of Eqs. (22), (28) tends to

the stable equilibrium solution (all eigenvalues of the corresponding Jacobi matrix are

negative). In Fig. 4 we show the evolution of the displacement jump at five points on the

glide plane. Also, for the qualitative description of the evolution process it is helpful to have

the three-dimensional surface and contour line pictures presented in Fig. 5. The contour

lines show that, as tU¢, the high-gradient region associated with the dislocation core

moves through a finite distance (as tU¢, the slope of the contour lines tends to zero). The

numerical results show that the eigenvalues of the Jacobi matrix (35), evaluated on this
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F 7. The displacement jump as a function of x and t ; σ¯ 4±0[10−$ for the sinusoidal force

law (contour lines and the corresponding three-dimensional surface).

equilibrium solution, are negative, and therefore this solution is stable. Hence σ¯ 2±0[10−$

provides a lower bound for critical shear load.

When σ is increased to 4±0[10−$ the dislocation changes its position in the lattice. In Fig.

6 we show the curves corresponding to the displacement jump versus time at five particular

points on the glide plane. As tU¢ these curves approach the horizontal line which

corresponds to the constant solution of Eq. (31). In Fig. 7 one can see the nonzero slope

between the contour lines and the time-axis. The dislocation moves rigidly through the

lattice, and the value σ¯ 4±0[10−$ gives an upper bound for the shear load. We remark that

the bounds, obtained here and the Peierls stress (9) have the same order of the magnitude.
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5.3 Modified force law

Consider a different force law, shown in Fig. 8. The function F is assumed to be 1-periodic,

and its restriction to the interval (®1}2, 1}2] is defined by

F(s)¯
1

2

3

4

r(2πs), 0% s% 1}2

®r(®2πs), ®1}2! s! 0,
(36)

where

r(x)¯
1

π#

(π®x)x(0±3π­0±7x).

The plot of this function has the same slope as sin(x) at the right end of the interval (0,π]

(these force laws provide the same resistance to shear at infinity). At the origin the slope

has been decreased. We refer to Foreman et al. [5], and note that it corresponds to a more

realistic physical model than one with the sinusoidal force law.

Calculations (still with λk¯ 10−#) similar to those performed for the sinusoidal law show

that, when σ¯ 10−%, there is a stable equilibrium solution, while for σ¯ 10−$ the long-time

behaviour corresponds to motion of the dislocation. The critical stress thus lies within the

interval (10−%, 10−$), so that the force law (36) gives a smaller critical stress than the

sinusoidal law.

6 Lattice calculations

It was shown in the previous section that for small values of the parameter λk the solution

of the discretized problem is close to the continuum solution (3). A half-integer step of the

discretization, consistent with Nabarro’s approach, provides bounds for the critical shear

stress, which have the same order of magnitude as the Peierls stress evaluated explicitly in

Nabarro [4]. Nevertheless, these small values of the parameter λk are, probably, different

from those describing a discrete lattice.
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F 9. A periodic square lattice in a half-plane.

6.1 Lattice Green’s function

In this section we consider a linear discrete model for the case of anti-plane shear in a half-

plane with the Dirichlet boundary condition. The body force density is assumed to be zero.

For a square lattice with b¯ 1 (see Fig. 9) we assume that the boundary point (0, 0) is

moved in the transversal direction; all other boundary points are kept fixed.

Let w
m,n

denote a displacement of an internal point with coordinates (m, n), where m and

n are integer. Assuming only nearest-neighbour interactions in the harmonic, or linear,

approximation, the equilibrium equation has the form

w
m+",n

­w
m−",n

­w
m,n+"

­w
m,n−"

®4w
m,n

¯ 0, n& 1, (37)

and the boundary condition is

w
m,!

3F
m

¯ δ
m,!

. (38)

The displacement is assumed to decay at infinity

w
m,n

U 0, m#­n#U¢. (39)

We use the discrete Fourier transform with respect to m and obtain the following

recurrence relation

w4 (t, n®1)­w4 (t, n­1)®2w4 (t, n)­2(cos t®1)w4 (t, n)¯ 0, n" 1, (40)

and the boundary condition

w4 (t, 0)¯F4 (t). (41)

The condition at infinity has the form

w4 (t, n)U 0, as nU¢. (42)

Here

w4 (t, n)¯3
m

w
m,n

eimt,

F4 (t)¯3
m

F
m

eimt.
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F 10. The comparison of the lattice Green’s function and the kernel function; λk¯ 0±58.

The solution of the recurrence problem (40)–(42) is given by

w4 (t, n)¯F4 (t) [2®cos t®o(3®cos t) (1®cos t)]n.

The inverse Fourier transform yields

w
m,n

¯
1

2π&
π

−π

w4 (t, n) e−imt dt¯
1

π&
π

!

[l®ol #®1]n cosmtdt, (43)

where l¯ 2®cos t. When m( 1, n( 1, it agrees with the continuum solution

w(x, y)¯
1

π

y

x#­y#

of the Dirichlet problem in the half-plane y" 0.

This model uses the integer step of the discretization, and the shear stress should be

specified by

σ
#$

( j, 0)¯
µ

π

j#®µ#

$

( j#­λ#

$

)#
¯µ(w

j,"
®w

j,!
), (44)

where µ is the shear modulus. Figure 10 shows that Eq. (44) holds with a high accuracy

when λk¯ 0±58. Thus, the function µπ−"+(ξ ;µk,λk), introduced in §4, provides a very

good approximation to the shear stress corresponding to the above described lattice

Green’s function in a half-plane. It is not suggested that the elementary lattice model (37)
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accurately represents an actual lattice, but the calculation nevertheless indicates the order

of magnitude of λk which is most likely to reflect the response of an actual lattice.

6.2 Evaluation of the critical stress

6.2.1 Screw dislocation

Formally, one could use the continuum model and apply the Cottrell–Nabarro approach

[16] to calculate the misfit energy and the critical shear stress σ
c
required to move a screw

dislocation through the lattice. For the case of an integer step in the lattice we present a

summary of this calculation in the Appendix. The following equality holds:

σ
c

σ
t

¯ 2π e−π D 0±271521, (45)

where σ
t
¯µ}(2π).

The numerical algorithm and the discrete model, developed in §4, give for a screw

dislocation and an integer step of the discretization that the ratio σ
c
}σ

t
is located on the

interval (0±38, 0±42).$ The critical stress (45) provided by Nabarro’s algorithm is slightly less

than these bounds. However, they have the same order of magnitude.

6.2.2 Edge dislocation

Now, we consider the case of an edge dislocation. In the frame of the continuum approach

(see, for example, Hirth & Lothe [2]) the total misfit energy is equal to

W
m

¯
mb

4π#
&

¢

−¢
01­cos

2πΦ(x)

b 1dx¯
mb#

4π(1®ν)
. (46)

Clearly, a shift Φ(x­α) does not change the value of the misfit energy. At this point one

can recall the discrete approximation of the misfit energy for an edge dislocation employed

in the Peierls–Nabarro model : the integral in Eq. (46) has been approximated by an integral

sum with a half-integer step of the discretization. In this case the quantity W
m

depends on

the shift parameter α, and σ
c
¯maxα b−#rW!

m
(α)r. Formally, if one takes an arbitrary step h

% 1 of the discretization and approximates W
m

by an integral sum, then

σ
c

σ
t

C
2π

(1®ν) h
e−

π

("−
ν)h. (47)

The value h¯ 0±5 yields Nabarro’s result [4]. If we assume that the lattice calculation of the

misfit energy needs the value h¯ 1, then for ν¯ 0±3 the formula (47) yields σ
c
}σ

t
D

0±100918. It exceeds by about 50 times the value of the normalized critical stress obtained

for the case when h¯ 0±5 (see Nabarro [4]).

The parameter λk, evaluated for the case of anti-plane shear, can be used for an edge

dislocation as well (the kernel of the integral operator differs in these two cases just by a

$ It is consistent with simple calculations presented in the Appendix, that these values are much

greater than those obtained by Nabarro [4] for an edge dislocation and a half-integer step of the

discretization.
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constant factor depending on ν). The numerical algorithm (see §4) with an integer

discretization step gives results, which show that the value σ
c
}σ

t
is located in the interval

(0±214, 0±285). For the modified force law (Fig. 8) this value reduces to

σ
c
}σ

t
` (4±2[10−$, 1±4[10−#). (48)

The critical stress is thus demonstrated to be highly sensitive to the form of the function

F. The last estimate (48) is larger than the classical Peierls stress but we consider that this

calculation may not be devoid of realism: the actual motion of a dislocation proceeds by

the propagation of kinks along its length. This provides a mechanism for ‘ tunnelling’

through the Peierls barrier, which should therefore be expected to exceed the critical stress

that is observed.

7 Discrete model for a pair of edge dislocations of the opposite sign located on the same

glide plane

This section is based on a classical example of Nabarro [4]. In accordance with the semi-

continuum model, constructed for two dislocations of the opposite sign on the same glide

plane, a given applied stress yields a critical separation of dislocations in unstable

equilibrium.

Namely, the displacement jump Φ on the glide plane satisfies the following non-

homogeneous hypersingular integral equation:

σ®(1®ν) sin
2πΦ

b
¯®&

¢

−¢

Φ(x«)
(x®x«)#

dx«, 0!σ' 1, (49)

and it decays at infinity. Here σ represents the external shear stress.

Nabarro’s explicit solution has the form

Φ¯
b

π
cot−" 9(1®ν)# sin θ

b#

x#®cot θ:­θb

4π
, (50)

which corresponds to unstable equilibrium when σ¯ (1®ν) sin θ}2. For widely separated

dislocations the parameter θ is small ; it represents the shear angle at infinity. The

coordinates of dislocations on the glide plane (in the state of equilibrium) are

x³ ¯³b}((1®ν) θ).

The discrete evolution model, described in previous sections, can be applied to the

present example. This means that we deal with the system of nonlinear differential

equations
¥
¥t

Φ¯LΦ®bΦ­σI. (51)

All notations are the same as in §4 (the sinusoidal force law (2) is used for this model). We

seek an even solution to (51) which decays at infinity. As in the previous section (including

lattice calculations), we choose the integer discretization step (m¯ 1), and λk¯ 0±58. The

value of the separation parameter is chosen to be θ¯π}5. The semi-continuum approach

of Nabarro indicates the required value of the external shear load to be

(1®ν)−"σD 0±309, (52)

and that the corresponding state of equilibrium is unstable. In contrast, the discrete
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lattice model gives an interval for σ associated with a stable equilibrium. In our case

(1®ν)−"σ ` (0±141, 0±345). In Fig. 11 we present contour line pictures and three-dimensional

plots for the gradient region of the solution to Eq. (51). For σ(1®ν)−"¯ 0±141 the system

of dislocations will collapse (see Fig. 11(a)). For the value σ(1®ν)−"¯ 0±345 the external

shear stress forces the dislocations to move apart from each other (Fig. 11b)). However, as

shown in Fig. 11(c), for σ(1®ν)−" chosen inside of the above interval one has a stable

equilibrium.

8 Force-velocity calculation

The evolution model (15), and its discrete analogue (21), were introduced as a mathematical

device for investigating the stability of equilibrium of dislocations, and for finding an upper

bound for the critical shear stress. Models of this type do, however, have some physical

significance. The right sides of (15) and (21) represent the negative gradients of energy with

respect to variations of the relative displacement function Φ. As such, they can be

interpreted physically as forces conjugate to the state variables Φ, so Eqs. (15) and (21)

represent simple kinetic equations governing the evolution of Φ with time, t. The mobility

is undetermined here, and will depend on temperature; here, it is absorbed into a

normalization of the time scale.

Subject to this interpretation, the plots given in Figs. 6 and 7 for σ greater than critical,

provide estimates for mean velocity � of a dislocation versus σ. Figure 12 gives an example

of such a plot, for the case of a discrete lattice model describing a screw dislocation, with λ

¯ 0±58 and the integer step of discretization. When � is small we observe an apparent power

law behaviour of σ versus �. It is known that for large values of � the function σ(�) is

approximately linear (see, for example, Frost & Ashby [17]). We note that Eq. (19) provides

an elementary analytical model which illustrates the same phenomenon. Consider Eq. (19)

with

σ"α.

When α¯ 0±7 and β¯ 0 the solution is illustrated in Fig. 1(a). We see a ‘step-like’ graph

of the function Φ(t) : the length of each ‘step’ is equal to

t
k
®t

k−"
¯ 2π(σ#®α#)−"/#, k" 0,

and its height is specified by

Φ(t
k
)®Φ(t

k−"
)¯ 2π.

The ‘average velocity ’ is defined to be

�¯
Φ(t

k
)®Φ(t

k−"
)

t
k
®t

k−"

¯oσ#®α#. (53)

The graphs of σ versus � are presented in Figs. 1(b), (c). It follows from Eq. (53) that, when

σ( 1

σC �.

On the other hand, if 0!σ®α' 1 then

σC (2α)−" �#­α.
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F 11. The contour line pictures for the displacement jump on the glide plane containing two

edge dislocations of opposite sign; λk¯ 0±58, m¯ 1, ν¯ 0±3. (a) σ(1®ν)−"¯ 0±141; (b) σ(1®ν)−"¯
0±345; (c) σ(1®ν)−"¯ 0±309.
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F 12. The graph of σ versus � obtained for the case of a screw dislocation (discrete model)

with the integer step of discretization and λk¯ 0±58.

It shows explicitly the power law behaviour of σ(�) for small values of the average velocity

(compare with the graph in Fig. 1(b)), and the linear dependence on � for the case when

σ( 1 (see Fig. 1(c)).

9 Conclusion

A discrete nonlinear model for edge and screw dislocations has been developed. We have

shown that the semi-continuum model for a nonhomogeneous Peierls equation is not

appropriate for calculation of the critical shear stress required to move the dislocation

through the discrete lattice. In accordance with the lattice model we presented the stability

analysis for the evolution system of nonlinear differential equations. For two different types

of the interatomic force law we obtained upper and lower bounds for the critical shear load.

The value of the Peierls stress is slightly smaller than one predicted by our model, but those

values have the same order of magnitude. Analysis of a lattice Green’s function enabled us

to choose the appropriate regularization parameter λk for the kernel of the singular

operator of the convolution type. Also, the discrete model has been applied to a pair of edge

dislocations of the opposite sign located on the same glide plane. We have obtained the

interval for values of external shear stress which provide a stable equilibrium of this discrete

system.
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Appendix

This appendix includes the calculations mentioned in §6.2 of the main text. Here we follow

the Cottrell–Nabarro scheme [16] and present the discrete approximation of the misfit
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energy integral W
m

for an integer discretization parameter for the case of a screw

dislocation:

W
m
(x)¯

µb#

4π#
3
¢

n=−¢

[1­cos 2²tan−" 2(n­α)´]

¯
µb#

2π#
3
¢

n=−¢

1

1­4(n­α)#
.

The last sum can be represented by

µb#

8π#
3
¢

n=−¢

1

q#­(n­p)#
D

µb#

8π#
(πq­

2π

q
e−#q

π cos(2pπ)­I* ,
where p¯α, q¯ 1}2. Then

σ
c
¯max

a

) 1b#

dW
m

dα )Dµ e−π,

and
σ

c

σ
t

¯ 2π e−π D 0±271521.
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