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We present a combined experimental and theoretical study of the primary and
secondary instabilities in a Kolmogorov-like flow. The experiment uses electromagnetic
forcing with an approximately sinusoidal spatial profile to drive a quasi-two-
dimensional (Q2D) shear flow in a thin layer of electrolyte suspended on a thin
lubricating layer of a dielectric fluid. Theoretical analysis is based on a two-
dimensional (2D) model (Suri et al., Phys. Fluids, vol. 26 (5), 2014, 053601), derived
from first principles by depth-averaging the full three-dimensional Navier–Stokes
equations. As the strength of the forcing is increased, the Q2D flow in the experiment
undergoes a series of bifurcations, which is compared with results from direct
numerical simulations of the 2D model. The effects of confinement and the forcing
profile are studied by performing simulations that assume spatial periodicity and
strictly sinusoidal forcing, as well as simulations with realistic no-slip boundary
conditions and an experimentally validated forcing profile. We find that only the
simulation subject to physical no-slip boundary conditions and a realistic forcing
profile provides close, quantitative agreement with the experiment. Our analysis offers
additional validation of the 2D model as well as a demonstration of the importance
of properly modelling the forcing and boundary conditions.
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1. Introduction
Fluid flows in two spatial dimensions have been the subject of substantial research

efforts in recent decades. For the greater part of the twentieth century, it was generally
considered that two-dimensional (2D) flows were merely a theoretical idealization with
limited practical relevance. This conception has changed drastically since the 1980s,
when experiments in thin electrolyte layers (Bondarenko, Gak & Dolzhanskiy 1979),
soap films (Couder 1984) and liquid metals (Sommeria & Moreau 1982) demonstrated
that nearly 2D flows can indeed be realized in the laboratory. Today, experimental
approximations of 2D flows are widely employed as models of atmospheric and
oceanic flows (Boffetta & Ecke 2012; Dolzhansky 2013). Being theoretically and
experimentally more amenable than their three-dimensional (3D) counterparts, 2D
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flows have also served as platforms for studying new phenomena such as turbulent
cascades (Sommeria 1986; Tabeling et al. 1991), coherent structures (Sommeria,
Meyers & Swinney 1988) and mixing (Haller & Yuan 2000).

Perhaps one of the best-known examples of 2D flows is the one introduced by
Andrey Kolmogorov in 1959 as a mathematical problem for studying hydrodynamic
stability (Arnold & Meshalkin 1960). The Kolmogorov flow represents the motion of a
viscous fluid in two dimensions (we will refer to these as x and y) driven by a forcing
that points along the x-direction and varies sinusoidally in the y-direction. The fluid
flow is considered incompressible, ∇ ·u=0, and is governed by the 2D Navier–Stokes
equation,

∂tu+ u · ∇u=−
1
ρ
∇p+ ν∇2u+ f . (1.1)

Here, u= (ux, uy) is the velocity field, p is the 2D pressure field, and f = A sin(κy)x̂
represents the driving force with amplitude A and wavenumber κ . The parameters
ρ and ν are the density and the kinematic viscosity of the fluid, respectively.
Kolmogorov flow has served as a convenient model for understanding a wide variety
of hydrodynamic phenomena in two dimensions, such as fluid instabilities (Meshalkin
& Sinai 1961; Iudovich 1965; Kliatskin 1972; Nepomniashchii 1976), 2D turbulence
(Green 1974) and coherent structures (Armbruster et al. 1992; Smaoui 2001; Chandler
& Kerswell 2013).

Practically realizable flows, however, are never strictly 2D. Experimental
approximations of Kolmogorov flow have often been carried out either in shallow
layers of electrolytes (Bondarenko et al. 1979) or in soap films (Burgess et al. 1999),
wherein geometric confinement suppresses the component of velocity along one
of the spatial directions (z). The remaining two velocity components, however,
generally depend on both extended and confined coordinates, making the flow
‘quasi-two-dimensional’ (Q2D). To account for the dependence on the confined
coordinate, Q2D flows in shallow layers have often been modelled by adding a linear
friction term to the 2D Navier–Stokes equation (1.1):

∂tu+ u · ∇u=−
1
ρ
∇p+ ν∇2u− αu+ f , (1.2)

where α is a constant. Here, u corresponds to the velocity field at the electrolyte–air
interface. The addition of this term was first suggested by Bondarenko et al. (1979)
to model a Q2D flow generated in a homogeneous shallow electrolyte layer. In such a
flow, the bottom of the fluid layer is constrained to be at rest because it is in contact
with the solid surface of the container holding the fluid. This no-slip constraint at
the bottom of the fluid layer causes a gradient in the magnitude of the horizontal
velocity along the confined direction z. Bondarenko et al. (1979) rationalized that the
dissipation due to this shear, for sufficiently shallow fluid layers, is captured by the
linear friction term. In the context of Q2D flows in electrolyte layers, this term has
come to be known as ‘Rayleigh friction’. Experimental flows in thin layers, and their
2D approximations employing (1.2), are now commonly referred to as ‘Kolmogorov-
like’ when the forcing profile is nearly sinusoidal. Note that linear friction models,
similar to that in (1.2), have also been employed to describe Q2D flows in liquid
metals (Sommeria 1986) and soap films (Couder, Chomaz & Rabaud 1989; Burgess
et al. 1999). The motivation behind the addition of the friction term in these models
is different from that in (1.2). In this article we are only concerned with flows in
shallow electrolyte layers.
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Experimental realizations of Q2D flows in recent years have employed two-fluid-
layer set-ups: either a set-up with miscible layers made up of a heavy electrolyte
fluid (salt water) beneath a lighter non-conducting fluid (pure water) (Marteau,
Cardoso & Tabeling 1995; Paret & Tabeling 1997; Kelley & Ouellette 2011), or a
set-up with immiscible layers made up of a heavy dielectric fluid beneath a lighter
electrolyte (Rivera & Ecke 2005; Akkermans et al. 2008, 2010). The rationale behind
these modifications was that, in addition to confinement, density stratification and
immiscibility should enhance two-dimensionality in the top layer. Theoretical models
of Q2D experimental flows realized in stratified layers of fluids, however, have not
accurately modelled the effect of inhomogeneity in fluid properties as well as the
gradient in the magnitude of horizontal velocity u(x, y) along the confined direction
z. Consequently, experiments were compared with simulations based on the 2D
model (1.2) with empirically estimated parameters (Jüttner et al. 1997; Boffetta &
Ecke 2012).

To address this deficiency, Suri et al. (2014) have investigated the variation in the
horizontal velocity v(x, y, z, t) along the confined direction z for a stratified two-
immiscible-layer set-up. Following Dovzhenko, Obukhov & Ponomarev (1981), the
Q2D velocity was approximated as

v(x, y, z, t)= P(z)u(x, y, t)= P(z)[ux(x, y, t)x̂+ uy(x, y, t)ŷ], (1.3)

where u(x, y, t) corresponds to the 2D velocity field at the electrolyte–air interface
and P(z) models the variation of the horizontal velocity along z. By substituting the
form of velocity in (1.3) into the 3D Navier–Stokes equation and integrating along
the z-direction, the following modified version of (1.2) was derived:

∂tu+ βu · ∇u=−
1
ρ̄
∇p+ ν∇2u− αu+ f . (1.4)

In the above equation, f is the depth-averaged force density and the parameters β, ρ̄,
ν, and α are given by:

β =

∫ h

0
ρP2 dz∫ h

0
ρP dz

, ρ̄ =

∫ h

0
ρP dz

h
, ν =

∫ h

0
µP dz∫ h

0
ρP dz

, α =

µ

(
dP
dz

)
z=0∫ h

0
ρP dz

, (1.5a−d)

where h is the total thickness of the two fluid layers. The vertical profile P(z) is
very weakly dependent on the horizontal flow profile u(x, y, t). The profile P(z) that
corresponds to a sinusoidal horizontal flow (described as the straight flow below) was
computed and validated against experimental measurements in Suri et al. (2014).

The prefactor β reflects the change in the mean inertia of the fluid layer due to
the variation P(z) of the horizontal velocity in the vertical direction. Since P(z) 6= 1
in experiments, β 6= 1, which distinguishes (1.4) from all previous 2D models of flows
in shallow electrolyte layers. For multilayer set-ups, the coefficients β, ρ̄, ν and α
account for both the inhomogeneity in fluid properties as well the vertical profile
P(z), as suggested by (1.5). Equations (1.1) and (1.2) can be treated as special cases
of (1.4) with suitable choices of the parameters α and β. Furthermore, (1.2) can also
be obtained from (1.4) by rescaling the variables (cf. appendix A).

In this article we study instabilities of a Q2D Kolmogorov-like flow realized in a
set-up with two immiscible fluid layers and compare experimental results with direct
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numerical simulations (DNS) of (1.4). Most previous studies of Kolmogorov-like
flow that compared experiments with theoretical predictions assumed a perfectly
sinusoidal shear flow on an unbounded or periodic domain (Bondarenko et al. 1979;
Dovzhenko, Krymov & Ponomarev 1984; Batchaev & Ponomarev 1989; Krymov
1989; Dolzhanskii, Krymov & Manin 1992; Thess 1992). While some of these
studies reported quantitative agreement between theory and experiment with regard
to the primary instability, none were able to match simultaneously both the critical
Reynolds number and the critical wavenumber. Even matching one of these required
treating the Rayleigh friction coefficient α as an adjustable parameter. To address
these shortcomings, we have performed a systematic investigation of the effects
of lateral confinement using numerical simulations with three different sets of
boundary conditions. Furthermore, we investigate how the observed flow patterns
and their stability are affected by the deviations in the forcing profile from perfect
periodicity in the extended directions and by the variation of the forcing profile in
the confined direction. Finally, we compare the results of numerical simulations with
the experimental observations for the secondary instability, which introduces time
dependence into the flow.

Given that none of the previous models of Q2D flows were quantitatively accurate,
the availability of an experimental set-up and a matching 2D model that are in
quantitative agreement is quite important for a number of reasons. In particular,
this allows us to make substantial progress (Suri et al. 2017) in understanding the
role of coherent structures in turbulent flows (Hussain 1986; Kawahara, Uhlmann
& van Veen 2012; Chandler & Kerswell 2013; Gallet & Young 2013; Haller 2015).
Recent advances in transitional flows and weak turbulence rely on a deterministic,
geometrical description where the evolution of the flow is guided by non-chaotic,
unstable solutions of the Navier–Stokes equation, often referred to as exact coherent
structures (ECS) (Nagata 1997; Waleffe 1998; Kerswell 2005; Eckhardt et al. 2007;
Gibson, Halcrow & Cvitanović 2009). The bulk of numerical studies have explored
the role of ECS in 3D flows simulated on periodic domains with simple geometries,
such as pipe flow, plane Couette flow and plane Poiseuille flow.

However, experimental evidence for the role of ECS in 3D flows has been scarce
(Hof et al. 2004; de Lozar et al. 2012; Dennis & Sogaro 2014), in part due to
technical limitations in obtaining spatially and temporally resolved 3D velocity
fields. Q2D flows, on the other hand, can be quantified using 2D planar velocity
fields, which are relatively easy to measure. Recently, Chandler & Kerswell (2013)
and Lucas & Kerswell (2014, 2015) have identified dozens of ECS in numerical
simulations of a weakly turbulent 2D Kolmogorov flow, governed by (1.1) with
periodic boundary conditions, which, however, do not describe flows that can be
realized in experiments (Bondarenko et al. 1979; Dolzhanskii et al. 1992; Suri
et al. 2014). Hence, the analysis presented herein should provide the much needed
foundation for further studies of 2D turbulence that focus on experimental validation
of theoretical predictions, building on the results of Suri et al. (2017).

This article is organized as follows. In § 2, we describe the experimental set-up
employed to generate a Q2D Kolmogorov-like flow. In § 3, we introduce a realistic
model of the forcing in the experiment and discuss different types of lateral boundary
conditions, which are used to study the effects of confinement theoretically. In § 4,
we compare the flow fields obtained from experimental measurements with those from
the numerical simulations for different flow regimes and characterize the bifurcations
associated with increasing the forcing strength. In § 5, we discuss how the nature of
the primary instability depends on the lateral boundary conditions. Conclusions are
presented in § 6.
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2. Experimental set-up

We generate a Q2D Kolmogorov-like flow in the experiment using a stratified set-up
with two immiscible fluid layers, first introduced by Rivera & Ecke (2005). In this
configuration, a lighter electrolyte is suspended on top of a denser dielectric, which
serves as a lubricant between the electrolyte layer and the solid surface at the bottom
of the container that holds the fluids. The fluid layers are set in motion using Lorentz
forces resulting from the interaction of a direct current passing through the electrolyte
and a spatially varying magnetic field.

We use a magnet array consisting of 14 NdFeB magnets (Grade N42) to generate
a magnetic field that varies roughly sinusoidally along one direction, approximating
the forcing in the Kolmogorov flow. Each magnet in the array is 15.24 cm long
and 1.27 cm wide, with a thickness of 0.32 ± 0.01 cm. The magnetization is
parallel to the thickness dimension, with a surface field strength of approximately
0.2 T. The magnets are positioned side-by-side along their width to form a
15.24 cm × (14 × 1.27 cm) × 0.32 cm array such that the adjacent magnets have
fields pointing in opposite directions, normal to the plane of the array. This magnet
array is placed on a flat aluminium plate of dimensions 30.5 cm× 30.5 cm× 1.0 cm,
and rectangular pieces of aluminium with the same thickness as the magnets
(0.32 ± 0.02 cm) are placed beside the magnet array to create a level surface.
Manufacturing imperfections in the individual magnets and the aluminium siding
result in a surface that is not adequately smooth. Hence, a thin glass plate measuring
25.4 cm× 25.4 cm in area with a thickness of 0.079± 0.005 cm is placed atop the
magnets and siding to provide a uniform surface. A thin layer of black, adhesive
contact paper (with approximate thickness 0.005 cm) is placed on top of the glass
plate to serve as a dark background for imaging. The surface of the contact paper
serves as the bottom boundary for the fluids. We place the origin of our coordinate
system at this height and the lateral centre of the magnet array, with the x-coordinate
aligned with the magnets’ longest side, the y-coordinate pointing in the direction
of the magnet array periodicity, and the z-coordinate in the vertical direction. A
schematic diagram is shown in figure 1.

Rectangular bars of acrylic are affixed directly onto the contact paper to create the
lateral boundaries of the container that will hold the fluids. Parallel to the y-direction,
two bars are placed at a distance of 17.8 cm apart, centred about the origin. These
solid boundaries for the fluid are henceforth referred to as the ‘endwalls’. Similarly,
running parallel to the x-direction, two electrodes mounted on rectangular bars of
acrylic are placed at a distance of 22.9 cm, symmetrically relative to the origin. These
boundaries are henceforth referred to as the ‘sidewalls’ and are used to drive the
current through the electrolyte. The placement of the endwalls and sidewalls leaves
a buffer region of dx= 1.3 cm and dy= 2.5 cm, respectively, between the edge of the
magnet array and these solid boundaries.

The aluminium plate upon which the magnets are mounted is supported by three
screws, which are adjusted to level the system. The interior of the container is filled
with 122 ± 4 ml of a dielectric fluid and 122 ± 2 ml of an electrolyte to form two
immiscible layers that are 0.30±0.01 cm and 0.30±0.005 cm thick, respectively. The
dielectric fluid used is perfluorooctane, which has a viscosity of µd = 1.30 mPa s and
a density of ρd=1769 kg m−3 at 23.0 ◦C. The electrolyte fluid is a solution consisting
of 60 % 1 M copper sulfate solution and 40 % glycerol by weight. The electrolyte’s
viscosity is µc=5.85 mPa s and the density is ρc=1192 kg m−3 at 23.0 ◦C. Note that
a large viscosity ratio µc/µd= 4.5 has been chosen to enhance the two-dimensionality
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FIGURE 1. (Colour online) A schematic diagram of the two-immiscible-layer experimental
set-up for generating Kolmogorov-like flow viewed (a) from above and (b) from the side.
The vectors J, B and F denote, respectively, the directions of the electric current, the
magnetic field and the resulting Lorentz force. The flow is bounded by two endwalls,
two sidewalls (electrodes) and a no-slip bottom surface, while the top surface is a free
electrolyte–air interface. This container is mounted on an aluminium plate that is levelled
and submerged in a water bath that is temperature-regulated such that the electrolyte is
maintained at 23.0± 0.2 ◦C.

of the electrolyte, as described by Suri et al. (2014). A small amount of viscosity-
matched surfactant is added to the electrolyte to lower the surface tension, and a glass
lid is placed on top of the container to limit evaporation.

A direct current, which serves as the control parameter, is then passed through
the electrolyte; the resulting current density J ranges from approximately 10 to
40 A m−2 across the different runs. The interaction of this current with the spatially
alternating magnetic field B results in a spatially alternating Lorentz force F, which
drives the electrolyte (cf. figure 1a). The viscous coupling between the electrolyte
and the dielectric fluids sets the dielectric fluid in motion as well. Since passing
a current through a resistive conductor (the electrolyte) results in Joule heating, a
calibrated thermistor is placed in the corner of the fluid domain to monitor the fluid
temperature, and the aluminium plate is immersed in a temperature-controlled water
bath. The water bath is regulated such that the temperature of the electrolyte is
maintained to 23.0 ± 0.2 ◦C. By limiting the temperature fluctuations, the associated
change in viscosity of the fluids is kept to a minimum.

For flow visualization, we add hollow glass microspheres (Glass Bubbles K15,
manufactured by 3M), sieved to obtain particles with mean radius 24.5 ± 2 µm
and mean density 150 kg m−3. Being lighter than the electrolyte, the microspheres
stay afloat at the electrolyte–air interface for the duration of the experiment. The
microspheres are illuminated with white light-emitting diodes placed near the endwalls,
outside the container holding the fluids. The flow is imaged at 15 Hz with a camera
(DMK 31BU03, manufactured by The Imaging Source) placed directly above the
set-up. This camera has a charge-coupled device (CCD) sensor with a resolution of
1024× 768 pixels, which results in an adequate resolution of approximately 53 pixels
per magnet width. The flow velocities are calculated using the PRANA particle image
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velocimetry (PIV) package (Eckstein & Vlachos 2009; Drew, Charonko & Vlachos
2013). This software employs a multigrid PIV algorithm that deforms images to
better resolve flows with high shear. The velocity field is resolved on a 169 × 126
grid, with approximately 9 points per magnet width.

For the experimental measurements listed above, we obtain the following depth-
averaged values for the parameters in (1.4): α = 0.064 s−1, β = 0.83, ν = 3.26 ×
10−6 m2 s−1 and ρ̄= 976 kg m−3. These parameters were computed using the vertical
profile P(z) that corresponds to the strictly sinusoidal flow (Suri et al. 2014). The
complexity of the flow in both the experiment and simulation is characterized by the
Reynolds number, which we define as

Re=
Uw
ν
, (2.1)

where w = 1.27 cm is the width of one magnet and U =
√
〈u · u〉 is the measured

root-mean-square (r.m.s.) velocity, where 〈·〉 denotes spatial averaging over a subregion
with dimensions 10.16 cm × 10.16 cm at the centre of the magnet array. Note that,
from this point on, unless noted otherwise, the characteristic length scale w, velocity
scale U and time scale w/U will be used for non-dimensionalization.

3. Numerical modelling
In this section we present a model of the magnetic field generated by the finite array

of permanent magnets in the experiment. We then introduce three types of boundary
conditions used in our numerical simulations of the flow.

3.1. Modelling the magnetic field
In the discussion so far, we have not addressed an important question of how
the 2D forcing function f in (1.4) relates to the 3D forcing F in the experiment.
For a 2D Kolmogorov flow, the forcing f is sinusoidal, by definition. However,
for Kolmogorov-like flows realized in electromagnetically driven shallow layers of
electrolyte, f needs to be computed from the 3D Lorentz force F arising from the
interaction of the magnetic field B produced by a finite magnet array with a current
density J (Suri et al. 2014). The current density is easily calculated from geometrical
considerations, but the magnetic field generated by the array of permanent magnets
is quite complicated. For J = Jŷ, the Lorentz force density at any location (x, y, z)
within the electrolyte layer is given by F = J × B = JBzx̂ − JBxẑ. Here, Bx and Bz
are the x- and z-components of the magnetic field, respectively, which vary along all
three coordinates x, y and z. Experimental measurements show that the typical value
of Bx is less than 3 % of the value of Bz at any given location within the electrolyte.
Furthermore, the vertical component of the Lorentz force along with the gravitational
force will be balanced by the vertical gradient of the pressure. Hence, the Lorentz
force density for all practical purposes can be approximated as F ≈ JBzx̂. One can
then compute f using the expression

f =
1
ρ̄

∫ hd+he

hd

JBz(x, y, z) dz
hd + he

x̂, (3.1)

where he and hd are the thicknesses of the electrolyte and dielectric layers,
respectively.
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FIGURE 2. (Colour online) The z-component of the magnetic field Bz (a) at the
longitudinal centre of the domain (x = 0) and (b) along the magnet centrelines at
y = ±{0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5}. In (a), the experimental measurements at a height
z = 0.265 (just above the dielectric–electrolyte interface) and at z = 0.438 (just below
the electrolyte free surface) are shown, respectively, as open squares and filled circles.
In (b), the black symbols indicate the experimental measurements at a height z = 0.438
along the magnet centrelines. A least-squares fit has been performed using the data in (a)
to determine the scaling factor for the dipole summation; the scaled dipole summation
magnetic field is shown as the red full lines. The experimental uncertainties are the size
of the symbols or smaller.

The black symbols in figure 2(a) show the experimental measurements of Bz along
the line x= 0, passing above the centre of the magnet array at two different heights.
Clearly, the magnetic field profile deviates significantly from that of a pure sinusoid.
Furthermore, one cannot ignore the fringe fields near the edges of the array. To obtain
a magnetic field profile that closely resembles the one in the experiment, one could
measure the z-component of the magnetic field (Bz) across the entire flow domain
at various heights above the magnet array. Using the measured field, one could then
compute the depth-averaged forcing profile using (3.1) (Suri et al. 2014). However,
since measuring Bz on a 3D grid is an extremely tedious process, we circumvent the
labour by numerically modelling the magnet array as described below.

The magnets in the array are arranged such that adjacent ones have magnetization
pointing in opposite directions, along ±ẑ. To obtain a magnetic field that closely
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resembles the one due to this array, we model each magnet as a uniformly magnetized
medium, i.e. as a 3D cubic lattice of identical dipoles, each with a moment mẑ.
Changing the sign of m across adjacent magnets accounts for the alternating direction
of magnetization. The magnetic field at any location (x, y, z) above the array is
then approximated using the linear superposition of the field contribution from all
of the dipoles modelling the array. Hence, we refer to this model as the ‘dipole
summation’. Since the strength of the dipole m cannot be measured experimentally,
a single scaling parameter is calculated from a least-squares fit with the experimental
measurements, taken at two heights. The rescaled dipole summation magnetic field
is shown in figure 2(a) (red lines), along with the experimental measurements of Bz
(black symbols), corresponding to the line x = 0 at heights z = 0.265 and z = 0.438.
Figure 2(b) shows the magnetic field comparison at z = 0.438 along the magnet
centrelines. Note that the electrolyte layer in the experiment is bounded by the
planes z = 0.236 and z = 0.472. Hence, we compute the magnetic field Bz(x, y, z)
using the dipole summation at various heights, in steps of 0.0197, in the region
0.236< z< 0.472 and depth-average it using a discrete version of the expression (3.1).

3.2. Boundary conditions for direct numerical simulations
In the experimental Kolmogorov-like flow, vertical solid walls serve as the lateral
boundaries, resulting in a no-slip boundary condition for the velocity. However,
for reasons of analytical and computational feasibility, Kolmogorov flow has been
studied almost exclusively using unbounded or periodic domains. Neither an infinite
lateral extent nor periodicity offer a realistic representation of the effect of boundary
conditions in the experiment, as far as the flow’s structure and its stability are
concerned. To explore the role of boundaries, we compare the experiment to numerical
simulations using computational domains with increasing degrees of confinement. The
three different computational domains we study are described below.

(i) Doubly periodic domain: This computational domain is chosen to coincide with
the central 8w × 8w region of the experimental domain (|x| 6 4 and |y| 6 4
in non-dimensional units). The simulated flow is constrained to be periodic in
both the longitudinal and transverse directions, i.e. u(x = −4, y) = u(x = 4, y)
and u(x, y = −4) = u(x, y = 4). Along the transverse direction it spans a width
equalling that of eight magnets. The 2D forcing profile f = fx(y)x̂ over this doubly
periodic domain is constructed from the depth-averaged magnetic field presented
in § 3.1 by retaining only the two dominant Fourier modes, sin(κy) and sin(3κy),
along the y-direction, where κ =π in dimensionless units. Along the x-direction
the profile is uniform: fx(y)= 1.05 sin(κy)+ 0.05 sin(3κy).

(ii) Singly periodic domain: This computational domain coincides with the region
|x| 6 7 and |y| 6 4. The longitudinal dimension is the same as that of the
experiment, while the transverse one spans a width equalling that of eight
magnets, like in the doubly periodic domain. No-slip boundary conditions are
imposed at the endwalls, i.e. u(x=±7, y)=0, while periodic boundary conditions
are imposed along the transverse direction, i.e. u(x, y = 4) = u(x, y = −4).
The 2D forcing profile f = fx(x, y)x̂ over this singly periodic domain is
constructed as a product of two one-dimensional (1D) profiles fx(x, y)=χ(x)ψ(y).
Along the y-direction the profile is once again constructed by retaining
only two dominant Fourier modes of the depth-averaged magnetic field,
ψ(y) = 1.05 sin(κy) + 0.05 sin(3κy). Along the x-direction the profile χ(x)
is chosen to be the depth-averaged magnetic field profile from the dipole
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summation along the magnet centreline y = 0.5. We note that the effect of
transverse confinement has been studied by Thess (1992), and therefore is not
investigated here separately.

(iii) Non-periodic domain: This computational domain is identical to the experimental
one in both lateral dimensions, i.e. |x| 6 7 and |y| 6 9, with no-slip boundary
conditions imposed at both the endwalls and sidewalls, i.e. u(x=±7, y)= 0 and
u(x, y=±9)=0. As mentioned in § 3.1, the forcing over this domain is computed
by depth-averaging the dipole summation.

To compare the experimental observations with those predicted by (1.4) with the
three types of boundary conditions described above, we have performed DNS. The
flow over the doubly periodic domain is simulated using a pseudo-spectral method
in the vorticity–streamfunction formulation, as described in Mitchell (2013). This
simulation is henceforth referred to as the ‘doubly periodic simulation’ (DPS). For
the singly periodic and the non-periodic domains, numerical simulations have been
performed using a finite-difference scheme, described in Armfield & Street (1999).
These simulations are hereafter referred to as the ‘singly periodic simulation’ (SPS)
and the ‘non-periodic simulation’ (NPS), respectively. Details of the spatiotemporal
discretization and the integration schemes employed in all the numerical simulations
can be found in appendix B.

4. Comparison of experiment and simulations
In this section we present the results of our comparison between the experiment

and the numerical simulations on the three domains described above. First, we
discuss the straight uniform flow found at lower Reynolds numbers, with a special
emphasis on the effect of boundaries. We then perform linear stability analysis to
demonstrate that (1.4) describes the primary instability more accurately than (1.2)
on an unbounded domain, but still substantially underpredicts the experimentally
observed critical Reynolds number. Next, we describe and compare the steady flow
states found in the experiments and simulations above the primary instability. Finally,
we discuss the secondary instability that gives rise to a time-periodic flow.

4.1. Straight flow
For weak driving, the flow mimics the forcing closely, with spatially alternating
bands of fluid flow along the ±x-directions, as can be seen in figure 3 for Re= 8.1.
In this figure, black vectors represent the velocity field u and the colour indicates
the vorticity ω = (∇ × u) · ẑ. For the experiment (figure 3d), the y-component of
the velocity measured in the central region of the domain is close to zero. However,
there are regions of strong recirculation near the endwalls, characterized by a non-zero
y-component of velocity. A closer inspection of the flow shows a slight tilt in the
alignment of the flow bands. This tilt is due to the global circulation, resulting
from confinement and the fluid flowing in opposite directions over the end magnets
at y = ±6.5. Figure 3(a,b) shows the straight flows found in the DPS and SPS.
It can be seen that flow fields in the DPS and SPS reproduce the experimental
flow qualitatively away from the lateral walls. Furthermore, the SPS captures the
turnaround flow near the endwalls. However, neither the SPS nor the DPS displays
the tilt of the flow bands observed in the experiment, since the periodic flows are
devoid of global circulation. In contrast, the NPS generates a flow field that looks
indistinguishable from the experimental one (cf. figure 3c).
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FIGURE 3. (Colour online) Straight flow fields at Re= 8.1 with α= 0.064 s−1, β = 0.83
and ν = 3.26× 10−6 m2 s−1 for the (a) DPS, (b) SPS, (c) NPS and (d) experiment. The
dashed lines in (d) indicate the locations of velocity profiles in the experiment that are
compared to the simulations. The vorticity colour scale plotted for (a) also applies to
(b–d). The velocity vectors are downsampled in each direction by a factor of 8 for the
simulations and 4 for the experiment.

For a quantitative description of the straight flow profile, we have plotted in
figure 4(a) the longitudinal component uexp

x of the velocity along the line x = 0 in
the experiment. The location of this cross-section is indicated by the vertical dashed
line in figure 3(d). The difference in ux between the experiment and the numerical
simulations along this line is shown in figure 4(b). As can be seen, the DPS and SPS,
which are only defined for |y|6 4, show systematic deviation from the experiment as
high as 18 %, since they do not capture global circulation. In comparison, the NPS
agrees to within approximately 5 % over the same region, with no clear systematic
deviation. The disagreement between the experiment and NPS in this region, we
believe, is a result of the dipole summation not accounting for the variation in the
strength of each individual magnet. Closer to the boundaries, at y≈ 7 and y≈−6, the
largest difference between the NPS and the experiment is around 12 %. The origin of
this error is quite subtle and we shall defer its analysis to appendix C.
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FIGURE 4. (Colour online) Profiles of the longitudinal velocity and longitudinal velocity
differences at Re= 8.1 with α= 0.064 s−1, β = 0.83 and ν= 3.26× 10−6 m2 s−1. (a) Plot
of uexp

x as a function of y at the longitudinal centre (x = 0). (b) The difference between
the longitudinal velocity in the simulations and the experiment, usim

x − uexp
x , as a function

of y at the longitudinal centre (x= 0). Note that the curves corresponding to the DPS and
SPS are virtually indistinguishable. (c) Plot of uexp

x as a function of x at the centreline
of a middle magnet (y = −0.5). (d) The difference between the longitudinal velocity
of the simulations and the experiment, usim

x − uexp
x , as a function of x at the centreline

of a middle magnet (y = −0.5). Note that the curves corresponding to the DPS and
SPS are virtually indistinguishable in the region −4 < x < 4, where the DPS is defined.
Experimental uncertainties are the size of the symbols or smaller.

The experimental longitudinal velocity component uexp
x at y = −0.5 (along a

central magnet centreline) is shown in figure 4(c). The very slight asymmetry in
the longitudinal velocity is a result of the global circulation. In contrast, the flow in
the DPS is perfectly uniform and thus does not capture this asymmetry, as can be seen
from the plot of its difference with the experimental profile in figure 4(d). The SPS,
which is defined all the way to the endwalls, also does not capture this asymmetry
due to the lack of global circulation. The NPS produces the closest agreement: the
corresponding flow displays the asymmetry observed in the experiment, with no
significant systematic deviation. In summary, the NPS succeeds in capturing the
effects of confinement in the experiment with good accuracy, while the DPS and SPS
show significant systematic deviations.

4.2. Linear stability analysis of the straight flow
As the strength of the forcing increases, the flow in the experiment undergoes a
qualitative change at Rec = 11.07 ± 0.05, with uniform flow bands (cf. figure 4c)
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developing modulation that eventually gives rise to distinct stationary vortices. Hence,
we shall refer to this flow as the ‘modulated flow’. Several previous experimental
studies have reported this transition and have characterized it using the critical
Reynolds number (Reexp

c ) and wavenumber (kexp
c ) of the modulation (Bondarenko

et al. 1979; Batchaev & Dowzhenko 1983; Obukhov 1983). In our experiments,
the wavenumber just above this transition was measured to be kexp

c = 0.50κ , where
κ is the wavenumber associated with the forcing. In virtually all previous studies,
theoretical estimates for these critical parameters have been obtained by using (1.2)
and modelling the straight flow in experiment as a strict sinusoid us ∝ sin(κy); the
flow stability is then analysed with respect to perturbations δu(y)eikx in the transverse
component of the velocity. In this section, we revisit this analytical approach for (1.4)
to provide estimates for the critical parameters. Many previous studies used a different
non-dimensionalization, which corresponds to setting the non-dimensional forcing
wavenumber κ to unity. To make comparison easier, we will introduce a scaled
wavenumber q= k/κ , which corresponds to the convention used in those studies.

The strictly sinusoidal straight flow governed by (1.4) on an unbounded domain
becomes unstable with respect to perturbations with wavenumber q above the
Reynolds number Re= Ren(q), which to a very good accuracy is given by

Ren(q)=
π

β

1
q

√
(1+ q2)

(1− q2)

(
q2 +

α

νκ2

) (
1+ q2 +

α

νκ2

)
. (4.1)

This expression was computed by linearizing (1.4) around us and calculating its
stability with respect to perturbations including three dominant modes,

δu(y)eikx
=

∑
n=−1,0,1

εneiκ(ny+qx). (4.2)

A detailed discussion of the stability analysis and the analytical expression for the
neutral stability curve, similar in form to that in (4.1), can be found in appendix B
of Dolzhansky (2013). The critical Reynolds number Rec = minq Ren(q) and the
corresponding critical wavenumber kc = κqc computed using (4.1) can be compared
with experimental observations. It is worth noting that this linear stability analysis is
based on a purely sinusoidal forcing profile that does not contain any harmonics.
Hence, this is one source of discrepancy between these analytical results and
the experiment and simulations discussed below, whose forcing profiles are more
complicated.

The neutral stability curve (blue dashed line) which corresponds to the experimental
values of parameters α, β and ν is shown in figure 5. The minimum of this neutral
stability curve yields a critical Reynolds number Rec= 9.16 and an associated critical
wavenumber qc= 0.465. The black dot on the plot indicates the critical values Reexp

c =

11.07 and qexp
c = 0.50, corresponding to the instability we observe in the experiment.

The relative difference (Reexp
c − Rec)/Reexp

c between the theoretical estimate for the
critical Reynolds number and that measured in experiment is approximately 17 %. The
critical wavenumber, however, is in better agreement with the experimentally measured
one, with a 7 % relative error.

While the critical Reynolds number obtained from the linear stability analysis
clearly disagrees with the experimentally observed one, it is still a significant
improvement over analytical estimates for a flow modelled using (1.2), which
corresponds to setting β = 1 in (1.4). The corresponding neutral stability curve
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FIGURE 5. (Colour online) Neutral stability curves (4.1) describing the primary instability.
The blue dashed line corresponds to α = 0.064 s−1 and β = 0.83, while the green
dot-dashed line corresponds to α = 0.064 s−1 and β = 1.0. The measurement from the
experiment (NPS) is plotted as a black dot (red square); note that the uncertainties in Rec
are smaller than the size of the symbols. In all the cases, ν = 3.26× 10−6 m2 s−1 is held
constant.

is indicated by the green dot-dashed line in figure 5. From (4.1) it can be seen
that the entire neutral stability curve scales as 1/β. This implies that the critical
wavenumber (qc = 0.465) is independent of β, while the predicted critical Reynolds
number for β = 1 is Rec = 7.60. This is a 31 % discrepancy with the experimental
value, which is comparable to the 30 % discrepancy reported by Bondarenko et al.
(1979) in a study based on (1.2).

As we discussed previously, the parameter β describes the effect of the vertical
variation in the magnitude of the horizontal velocity on the effective inertia and
nonlinearity of the flow. Equation (1.2) does not account for this effect, so it is
natural that its predictions are substantially less accurate.

4.3. Modulated flow
Figure 6(a–d) shows the modulated flow fields corresponding to the DPS, SPS, NPS
and experiment, respectively, at Re = 14. At this Reynolds number, the modulated
flow is well developed and is visually quite distinct from the straight flow. The
anticlockwise global circulation in the experiment strongly affects the alignment
of the vortices (see figure 6d), as can be seen by comparing the modulated flows
in the DPS and SPS with the relevant regions of the experimental flow. Unlike
the DPS and SPS, the flow field in the NPS captures the features observed in the
experiment remarkably well. This unambiguously demonstrates the importance of
properly modelling the confinement effects in both the longitudinal and the transverse
direction to reproduce the features of the flow in the experiment.

The onset of the modulated flow is characterized by the appearance of the transverse
component uy of the velocity throughout the flow domain. As the driving is increased,
the magnitude of uy also increases. A bifurcation diagram characterizing the transition
from the straight to the modulated flow is shown in figure 7(a). We use the spatial
mean-square transverse velocity, 〈u2

y〉, as the order parameter and plot it as a function

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

55
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.553


Bifurcations in a Q2D Kolmogorov-like flow 851

–6

–3

0

3

6

–4 0 4

0

4

0

4

–4
3.5–3.5–7.0 0 7.0

3.5–3.5–7.0 0 7.03.5–3.5–7.0 0 7.0

–6

–3

0

3

6

–9

9

–6

–3

0

3

6

–9

9

x

y

y

x

(a) (b)

(c) (d )

FIGURE 6. (Colour online) Modulated flow fields at Re = 14 with α = 0.064 s−1,
β = 0.83 and ν = 3.26 × 10−6 m2 s−1 for the (a) DPS, (b) SPS, (c) NPS and (d)
experiment. The vorticity colour scale plotted for (a) also applies to (b–d). The velocity
vectors are downsampled in each direction by a factor of 8 for the simulations and a
factor of 4 for the experiment.

of Re. The spatial average is computed over the central region |x|6 4 and |y|6 4 for
all simulations and experiment. In comparison to the experimental value of Reexp

c =

11.07, the primary instability in the DPS and SPS occurs at much lower Reynolds
numbers, Rec= 9.39 and Rec= 9.53, respectively. In contrast, by imposing the correct
(no-slip) boundary conditions in both the longitudinal and transverse directions, in
addition to using a realistic model of the magnetic field, the transition can be predicted
quite accurately. The straight to modulated transition in the NPS occurs at Rec= 10.49
(red square in figure 5), which is within 5.2 % of Reexp

c . Finally, we note that setting
β = 1 results in a poor prediction Rec = 8.71 even in the NPS, which corresponds to
a 21 % error.

Given that the pattern of vortices observed in the experiment lacks perfect
periodicity, we compute the average longitudinal wavelength λ̄x using the spatial
average of the separation between adjacent vortex centres in the central region
|y| 6 4; the vortex centres are identified by locating local minima in the velocity
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FIGURE 7. (Colour online) Primary instability for α= 0.064 s−1, β= 0.83 and ν= 3.26×
10−6 m2 s−1. (a) A bifurcation diagram and (b) the average wavelength of the pattern, λ̄x,
as a function of Re for the modulated flow regime. At each Re, wavelength measurements
are made in the central region |y| 6 4, then averaged; the uncertainty bars indicate one
standard deviation in the spatial measurements.

magnitude. Just above onset, the vortices in the experiment form a lattice with a
fairly uniform separation, λ̄exp

x ≈ 4.0 (qexp
c = 0.50). As the forcing is increased, the

mean separation between the vortices increases, as can be seen from the plot of λ̄x
versus Re−Rec shown in figure 7(b). Additionally, the vortex lattice becomes spatially
irregular, as can be seen in figure 6(d). This spatial variation is quantified in the plot
in figure 7(b) wherein the uncertainty bars indicate one standard deviation in the
spatial variation of the separation between adjacent vortices. Note that, immediately
above onset, accurate identification of the vortex centres in the experiment is not
possible because of the very weak modulation; hence, experimental measurements are
only plotted for Re− Rec > 1.

For comparison, figure 7(b) also shows the average wavelength of the flow pattern
in the DPS, SPS and NPS. Finer spatial resolution in the simulation, compared to
that in experiment, facilitates measuring λ̄x closer to onset with greater accuracy. In
the DPS, the size of the domain along x was chosen a posteriori to be commensurate
with the critical wavelength at onset in the experiment. Despite this, neither the
spatial variation of the wavelength nor its variation with Re − Rec observed in the
experiment are captured. The SPS, however, shows a qualitatively similar trend for
the dependence of λ̄x on Re− Rec. The periodicity in the transverse direction results
in a uniform vortex pattern with smaller spatial variation in the separation between
vortices compared to the experiment. In contrast, the NPS captures both the spatial
variation of the wavelength and the distortion of the lattice with increasing forcing
quite satisfactorily.

At Re − Rec ≈ 1, the discrepancy is much smaller than the uncertainty bars, but
for Re − Rec & 1.5, the NPS overestimates the wavelength compared to what is
observed in the experiment. The largest discrepancy, which is 0.46 (a 10 % relative
error), occurs around Re− Rec = 3.7. The difference in the flow patterns in the NPS
and the experiment is due to the deviation of the latter from being perfectly Q2D.
The analysis in appendix C shows that the wavelength of the pattern sensitively
depends on relatively minor changes in the forcing profile, which is responsible for
the observed discrepancy between the numerics and experiment.

While the NPS provides a reasonably accurate description of the transition from
the straight to the modulated flow in the experiment, as we mentioned previously, it
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FIGURE 8. (Colour online) The effect of the variation in model parameters. (a) A
bifurcation diagram and (b) the average wavelength of the pattern in the modulated flow
regime. The numerical results correspond to either a 7 % increase in ν, a 22 % increase
in α, or a 6 % decrease in β compared with the depth-averaged values for the straight
flow (α = 0.064 s−1, β = 0.83 and ν = 3.26× 10−6 m2 s−1). The uncertainty bars in (b)
are only shown for every other data point for clarity. In all cases, Re is defined using
ν = 3.26× 10−6 m2 s−1.

somewhat underestimates the critical Reynolds number. To resolve this discrepancy,
we tested the sensitivity of the transition in the NPS to changes in the forcing profile
as well as variations in parameters β, ν and α. In particular, we found that Rec
is fairly insensitive to spatial variation in the strength of the magnets in the array.
Consequently, we turned our attention to studying the sensitivity of Rec to the values
of the parameters β, ν and α. In order to match Rec in the NPS and experiment,
we had either to decrease β by 6 %, increase ν by 7 %, or increase α by 22 %.
Figure 8(a,b) shows that the variation of parameters has a fairly weak effect on both
the amplitude of the modulation and the wavelength of the pattern, which suggests
that the disagreement between the simulation and experiment is primarily due to the
deviation of the flow and/or forcing from quasi-two-dimensionality, which is discussed
in appendix C.

Note that the Reynolds number Re = Uw/ν is defined using the measured
r.m.s. velocity U and parameter ν, which cannot be measured, but has to be computed.
While in the simulation the value of ν is well defined (it is one of the parameters
of the model), in the experiment it is not, so the corresponding Re depends on the
choice of ν. Hence, to enable a proper comparison of experiment with numerics,
we defined Re in both cases using the analytically computed depth-averaged value
ν = 3.26 × 10−6 m2 s−1 (Suri et al. 2014), regardless of the actual value of ν used
in the simulation. Matching Re using this convention is effectively equivalent to
matching the r.m.s. velocity U.

4.4. Secondary instability
As we increase the forcing further, the modulated flow in the experiment becomes
unstable, giving way to a time-periodic flow with a period Tp = 42.8 ± 0.4
(120± 1 s in dimensional units) at onset, which corresponds to Rep= 17.6± 0.1. The
modulated state in the NPS, with the depth-averaged (α = 0.064 s−1, β = 0.83 and
ν = 3.26 × 10−6 m2 s−1) as well as the adjusted parameters, undergoes a Hopf
bifurcation as the forcing is increased. Table 1 compares Rep and Tp in the experiment
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Rep Tp

Experiment 17.6± 0.1 42.8 (120± 1 s)
NPS (depth-averaged) 15.6 43.2 (137 s)
NPS (ν: +7 %) 16.4 43.2 (130 s)
NPS (α: +22 %) 17.1 48.1 (139 s)
NPS (β: −6 %) 16.5 45.8 (137 s)

TABLE 1. Critical transition parameters characterizing the stable periodic regime for the
experiment and the NPS with different sets of parameters.

with those from the NPS for the different parameter sets. A video comparing the time-
periodic flow in the NPS (with depth-averaged parameters) and experiment is included
as online supplementary material available at https://doi.org/10.1017/jfm.2017.553.

In the simulation Rep and Tp are within 15 % of the experimental measurements
for the depth-averaged values of parameters computed using the vertical profile P(z)
that corresponds to the straight flow. However, the values of ν, α and β should
vary slowly with Re, since P(z) is weakly dependent on the horizontal flow profile.
Hence, a different set of parameters is required to describe the two instabilities and,
more generally, there is no universal set of parameters β, ν and α that correctly
describes the experimental flow at all Re. From table 1 we see that Rep and Tp

show very different sensitivities to changes in each of the parameters. Hence, while
separately modifying ν, α and β shows some improvement in matching either Rep or
Tp, it should be possible to obtain even better agreement by modifying all the model
parameters simultaneously, each by only a few per cent.

The necessity for modifying parameters across different dynamical regimes also
raises the question of how robust α, β and ν are to changes in the (local) wavenumber
of the flow. To test this, we have recomputed the parameters using the wavenumber
k ≈
√

5/4 κ associated with the modulated flow. We found that β and ν change by
less than 1 %, and α by approximately 3.5 %, compared to those computed using
k = κ . This robustness suggests that, once adjusted to match the experiment, the
2D model should provide a reasonably accurate description of the dynamics even
in the weakly turbulent regime where the wavenumber may vary in space and time
(Suri et al. 2017).

5. Nature of the primary instability

An important consequence of confining the flow in the longitudinal or transverse
directions is that we restrict the set of coordinate transformations (symmetries) that
leave the governing equation (1.4) equivariant. The symmetries of the governing
equation, in turn, determine the number of, and the relation between, distinct
modulated flow solutions created as a result of the primary bifurcation. Below,
we discuss each of the different flow domains, in the order of decreasing symmetry.

5.1. Doubly periodic simulation
On an unbounded or a doubly periodic domain, (1.4) is equivariant under the
following symmetry operations (Chandler & Kerswell 2013):

(i) continuous shift by δx in x, T δx
x (x, y)→ (x+ δx, y);
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Re Re Re

(a) (b) (c)

FIGURE 9. (Colour online) A schematic showing the bifurcations corresponding to the
primary instability: (a) circle pitchfork in the DPS, (b) sequence of pitchfork bifurcations
in the SPS, (c) imperfect pitchfork bifurcation in the NPS. Solid (dashed) lines indicate
stable (unstable) solution branches. The vertical and out-of-plane axes correspond to
deviations of the flow from straight that are invariant under RxRy and RxT w

y , respectively.

(ii) reflection in x combined with a discrete shift of half a period in y, RxT w
y (x, y)→

(−x, y+w);
(iii) reflections in both x and y, RxRy(x, y)→ (−x,−y).

Note that the double reflection RxRy is equivalent to a rotation by angle π about
the z-axis, while the square of the symmetry operation RxT w

y corresponds to a discrete
shift T 2w

y in the y-direction, i.e. (RxT w
y )

2
= T 2w

y . For the DPS, the corresponding
symmetry group is the semidirect product Dn o SO(2) (Armbruster et al. 1996), where
n is the number of magnets (here, n= 8).

The above transformations that leave the governing equation equivariant, however,
need not leave the flow fields invariant. When a flow field does not share a
certain symmetry of the governing equation, one can generate – by applying the
corresponding coordinate transformation – a dynamically equivalent symmetry-related
copy of the flow. The straight flow in figure 3(a) remains unchanged when an
arbitrary translation δx ∈ [0, Lx] is applied along the x-direction, so there is a unique
solution us. However, since the primary instability breaks the translational symmetry,
there is a continuum of distinct modulated flow solutions um related by translations in
the x direction. This instability therefore corresponds to a circle pitchfork bifurcation
(cf. figure 9a).

The equivariance of the governing equation under T δx
x with arbitrary δx makes the

choice of the coordinate origin x = 0 for a modulated flow arbitrary. We fix it by
requiring that u1

m =RxRyu1
m for a particular modulated flow solution u1

m. Since both
the discrete symmetries RxRy and RxT w

y include reflection of the flow about the
line x= 0, the choice of the origin determines whether a particular solution remains
invariant under either of these discrete symmetries. Figure 10 shows the four distinct
solutions related by discrete translations T δx

x with δx= Lx/8:

u3
m = T δx

x u1
m, u2

m = T δx
x u3

m, u4
m = T δx

x u2
m, u1

m = T δx
x u4

m. (5.1a−d)

Each of these four solutions is invariant under T 2w
y and either RxRy or RxT w

y . In
particular, u1

m and u2
m are invariant under RxRy, while u3

m and u4
m are invariant

under RxT w
y . Furthermore, the states u1

m and u2
m are related to each other via RxT w

y ,
i.e. u1

m = RxT w
y u2

m. Similarly, u3
m and u4

m are related via RxRy, i.e. u3
m = RxRyu4

m.
Note that the operator RxT w

y contains a single reflection, which causes the sign of the
vorticity to change. In summary, by virtue of the continuous translational symmetry
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FIGURE 10. (Colour online) Modulated flow fields (a) u1
m, (b) u3

m, (c) u2
m and (d) u4

m at
Re= 14 in the DPS. The vorticity colour scale is the same as that in figure 6.

of the governing equation, the laminar flow in the DPS undergoes a circle pitchfork
bifurcation with an infinite number of translation-related copies of a modulated flow.
Only four of these copies, however, remain invariant under the discrete symmetries
involving the reflection Rx.

5.2. Singly periodic simulation
The no-slip boundary condition at x = ±Lx/2 in the SPS destroys the equivariance
under translation T δx

x , reducing the symmetry group to Dn. The governing equation,
however, still remains equivariant under each of the discrete transformations RxT w

y

and RxRy. The loss of equivariance under T δx
x , which connected the states u1

m, u2
m

with u3
m, u4

m in the DPS, implies either of RxRy or RxT w
y is broken in the straight to

modulated transition in the SPS. Breaking either of the discrete symmetries, RxT w
y

or RxRy, should generate (only) two branches, i.e. should result in a pitchfork
bifurcation, since the modulated flow states in the SPS should remain symmetric
with respect to T 2w

y , which is not affected by confinement in x. Consequently, of
the infinite number of modulated states in DPS, only four, the counterparts of those
shown in figure 10, will survive in the SPS, and should be formed via two distinct
pitchforks.

This is indeed what we observe in the simulations, wherein two pairs of distinct
solutions, shown in figure 11, are formed via two distinct pitchfork bifurcations of
the straight flow. Just as in the DPS, u1

m and u2
m are invariant under RxRy, while u3

m
and u4

m are invariant under RxT w
y . In figure 9(b) the u3

m and u4
m branches are plotted

to lie in a plane perpendicular to that containing u1
m and u2

m. Since the bifurcations
break either RxRy or RxT w

y , each pair of branches is related via the broken symmetry,
i.e. u1

m =RxT w
y u2

m and u3
m =RxRyu4

m.
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FIGURE 11. (Colour online) Modulated flow fields (a) u1
m, (b) u3

m, (c) u2
m and (d) u4

m at
Re = 14 in the SPS. Vertical black lines indicate the central region, which is analogous
to the flow fields shown in figure 10. The vorticity colour scale is the same as that of
figure 6.

Unlike the DPS, where T δx
x relates all the distinct solutions corresponding to the

modulated flow (cf. (5.1)), there is no coordinate transformation that maps u1
m and

u2
m to u3

m and u4
m. On an infinite domain, all four branches of the modulated flow

are created at exactly the same Re (as in the DPS); however, on a finite domain, the
pitchfork bifurcations that produce the two pairs of solutions would generally happen
at different Re (cf. figure 9b) that depend on the confinement in the x-direction, i.e. on
Lx. For Lx = 14, chosen from experimental considerations, the bifurcation that gives
rise to u3

m and u4
m occurs at a higher Re than the bifurcation that gives rise to u1

m and
u2

m. For other choices of Lx, the sequence may reverse. Note that the two modulated
flow branches (u3

m and u4
m) that are formed from the second pitchfork are initially

unstable, because they bifurcate off the unstable straight flow solution.

5.3. Non-periodic simulation
In the NPS, the additional no-slip boundary condition at y = ±Ly/2 breaks the
equivariance of the problem under RxT w

y , leaving the governing equation equivariant
only under RxRy. The pitchfork bifurcation that gives rise to the rotationally invariant
solutions u1

m and u2
m in the SPS is associated with breaking of the RxTw

y symmetry.
This symmetry is only approximate in the NPS for all Re, so one finds an imperfect
pitchfork bifurcation instead, as shown in figure 9(c). The straight flow u1

s at lower
Re smoothly transitions to the modulated flow u1

m at higher Re without an instability
taking place, i.e. the real part of the leading eigenvalue of the straight flow does not
change sign as we increase Re in the NPS. The shapes of the bifurcation curves close
to Rec (figure 7a) showcase the difference in the nature of the primary instability
between the NPS and the two periodic simulations.
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FIGURE 12. (Colour online) Modulated flow fields at Re= 11.6 in the NPS beyond the
imperfect pitchfork bifurcation shown in figure 9(c). The flow fields shown here are (a) u1

m,
which emerges smoothly from the straight flow, and (b) u2

m, which is formed through a
saddle-node bifurcation.

In the NPS, the u2
m branch and the higher-Re branch of the straight flow u2

s are
created in a saddle-node bifurcation at Re = 10.72. The states u1

m and u2
m, both of

which are symmetric with respect to RxRy, are shown in figure 12. While RxTw
y is

not an exact symmetry in the NPS, given the large transverse extent of the domain
compared with the period of the forcing (Ly/2w = 9), near the centre of the domain
this approximate symmetry holds and consequently u2

m ≈ RxT w
y u1

m. However, unlike
u1

m, which remains stable up to Re= 15.4 in the NPS, u2
m is unstable over the entire

range of Re where it exists (Re> 10.72). This explains why our numerical simulations
starting from randomized initial conditions have always converged to the modulated
flow u1

m and why u2
m was never found in the numerical simulations or observed in the

experiment.
The pitchfork bifurcation, which gave rise to the branches u3

m and u4
m in the SPS,

also does not carry over into the NPS. Instead, u2
s undergoes a Hopf bifurcation

at Re = 12.6. This change in the nature of the bifurcation is probably caused by
transverse confinement, which has a more prominent effect on u3

m and u4
m: these

states are invariant under the RxT w
y symmetry in the SPS, but this symmetry is

broken in the NPS. While we fail to observe u3
m and u4

m in the NPS, the analogues
of these solutions may appear for a different set of model parameters, forcing profile
and/or degree of confinement. Details regarding the computation of the unstable
branches associated with the various bifurcations are included in § B.3.

6. Conclusions
In this article, we have presented a combined experimental and numerical study of

bifurcations in a Q2D Kolmogorov-like flow. This flow is realized in the laboratory by
electromagnetically driving a stratified layer of electrolyte above an immiscible layer
of dielectric. This Q2D flow is described using a 2D model (1.4) derived from first
principles by depth-averaging the 3D Navier–Stokes equation. In contrast, virtually
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all previous studies have modelled Q2D flows using (1.2), a semi-empirical variation
of the 2D Navier–Stokes equation with the addition of a linear friction. Also unlike
previous studies of Kolmogorov-like flows, which have assumed a perfectly sinusoidal
forcing profile, we have introduced a realistic model of the forcing, which has been
validated against 3D experimental measurements.

To test the importance of lateral confinement, we have compared experimental
measurements with numerical simulations using different boundary conditions.
We have found that, by incorporating realistic, no-slip boundary conditions at all
lateral boundaries and a realistic forcing profile, quantitative agreement between
the experiment and simulation can be achieved with no adjustable parameters. In
particular, the Reynolds number Rec for the primary instability can be predicted to
within approximately 5 % and the critical wavenumber kc can be predicted to an
accuracy higher than the measurement accuracy. These are significant improvements
compared with previous studies, none of which were able to predict both Rec and kc

with this level of accuracy, despite using adjustable parameters.
We have also performed a systematic study of how lateral confinement affects

the nature of the bifurcation describing the transition from the straight flow to the
modulated flow. Previous studies have characterized this transition in the experiment
as a pitchfork bifurcation, using analytical computations on a periodic domain. We
have shown that, because of confinement, an imperfect pitchfork bifurcation is
found instead. We have also numerically computed the two unstable branches of
the imperfect pitchfork bifurcation describing flows that are not observed in either
experiment or simulations under normal conditions.

Furthermore, we have demonstrated that the model reasonably accurately predicts
the modulated flow pattern (both the wavenumber and the amplitude) beyond the
onset of the primary instability. Moreover, this is the first study, experimental
or theoretical, to provide a quantitative analysis of the secondary instability of a
Kolmogorov-like flow that generates a time-dependent pattern of vortices. Even for
the secondary instability, the numerical predictions of the critical Reynolds number
Rep and the critical period Tp are in general agreement with the experiment, although
the accuracy of the numerical predictions decreases with increasing Re.

The discrepancy between the numerical predictions and experiments has been
traced back to the variation of the forcing profile with height. This points to the
limitations of a 2D model of what in reality is a 3D flow, albeit with a strongly
suppressed vertical component of the velocity. Nonetheless, for a select range of Re,
the experimental flow can be reproduced with extremely good quantitative accuracy
by making fairly small adjustments to the model parameters, compared with their
depth-averaged values computed for the simple straight flow. The ability of the model
to closely reproduce the experimental flow is crucial for the utility of Q2D flows
for testing the geometrical description of weakly turbulent flows and studying the
dynamical role of exact coherent structures (Suri et al. 2017). Such tests will be the
main focus of follow-up studies.
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Supplementary movie
Supplementary movie is available at https://doi.org/10.1017/jfm.2017.553.

Appendix A. Scaling and non-dimensionalization
The governing equation (1.4) was presented in dimensional form to highlight the

dependence of parameters α, β and ν on the properties of the fluid layers. The
dimensional form also makes it easier to explore the sensitivity of the dynamics to
changes in these parameters. To simplify comparison of our results with other studies,
it is helpful to non-dimensionalize this equation. Choosing the width of a magnet
w as the length scale, the r.m.s. velocity computed over the central region |x| 6 4w,
|y|6 4w as the velocity scale U, and the ratio of these two scales as the time scale,
one obtains the following non-dimensional equation:

∂u
∂t
+ βu · ∇u=−∇p0 +

1
Re
(∇2u− γu)+ f 0, (A 1)

where γ = αw2/ν describes the relative strength of the Rayleigh friction and viscous
terms in (1.4). Finally, p0= p/(U2ρ̄) is the non-dimensional pressure and f 0=wf/U2

is the non-dimensional forcing profile.
It is possible to eliminate the parameter β from (A 1) by making the length, time

and velocity scales independent. If we again choose the width of a magnet w as the
length scale, the r.m.s. velocity as the velocity scale U, and w/(βU) as the time scale,
we instead obtain the following non-dimensional equation:

∂u
∂t
+ u · ∇u=−∇p1 +

1
Re′
(∇2u− γu)+ f 1, (A 2)

where Re′ = Re/β, p1 = βp/(U2ρ̄) is the non-dimensional pressure, and f 1 =wβf/U2

is the non-dimensional forcing profile. Although (A 2) does not contain β explicitly,
the Reynolds number is rescaled by β. Hence, the non-dimensional equations (A 1)
and (A 2) as well as the dimensional equations (1.2) and (1.4) predict an identical
sequence of bifurcations. However, the critical values of Re scale as 1/β, as we have
found explicitly in (4.1).

Appendix B. Numerical methods
In this appendix, we present the details of discretization methods and numerical

integration schemes employed in the NPS, SPS and DPS. Additionally, we also detail
the computation of the unstable branches associated with the pitchfork bifurcation that
cannot be obtained from simple numerical integration.

B.1. Non-periodic and singly periodic simulations
Since the NPS, as well as the SPS, requires prescribing no-slip (e.g. Dirichlet)
boundary conditions on the velocity field u, numerical simulations are performed
using the primitive variable (ux, uy and p) formulation by employing a semi-implicit
fractional-step method detailed in Armfield & Street (1999). Temporal discretization
of (1.4) is performed using the following difference scheme:

un+1 − un

1t
+

3
2
Nun −

1
2
Nun−1 =−

1
ρ̄
∇pn+1 +

1
2
L(un+1 + un)+ f . (B 1)
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In the above equation, un and pn+1 are the velocity and pressure fields, with the
subscript n indicating a discrete time instant tn = n1t, where 1t is the time step for
the update. For purposes of brevity, we have used the notation Nun = βun · ∇un and
Lun=∇

2un−αun to represent the nonlinear and linear terms, respectively. The above
discretization is a semi-implicit approximation of (1.4), where the linear terms in the
update are treated implicitly using the Crank–Nicolson scheme, while the nonlinear
term is handled explicitly using the Adams–Bashforth scheme. The velocity field un+1
at every instant satisfies the incompressibility condition:

∇ · un+1 = 0, (B 2)

which is enforced on each update through the three-fractional-step P2 (pressure
correction) projection method discussed in Armfield & Street (1999).

Spatial discretization of the velocity and pressure fields is carried out using the
standard marker and cell (MAC) staggered grid (Harlow & Welch 1965). The spatial
derivatives in (B 1) are approximated using finite central differences; the 2D Laplacian
operator (∇2) uses a five-point stencil formula; and the nonlinear term uses the three-
point central difference formula.

For both the NPS and the SPS, we have chosen 20 cells per magnet width w
to discretize the velocity and pressure fields. Since the dimensions of the NPS are
identical to the lateral dimensions of the experiment, i.e. 14w× 18w, a total of 280×
360 cells were used to sample the flow domain. The SPS, however, corresponds to a
domain of dimensions 14w× 8w, which maps to a region including the central eight
magnets in the experiment. Hence, a total of 280× 160 cells were used to discretize
the SPS domain. For both the SPS and NPS, a time step of 1t = 1/40 s was used
for all the numerical simulations.

To test the adequacy of the spatial resolution, the velocity field corresponding to the
modulated flow at Re≈ 15.5 was recomputed by doubling the resolution, i.e. using 40
cells per magnet width. To compare this velocity field (u40) with the one computed
on the 20-cell grid (u20), we interpolated u40 onto the 20-cell grid to obtain uinterp
(interpolation was required due to the staggered nature of the grid). The difference
between uinterp and u20, computed as ‖(uinterp − u20)‖/‖u20‖, was 1.2 %. Since the
interpolation introduces error, it can be concluded that the actual error should be less
than 1.2 %. We find that global measures, such as Re or 〈u2

y〉 (used to characterize
the primary instability), computed directly using u40 and u20 differed by less than
0.2 %. These tests confirm that a resolution of 20 cells per magnet width is sufficient
to simulate the flow and characterize the bifurcations accurately.

B.2. Doubly periodic simulation
Simulations on the doubly periodic domain can be sped up significantly using
a spectral method (Canuto et al. 1988). Since solving linear equations involving
the Laplacian is very cheap in the spectral method, it is convenient to use the
vorticity–streamfunction formulation instead of the velocity–pressure formulation.
Taking the curl of (1.4), we obtain the following equation for the z-component of
vorticity ω= (∇× u) · ẑ:

∂tω+ βu · ∇ω= ν∇2ω− αω+W, (B 3)

where W = (∇ × f ) · ẑ. The horizontal components of the velocity field ux = ∂ψ/∂y
and uy = −∂ψ/∂x can be computed using the streamfunction ψ , which satisfies the
Poisson equation ∇2ψ =−ω.
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The vorticity field ω is discretized in the Fourier space using 128 modes along each
of the x- and y-directions. Since the lateral dimensions of the periodic domain are
8w× 8w units, the spatial resolution associated with the Fourier grid corresponds to
16 grid points per magnet width w. Taking the Fourier transform of (B 3), we obtain

∂tΩ =−βF [u · ∇ω] + ν∇2Ω − αΩ +F [W], (B 4)

where F [·] represents the Fourier transform and Ω =F [ω].
Equation (B 4) is stepped forward in time (t→ t+1t) using a three-substep semi-

implicit Strang–Marchuk splitting algorithm (Ascher, Ruuth & Wetton 1995; Mitchell
2013), where the first and last substeps advance the vorticity field using the nonlinear
term by means of a second-order explicit Runge–Kutta scheme (using a time step
1t/2), while the intermediate substep advances the vorticity field using the Crank–
Nicolson scheme (using a time step 1t). We have used the time step 1t= 1/32 s.

B.3. Computing unstable branches in the pitchfork bifurcation
The schematic depicting the pitchfork bifurcation in figure 9 was constructed following
the computation of all the stable and unstable states using the matrix-free Newton–
Krylov solver (Kelley 2003). Guesses for the stable states, to initialize the Newton
solver, can be easily obtained using numerical integration. However, those for the
unstable states should be constructed using continuation or using the eigenmode that
goes unstable at the bifurcation.

To begin with, initial guesses for the unstable straight flow branches in the SPS
and NPS simulations were constructed by extrapolating the stable straight solutions in
Reynolds number Re, i.e.

u2
s (Rec + ε)≈ u1

s (Rec)+ ε

(
∂u1

s

∂Re

)
Rec

, (B 5)

where the derivative (∂u1
s/∂Re) was approximated using finite differences,(
∂u1

s

∂Re

)
Re

≈
u1

s (Re)− u1
s (Re−1Re)
1Re

. (B 6)

This method proved particularly useful in obtaining a good initial guess for the
unstable straight flow u2

s in the NPS, since it is disconnected from u1
s , as shown in

figure 9(c). In the NPS, Rec ≈ 10.5 is not estimated by identifying the instability of
u1

s , since there exists none. Instead, it is computed using the intercept of a linear fit
of the amplitude 〈u2

y〉 versus Re, shown in figure 7, close to the onset of modulation.
The initial guess at Re≈ 10.75 was constructed by extrapolating u1

s from Re≈ 10.25
by choosing ε = 0.5 in (B 5).

For the unstable modulated branches emerging from the second pitchfork in the SPS,
a good initial guess for u3

m (u4
m) is constructed using u3

m ≈ u2
s ± p ê2. Here ê2 is the

second unstable eigenvector of the straight flow which has the symmetry RxT w
y . Since

amplitude p is not known a priori, convergence to u3
m is tested by incrementing p.

In the NPS, the initial guess for the unstable branch u2
m was similarly constructed,

u2
m ≈ u2

s − p ê1, using the eigenvector ê1 with the RxRy symmetry. However, p in the
NPS case can be estimated using p= 〈ê1 | u1

m − u2
s 〉, since the stable modulated flow

u1
m is known from numerical integration and u2

s is computed from extrapolation.
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Appendix C. Inherent three-dimensionality of the forcing in the experiment

In § 4.3 we compared measurements of the average longitudinal wavelength λ̄x of
the modulated flow in the experiment and numerical simulations. The comparison
between the experiment and the NPS (cf. figures 7 and 8) showed systematic
differences in λ̄x for both the depth-averaged and modified parameters, with the
maximum difference being approximately 10 % at Re− Rec = 3.7 (cf. figure 7). Here
we show that this deviation is probably due to the inherent three-dimensionality of
the experiment, not captured by a strictly 2D model, rather than the choice of the
model parameters.

As we discussed in § 3.1, the Lorentz force density due to the specific arrangement
of magnets employed in the experiment is to a very good approximation given
by F = JBzx̂, where J is the magnitude of current density and Bz(x, y, z) is the
z-component of the magnetic field at any given location within the electrolyte. In
deriving (1.4) it was assumed (Suri et al. 2014) that Bz can be decomposed as
the product of a 2D horizontal profile B2D(x, y), which depends exclusively on
the extended coordinates (x, y), and a 1D vertical profile D(z), which captures the
variation of the magnetic field above the magnet array, i.e. Bz(x, y, z)=D(z)B2D(x, y).
This implies that, when normalized, the planar magnetic field profiles at various
heights z within the electrolyte are identical. Such a magnetic field, which we call
‘Q2D’, facilitates the decomposition of the plane-parallel Q2D velocity field (1.3)
which underpins the strictly 2D model (1.4).

A magnetic field that is truly Q2D, however, cannot be created using a magnet
array with finite dimensions, i.e. the shape of the magnetic field profile generated by
permanent magnets in the laboratory always changes with the vertical height z to some
extent. Experimental measurements of the magnetic field from previous studies have
shown such changes in the shape of the field profile as a function of z (Dovzhenko
et al. 1984; Suri et al. 2014). This is very much the case in our experiment as
well, as can be seen from the magnetic field profiles shown in figure 2(a). For
instance, if one rescales the transverse magnetic field profiles at heights z = 0.438
and z = 0.265 such that they match near the centre of the array, we see that these
profiles would not match near the end magnets. This is most apparent by comparing
the relative heights of the peaks at y = −6.5 and y = −4.5 for the two profiles in
figure 2(a). A quantitative estimate of the deviation from quasi-two-dimensionality
can be obtained by comparing the magnetic field profiles computed using the dipole
summation at the bottom Bb = Bz(x, y, z= 0.236) and the top of the electrolyte layer
Bt=Bz(x, y, z= 0.472). Normalizing Bb and Bt separately, using their respective spatial
r.m.s. values computed over the entire lateral extent of the domain, we estimate the
largest difference between the profiles to be approximately 12 %. This difference is
fairly localized towards the ends of the magnet array and is likely to be the reason
behind the larger discrepancy in longitudinal velocity measurements over the end
magnets (cf. figure 4b).

To demonstrate the impact of the z dependence of the forcing profile on the flow,
we have recomputed the straight and modulated flow fields in the NPS using B2D=Bb
and B2D=Bt, in addition to the depth-averaged magnetic field Bda. The value of α was
increased by 22 % relative to the depth-averaged value to reduce the influence of the
uncertainty in the model parameters on the flow pattern. This choice also yields the
best agreement between the average wavelengths of the flow pattern in the simulation
and experiment for Rec <Re<Rep (see figure 8b). As figure 13(a) shows, the forcing
profile strongly affects both Rec and the amplitude of the modulation of the flow
for Re > Rec. It also shows that Bda produces substantially better agreement with
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FIGURE 13. (Colour online) Sensitivity to the magnetic field profile for α = 0.078 s−1,
β= 0.83 and ν= 3.26× 10−6 m2 s−1. (a) A bifurcation diagram for the primary instability
and (b) the average wavelength of the pattern in the modulated regime. The simulations
were performed with α increased by 22 % relative to the depth-averaged value for the
straight flow and used either Bda, Bb, or Bt.

experiment than either Bb or Bt. Similarly, we find that the forcing profile strongly
influences the modulation wavelength. As figure 13(b) shows, for both Bb or Bda the
average wavelength agrees reasonable well with experiment, while Bt produces a very
poor agreement. Similar results (not shown) are obtained if, instead of α, either β or
ν is modified to match Rec.

The above analysis shows that, although the NPS with the depth-averaged magnetic
field profile captures the salient features of the dynamics fairly well, the flow pattern
depends fairly sensitively on the details of the forcing. Hence, one should expect
systematic deviations between the 2D model derived for a Q2D flow and the
experiment where quasi-two-dimensionality is broken by the forcing. It should be
mentioned that the wavelength of the modulated flow measured by either seeding
the dielectric–electrolyte interface or the top surface of the electrolyte are virtually
identical. This implies that viscous coupling across the fluid layers produces a Q2D
flow despite the fact that the forcing profile driving the flow is not perfectly Q2D.
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