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The interaction between various wave-like structures in screeching jets is considered
via both experimental measurements and linear stability theory. Velocity snapshots of
screeching jets are used to produce a reduced-order model of the screech cycle via
proper orthogonal decomposition. Streamwise Fourier filtering is then applied to isolate
the negative and positive wavenumber components, which for the waves of interest in
this jet correspond to upstream- and downstream-travelling waves. A global stability
analysis on an experimentally derived base flow is conducted, demonstrating a close
match to the results obtained via experiment, indicating that the mechanisms considered
here are well represented in a linear framework. In both the global stability analysis
and the experimental decomposition, three distinct wave-like structures are evident; these
waves are also solutions to the cylindrical vortex-sheet dispersion relation. One of the
waves is the well-known downstream-travelling Kelvin–Helmholtz mode. Another is the
upstream-travelling guided jet mode that has been a topic of recent discussion by a
number of authors. The third component, with positive phase velocity, has not previously
been identified in screeching jets. Via a local stability analysis, we provide evidence that
this downstream-travelling wave is a duct-like mode similar to that recently identified in
high-subsonic jets. We further demonstrate that both of the latter two waves are generated
by the interaction between the Kelvin–Helmholtz wavepacket and the shock cells in
the flow. Finally, we consider the periodic spatial modulation of the coherent velocity
fluctuation evident in screeching jets, and show that this modulation can be at least partially
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explained by the superposition of the three wave-like structures, in addition to any possible
modulation of the Kelvin–Helmholtz wavepacket by the shocks themselves.

Key words: aeroacoustics, jets, jet noise

1. Introduction

Shock-containing free shear flows frequently exhibit some form of aeroacoustic resonance,
the best known of which are those that produce screech or impingement tones
(Edgington-Mitchell 2019). These resonance mechanisms can be divided into four
discrete processes: a downstream-travelling wave (Tam & Ahuja 1990; Gudmundsson &
Colonius 2011; Sinha et al. 2014), a downstream-reflection mechanism (Manning & Lele
2000; Shariff & Manning 2013; Suzuki & Lele 2003; Berland, Bogey & Bailly 2007;
Edgington-Mitchell et al. 2021), an upstream-travelling wave (Tam & Hu 1989a; Shen
& Tam 2002; Bogey & Gojon 2017; Edgington-Mitchell et al. 2018; Gojon, Bogey &
Mihaescu 2018; Jordan et al. 2018) and an upstream-reflection or receptivity mechanism
in the nozzle plane (Barone & Lele 2005; Mitchell, Honnery & Soria 2012; Weightman
et al. 2019; Karami et al. 2020). Of these, the downstream-travelling wave is generally
thought to be the only process where energy is provided to the resonance loop (Tam &
Ahuja 1990); the growth of the instability wave is driven by the extraction of energy from
the mean flow. Amplitude prediction models for aeroacoustic resonance have remained
elusive, and while there are several models capable of frequency prediction (Powell 1953;
Tam, Seiner & Yu 1986), these models often struggle to fully explain the staging behaviour
typical of jet screech (Mancinelli et al. 2019a). In this context, staging behaviour refers to
the tendency of resonant systems to experience discontinuous changes in tone frequency
with small changes in operating conditions (Davies & Oldfield 1962; Powell, Umeda &
Ishii 1992; Edgington-Mitchell, Honnery & Soria 2015b; Li et al. 2020). In screeching
axisymmetric jets, these stages are typically classified into A1 and A2 (m = 0), B and D
(flapping) and C (m = 1) helical modes.

1.1. Upstream-travelling waves in jet resonance
Screech, like other resonant processes in jets, involves an energy exchange between
upstream- and downstream-travelling waves. It is generally accepted that the
downstream-travelling wave relevant to resonance in jet screech is the Kelvin–Helmholtz
(KH) wavepacket. The nature of the upstream-travelling wave is less clear. Powell (1953)
originally conceived the upstream-travelling wave as a free-stream acoustic wave, a view
that went unchallenged for many decades. The supporting evidence for this theory was
quite strong: a sharp tone is evident in the far-field acoustics, and resonance models based
on an upstream-travelling wave with sonic phase speed generally predicted frequency well.
It was only in the work of Shen & Tam (2002) that an alternative was proposed: that
the upstream-travelling wave is not a free-stream acoustic wave, but rather a guided jet
mode. Evidence for the role of this wave was first provided for subsonic impinging jets
(Tam & Ahuja 1990), then supersonic impinging jets (Bogey & Gojon 2017; Jaunet et al.
2019) and finally jet screech (Edgington-Mitchell et al. 2018; Gojon et al. 2018). Frequency
prediction models based on the upstream-travelling guided jet mode outperform those that
assume a free-stream acoustic wave, at least for the m = 0 screech modes (Mancinelli et al.
2019a,b). It should be noted, however, that at this point, there is still evidence that some
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Waves in screeching jets

resonant processes are indeed closed by free-stream acoustic waves; Weightman et al.
(2019) provide evidence for such closures in various supersonic jet impingement cases.

1.2. Other waves present in supersonic jets
The guided jet mode is one of three families of waves that can be supported by a
supersonic jet. These waves were first visualized by Oertel (1980). Tam & Hu (1989a)
then demonstrated that an inviscid high-speed jet, when modelled as a cylindrical vortex
sheet, can support three families of waves: the KH wave, subsonic instability waves and
supersonic instability waves. The supersonic instability waves are only present for very
high jet Mach numbers, whereas the subsonic waves are present across all Mach numbers.
For supersonic jets, these subsonic instability waves, which can propagate both upstream
and downstream, are organized hierarchically according to their azimuthal and radial order.
With the exception of the axisymmetric mode of radial order 1, the upstream-travelling
waves are confined to a narrow frequency band, whereas the downstream-travelling wave
can be supported across a wide range of frequencies. The upstream-travelling wave
identified in the vortex-sheet dispersion relation is the guided jet mode that has been
demonstrated to play a significant role in resonance, including the global instability of
hot jets and wakes (Martini, Cavalieri & Jordan 2019). The downstream-travelling waves
have not previously been discussed in the context of supersonic resonance, but they have
been discussed extensively for high Mach number subsonic jets in the works of Towne
et al. (2017), Schmidt et al. (2017) and Jordan et al. (2018). More recently, experimental
data presented in Zaman & Fagan (2020) have demonstrated that A1 and A2 screech
frequencies are closely related to the frequencies of trapped-wave resonance demonstrated
in Towne et al. (2017). Although both the upstream- and downstream-travelling waves are
associated with the same fundamental mechanism, they have distinct radial structures. In
supersonic jets, the upstream-travelling wave has support outside the shear layer of the
jet, a requirement for an upstream-travelling wave in a flow that is travelling downstream
at supersonic velocity. The downstream-travelling wave by contrast remains essentially
trapped within the core of the jet; the work of Towne et al. (2017) demonstrated that this
mode also obeys the dispersion relation for a soft-walled duct, essentially treating the shear
layer of the jet as a pressure-release boundary. While these downstream-travelling duct-like
modes have strictly negative phase velocities in subsonic jets, they can have either negative
or positive phase velocity in supersonic jets (Towne, Schmidt & Brès 2019).

1.3. Wave interactions in screeching jets
It is generally accepted that screech tones are produced by some interaction between
the KH waves and the shock/expansion structure in the jet core. The first model for
the prediction of screech frequency was that of Powell (1953). Powell assumed that
interactions between the downstream-travelling wave and the shocks could be modelled
as emission from a phased array of equispaced monopoles located at the shock reflection
points. Observing that screech radiates most strongly in the upstream direction, Powell
further assumed maximum upstream directivity as a requirement for screech (i.e. that
waves from all three monopole sources would arrive at the nozzle simultaneously and thus
provide constructive reinforcement), and on this basis produced his predictive equation for
screech,

f = Uc

s(1 + Mc)
. (1.1)
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Here, f is the frequency of the screech tone, s is the spacing of the shock cells and Uc
and Mc are the convection velocity and convective Mach number respectively. In a later
paper (Powell et al. 1992), Powell reconsidered this model and stated that there was no
reason to assume perfect reinforcement at the nozzle lip was a requirement for screech.
Nonetheless, this model does an admirable job of predicting screech across a range
of operating conditions, but is incapable of accounting for the mode-staging behaviour
typical of aeroacoustic resonance.

An alternative model was proposed by Tam et al. (1986), an extension of work begun
in Tam & Tanna (1982). In the earlier work, Tam and Tanna construct a model for
broadband shock noise, on the assumption of weak interaction between travelling KH
waves and stationary shock waves. Key points of the model are recapitulated here,
although the nomenclature used is slightly different than in the original paper. The
downstream-travelling KH waves can be modelled as a wavepacket of the form

ukh = a(x)ψ(r) exp(i(kkhx − ωt)). (1.2)

Here, ukh represents a velocity perturbation associated with the KH wavepacket, a(x) is a
spatial amplitude distribution, ψ(r) is the radial eigenfunction of the KH wavepacket, kkh
is the wavenumber and ω the frequency.

The spatial modulation of velocity (us) by the quasi-stationary shock-cell structures
within the flow was modelled in the work of Tam & Tanna (1982) using the vortex-sheet
approach of Prandtl (1904) and Pack (1950), which can be expressed in simplified form as

us =
∞∑

n=1

An(exp(iksnx)+ exp(−iksnx)). (1.3)

Here, An defines the amplitude of each shock-cell mode, while ksn defines the wavenumber,
for n = 1, 2, 3 . . .. As stated in Tam & Tanna (1982) and shown more explicitly in Ray &
Lele (2007), the interaction between the KH wavepacket and the stationary shocks can be
represented by the product of the two wave expressions. Ignoring amplitude terms, for the
first shock-cell mode n = 1 this can be written as

ukhus ∝ exp((i(kkh + ks)x − iωt))+ exp((i(kkh − ks)x − iωt)). (1.4)

Alternatively, this relation can be directly obtained from the analysis a convective term
of the Navier–Stokes equations. Considering only the first shock-cell mode, the mean flow
in the streamwise direction U can be written as

U(x, r) = Usm(x, r)+ Ush(x, r)1
2

(
eiksx + e−iksx

)
, (1.5)

where Usm is the shock-less mean flow (which can be obtained using a low-pass filter, for
example), Ush is the slow-varying part of the shock-cell structure (or the envelope), which
includes the amplitude term A1, and ks is the wavenumber associated with its oscillatory
part. The subscripts sm and sh are used to denote the smooth and shock-related parts of
the mean. Expanding the velocity as ũ(x, r) = U(x, r)+ u(x, r, θ, t), all convective terms
of the streamwise momentum equations will have a dependency on both Usm and Ush.
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For instance, the linearized form of ũ∂xũ − U∂xU is given by

ũ∂xũ − U∂xU ≈
[
Usm + Ush

1
2

(
eiksx + e−iksx

)]
∂xu

+ u∂x

[
Usm + Ush

1
2

(
eiksx + e−iksx

)]
(1.6)

= Usm∂xu + Ush
1
2

(
eiksx + e−iksx

)
∂xu + u∂xUsm

+ u(∂xUsh)
1
2

(
eiksx + e−iksx

)
+ uUsh

1
2

(
iks eiksx − iks e−iksx

)
. (1.7)

Considering that Usm and Ush are slow varying, the streamwise derivatives of these
quantities will be disregarded here, as in locally parallel analyses. Using the normal modes
ansatz, disturbances can be written as u(x, r, θ, t) = u′(r) exp(−iωt + ikxx + imθ), where
ω is the frequency, kx is the streamwise wavenumber and m is the azimuthal wavenumber.
Thus, (1.7) can be rewritten as

ũ∂xũ − U∂xU ≈ ikxUu′ exp(−iωt + ikxx + imθ)

+ iu′Ush
1
2 (ks exp(−iωt + i(kx + ks)x + imθ)

− ks exp(−iωt + i(kx − ks)x + imθ)) . (1.8)

A clear connection between the most amplified structures in the flow and the generation
of waves at other wavenumbers is evident in (1.8). If the wavepacket wavenumber is
considered (kx = kkh), (1.8) becomes equivalent to the well-known expression originally
presented by Tam & Tanna (1982), demonstrating that new wavenumbers are energized by
the interaction between shocks and the wavepacket.

It is clear from (1.4) and (1.8) that the interaction of the KH wave with the stationary
shocks produces two wave-like disturbances for a given frequency. These wave-like
disturbances have wavenumbers dictated by the sum and difference of wavenumbers
associated with the KH wavepacket (kkh) and the shock cells (ks). For cases where the
KH wavenumber is smaller than the shock spacing (as is typically observed in screeching
jets), the difference wavenumber is negative, and the wave has negative phase velocity.
The sum term will always represent a wave that has positive phase velocity. In this work
we do not explicitly use the model of Tam & Tanna (1982), however, (1.4) will be used to
explain phenomena observed in § 3.

The model of Tam & Tanna (1982) was originally developed to explain broadband
shock-associated noise (BBSAN), but Tam et al. (1986) suggested that screech could
simply be considered a special case of BBSAN, citing data from Norum & Seiner (1982).
On this basis, the authors developed a predictive model for screech frequency, taking the
limit of the BBSAN model of Tam & Tanna (1982) as the observer angle approaches the
upstream axis,

fs = Ucks

2π(1 + Mc)
. (1.9)

While this relation provides identical predictions to the model of Powell (1953), its
provenance is rather different. The central thesis of Tam et al. (1986) is that the screech
frequency is selected by the weak interaction of the KH wavepackets with the shock
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structures; this interaction only produces radiation back to the nozzle lip in a narrow band
of frequencies.

1.4. Wave modulation
Most existing models for screech assume that the screech tone is produced by some form
of interaction between the KH wave and the shock structures within the jet. It is also
typically assumed that the KH wavepacket is essentially unaffected by this interaction.
Part of the motivation of this paper is the evaluation of the validity of this assumption. It
is well recognized that turbulence undergoes significant changes during passage through
a shock wave. Both the shock and the turbulence are influenced by this interaction; the
shock becomes locally distorted, while the turbulence sees an amplification of intensity
and Reynolds stress (Ducros et al. 1999). This amplification has been shown to depend
on the scale of the turbulence, with finer scales amplified more than large scales. The
interaction of a vortex with a shock strongly depends on the strength of both the shock
and the vortex. Passage through a strong shock has been shown to significantly deform the
shape of an isolated vortex (Grasso & Pirozzoli 2000). The situation in a screeching jet
is more complicated: the train of vortices that comprise the wavepacket typically span the
sonic line of the jet, meaning some portion of the vortices may pass through the shock cell,
whereas components further from the centreline do not. It is thus presently unclear whether
the structure or growth of the KH wavepacket is altered or modulated via interaction with
the shock cells of the jet.

It is well established that the turbulence fluctuations in the near field of the jet are
strongly modulated, due to the presence of the standing wave in the acoustic near
field of the jet (Westley & Woolley 1975; Panda 1999). Formed by the interaction of
the downstream-travelling hydrodynamic waves and the upstream-travelling waves, this
standing wave is clearly evident in measures of both fluctuating pressure and velocity.
Thus measurements of velocity in screeching jets show strong modulation in the axial
direction, but the presence of the standing wave makes it difficult to determine whether
this is simply the signature of the standing wave, or the shocks modulating the growth of
the KH wavepacket.

1.5. Linear models for the screech problem
In general, the initial growth of the KH wavepacket can be well predicted by the
careful application of linear stability theory (Michalke 1984; Morris 2010), even for
highly turbulent jets (Cavalieri et al. 2013). One outstanding question is how well such
linear models perform in shock-containing flows, and whether or not they can provide a
description of the nonlinear KH–shock interaction when the shock structure is included
in the mean flow. There have been limited attempts to apply linear stability theory
to shock-containing jets. In a global stability analysis of a shock-free jet, Nichols &
Lele (2011) observed the subsonic modes of Tam & Hu (1989a), and suggested that
the upstream-travelling subsonic modes could underpin resonance in shock-containing
flows. Beneddine, Mettot & Sipp (2015) conducted a global analysis on a laminar,
two-dimensional shock-containing jet, and demonstrated that it exhibits a global instability
that matches many of the characteristics of jet screech. Beneddine et al. (2015) were
also able to demonstrate the sensitivity of this instability to the thickness of the nozzle
lip, which has been observed experimentally for both screeching (Raman 1997) and
impinging (Weightman et al. 2019) jets. Nonetheless, the validity of linear models for
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Waves in screeching jets

NPR Mj Re St Mode

2.10 1.09 4.4 × 105 0.67 A1
2.25 1.14 4.7 × 105 0.65 A2
3.40 1.45 8.6 × 105 0.26 C

Table 1. Jet conditions.

the screech process remains unclear; there are many processes involved in jet screech that
are nonlinear.

1.6. Summary
There remain a broad range of open questions regarding jet screech. What mechanism
selects the screech frequency? Which of the processes underpinning screech can be
modelled using linear theory? Does the interaction between the KH wavepacket and the
shocks affect the growth of the wavepacket? In an attempt to answer these questions, we
pair an extensive experimental database with a range of stability analyses. Experimentally,
we consider three jets undergoing screech, two jets characterized by an m = 0 instability
mode, but with shocks of different strengths, and one jet whose screech is characterized by
an m = 1 helical mode, with much stronger shocks. The velocity fields recorded for these
jets are decomposed on both an energy and spatial wavenumber basis. A global stability
analysis is performed on the experimentally determined base flow for the case with the
weakest shocks. Local stability analysis is used to interpret some of the results from both
the experiment and the global analysis.

2. Database and methodology

2.1. Experimental database
The experimental database used here has been well documented in prior literature.
All cases considered are from similar experimental facilities (and the same nozzle);
however, the details of the velocimetry differ somewhat. Two cases are presented for the
m = 0 mode, the A1 and A2 modes of jet screech at pressure ratios of NPR = 2.10 and
2.25 respectively, previously studied in Edgington-Mitchell et al. (2018). Note a slight
correction to the Strouhal numbers associated with these data presented in the prior
paper. An additional case at a nozzle pressure ratio of NPR = 3.40 is presented, where
the flow is characterized by an m = 1 mode associated with the helical C screech mode
(Edgington-Mitchell et al. 2014b; Tan et al. 2017; Li et al. 2019). A summary of the
relevant parameters for the jets is presented in table 1; NPR refers to ratio of stagnation to
ambient pressure, Mj, Uj and Dj refer to the ideally expanded Mach number, velocity and
diameter, respectively, and the frequency is non-dimensionalized such that St = fDj/Uj.
All jets considered here issue from a purely converging nozzle of diameter D = 15 mm,
with a radius of curvature of 67.15 mm, ending with a parallel section at the nozzle exit,
and an external lip thickness of 5 mm. The nozzles are connected to a large plenum
chamber; the area ratio between the nozzle and plenum is approximately 100 : 1. As a
consequence of this high contraction ratio, it is expected that the boundary layer at the
nozzle exit will be laminar and extremely thin (below the measurement resolution of the
particle image velocimetry (PIV) system).
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Parameter Value for NPR = 2.1 or 2.25 Value for NPR = 3.4

IW0 0.12D 0.10D
IW1 0.030D 0.026D
Grid spacing �x 0.01D 0.013D
Depth of field 0.04D 0.17D
Light sheet thickness 0.1D 0.1D
Field of view 5.7D × 3.8D 10D × 2.2D
Velocity snapshots 9000 8000

Table 2. Non-dimensional PIV parameters.
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Figure 1. Mean velocity fields for the two jets characterized by an m = 0 screech tone, operating at
NPR = 2.10 and NPR = 2.25.

For the NPR = 2.10 and 2.25 datasets, particle images were obtained using a 12-bit
Imperx B4820 camera, with a CCD array of 4872 × 3248 px, at an acquisition frequency
of 2 Hz. Illumination was provided by a Nd:YAG laser, producing a pair of 6 ns pulses
of approximately 160 mJ, separated by �t = 1 μs. For the NPR = 3.40 dataset, particle
images were obtained using a pair of PCO 4000 cameras mounted orthogonal to the jet,
each with a CCD array of 4008 × 2760 px. The resultant velocity fields from the two
cameras were stitched together using a convolution with an adaptive Gaussian window
(Agüí & Jimenez 1987) with an overlap of 7.5 %. Illumination was provided by a Nd:YAG
laser, producing a pair of 6 ns pulses of approximately 120 mJ, separated by �t = 0.8 μs.

Both jets were seeded with smoke particles, whose diameter was estimated at 600 nm
based on observed relaxation times across a normal shock (Mitchell, Honnery & Soria
2013). The pertinent PIV parameters are summarized in table 2. The images were analysed
using a multi-grid cross-correlation algorithm (Soria 1996), where IW0 and IW1 refer to
initial and final interrogation windows, respectively.

The mean velocity (U,V) fields are presented in figure 1 for the m = 0 cases and figure 2
for the m = 1 case. For the NPR = 2.10 case, the transverse velocity due to the shocks does
not exceed 3 % of the jet exit velocity Ue, while for the NPR = 3.4 case the transverse
velocity is in excess of 20 % of the jet exit velocity.
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Figure 2. Mean velocity fields for the jet characterized by an m = 1 screech tone, operating at NPR = 3.40.

2.2. Decomposition of experimental database
The turbulent wavepackets that comprise the downstream-travelling component of
aeroacoustic resonance typically only represent a small percentage of the total turbulent
kinetic energy in a flow (Jordan & Colonius 2013; Jaunet, Jordan & Cavalieri 2017;
Schmidt et al. 2018; Towne, Schmidt & Colonius 2018). Eduction of the signatures of these
wavepackets from experimental data thus requires some form of modal decomposition,
such as those reviewed in Taira et al. (2017).

Proper orthogonal decomposition (POD) is arguably the most widely used
decomposition method in fluid mechanics broadly (Sirovich 1987; Berkooz, Holmes &
Lumley 1993), and flow resonance in particular (Moreno et al. 2004; Edgington-Mitchell,
Honnery & Soria 2014a, 2015a; Weightman et al. 2017). The highly periodic nature of
resonant flows makes them particularly amenable to POD, as it is typically possible to
reconstruct the entire resonance cycle from only the leading POD modes (Oberleithner
et al. 2011); a travelling wave structure will be defined by a pair of POD modes, with
a 90◦ phase offset between them (Deane et al. 1991; Noack et al. 2003). In the present
database the velocity data are not time resolved, and thus decomposition such as spectral
POD (Towne et al. 2018) cannot be implemented.

The ability of POD to isolate the structures associated with the resonant process enables
a triple decomposition on the basis that the velocity may be represented as the sum of a
mean (U), a coherent uc and a stochastic u′′ component after Hussain & Reynolds (1970),

u(x, t) = U(x)+ uc(x, t)+ u′′(x, t). (2.1)

To educe the coherent component via POD, an autocovariance matrix (R) is constructed
from the velocity snapshots (V ) such that R = V TV . The solution of the eigenvalue
problem Rv = λv yields the eigenvalues λ and eigenvectors v from which the spatial POD
modes (φ) are constructed as

φn(x, y) = Vvn(t)
||Vvn(t)|| , (2.2)

and the coefficients at each time t for each mode n can be expressed as

an(t) = vn(t)||Vvn(t)||. (2.3)
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Assuming that the leading pair of POD modes will identify fluctuations occurring at
the screech frequency ωs, we define (Jaunet, Collin & Delville 2016): a = a1 − ia2 =
â e−iωst andψ = φ1 + iφ2. To ensure that the two leading modes are indeed the modal pair
representing screech, the decomposition is conducted only on the transverse component of
velocity; in this way the energy associated with the shear-thickness mode identified in the
work of Weightman et al. (2018) is minimized. As a consequence the modes are ranked
only on the energy associated with the transverse velocity component. On this basis the
temporal Fourier coefficients can be constructed directly from the POD modes, and the
coherent fluctuations can be represented as

uc(x, y, t) = â e−iωstψ(x, y). (2.4)

To identify wave-like structures in the flow, it is advantageous to consider a further
decomposition in the streamwise direction,

uc(x, y, t) = â e−iωst
∑

k

ûc
k( y) eikx. (2.5)

With the start and end of the domain defined as x1 and x2 respectively, the spatial Fourier
coefficients are defined as

ûc
k( y) =

∫ x2

x1

ψ(x, y) e−ikx. (2.6)

2.3. Global stability analysis
We conduct a global linear stability analysis to explore the characteristics and behaviour
of the waves involved in the screech process. Applying a Reynolds decomposition

q(x, r, θ, t) = q̄(x, r)+ q′(x, r, θ, t) (2.7)

to the compressible Navier–Stokes equation and neglecting nonlinear terms yields the
linearized Navier–Stokes equation,

∂q′

∂t
− A(q̄) q′ = 0. (2.8)

Here, q(x, r, θ, t) is a state vector containing velocities and thermodynamic variables; for
the round jets considered in this paper we use cylindrical coordinates and velocities and
choose density and pressure as the thermodynamic variables. Applying the normal mode
ansatz

q′(x, r, θ, t) = q̂(x, r) exp (imθ − iωt) , (2.9)

to (2.8) yields the eigenvalue problem

(−iωI − Am) q̂ = 0, (2.10)

where Am is obtained by replacing all azimuthal derivatives in A with im. The azimuthal
wavenumber m is an integer due to the periodicity of the mean jet. The global modes of the
jet correspond to ω, q̂ pairs that satisfy (2.10) for a given choice of m, i.e. the eigenvalues
and eigenvectors of Am.

Significant uncertainty remains regarding the effect of shocks and shock-like
discontinuities on the validity of a linear stability analysis; we seek to minimize any such
effects in two ways. Firstly, we consider only the NPR = 2.10 case, where the shocks are
weak, and the transverse velocities are minimal. Much of the compression in a jet operating
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Figure 3. Calculation domain and mesh structure for the global analysis.

at this condition is achieved in a continuous fashion through near-isentropic compression
waves. Additionally, the inability of tracer particles to faithfully reproduce step changes
in velocity is actually of benefit here; the discontinuities around shocks are inherently
smoothed by our measurement technique.

The mean flow q̄(x, r) is obtained from the experimental measurements. To provide a
sufficiently large domain for the linear analysis, the experimental domain is extrapolated
to a field covering −1 � x/D � 19 and 0 � r/D � 4. Density information is not directly
available from PIV; however, by assuming that entropy generation by the weak shocks
is negligible, an assumption of constant stagnation density along streamlines allows for
a calculation of density from the velocity data. This is checked using a tomographic
background-oriented-schlieren measurement, with the axisymmetric field extracted from
the path-integrated data using an Abel inversion (Tan, Edgington-Mitchell & Honnery
2015); errors due to the isentropic assumption appear to be less than 5 %.

The linearized equations are discretized using fourth-order finite differences with
summation-by-parts closure at the boundaries. To ensure adequate resolution in the shear
layer of the jet and to apply non-reflecting boundary conditions, the computational domain
is divided into several zones as shown in figure 3. The core domain covers 0 � x/D � 8
and 0 � r/D � 0.3, the shear layer zone covers 0.3 � r/D � 0.7 and the far field extends
to r/D = 3. Sponge layers are placed upstream (x/D � 0) and downstream (x/D � 15)
of the jet, as well as outside the far-field region. There are Nr = 300 points in the radial
direction: 100 in the core zone, 100 in the shear layer, and the rest shared between the
far field and the sponge layer. The streamwise direction is discretized using Nx = 750
points, with a mapping used to ensure that 60 % of these points are placed in the core
region. Additional details of the global stability code and on the underlying formulation
of the Navier–Stokes equations can be found in Schmidt et al. (2017) and Babucke (2009),
respectively.

The analysis was performed at a lower Reynolds number as compared to the experiments
(Re = ρjUjD/μ = 104, where ρj and Uj are the ideally expanded density and velocity, and
μ is the dynamic viscosity). This choice was motivated by recent work demonstrating that
the use of an eddy viscosity or turbulent Reynolds number to account for the impact of
Reynolds stresses improves the agreement between linear analyses and experimental and
simulation data for turbulent jets Pickering et al. (2020); no eddy-viscosity model was used
in the present analysis. The lower Reynolds number has the added advantage of reducing
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Figure 4. Eigenspectrum from global stability analysis for the NPR = 2.10 jet. Red square indicates
least-stable mode at St = 0.667.

the cost of solving the eigenvalue problem. A consideration of the sensitivity of the result
to Reynolds number is presented in the Appendix.

The eigenvalue spectrum obtained from the global eigenvalue problem is presented in
figure 4. The spectrum is composed of continuous branches of modes plus a few discrete
modes, which are distinct from the main branches and arise at particular frequencies. The
least-stable mode is associated with a frequency of St = 0.667, less than a 1 % discrepancy
from the experimentally observed screech tone at frequency St = 0.67 for this jet. The
remainder of the analysis focuses on this least-stable mode.

2.4. Local stability analysis
We also conduct a local stability analysis of the same mean flow to aid in identifying
the waves observed in the experimental POD and global stability modes. In this case, the
appropriate normal mode ansatz is

ξ(x, r, θ, t) = ξ̂(r) exp (ikx + imθ − iωt) , (2.11)

where k is the streamwise wavenumber for the mode. Setting the mean flow within the
operator A to its local value, ξ̄(x = x0, r), at a particular streamwise position x0 and
applying the ansatz (2.11) to (2.8) leads to an eigenvalue problem of the form

(−iωI + ikAx + Am,0
)
ξ̂ = 0. (2.12)

The operator Ax is the portion of A associated with x-derivatives while Am,0 contains
all remaining terms. For consistency with the local linear stability model of Towne et al.
(2017) as well as the vortex-sheet model used by Tam & Hu (1989b) and others, all viscous
terms are neglected. This leads to an eigenvalue problem that is linear in k. Both Ax and
Am,0 depend on the position x0 at which the mean flow has been frozen. For a specified
m, the local eigenmodes of the jet are given by pairs (k, ω) and vectors ξ̂ satisfying (2.12).
The spatial stability analysis used in this paper is carried out by choosing real values for
the frequency ω and solving the eigenvalue problem for the (potentially complex-valued)
wavenumber k. Details on the operators and numerics used for the eigenvalue problem are
reported elsewhere (Towne 2016).
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û

φ2

0

1 2 3 4 5
0

(b)

(a)

Figure 5. Streamwise velocity (a) associated with the global mode identified at St = 0.667, presented with
experimentally determined streamwise velocity mode associated with the second POD mode (b). Both modes
are normalized against their maximum value. Results are for the NPR = 2.10 jet.

3. Results

3.1. Wave generation in screeching jets
In figure 5 we compare the spatial structure of the least-stable mode in the global analysis
to one of the leading POD modes extracted from the experimental data. In this work the
radial coordinate r from the stability analysis is represented as the transverse coordinate
y for consistency with the PIV measurements. A remarkable similarity between the
experimental POD mode and the global mode is apparent. While the streamwise velocities
are not identical, given that the global mode was calculated from a linearization of an
extrapolated base flow, the agreement is surprisingly good. In figure 6 the pressure field
associated with the same global mode is presented. While spatially resolved pressure data
are not available for the measurement, the pressure field captures many of the recognized
features of a screeching supersonic jet, including the strong upstream-propagating acoustic
waves, and the downstream-propagating Mach wave radiation.

The normalized coherent fluctuations from the experimental data |ψ | for the m = 0 jets
are presented in figure 7, and for the m = 1 jet in figure 8. The coherent fluctuations are
quite similar for the two m = 0 modes, with spatial modulation apparent at both the edges
of the shear layer and along the jet centreline. For the m = 1 jet, modulation of the axial
velocity component is evident both along the lipline and outside the shear layer, while for
the transverse velocity component the strongest modulation occurs along the centreline. A
comparison of the fluctuations determined from the least-stable global mode with those
associated with the leading POD mode pair is provided in figure 9. Qualitatively, the
two results are very similar. The streamwise velocity experiences modulation in the jet
core and outside the shear layer for both the global analysis and the experimental data.
The transverse velocity is even more closely matched. There are, however, also some key
differences: the magnitude of fluctuations in the jet core is higher for the experimental
data, and their modulation stronger.
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Figure 6. Pressure field associated with the least-stable global mode for NPR = 2.10. The dashed white
lines indicate the beginning of the sponge zones; outside these bounds the contours of pressure are only
included as a qualitative visualization. The red line indicates Mach wave radiation; the purple line indicates the
upstream-propagating acoustic waves.
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Figure 7. Magnitude of coherent fluctuations for the two jets where the screech mode is an m = 0 azimuthal
mode. (a,b) Axial velocity fluctuations. (c, d) Transverse velocity fluctuations.

While the fluctuations presented in the preceding figures are all associated with
fluctuations at a given frequency, these fluctuations can be associated with a broad range of
wavenumbers. Consequently, the wavenumber spectra presented in figure 10 are produced
by taking the amplitude of (2.6). Phase velocity is defined as up = ω/kx; as the POD
produces modes correlated to the screech phenomenon, here ω is fixed at the screech
frequency: ω = ωs. Thus the sign of kx determines the sign of the phase velocity; here,
positive values of kx are associated with a phase velocity in the downstream direction.
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fluctuations. (c, d) Transverse velocity fluctuations. All results for NPR = 2.10 jet.

In this work, we use the sign of the phase velocity as a proxy for the sign of the
group velocity. The group velocity determines the direction of energy propagation; waves
with negative and positive group velocity may be considered upstream or downstream
travelling, respectively. All of the waves in question have phase and group velocities of
the same sign in supersonic jets (Towne et al. 2017), justifying the assumption made in
this analysis. The dashed vertical white lines in figure 10 indicate wavenumbers associated
with the ambient speed of sound in the upstream and downstream directions, while the
dashed vertical red line indicates the wavenumber associated with the average spacing of
the shocks in the flow. All three jets have the majority of the energy concentrated at a
wavenumber associated with a phase velocity of up ≈ 0.7Uj, with radial structures typical
of the classical KH wavepacket, hereafter referred to as the k+

kh wave. All three jets also
have a component with an upstream phase velocity approximately equal to the speed of
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Figure 10. Wavenumber spectra for all three jets. (a,c,e) Axial velocity fluctuations. (b,d, f ) Transverse
velocity fluctuations. Note the different x-axis scale for NPR = 3.4.

sound; this is the signature of the guided jet mode previously documented in screeching
jets (Edgington-Mitchell et al. 2018; Gojon et al. 2018), hereafter, the k−

th wave. There
is evidence of a third wave at much higher positive wavenumber, observed for all jets,
although with different radial structure for the m = 1 case compared to the m = 0 screech
modes; this wave will be referred to as the k+

t wave. The spectrum of the global mode
analysis is cleaner than that of the experimental data as shown in figure 11, but the same
three structures visible in the experimental data are likewise visible: an upstream-travelling
guided jet mode, a downstream-travelling KH wave, and the high-wavenumber mode. The
relative amplitudes (normalized against the k+

kh wave) for both the k−
th and the k+

t mode are
significantly stronger in the experimental data, but still clearly visible in the global mode.
In the global analysis, the wavenumbers for all three waves are approximately�kxD = 0.5
higher than the corresponding wave in the experimental data.

We return now to the model of Tam & Tanna (1982), where it was suggested that the
interaction of the KH wavepacket with the stationary shock structures should produce
two additional travelling waves in the jet. Due to streamwise variation in the mean flow,
the fluctuations associated with the KH wavepacket are spread across a small range of
wavenumbers. Likewise, the shock spacing within the jet varies slightly as a function of
axial position. Estimates of the wavenumbers associated with both the KH wavepacket
and the shock cells are presented in table 3, with a rough estimate of the variation in
wavenumber included. We then evaluate (1.4) to produce the two expected wavenumbers
(sum and difference) resulting from the interaction between the KH wavepacket and
the shock cells. These expected wavenumbers are presented in table 4, along with
wavenumbers extracted from the data presented in figure 10. The observed wavenumbers
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Figure 11. Wavenumber spectra from both global mode and experiment. (a,b) Axial velocity fluctuations. (c, d)
Transverse velocity fluctuations. All results are for the NPR = 2.10 jet. Note that a logarithmic contour scale is
used in this image.

NPR kkhD ksD

2.10 (Exp) 5.8 ± 0.5 11 ± 0.5
2.10 (LSA) 6.2 ± 0.5 11 ± 0.5
2.25 5.5 ± 0.5 9 ± 0.5
3.4 2.6 ± 0.3 4.6 ± 0.2

Table 3. Wavenumbers of wave structures.

NPR kkhD − ksD kxD(k−
th) kkhD + ksD kxD(k+

t )

2.10 (Exp) −5.2 −5.5 16.8 16.7
2.10 (LSA) −4.8 −4.9 17.2 17.8
2.25 −4.0 −3.5 14.5 15.3
3.4 −2.0 −2.3 7.2 7.2

Table 4. Wavenumber sums and differences.

for all the experimental cases and the global analysis fall within the range of expected
wavenumbers produced by (1.4). Thus the model of Tam & Tanna (1982) provides an
explanation for the three wave structures observed in the decomposed experimental data
and in the global analysis: one structure is the KH wavepacket, while the other two are
waves produced by the interaction between the KH wavepacket and the quasi-stationary
shock cells. While the model of Tam & Tanna (1982) predicts the wavenumbers of
these waves, and provides an explanation for their mechanism of generation, it makes
no statement regarding the character of these waves. A cursory examination of figure 10
reveals that each of the three modes has a distinct radial structure. In the following section,
we consider the nature of these three waves.
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Figure 12. Qualitative amplitude distributions associated with the three wave-like structures for the NPR =
2.10 jet (experimental); (a,b) k−

th , (c, d) k+
kh, (e, f ) k+

t . (a,c,e) Axial velocity fluctuations, (b,d, f ) transverse
velocity fluctuations.

3.2. The nature of waves in screeching jets
To better characterize the three wave-like structures in the jet, we consider their spatial
features: first their axial variation in amplitude and then their radial structure. The spatial
amplitude variation associated with the waves is shown qualitatively via the application
of a cosine-tapered bandpass filter in the wavenumber domain. The filter has a half-width
of 1.9D, a taper ratio of 0.5 and is centred on the maximum amplitude for each wave.
The results are sensitive to the size and type of the filter; these results should thus only
be taken as broadly indicative of peak location and general trends. The amplitude of the
fluctuations resulting from this filtering is presented for NPR = 2.10 in figure 12 and for
NPR = 3.40 in figure 13. The spatial amplitude distribution of the k+

kh wavepacket closely
resembles the distribution in figures 7 and 8, but without the spatial modulation. This result
is unsurprising; the majority of the downstream-travelling energy is associated with the
KH wave, and modulation cannot be represented with a single wave. The k−

th wave peaks at
approximately the fourth shock cell for both jets (often observed as the peak sound source
location in screeching jets Mercier, Castelain & Bailly 2017), and as previously discussed
in Edgington-Mitchell et al. (2018) has support outside the shear layer and in the core
of the jet. The k+

t downstream wave reaches maximum amplitude slightly upstream of
the peak amplitude location for the upstream wave in the NPR = 2.10 jet, but somewhat
further upstream for the NPR = 3.40 jet. The fluctuations associated with this wave are
almost entirely bound within the core of the jet. At NPR = 2.10 the amplitude of the axial
fluctuations are significantly larger than the transverse; at NPR = 3.40 both transverse and
axial fluctuations are observed for the k+

t wave.
A comparison of the radial profiles of streamwise velocity for the three identified

structures is presented in figure 14, educed from both experiment and global analysis
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Figure 13. Qualitative amplitude distributions associated with the three wave-like structures for the NPR =
3.40 jet (experimental); (a,b) k−

th , (c, d) k+
kh, (e, f ) k+

t . (a,c,e) Axial velocity fluctuations, (b,d, f ) transverse
velocity fluctuations.

for the NPR = 2.10 jet. All curves have been lightly smoothed with a moving average
filter to reduce noise; no major features have been removed. The radial structure of the
k−

th wave exhibits a close match between theory and experiment, although the radial decay
outside the jet is slower for the global mode. This mismatch in the acoustic field may be a
consequence of the PIV measurement being unable to capture weak acoustic perturbations
further from the jet. For the k+

kh wave, the radial structure for both experiment and LSA
exhibits the characteristic double peak of a KH wavepacket, with minima at the same radial
location, but with a closer spacing between the peaks for the global mode. The radial
structure of the k+

t mode is very similar for the two analyses, although there is a small
peak at r/D ≈ 0.5 for the global mode that is larger than that observed in the experiment.
As noted earlier, the wavenumber for each of the modes identified in the global analysis is
approximately �kxD = 0.5 higher than the corresponding wave in the experimental data.
Since the global analysis is performed on the experimental mean flow, the spacing of the
shock cells is the same for both cases. Given this fact, and the slightly higher wavenumber
for the KH wave in the global analysis, the increase in wavenumber for the two interaction
waves is consistent with the predictions of (1.4).

The global analysis has done a remarkable job of capturing the same key structures
observed in experiment. Critically, it has demonstrated that it is indeed possible to
describe nonlinear KH–shock interactions using a linear model, provided the shock-cell
structure is included in the mean flow: the global mode has been shown to correctly
capture the nonlinear mechanisms underpinning the production of both upstream- and
downstream-travelling waves when coherent turbulent structures are convected through
a network of shock cells. It must be noted, however, that the shocks at NPR = 2.10 are
very weak, with much of the compression and expansion happening isentropically. How
well such linear models will perform as the shocks increase in strength remains an open
question. The analysis has also provided some clarification of the nature of the waves that
result from this nonlinear interaction. The upstream-travelling wave is the guided jet mode
first identified by Tam & Hu (1989a) as a subsonic instability wave. The downstream wave
has not previously been discussed in the context of jet screech, but as will be demonstrated
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Figure 14. Radial profiles of streamwise velocity for the three waves discussed in this paper. All waves are
normalized to their own maximum value. Results are for the NPR = 2.10 jet.

it is simply the downstream-travelling form of the same subsonic wave identified by Tam
and Hu, which has recently been the subject of extensive investigation by Towne et al.
(2017) and Schmidt et al. (2017). We turn to a local, rather than global, analysis to elucidate
the nature of this wave.

Figure 15 presents radial eigenfunctions of the downstream-propagating subsonic
instability wave as a function of axial position; these eigenfunctions have been produced
via a local analysis on the experimentally derived mean flow at each axial location for
the screech frequency St = 0.67. In the region of the flow where the shocks are strongest,
both the eigenfunction and the wavenumber (omitted for brevity) of this duct-like wave
are significantly modulated by the shocks. Despite this modulation, the wave retains its
duct-like character: bounded by the shear layer of the jet. In between the shocks, and
further downstream, the wave has the typical structure associated with a k+

t mode of the
first radial order, as shown in detail in Towne et al. (2017). Immediately downstream of
the shocks, however, the wavenumber of the wave significantly increases, and the peak
amplitude shifts from the centreline to almost the edge of the shear layer. Considering the
overall characteristics of the shock-cell structure, it is possible that high pressure regions
oppose the radial support of these waves in the core, such that the peak is moved to regions
of moderate pressure. The eigenfunctions at two selected axial locations are compared
with the profile extracted from the experimentally derived wavenumber spectrum. At
x/D = 1.3, the flow is immediately downstream of a shock, and the structure is markedly
different to that expected for a k+

t wave. At x/D = 2.2, which is close to where the
amplitude of this wave peaks according to figure 12, the experiment and stability analysis
match well up to r/D ≈ 0.5. The wave is not perfectly trapped by the shear layer in the
experimental data, and decays more slowly for r/D > 0.5.

With the nature of the three waves now established, we can make an overall statement
regarding their behaviours. A nonlinear interaction of the KH wavepacket with the shock
cells of the jets produces both upstream- and downstream-travelling waves, as predicted
by the model of Tam & Tanna (1982); this is the first direct experimental validation of
the theory, and likewise the first demonstration that a linear global analysis can capture
this nonlinear interaction once the shock-cell structure is included in the mean flow.

913 A7-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1175


Waves in screeching jets

0

0.5

1.0

1.5

2.0

1 2 3 4 5

0.5

|u
c/

m
ax

 u
c|

1.0

Experimental

Local mode x/D = 2.2

Local mode x/D = 1.3

x/D

r/D

(b)(a)

0 0.5 1.0 1.5 2.0

r/D

Figure 15. (a) Eigenfunctions of the k+
t wave as a function of streamwise position, obtained via local linear

stability analysis. (b) Comparison of eigenfunctions at two selected axial locations with profile extracted from
figure 12. Results for NPR = 2.10 jet.

While the model of Tam & Tanna (1982) predicted that these waves would exist, it is the
mean flow that dictates their nature. In essence, the KH-shock interaction can be thought
of as a forcing term, with the response to that forcing dictated by the structure of the mean
flow. The mean flow supports upstream- and downstream-travelling waves with distinct
radial structures (Tam & Hu 1989a): the k−

th wave has support both inside and outside the
jet, while the k+

t wave is (in a vortex-sheet analysis at least) entirely confined to the core
of the jet. Thus, we now have a full explanation for the results presented here: a ‘forcing’
via the mechanism of Tam & Tanna (1982), and a response in the form of waves predicted
by Tam & Hu (1989a). In the following section of the paper, we consider the further
interaction between these three waves.

3.3. Wave superposition in screeching jets
As alluded to in the introduction of the paper, and demonstrated in figure 7, velocity
fluctuations in screeching jets are strongly spatially modulated. In this section we consider
possible sources of this modulation. It is already well recognized that the standing wave
set up between the downstream-travelling k+

kh waves and the upstream-travelling k−
th waves

results in a periodic modulation of the velocity fluctuations. The effect of this modulation
can be removed via the application of a high-pass wavenumber filter with a cutoff at
kx = 0; all remaining fluctuations are associated with downstream-travelling waves. The
results of this filtering are shown in figures 16 and 17; all periodic modulation of velocity
fluctuations outside of the jet lipline have been removed, but all three jets still exhibit
periodic modulation within the jet core. For the m = 0 screech cases, there is a periodic
oscillation of axial velocity fluctuation amplitude in the jet core, but relatively little
modulation of the transverse velocity component. For the helical screech mode, there
remains significant modulation of velocity in both the axial velocity (primarily on the
high-speed side of the shear layer) and the transverse velocity (at the centreline).

Given the restriction of this modulation to the core of the jet, one candidate is a
superposition of the k+

kh wave with the trapped k+
t waves. To examine superposition

between all three waves, dual-peak bandpass filters are applied to each of the three
possible wave–wave combinations, with both the filtered-wavenumber spectra and
resultant amplitude plots presented in figures 18 and 19. Again, it must be emphasized
that information is lost in this filtering process, and the results should only be
considered a qualitative indication. As such, amplitudes have been normalized by the
maximum amplitude in each case for clarity, although the fluctuations resulting from the
superposition of the k−

th and k+
t waves is an order of magnitude weaker than all others.
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Figure 16. Magnitude of coherent fluctuations with positive phase velocity for the two jets where the screech
mode is an m = 0 azimuthal mode. (a,b) Axial velocity fluctuations. (c, d) Transverse velocity fluctuations.
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As expected, the superposition of the k−
th and k+

kh produces the familiar standing-wave
pattern in the near field of the jet, but is also responsible for significant modulations within
the core of the jet. The k−

th and k+
t superposition is highly periodic and confined to the core

of the jet, but is very weak and contributes minimally to the overall fluctuations. The k+
t

and k+
kh wave superposition, while weaker than that of the k−

th and k+
kh, still results in a

significant spatial modulation of velocity fluctuation. As the k+
t is confined within the

lipline of the jet, so too is the spatial modulation of velocity; outside the jet it is only the
superposition of the k−

th and k+
kh waves that produces spatial modulation. In the flows we

consider here, both the k−
th and k+

t waves result from a nonlinear interaction between the
k+

kh wavepacket and the shocks. The superposition of the k+
kh wave with these two new

waves thus produces a spatial modulation whose wavelength closely matches the shock
spacing in the flow.
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Figure 18. Interaction between pairs of waves for NPR = 2.10 jet, represented through streamwise velocity
fluctuations. (a–c) Wavenumber spectra. (d–f ) Velocity fluctuation amplitude (normalized).
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Figure 19. Interaction between pairs of waves for NPR = 3.40 jet, represented through streamwise velocity
fluctuations. (a–c) Wavenumber spectra. (d–f ) Velocity fluctuation amplitude (normalized).

Plots of centreline fluctuation amplitude are presented in figure 20. If it is assumed that
the bandpass filters only admit fluctuations associated with these waves, then even on the
centreline, the majority of the modulation is evidently derived from the superposition of
the k−

th and k+
kh waves, with the superposition of the k+

t and k+
kh providing a small but

non-negligible contribution. When the superposition of all three waves is considered,
the modulation in the range 2 � x/D � 4 is reproduced almost perfectly; outside this
range the growth and decay requires the inclusion of lower wavenumbers than those
admitted by the filter. There is, however, a serious limitation with this analysis; even
in the absence of either the k−

th or the k+
t waves, any modulation of the k+

kh waves
would be contained in wavenumbers k+

kh − ks and k+
kh + ks. These are of course the same

wavenumbers occupied by the k−
th and k+

t waves. While outside of the shear layer, it
seems clear that the majority of observed modulation arises from the previously identified

913 A7-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1175


D. Edgington-Mitchell and others

0.5
10–7

10–6

10–5uc u
c /

U
e2

10–4

10–3

10–2

1.0 1.5 2.0 2.5 3.0

x/D
3.5 4.0 4.5 5.0

Total

kth
– + k+

kh

kt
– + k+

kh

kth
– + kt

+ + k+
kh

Figure 20. Centreline streamwise velocity fluctuation profiles for filtered data subsets of NPR = 2.10 jet.

‘standing wave’ formed by the k+
kh and k−

th, within the jet core it is difficult to decouple
modulation of the overall fluctuations due to wave superposition from modulation of the
k+

kh by the shock. Preliminary local stability calculations presented in Edgington-Mitchell
et al. (2019) suggested that the influence of the shocks on the growth rate of the k+

kh wave
were minimal, but a deeper analysis using stability tools is required to provide a categorical
answer to the question of wave modulation in the core of shock-containing jets.

4. Conclusion

Tam & Tanna (1982) first suggested that the interaction of the KH wavepacket with the
shocks in a supersonic jet would produce waves with both positive and negative phase
velocity. Here, we have provided the first evidence for these waves in the velocity field
of screeching supersonic jets across a range of operating conditions. Further, we have
demonstrated that the radial structure of these waves is dictated by the base flow, in
accordance with the waves predicted by Tam & Hu (1989a) via a vortex-sheet model.
The upstream-travelling wave has support both inside and outside the jet, while the
downstream-travelling wave is confined within the core of the jet. This downstream wave
is the ‘trapped’ wave described in Towne et al. (2017), that treats the jet like a soft-walled
duct. The presence of these waves has been demonstrated for three different stages of jet
screech, with shocks ranging from relatively weak to quite strong. Thus we suggest that as
long as the mean flow is able to support these waves, they should be expected in all stages
of jet screech, irrespective of shock strength.

We have also demonstrated that the nonlinear wave interaction can be captured by
a linear global analysis performed on the experimentally derived mean flow, thanks to
the presence of the shock-cell structure in the mean flow. Despite the many nonlinear
mechanisms active in a screeching jet, the linear analysis predicts the correct screech
tone to within ≈1 %, and the same three wave structures observed in experiment are
likewise evident in the global mode. This suggests that, aside from the nonlinear wave
interaction that drives the upstream- and downstream-travelling waves, the remaining
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frequency-selection mechanisms (propagation characteristics of the k+
kh and k−

th waves,
receptivity in the nozzle plane) are linear. As a cautionary note, however, it must be
emphasized that this result has only been demonstrated for the case with the weakest
shocks.

Finally, the superposition of these three wave structures and the spatially modulated
velocity fluctuations that result were considered. Outside of the jet, no modulation
is evidence once upstream-travelling waves are excluded, consistent with prior work
suggesting this modulation is due to interaction between the downstream-propagating and
upstream-propagating waves. In the core of the jet the result is less clear; some amount of
modulation will be due to the two waves generated from the interaction, but the present
analysis is unable to decouple this from any direct influence that the shocks have on the
KH wavepacket.
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Appendix. Sensitivity of Reynolds number in global stability analysis

Considering that the Reynolds number chosen for the global stability analysis differs from
the experimental one, and that no turbulent viscosity model is used, it is useful to analyse
the influence of this parameter on the prediction of the screech frequency and on the shapes
of the modes. Here, the Reynolds number was varied in the interval [2500 30 000], and
the frequencies of the screech mode (analysed in § 3.1) and the respective growth rates
are shown in figure 21. These results show the robustness of the prediction regarding this
parameter: the variation of the Strouhal number is only of the order of 10−3 over this
range of Reynolds numbers. Also, the growth rate of the screech mode increases as this
parameter is increased, as expected in this sort of stability analysis (see Coenen et al.
(2017), for instance). Interestingly, the mode does not cross the real axis, and remains
stable for all Reynolds numbers analysed. This may be due to the low shock-cell strength
for the present case, or even due to the absence of the nozzle in the computational
domain.

The shapes of the modes (represented by the real part of the streamwise velocity)
for the different Reynolds numbers are shown in figure 22. Overall, all mode shapes
are qualitatively similar to the leading POD mode shown in figure 5. For low Reynolds
numbers, the increased viscosity leads to modes that are spatially smoother, especially
around the shear layer. The streamwise and radial variation are also slower, which leads to
more spatially spread mode shapes. As the Reynolds number is increased, the modes start
to become more concentrated around the shear layer, and the spatial changes are steeper.
The high similarity between the low Reynolds number mode and the POD mode can be
associated with the action of the turbulent viscosity in this flow: since such a model is
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0 1 2 3

1.5

r/D

x/D

Re = 2500 Re = 5000

Re = 30 000Re = 20 000

x/D

r/D

1.0

0.5

0

1.5

1.0

0.5

0

1.51

1

0

0

–1

–1

1

1

0

0

–1

–1

1.0

0.5

0

1.5

1.0

0.5

0

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

(b)(a)

(c) (d )

Figure 22. Shapes of the modes for different values of Reynolds number from global stability analysis. Only
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not used in the present analysis, a consideration of a lower Reynolds number can partially
account for the increased turbulent mixing in the linear analysis, as shown by Pickering
et al. (2020).

REFERENCES

AGÜÍ, J.C. & JIMENEZ, J. 1987 On the performance of particle tracking. J. Fluid Mech. 185, 447–468.
BABUCKE, A. 2009 Direct numerical simulation of noise-generation mechanisms in the mixing layer of a jet.

PhD thesis, Universität Stuttgart.
BARONE, M.F. & LELE, S.K. 2005 Receptivity of the compressible mixing layer. J. Fluid Mech. 540,

301–335.
BENEDDINE, S., METTOT, C. & SIPP, D. 2015 Global stability analysis of underexpanded screeching jets.

Eur. J. Mech. B/Fluids 49, 392–399.
BERKOOZ, G., HOLMES, P. & LUMLEY, J.L. 1993 The proper orthogonal decomposition in the analysis of

turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539–575.
BERLAND, J., BOGEY, C. & BAILLY, C. 2007 Numerical study of screech generation in a planar supersonic

jet. Phys. Fluids 19 (7), 075105.
BOGEY, C. & GOJON, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic

impinging round jets. J. Fluid Mech. 823, 562–591.
CAVALIERI, A.V., RODRÍGUEZ, D., JORDAN, P., COLONIUS, T. & GERVAIS, Y. 2013 Wavepackets in the

velocity field of turbulent jets. J. Fluid Mech. 730, 559–592.

913 A7-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1175


Waves in screeching jets

COENEN, W., LESSHAFFT, L., GARNAUD, X. & SEVILLA, A. 2017 Global instability of low-density jets.
J. Fluid Mech. 820, 187–207.

DAVIES, M. & OLDFIELD, D. 1962 Tones from a choked axisymmetric jet. Acustica 12, 257–277.
DEANE, A., KEVREKIDIS, I., KARNIADAKIS, G.E. & ORSZAG, S. 1991 Low-dimensional models for

complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A 3 (10),
2337–2354.

DUCROS, F., FERRAND, V., NICOUD, F., WEBER, C., DARRACQ, D., GACHERIEU, C. & POINSOT, T. 1999
Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517–549.

EDGINGTON-MITCHELL, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging
supersonic jets–a review. Intl J. Aeroacoust. 18 (2–3), 118–188.

EDGINGTON-MITCHELL, D., HONNERY, D.R. & SORIA, J. 2014a The underexpanded jet mach disk and its
associated shear layer. Phys. Fluids 26 (9), 096101.

EDGINGTON-MITCHELL, D., HONNERY, D.R. & SORIA, J. 2015a Multimodal instability in the weakly
underexpanded elliptic jet. AIAA J. 53 (9), 2739–2749.

EDGINGTON-MITCHELL, D., HONNERY, D.R. & SORIA, J. 2015b Staging behaviour in screeching elliptical
jets. Intl J. Aeroacoust. 14 (7), 1005–1024.

EDGINGTON-MITCHELL, D., JAUNET, V., JORDAN, P., TOWNE, A., SORIA, J. & HONNERY, D. 2018
Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.

EDGINGTON-MITCHELL, D., OBERLEITHNER, K., HONNERY, D.R. & SORIA, J. 2014b Coherent structure
and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822–847.

EDGINGTON-MITCHELL, D., WEIGHTMAN, J., LOCK, S., KIRBY, R., NAIR, V., SORIA, J. &
HONNERY, D. 2021 The generation of screech tones by shock leakage. J. Fluid Mech. 908, A46.

EDGINGTON-MITCHELL, D.M., DUKE, D., WANG, T., HARRIS, D., SCHMIDT, O.T., JAUNET, V.,
JORDAN, P. & TOWNE, A. 2019 Modulation of downstream-propagating waves in aeroacoustic resonance.
In 25th AIAA/CEAS Aeroacoustics Conference, p. 2689.

GOJON, R., BOGEY, C. & MIHAESCU, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7),
2918–2924.

GRASSO, F. & PIROZZOLI, S. 2000 Shock-wave–vortex interactions: shock and vortex deformations, and
sound production. Theor. Comput. Fluid Dyn. 13 (6), 421–456.

GUDMUNDSSON, K. & COLONIUS, T. 2011 Instability wave models for the near-field fluctuations of turbulent
jets. J. Fluid Mech. 689, 97–128.

HUSSAIN, A. & REYNOLDS, W. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid
Mech. 41, 241–258.

JAUNET, V., COLLIN, E. & DELVILLE, J. 2016 Pod-galerkin advection model for convective flow: application
to a flapping rectangular supersonic jet. Exp. Fluids 57 (5), 84.

JAUNET, V., JORDAN, P. & CAVALIERI, A. 2017 Two-point coherence of wave packets in turbulent jets. Phys.
Rev. Fluids 2 (2), 024604.

JAUNET, V., MANCINELLI, M., JORDAN, P., TOWNE, A., EDGINGTON-MITCHELL, D.M., LEHNASCH, G.
& GIRARD, S. 2019 Dynamics of round jet impingement. In 25th AIAA/CEAS Aeroacoustics Conference,
p. 2769.

JORDAN, P. & COLONIUS, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173–195.
JORDAN, P., JAUNET, V., TOWNE, A., CAVALIERI, A.V., COLONIUS, T., SCHMIDT, O. & AGARWAL, A.

2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333–358.
KARAMI, S., STEGEMAN, P.C., OOI, A., THEOFILIS, V. & SORIA, J. 2020 Receptivity characteristics of

under-expanded supersonic impinging jets. J. Fluid Mech. 889, A27.
LI, X., HE, F., ZHANG, X., HAO, P. & YAO, Z. 2019 Shock motion and flow structure of an underexpanded

jet in the helical mode. AIAA J. 57 (9), 3943–3953.
LI, X.-R., ZHANG, X.-W., HAO, P.-F. & HE, F. 2020 Acoustic feedback loops for screech tones of

underexpanded free round jets at different modes. J. Fluid Mech. 902, A17.
MANCINELLI, M., JAUNET, V., JORDAN, P. & TOWNE, A. 2019a Screech-tone prediction using

upstream-travelling jet modes. Exp. Fluids 60 (1), 22.
MANCINELLI, M., JAUNET, V., JORDAN, P., TOWNE, A. & GIRARD, S. 2019b Reflection coefficients and

screech-tone prediction in supersonic jets. In 25th AIAA/CEAS Aeroacoustics Conference, p. 2522.
MANNING, T. & LELE, S. 2000 A numerical investigation of sound generation in supersonic jet screech. In

21st AIAA Aeroacoustics Conference.
MARTINI, E., CAVALIERI, A.V. & JORDAN, P. 2019 Acoustic modes in jet and wake stability. J. Fluid Mech.

867, 804–834.
MERCIER, B., CASTELAIN, T. & BAILLY, C. 2017 Experimental characterisation of the screech feedback

loop in underexpanded round jets. J. Fluid Mech. 824, 202–229.

913 A7-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1175


D. Edgington-Mitchell and others

MICHALKE, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159–199.
MITCHELL, D.M., HONNERY, D.R. & SORIA, J. 2012 The visualization of the acoustic feedback loop in

impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. (Visualization)
15 (4), 333–341.

MITCHELL, D.M., HONNERY, D.R. & SORIA, J. 2013 Near-field structure of underexpanded elliptic jets.
Exp. Fluids 54 (7), 1578.

MORENO, D., KROTHAPALLI, A., ALKISLAR, M. & LOURENCO, L. 2004 Low-dimensional model of a
supersonic rectangular jet. Phys. Rev. E 69 (2), 026304.

MORRIS, P.J. 2010 The instability of high speed jets. Intl J. Aeroacoust. 9 (1), 1–50.
NICHOLS, J.W. & LELE, S.K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid

Mech. 669, 225–241.
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