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DP-MINIMAL VALUED FIELDS

FRANZISKA JAHNKE, PIERRE SIMON, AND ERIKWALSBERG

Abstract. We show that dp-minimal valued fields are henselian and give classifications of dp-minimal
ordered abelian groups and dp-minimal ordered fields without additional structure.

§1. Introduction. Very little is known about NIP fields. It is widely believed that
an NIP field is either real closed, separably closed, or admits a definable henselian
valuation. Note that even the stable case of this conjecture is open.
In this paper we study a very special case of this question: that of a valued
or ordered dp-minimal field. Dp-minimality is a combinatorial generalization of
o-minimality and C-minimality. A dp-minimal structure can be thought of as a one-
dimensionalNIP structure. Themain result of this paper is that a dp-minimal valued
field is henselian. As a consequence, we show that an ℵ1-saturated dp-minimal
ordered field admits a henselian valuation with residue field R. These results can be
seen either as a special case of the conjecture on NIP fields or as a generalization of
what is known in the C-minimal and weakly o-minimal cases.
Our proof has two parts. We first establish some facts about dp-minimal topo-
logical structures. In Section 3, we generalize statements and proofs of Goodrick
[6] and Simon [17] on ordered dp-minimal structures to the more general setting
of a dp-minimal structure admitting a definable uniform topology. This seems to
be the most general framework to which the proofs apply. Only afterwards will we
assume that the topology comes either from a valuation or an order. Once we have
established the necessary facts about dp-minimal uniform structures, the remainder
of the proof, given in Section 4, follows part of the proof that weakly o-minimal
fields are real closed. The proof that weakly o-minimal fields are real closed is sur-
prisingly more complicated than the proof that o-minimal fields are real closed. It
involves first finding some henselian valuation and then showing that the residue
field is real closed and the value group is divisible, fromwhich the result follows. This
argument was extended by Guingona [7] to dp-small structures, a strengthening of
dp-minimality. We follow again the same path, but assuming only dp-minimality,
the value group is not necessarily divisible.
In Section 5, we use the Gurevich–Schmitt quantifier elimination for ordered
abelian groups to show that an ordered abelian groupΓwithout additional structure
is dp-minimal if and only if it is is nonsingular, that is if |Γ/pΓ| < ∞ holds for
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all primes p. It follows that an ℵ1-saturated dp-minimal ordered field admits a
henselian valuation with residue fieldR and nonsingular value group. In fact, this is
best possible: Chernikov and Simon [3] show that any such field is dp-minimal. This
gives rise to our classification of dp-minimal ordered fields in Section 6. Finally, in
Proposition 6.5, we show that an ordered field which is not dense in its real closure
admits a definable convex valuation. This result may be of independent interest.
After finishing this paper, we learnt from Will Johnson that he simultaneously
proved more general results on dp-minimal fields using different methods. Most of
our results can bededuced fromhis paper [9],where he gives a complete classification
of dp-minimal fields up to elementary equivalence. He proves in particular that if
such a field is neither algebraically closed nor real closed, then it admits a nontrivial
definable henselian valuation. His proof can be roughly broken down as follows:

Step 1. Finding a V topology;
Step 2. Building from the V topology a henselian valuation;
Step 3. Deducing the classification using extra input from [8] and [10].

Step 1 is completely absent from our work since we assume from the start that
we have a definable valuation. Step 2 of Johnson’s paper has a very large overlap
with our Sections 3 and 4. The context however is slightly different: in Section
3, we start with a general definable topology, the key result being Proposition 3.9
which says that images of balls by finite-to-one definable functions have nonempty
interior. Johnson deals with a specific V topology, which however is not known to
be genuinely definable at this point of the paper. He proves the same statement in
his Proposition 5.3. He then deduces that a definable valuation in a dp-minimal
field must be henselian (our Proposition 4.5) with an argument different from ours.
His argument uses crucially a result about bounded germs (Theorem 4.7). This is
similar to our Lemma 3.5, although again neither implies the other, because the
assumptions are different. Finally, his third step is also absent from our paper. We
only manage to classify ordered dp-minimal fields (Theorem 6.2). That theorem is
not explicitly stated in Johnson’s work, but follows from it at once: if a valued field
is orderable, then its residue field must also be orderable, and the only orderable
residue field in Johnson’s classification is R.

§2. Dp-minimality. Let L be a multisorted language with a distinguished home
sort and let T be a theory in L. Throughout this section,M is an |L|+-saturated
model of T with distinguished home sortM . We recall the definitions of inp- and
dp-minimality. These definitions are usually stated for one-sorted structures, we
define them in our multisorted setting.

Definition. The theory T is not inp-minimal with respect to the home sort if
there are two formulas φ(x; ȳ) and �(x; z̄), where x is a single variable of sortM ,
two sequences (b̄i : i < �) and (c̄i : i < �) inM and k ∈ N such that:

• the sets {φ(x; b̄i) : i < �} and {�(x; c̄i) : i < �} are each k-inconsistent;
• φ(x; b̄i) ∧ �(x; c̄j) is consistent for all i, j < �.

The data consisting of two sequences (b̄i : i < �) and (c̄i : i < �) and formulas
φ(x; ȳ), �(x; z̄) with properties as above is called an inp-pattern (of depth 2). If T
is inp-minimal and one-sorted then T is NTP2.
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Definition. The theory T is not dp-minimal with respect to the home sort if
there are two formulas φ(x; ȳ) and �(x; z̄), where x is a single variable of sortM ,
two sequences (b̄i : i < �) and (c̄i : i < �) inM such that:

• for any i∗, j∗ ∈ �, the conjunction

φ(x; b̄i∗) ∧

⎡
⎣∧
i �=i∗

¬φ(x; b̄i)

⎤
⎦ ∧ �(x; c̄j∗) ∧

⎡
⎣ ∧
j �=j∗

¬�(x; c̄j)

⎤
⎦

is consistent.

If T is one-sorted then T is dp-minimal if and only if T is both inp-minimal and
NIP (see for example [17]). It follows that if T isNIP and inp-minimal with respect
to the home sort then T is dp-minimal with respect to the home sort.
We define the Shelah expansion MSh of M. Fix an |M|+-saturated elemen-
tary expansionM ≺ N . We say that a subset of M is externally definable if it is
of the form {a ∈ M : N |= φ(a; b)} for some L-formula φ(x;y) and b ∈ N |y|.
A straightforward application of |M|+-saturation shows that the collection of exter-
nally definable sets does not depend on the choice of N . Note that the externally
definable sets form a boolean algebra. The Shelah expansionMSh is the expansion
ofM by predicates for all externally definable subsets of M . More precisely, for
each formula φ(x;y) ∈ L and each b ∈ N |y|, we have a relation Rφ(x;b)(x) which is
interpreted as {a ∈ M : N |= φ(a; b)}. Shelah proved the following, see e.g., [19,
Chapter 3].

Proposition 2.1 (Shelah). IfM isNIP thenMSh admits elimination of quantifiers
and is consequently also NIP.

We make extensive use of the next fact which was observed in [14].

Proposition 2.2. If T is NIP and dp-minimal with respect to the home sort then
Th(MSh) is also dp-minimal (relative to the same home sort).

Proof. Since T is dp-minimal, it is NIP, hence the structureMSh has elimination
of quantifiers.We suppose towards a contradiction thatTh(MSh) is not dp-minimal.
Then there are two formulas φ(x; ȳ), �(x; z̄) such that for any n < �, there are
finite sequences (ai : i < n) and (bi : i < n) of elements of M with the property
as in the definition of dp-minimality. AsMSh admits quantifier elimination there
are tuples d, d ′ ∈ N and L-formulas φ′(x; ȳ; d ), �′(x; z̄; d ′) such that for any
(a, b) ∈ M|x| ×M|y|, we haveMSh |= φ(a; b) ⇐⇒ N |= φ′(a; b; d ) likewise for
� and �′. Using compactness, we see that the formulas φ′(x; ȳ; d ) and �′(x; z̄; d ′)
contradict the dp-minimality of T . 	
IfM admits a definable linear order, then every convex subset ofM is externally
definable, so the expansion of an ordered dp-minimal structure by a convex set is
always dp-minimal. We end the section with a proof of the well-known fact that
dp-minimal fields are perfect (which appears also in [9, Observation 2.2]). The proof
in fact works more generally for fields of finite dp-rank.

Lemma 2.3. Every dp-minimal field is perfect.

Proof. Let K be a nonperfect field of characteristic p > 0. We let Kp be the set
of pth powers. Fix z ∈ K \Kp. Let � : K×K → K be given by �(x, y) = xp+zyp .
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We show that � is injective, it follows thatK is not dp-minimal. Fix x0, x1, y0, y1 ∈ K
and suppose that �(x0, y0) = �(x1, y1) that is:

xp0 + zy
p
0 = x

p
1 + zy

p
1 .

If y0 �= y1 then yp0 �= yp1 , so:

z =
xp1 − x

p
0

yp0 − y
p
1
∈ Kp,

so we must have y0 = y1. Then x
p
0 = x

p
1 and so also x0 = x1. Thus � is injective. 	

§3. Dp-minimal uniform spaces. Many dp-minimal structures of interest admit
natural “definable topologies”. Typically, the topology is given by a definable linear
order or a definable valuation. In this section, we develop a framework designed to
encompass many of these examples, dp-minimal structures equipped with definable
uniform structures. We prove some results of Goodrick [6] and Simon [17] in this
setting. The proofs are essentially the same. We first recall the notion of a uniform
structure on M . We let Δ be the diagonal {(x, x) : x ∈ M}. Given U,V ⊆ M 2,
we let

U ◦ V = {(x, z) ∈M 2 : (∃y ∈M )(x, y) ∈ U, (y, z) ∈ V }.
A basis for a uniform structure onM is a collection B of subsets ofM 2 satisfying
the following:

(1) the intersection of the elements of B is equal to Δ;
(2) if U ∈ B and (x, y) ∈ U then (y, x) ∈ U ;
(3) for all U,V ∈ B there is aW ∈ B such thatW ⊆ U ∩ V ;
(4) for all U ∈ B there is a V ∈ B such that V ◦ V ⊆ U .
The uniform structure onM generated by B is defined as

B̃ = {U ⊆M 2 : (∃V ∈ B)V ⊆ U}.
Elements of B̃ are called entourages, and elements of B are called basic entourages.
Given U ∈ B and x ∈ M , we let U [x] = {y : (x, y) ∈ U}. As usual, one defines a
topology onM by declaring that a subset A ⊆M is open if for every x ∈ A, there
is U ∈ B such that U [x] ⊆ A. The first condition above ensures that this topology
is Hausdorff. The collection {U [x] : U ∈ B} forms a basis of neighborhoods of
x. We will refer to them as balls with center x. We say that B is a definable uniform
structure if there is a formula ϕ(x, y, z̄) such that

B = {ϕ(M 2, c̄) | c̄ ∈ D}
for some definable set D. (This is a slight abuse of terminology, since B is only a
definable basis for a uniform structure.) Note that the conditions above are first
order conditions on ϕ. We give some examples of definable uniform structures.

(1) Suppose that Γ is anM-definable ordered abelian group and d is a definable
Γ-valued metric onM . We can take B to be the collection of sets of the form
{(x, y) ∈ X 2 : d (x, y) < t} for t ∈ Γ. The typical case is when Γ = M and
d (x, y) = |x − y|.

(2) Suppose that Γ is a definable linear order with minimal element and that d is
a definable Γ-valued ultrametric onM . Then we can put a definable uniform
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structure on M in the same way as above. The typical case is when M is a
valued field.

(3) Suppose that M expands a group. Let D be a definable set and suppose
that {Uz̄ : z̄ ∈ D} is a definable family of subsets of M which forms a
neighborhood basis at the identity for the topology onM under whichM is
a topological group. Then sets of the form {(x, y) ∈ M 2 : x−1y ∈ Uz̄} for
z̄ ∈ D give a definable uniform structure onM .

For the remainder of this section, we assume that B is a definable uniform structure on
M and thatM is inp-minimal with respect to the home sort. We further suppose that
M does not have any isolated points.

Lemma 3.1. Every infinite definable subset ofM is dense in some ball.

Proof. We suppose towards a contradiction that X ⊆ M is infinite, definable,
and nowhere dense. Let (ai : i < �) be a sequence of distinct points in X . Applying
ℵ1-saturation, we let U0 ∈ B be such that U0[ai ] ∩ U0[aj ] = ∅ when i �= j. Now
inductively construct elementsUn ∈ B and xi,n ∈ U0[ai ] such that ai ∈ Un[xi,n] and
Un+1[xi,n] ∩X = ∅ for all i, n < �. Assume we have defined Um form � n and xi,m
form � n − 1. By assumption, X is not dense in the ball Un[ai ] for any i , hence we
can find some Un+1 ∈ B and points xi,n ∈ Un[ai ] such that Un+1[xi,n] ∩ X = ∅ for
all i . If Un[x] = �(x, b̄n), then the formulas

φ(x, ai) ≡ x ∈ U0[ai ] and �(x, b̄n, b̄n+1) ≡ (Un+1[x] ∩ X = ∅ ∧Un[x] ∩X �= ∅)

witness that T is not inp-minimal with respect to the home sort. This contradiction
shows that the lemma holds. 	
We leave the simple topological proof of the following to the reader:

Corollary 3.2. Any definable closed subset ofM is the union of an open set and
finitely many points.Moreover, the closure of a definable open set is equal to itself plus
finitely many points.

The next lemma is a version of Lemma 3.19 of [6]. Given R ⊆ M 2 and a ∈ M
we define R(a) = {b ∈M : (a, b) ∈ R}.
Lemma 3.3. Let R ⊆M 2 be a definable relation such that for every a ∈M , there
is V ∈ B satisfying V [a] ⊆ R(a). Then there are U,V ∈ B and a point a ∈ M such
that V [b] ⊆ R(b) for every b ∈ U [a].
Proof. We suppose otherwise towards a contradiction.We suppose that for every
a ∈ M and U,V ∈ B, there is a b ∈ U [a] such that V [b] � R(b). Let (ai : i < �)
be a sequence of pairwise distinct elements ofM and fix U ∈ B such that the balls
U [ai ] are pairwise disjoint. For each i < �, pick some xi,0 ∈ U [ai ]. Then choose
U1 ∈ B such thatU1[xi,0] ⊆ R(xi,0) for all i . Next pick points xi,1 ∈ U [ai ] such that
U1[xi,1] � R(xi,1) and choose U2 ⊂ U1 such that U2[xi,1] ⊆ R(xi,1) holds for all i .
Iterating this, we obtain a decreasing sequence (Uk : 1 ≤ k < �) of elements of B
such that for each i, k < �, there is a xi,k ∈ U [ai ] such that Uk+1[xi,k ] ⊆ R(xi,k)
but Uk [xi,k ] � R(xi,k). Then the formulas

x ∈ U [ai ] and Uk+1[x] ⊆ R(x) ∧Uk [x] � R(x)

form an inp-pattern of depth 2 and contradict inp-minimality. 	
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Lemma 3.4. Let X be a definable set and a ∈M . Suppose thatX ∩U [a] is infinite
for every U ∈ B. Then X does not divide over a.
Proof. Let b̄ be the parameters defining X and let φ be a formula such that
X = φ(M, b̄). Let Xc̄ = φ(M, c̄). Assume that X divides over a, so there is an a-
indiscernible sequence b̄ = b̄0, b̄1, . . ., such that the intersection

⋂
i<� Xb̄i is empty.

We build by induction a decreasing sequence (Uj : j < �) of elements ofB such that
for any i, j < �, the intersection (Uj [a] \ Uj+1[a]) ∩ Xb̄i is nonempty. Suppose we
haveU0, . . . , Un . For each i < �, there is a point in Un[a] ∩Xb̄i other than a. Thus
for all i < � there is aV ∈ B such thatUn[a]\V [a] intersectsXb̄i . An application of
ℵ1-saturation gives a Un+1 ∈ B such thatUn+1 ⊆ Un andUn[a] \Un+1[a] intersects
Xb̄i for all i < �. We obtain an inp-pattern of depth 2 by considering the formulas
x ∈ Xb̄i and x ∈ Uj [a] \Uj+1[a]. This contradicts inp-minimality. 	
For the remainder of this section, we assume thatM is NIP and hence dp-minimal.
We say that X,Y ⊆M have the same germ at a ∈ M if there is a U ∈ B such that
U [a] ∩X = U [a] ∩ Y .
Lemma 3.5. Let φ(x; ȳ) be a formula, x of sortM , and a ∈ M . There is a finite
family (b̄i : i < n) of parameters such that for any b̄ ∈ M |ȳ| there is an i < n, such
that φ(M ; b̄) and φ(M ; b̄i) have the same germ at a.

Proof. LetM0 be a small submodel ofM containing a. Let b̄0 and b̄1 have the
same type overM0. In NIP theories, a global type does not fork over a model M
if and only if it isM -invariant. The formula φ(x; b̄0)� φ(x; b̄1) does not extend to
anM0-invariant type, therefore it forks overM0. Since forking equals dividing over
models in NIP theories, it divides overM . Lemma 3.4 shows that

U [a] ∩ (φ(x; b̄0)� φ(x; b̄1)) = ∅ for some U ∈ B.

This means that φ(x; b̄0) and φ(x; b̄1) have the same germ at a. The lemma follows
by |L|+-saturation. 	
We now assume thatM admits a definable abelian group operation. We assume
that the group operations are continuous and that the basic entourages are invariant
under the group action, i.e., U [0] + a = U [a] for all U ∈ B and a ∈ M . We make
the second assumption without loss of generality. If we only assume that the group
operations are continuous then we can define an invariant uniform structure whose
entourages are of the form

{(x, y) ∈M ×M : x − y ∈ U [0] & y − x ∈ U [0]} for U ∈ B.

We also assume thatM is divisible and, more precisely, assume that for everyU ∈ B
and n there is a V ∈ B such that for all y ∈ V [0] there is an x ∈ U [0] such that
nx = y. This assumption will hold if M is a field, + is the field addition, and the
uniform structure on M is given by a definable order or valuation. Under these
assumptions, we prove:

Proposition 3.6. Every infinite definable subset ofM has nonempty interior.

Proof. Let X be an infinite definable subset of M . Consider the family of
translates

{X − b : b ∈M}.
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By Lemma 3.5, there are finitely many elements (bi : i < n) such that for any b ∈M ,
there is an i < n such that X − b and X − bi have the same germ at 0. For each
i < n, let Xi be the set of b ∈ X such that X − bi and X − b have the same germ at
0. Fix i < n such that Xi is infinite. Let b ∈ Xi and let V ∈ B be such that X − b
andX −bi agree onV [0]. Notice that if c ∈ V [0]∩ (Xi −b) then c ∈ Xi −bi (Why?
X − b − c and X − bi − c agree on a small neighborhood of 0, also X − b − c and
X − bi agree on a small neighborhood of 0, hence X − bi − c and X − bi agree on
a small neighborhood of 0). Likewise, if c ∈ V [0] and c ∈ Xi − bi then c ∈ Xi − b.
Thus, Xi − b has the same germ at 0 as Xi − bi for all b ∈ Xi . Replacing X by Xi ,
we may assume X − b and X − b′ have the same germ at 0 for all b, b′ ∈ X .
By Lemma 3.1, X is dense in some ball. It follows that X has no isolated points.
Translating X , we may assume that 0 ∈ X . For any b ∈ X , there is a U ∈ B such
that X and X − b coincide on U [0], equivalently X and X + b coincide on U [b].
Let R be the relation given by

R(x, y) := (y ∈ X ↔ y ∈ X + x).

We have shown that for each b ∈ X , there is a U ∈ B such that U [b] ⊆ R(b,M ).
For the moment take X to be the distinguished home sort of M. As X has no
isolated points and has dp-rank 1 we can apply Lemma 3.3 to get a V ∈ B and an
openW ⊆M such that X is dense inW and V [x] ⊆ R(x,M ) for all x ∈W ∩ X .
Translating again, we may assume that there is aU ∈ B such thatX is dense inU [0]
and V [x] ⊆ R(x,M ) for every x ∈ U [0] ∩ X . Finally, we may replace both U and
V by some U ′ ⊆ U ∩ V . Hence to summarize, we have the following assumption
on X :

� X is dense in U [0] and X and X − b coincide on U [0] for any b ∈ X ∩U [0].

Pick V ∈ B such that V [0]− V [0] ⊆ U [0].
Claim: If g, h ∈ X ∩ V [0], then −h, g + h are in X .

Proof of Claim. Since 0 ∈ X by assumption, it is enough to show thatg−h ∈ X .
As−h ∈ (X−h)∩U [0], by�, we also have−h ∈ X∩U [0]. Then from g ∈ X∩U [0],
we deduce g ∈ X + h ∩U [0] and hence g − h ∈ X as required.
Suppose that the family {X − b : b ∈ M} has strictly less than n distinct germs at
0. FixW ∈ B such that the sum of any n! elements fromW [0] falls in V [0]. 	

Claim: For any g ∈W [0], we have k · g ∈ X for some k ≤ n.

Proof of Claim. By Lemma 3.5 and choice of n, there are distinct k, k′ < n such
that X − kg and X − k′g have the same germ at 0. We suppose that k < k′. As X
is dense in U [0], there is an h ∈ V [0] such that h ∈ X − kg and h ∈ X − k′g and
kg + h, k′g + h ∈ V [0]. As k′g + h, kg + h ∈ X ∩ V [0], we have (k′ − k)g ∈ X .
This proves the claim. 	
Applying the assumptions on M , we let W ′ ∈ B be such that W ′[0] ⊆ W [0]
and if y ∈ W ′[0] then there is an x ∈ W [0] such that n! · x = y. Now pick some
g ∈ W ′[0]. Let h ∈ W [0] such that n! · h = g. For some k ≤ n, k · h ∈ X . But
then (n!/k)(kh) = g ∈ X , using the first claim. Hence W ′[0] ⊆ X . Thus X has
nonempty interior. 	
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We leave the easy topological proof of the following corollary to the reader:
Corollary 3.7. Any definable subset ofM is the union of a definable open set and
finitely many points.
For this one can show:
Corollary 3.8. A definable subset of Mn has dp-rank n if and only if it has
nonempty interior.
Proof. Proposition 3.6 above shows that the Corollary holds in the case n = 1.
Proposition 3.6 of [18] shows that the Corollary holds ifM expands a dense linear
order and every definable subset ofM is a union of an open set and finitely many
points. The proof of Proposition 3.6 of [18] goes through mutatis mutandis in our
setting. 	
The following Proposition is crucial in the proof that a dp-minimal valued field
is henselian.
Proposition 3.9. Let X ⊆ Mn be a definable set with nonempty interior. Let
f :Mn →Mn be a definable finite-to-one function.Thenf(X ) has nonempty interior.
Proof. As finite-to-one definable functions preserve dp-rank, the proposition
follows immediately from Corollary 3.8. 	

§4. Dp-minimal valued fields. Throughout this section, (F, v) is a valued field.We
assume that the reader has some familiarity with valuation theory. We let Fv the
residue field of (F, v),Ov be the valuation ring andMv be the maximal ideal ofOv .
We denote the henselization of (F, v) by (F h, vh). Given a function p : F n → Fm
such that p = (p1, . . . , pm) for some p1, . . . , pm ∈ F [X1, . . . , Xn], we let Jp(a) be
the Jacobian of p at a ∈ F n.
Lemma 4.1. Let p ∈ F [X1, . . . , Xn]n and let B ⊆ (F h)n be an open polydisc.
Suppose that Jp(a) �= 0 for some a ∈ (B ∩ F n). There is an open polydisc U ⊆ B
with a ∈ U such that the restriction of p to U is injective.
Proof. This follows immediately from [16, Theorem 7.4]. 	
Proposition 4.2. Suppose that (F, v) is dp-minimal. Let p1, . . . , pn ∈
F [X1, . . . , Xn] andp = (p1, . . . , pn). If Jp(ā) �= 0 at ā ∈ F n thenp(U ) has nonempty
interior for all nonempty open neighborhoodsU of ā.
Proof. This follows immediately from the previous lemma along with Proposi-
tion 3.9. 	
The following lemma is included in the proof of the weakly o-minimal case in
[13] and stated for arbitrary fields in [7]. This lemma goes back to [12].
Lemma 4.3. Let K be a field extension of F , and let α ∈ K \ F be algebraic over
F . Let α = α1, . . . , αn be the conjugates of α over F , and let g be given by:

g(X0, . . . , Xn−1, Y ) :=
n∏
i=1

⎛
⎝Y −

n−1∑
j=0

αji Xj

⎞
⎠ .

Then g ∈ F [X0, . . . , Xn−1, Y ] and there are G0, . . . , Gn−1 ∈ F [X0, . . . , Xn−1] such
that

g(X0, . . . , Xn−1, Y ) =
n−1∑
j=0

Gj(X0, . . . , Xn−1)Yj + Yn.
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Letting G = (G0, . . . , Gn−1) we have:

(1) If c̄ = (c0, . . . , cn−1) ∈ F n and cj �= 0 for some then g(c̄, Y ) has no roots in
F ;

(2) There is a d̄ = (d0, . . . , dn−1) ∈ F n such that dj �= 0 for some j and JG(d̄ ) �= 0.
In the proposition below, Γ is the value group of (F, v). In the ordered case,
this proposition is a consequence of Proposition 3.6 of [7], which shows that a
dp-minimal ordered field is closed in its real closure.

Proposition 4.4. Suppose that (F, v) is dp-minimal and let (F h, vh) be the
henselization of (F, v). Let α ∈ F h such that for any 	 ∈ Γ there is some 
 ∈ F
such that vh(
 − α) ≥ 	. Then α ∈ F .
Proof. The proof is essentially the same as those of [13, 5.4] and [7, 3.6]. We give
slightly less details. We suppose that α has degree n over F and let g andG be as in
Lemma 4.3. Let d̄ be as in (2) above. By Lemma 4.1, there is an open set U ⊆ F n
containing d̄ such that the restriction of G to U is injective. By Proposition 4.2,
G(U ) has nonempty interior. As JG is continuous we may assume, after shrinking
U if necessary, that JG is nonzero on U . In the same manner, we may suppose that
for all (x0, . . . , xn−1) ∈ U there is a j such that xj �= 0. After changing the point
d̄ if necessary, we may also assume that ē := G(d̄ ) lies in the interior of G(U ). Let
V be an open neighborhood of ē inside G(U ). We define a continuous function
f : F h \ {0} → F h by

f(y) := −

⎛
⎝yn + n−2∑

j=0

ejy
j

⎞
⎠/ yn−1.

Thus for every y �= 0 we have:

yn + f(y)yn−1 +
n−2∑
j=0

ejy
j = 0.

We define

h(x) :=
n−1∑
j=0

djx
j.

Then h(α) is a zero of g(d̄ , Y ), so h(α) �= 0 as g(d̄ , y) has no roots in F . As h(α)
is a zero of g(d̄ , y) we also have f(h(α)) = en−1. If 
 ∈ F is sufficiently close to α
then h(
) �= 0 and

(e0, . . . , en−2, (f ◦ h)(
)) ∈ V.

There is thus a c̄ ∈ U with

G(c̄) = (e0, . . . , en−2, (f ◦ h)(
)).

Now by our choice of U , there is a j such that cj �= 0 and so g(c̄, Y ) has no root in
F . On the other hand, h(
) is a root of g(c̄ , Y ). Contradiction. 	
Proposition 4.5. If (F, v) is dp-minimal then v is henselian.
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Proof. Suppose that (F, v) is dp-minimal. Let Ov be the valuation ring and Γ be
the value group. This proof follows the proofs of [13, 5.12] and [7, 3.12]:We suppose
towards a contradiction that v is not henselian. There is a polynomial

p(X ) = Xn + aXn−1 +
n−2∑
i=0

ciX
i ∈ Ov [X ],

such that v(a) = 0, v(ci) > 0 for all i and such that p has no root in F . Let
(F h, vh) be a henselization of (F, v) and take some α ∈ F h be such that p(α) = 0,
v(α − a) > 0, and v(p′(α)) = 0. Consider the subset

S := {vh(b − α) ∈ Γ | b ∈ F, vh(b − α) > 0}
of Γ, and let Δ be the convex subgroup of Γ generated by S. Note that Proposition
4.4 implies Δ �= Γ as otherwise we would have α ∈ F .
Claim: S is cofinal in Δ.
Proof of Claim. Identical with that of [13, Claim 5.12.1]. 	
Letw be the coarsening of vwith value groupΓ/Δand letwh be the corresponding
coarsening of vh . As Δ is externally definable,w is definable in the Shelah expansion
of (F, v). Then (F, v,w) is dp-minimal and so the residue field Fw of w is also
dp-minimal. We let v̄ be the nontrivial valuation induced on Fw by v.

Claim: There is a 
 ∈ F such that p(
) ∈ Mw .
Proof of Claim. By the definition of Δ, the residue αwh is approximated arbi-
trarily well in the residue field Fw (with respect to the valuation v̄). We show that
(F hwh, v̄h) is a henselization of (Fw, v̄): Since w is a coarsening of v, the valued
field (F h, vh) is an extension of the henselization of (F,w). If these henselizations
coincide, (Fw, v̄) is henselian by [5, 4.1.4]. If the extension is proper, [5, 4.1.4]
implies once more that (F hwh, v̄h) is a henselization of (Fw, v̄), as desired. Thus
Proposition 4.4 gives αwh ∈ Fw. Take some 
 ∈ F with the same residue (with
respect to w) as α. In particular, 
 is a root of the polynomial p̄(x) (that is p(x)
considered in Kw), i.e., we have p(
) ∈ Mw . This proves the claim. 	
We declare

J := {b ∈ F | v(b − a) > 0}.
Then, as 
 − α ∈ Mw ⊆ Mv holds, we have 
 ∈ J .
Claim: For all b ∈ J , we have v(b − α) = v(p(b)).
Proof of claim. This is shown in the first part of the proof of [13,Claim 5.12.2].	
However, by the definition of Δ, w(p(b)) = 0 for any b ∈ J . This contradicts
p(
) ∈ Mw , and hence finishes the proof. 	

§5. Dp-minimal ordered abelian groups. In this section, (Γ,+,≤) is an ℵ1-
saturated ordered abelian group with no additional structure. In this section, we
describe dp-minimal ordered abelian groups without additional structure. Let M
be a first order structure expanding a linear order in a language L and suppose that
M is |L|+-saturated. ThenM is weakly quasi-o-minimal if every definable subset of
M is a boolean combination of convex sets and ∅-definable sets. This notion was
introduced in [11]. We say that Γ is nonsingular if Γ/pΓ is finite for all primes p.
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Proposition 5.27 of [2] implies that a nonsingular torsion free abelian groupwithout
additional structure is dp-minimal.

Proposition 5.1. The following are equivalent:
(1) (Γ,+,≤) is nonsingular.
(2) (Γ,+,≤) is dp-minimal.
(3) There is a definitional expansion of (Γ,+,≤) by countablymany formulas which
is weakly quasi-o-minimal.

Proof. Theorem 6.8 of [1] implies that a weakly quasi-o-minimal structure is
dp-minimal so (3) implies (2). We show that (2) implies (1). Suppose that (Γ,+,≤)
is dp-minimal. The subgroup pΓ is cofinal in Γ for any prime p. A cofinal subgroup
of a dp-minimal ordered group has finite index, see [17, Lemma 3.2]. Thus Γ is
nonsingular.
It remains to show that (1) implies (3). Suppose that Γ is nonsingular. We apply
the quantifier elimination for ordered abelian groups given in [4].Weuse the notation
of that paper. We let Lqe be the language described in [4]. Given an abelian group
G and x, y ∈ G , we say that x ≡m y if x − y ∈ mG .
For a ∈ Γ and prime p, we let Ha,p be the largest convex subgroup of Γ such
that a /∈ Ha,p + pΓ. In Lqe for each p, there is an auxiliary sort Sp = Γ/∼ where
a ∼ b if and only if Ha,p = Hb,p. As Ha,p only depends on the class of a in Γ/pΓ,
Sp is finite. The other auxiliary sorts Tp and T +p parametrize convex subgroups of
Γ defined as unions or intersections of theHa,p, hence they are also finite. Given an
element α of an auxiliary sort we let Γα be the convex subgroup of Γ associated to
α. For k ∈ Z, we let kα be the kth multiple of the minimal positive element of Γ/Γα
if Γ/Γα is discrete and set kα = 0 otherwise. Fix α and let � : Γ → Γ/Γα be the
quotient map. Given � ∈ {=,≤,≡m} and a, b ∈ Γ, we say that a �α b holds if and
only if �(a) � �(b) holds in Γ/Γα . For each α and m,m′ ∈ N Lqe also has a binary

relation denoted by ≡[m
′]

m,α . We do not define this relation here, as for our purposes,
it suffices to note that the truth value of a ≡[m

′]
m,α b depends only on the classes of a

and b in Γ/mΓ. As the auxiliary sorts are finite, it follows from the main theorem
in [4] that every definable subset of Γk is a boolean combination of sets of the form

{x̄ ∈ Γk : t(x̄) �α t′(x̄) + kα},

for Z-linear functions t, t′, α from an auxiliary sort and � ∈ {=,≤,≡m,≡[m
′]

m }. If
� is ≡[m

′]
m then kα = 0. We claim that (Γ,+ ≤) admits quantifier elimination in the

language Lshort containing:

• the constant 0, the symbols + and − and the order relation ≤;
• for each n and each class ā ∈ Γ/nΓ, a unary predicate Un,ā(x) naming the
preimage of ā in Γ;

• unary predicates naming each subgroupHa,p;
• constants naming a countable submodel Γ0.
Having named a countable model, we can consider that the auxiliary sorts are in
our structure, by identifying each one with a finite set of constants which projects
onto it. We do not need to worry about the structure on those sorts since they
are finite. Consider a 2-ary relation x1 �α x2 + kα , where � ∈ {=, <,≡m}, k ∈ Z,
m ∈ N, α from an auxiliary sort. If the symbol is equality then this is equivalent to
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x2 − x1 + c ∈ Ha,n for an appropriate a, n and constant c ∈ Γ0 projecting onto kα .
If the symbol is < then we can rewrite it as

[x1 < x2 + c] ∧ [x2 − x1 + c /∈ Ha,n].
Finally, if the symbol is a congruence relation, then its truth value depends only
on the images of x1 and x2 in Γ/mΓ, hence the formula is equivalent to a boolean
combination of atomic formulas Um,ā(x1) and Um,ā(x2). The only relations left in
Lqe are of the form x ≡[m

′]
m,α y, but again their truth value depends only on the image

of x and y in Γ/mΓ, so they can be replaced by Lshort quantifier-free formulas.
Weak quasi-o-minimality follows easily from quantifier elimination in Lshort :
an inequality of terms t(x) ≤ t′(x) defines a convex set, any atomic formula
t(x) ∈ Ha,p for t a term defines a convex set; an atomic formula of the form
Um,ā(t(x)) defines a ∅-definable set. 	

§6. Dp-minimal ordered fields. In this section, F is an ordered field with no
additional structure.We make use of the following (which also follows from [9]):
Proposition 6.1 ([3]). Let (K, v) be a henselian valued field of equicharacteristic
zero and residue field k. Assume that k×/(k×)n is finite for all n. Then (K, v) is
dp-minimal if and only if the residue field and value group of (K, v) are dp-minimal.
Given a field k and an ordered abelian group Γ, k((tΓ)) is the field of Hahn series
with coefficients in k and exponents in Γ. By the Ax-Kochen/Ersov Theorem ([15,
4.6.4]), a field K admitting a henselian valuation with residue characteristic zero,
residue field k and value group Γ is elementarily equivalent to k((tΓ)).
Theorem 6.2. Let F be an ordered field and let Lof = Lring ∪{≤} be the language
of ordered fields. Then, the Lof-theory of F is dp-minimal if and only if F ≡ R((tΓ))
as ordered fields for some nonsingular ordered abelian group Γ.
Proof. Suppose that F ≡ R((tΓ)) for a nonsingular ordered abelian group Γ.
Then Proposition 5.1 and Proposition 6.1 together show that F is dp-minimal as
a valued field. Note that (F×)2/F× is finite. Given any order on F , each coset of
(F×)2 is composed either only of positive elements, or only of negative elements.
To specify an order on F , it is enough to say for each coset of (F×)2, whether it
is positive or negative. Thus, there are finitely many orders on F and there are all
definable (with parameters) from the field structure. Therefore F is dp-minimal as
an ordered field.
Suppose that F is dp-minimal. We suppose without loss of generality that F is

ℵ1-saturated. Let O be the convex hull of Z in F . As O is convex, it is externally
definable. Thus (F,O) is dp-minimal. As O is a valuation ring, Proposition 4.5
implies that the associated valuation is henselian. Let Γ be the value group of this
valuation. Then Γ is dp-minimal hence nonsingular. The residue field is a subfield
of R. It follows from ℵ1-saturation that the residue field is equal to R. The Ax-
Kochen/Ersov Theorem now implies F ≡ R((tΓ)) (as valued fields). As above, we
also get F ≡ R((tΓ)) (as ordered fields). 	
Corollary 6.3. Suppose that F is an ordered dp-minimal field. Then F has small
absolute Galois group.
Proof. Suppose we have F ≡ R((tΓ)) for a nonsingular Γ. For each prime p let
rp be the Fp-dimension of Γ/pΓ. It follows from [5, Lemma 5.2.6] that the absolute
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Galois group GR((tΓ)) of R((t
Γ)) is a semidirect product of the absolute Galois

group Z/2Z of R and the inertia group of the power series valuation on R((tΓ)). By
[5, Theorem 5.3.3], GR((tΓ)) is isomorphic as a profinite group to(∏

p

Z
rp
p

)
� Z/2Z,

where the product is taken over all primes p. As GR((tΓ)) is small, we get that the
absolute Galois group GF of F is isomorphic to that of GR((tΓ)) and in particular
also small. 	
To end this section, we give an explicit construction of anLof-definable nontrivial
valuation on a dp-minimal ordered field which is not real closed. Here Lof denotes
the language of ordered fields, i.e., Lof = Lring ∪ {≤}. By Proposition 4.5, any such
valuation is henselian.
The existence of such a valuation can be deduced from general arguments along
the lines of those given by Johnson [9, 6.2], but making use of the ordering, we can
give a simpler construction. We will actually prove that an ordered field is either
dense in its real closure or admits a definable valuation.

Lemma 6.4. Let F be an ordered field with real closureR. Fix α ∈ R, and suppose
that for each ε ∈ F with ε > 0, there exists b ∈ F such that |α − b| < ε. Then, α is
in the closure of F .
Proof. We need to show that for each ε ∈ R>0, there is some � ∈ F>0 with � < ε.
Assume not, so there is some ε ∈ R>0 such that for all � ∈ F>0 the inequality
ε < � holds. Then, if f(X ) =

∑
i≤n aiX

i ∈ F [X ] is irreducible we have a0 �= 0 and
−� <

∑
0<i≤n aiε

i < � holds for all � ∈ F>0. Thus, f(ε) �= 0. This contradicts the
fact that R is algebraic over F . 	
We can now give the final results of this paper:

Proposition 6.5. Let F be an ordered field with real closure R. One of the
following holds:
(1) F is dense in R;
(2) F admits an Lof-definable valuation.
Proof. We suppose that F is not dense in R. Let α be an element of R which is
not in the closure of F . Without loss of generality, we may assume α > 0. Then

D := {a ∈ F | a < α}
is a definable subset of F . Hence,

A := {y ∈ F≥0 | y +D ⊆ D}
is also a definable subset of F .

Claim: {0} � A � F≥0 is a proper convex semigroup of F .
Proof of claim. It is easy to see that A is convex. For any b ∈ F≥0 such that
b > α, we have b /∈ A, thus we get A �= F≥0. Furthermore, A is closed under
addition since for y1, y2 ∈ A and d ∈ D we have

(y1 + y2) + d = y1 + (y2 + d )︸ ︷︷ ︸
∈D

∈ D.
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Finally, assume A = {0}. Then, for all ε ∈ F>0, there is some d ∈ D with d + ε >
α, hence, α − d < ε. Lemma 6.4 now implies that α is in the closure of F , a
contradiction. This proves the claim. 	
Let O+ = {a ∈ F : aA ⊆ A} be the multiplicative stabilizer of A. It is easy to
see that O := {a ∈ F : a ∈ O+ or −a ∈ O+} is a convex subring of F . For any
b ∈ F≥0 with b > a for all a ∈ A we have b /∈ O. Thus O is nontrivial. 	
Corollary 6.6. Let F be a dp-minimal ordered field which is not real closed. Then,
the definable valuation constructed in the proof of Proposition 6.5 is nontrivial and
henselian.

Proof. Assume that F is a dp-minimal ordered field. By [7, Proposition 3.6], F
is closed in its real closure R. Thus, if F is not real closed, F cannot be dense in R
and thus admits a definable nontrivial valuation ring O by Proposition 6.5. Now,
Proposition 4.5 implies thatO is henselian. 	
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