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Abstract We examine 2-complexes X with the property that for any compact connected Y , and
immersion Y → X , either χ(Y ) 6 0 or π1Y = 1. The mapping torus of an endomorphism of a free group

has this property. Every irreducible 3-manifold with boundary has a spine with this property. We show
that the fundamental group of any 2-complex with this property is locally indicable. We outline evidence
supporting the conjecture that this property implies coherence. We connect the property to asphericity.

Finally, we prove coherence for 2-complexes with a stricter form of this property. As a corollary, every
one-relator group with torsion is coherent.
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1. Nonpositive immersions

The goal of this paper is to examine implications of the following notion.

Definition 1.1 (Nonpositive immersions). A map Y → X is an immersion if it is a local

injection. A 2-complex X has nonpositive immersions if for any immersion Y → X where

Y is a compact connected 2-complex, either χ(Y ) 6 0 or π1Y is trivial.

Definition 1.2 (Variants). There are a number of variations of the above definition that

primarily focus on the default case where χ(Y ) > 0.

We say X has weak nonpositive immersions if χ(Y ) 6 1 for any immersion Y → X
with Y a compact connected complex. We say X has collapsing nonpositive immersions

if χ(Y ) > 1 implies that Y collapses to a point. We say X has contracting nonpositive

immersions if χ(Y ) > 1 implies that Y is contractible.

We say X has negative immersions if there is a constant c > 0 such that for each

immersion Y → X where Y is compact and has no free faces, either Y is a single vertex or

χ(Y ) 6 −cArea(Y ), where Area(Y ) denotes the number of 2-cells in Y . A similar definition

requires that χ(Y ) 6 −c|Y 0
| whenever Y is not a single vertex and has no free face or
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cutpoint. Here |Y 0
| denotes the number of 0-cells in Y . I do not know whether negative

immersions are equivalent to the assumption that χ(Y ) < 0 whenever Y is nontrivial, has

no free faces, and has no cutpoint.

A tower map is a composition of covers and subcomplexes (see Definition 2.1). In a

slightly different direction, we say that X has nonpositive towers if for each tower map

Y → X with Y compact and connected, either χ(Y ) 6 0 or π1Y = 1. One can similarly

refine the default case, as above. Most of the proofs function under the tower map

hypothesis, and I know of no 2-complex with nonpositive towers but without nonpositive

immersions.

A group G is coherent if every finitely generated subgroup of G is finitely presented.

G is locally indicable if every nontrivial finitely generated subgroup of G has an infinite

cyclic quotient. Our main results are the following.

Theorem 1.3. If the 2-complex X has nonpositive immersions, then π1 X is locally

indicable.

Theorem 1.4. Let X be a locally finite 2-complex with negative immersions. Then π1 X is

coherent.

Corollary 1.5. Every one-relator group with torsion is coherent.

Theorem 1.6. If the 2-complex X has weak nonpositive immersions, then X is aspherical.

An advantage of Theorem 1.6 over the most common method of proving asphericity is

that it does not prove the strong form of asphericity known as ‘diagrammatic reducibility’.

It thus has the potential of organizing a route for establishing Whitehead’s asphericity

conjecture. In particular, we pose the following.

Conjecture 1.7. Every contractible 2-complex has (weak) nonpositive immersions.

Note that Whitehead’s asphericity conjecture would follow from Conjecture 1.7 since if

X is aspherical, then so is X̃ , but a subcomplex Y ⊂ X would be covered by a component

Ŷ of its preimage in X̃ , and Ŷ is aspherical by Theorem 1.6.

We now describe some classes of 2-complexes with nonpositive immersions: the mapping

torus of any injective endomorphisms of a free group is shown to have nonpositive
immersions in § 6. Their fundamental groups, which are ascending HNN extensions of

free groups, were proven to be coherent by Feighn and Handel in [2].

In § 7, we show that a two-dimensional (2D) spine of an irreducible 3-manifold

with boundary has nonpositive immersions. Fundamental groups of three-dimensional
manifolds were shown to be coherent by Scott [16] and Shalen (unpublished).

In [15], we showed that any 2-complex satisfying the ‘perimeter hypothesis’ was

coherent, and we applied this to prove that a variety of small-cancellation groups

are coherent. In § 8, we describe a related class of small-cancellation complexes

with nonpositive immersions. I expect that the perimeter hypothesis always implies

nonpositive immersions, but it seems this will require more sophisticated counting

arguments.
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Coherence, local indicability and nonpositive immersions 661

I discuss several additional classes of examples with nonpositive immersions in other

papers. An intriguing class consists of the 2-complexes with nonpositive sectional

curvature, which satisfy a strong local version of the nonpositive immersion hypothesis

arising from the combinatorial Gauss–Bonnet theorem [21]. This class contains a rich

collection of examples including standard 2-complexes of Adian groups and canonical

spines of finite volume hyperbolic 3-manifolds. Some further classes of 2-complexes with

nonpositive sectional curvature are described in [23].

In [19], we examine the connection between the nonpositive immersion property and

the vanishing of the second L2-betti number of a 2-complex – an intriguing connection

suggested by Gromov. Several applications are given there towards small-cancellation
groups, and the method promises wider applications.

As the examples above suggest, nonpositive immersions is the unifying rubric that

subsumes all known coherence results for groups of cohomological dimension 2. However,

it seems overly optimistic that the nonpositive immersion property characterizes coherent

groups of cohomological dimension 2:

Problem 1.8. Find a finitely generated coherent group G with cd(G) = 2, but χ(G) > 1.

Our proofs that various 2-complexes have nonpositive immersions are rather ad-hoc:

Problem 1.9. Does there exist an algorithm to recognize whether or not a compact

2-complex has nonpositive immersions?

Finally, the larger agenda of this paper is the following:

Conjecture 1.10. Let X have nonpositive immersions. Then π1 X is coherent.

This paper is a revised version of a paper that I circulated in 2003. In the original

version, I gave an incorrect proof of Conjecture 1.10, and I am grateful to Mladen

Bestvina for finding a flaw in my proof. I continue to believe the conjecture is correct.

The immediate motivation of Conjecture 1.10 was to provide a proof of Baumslag’s

conjecture that every one-relator group is coherent, by coupling it with a conjecture about

nonpositive immersions for 2-complexes with a single 2-cell. The latter conjecture was

proven recently by Louder–Wilton and Helfer–Wise [5, 11] using methods that ultimately

rely on orderability. The proof of Corollary 1.5 is a consequence of combining Theorem 1.4
with the strong form of nonpositive immersions that was obtained for one-relator groups.

I was initially drawn to this subject by Baumslag’s conjecture, and my initial work

with McCammond proved that 〈a, b | W n
〉 is coherent when n > |W |. I am hopeful the

subject will attract further investigators, both to broaden the class of examples, and to

understand further ramifications of the definitions.

2. Background on towers and disc diagrams

2.1. Towers

We recall here some background on towers which is due to Howie [6]. A map X → Y
between CW -complexes is combinatorial provided that its restriction to each open cell of

https://doi.org/10.1017/S1474748020000237 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000237


662 D. T. Wise

X is a homeomorphism onto an open cell of Y . A CW -complex is combinatorial provided

that the attaching map of each of its cells is a combinatorial map (after a suitable

subdivision). Unless otherwise indicated, the spaces in this paper will be 2D combinatorial

complexes, and the maps between these spaces will be cellular.

Definition 2.1 (Tower). A map A→ B of connected CW -complexes is a tower provided

that it can be expressed as the following composition where the maps are alternately

inclusions of subcomplexes and covering maps.

A = Bn ↪→ B̂n−1 → Bn−1 ↪→ · · · ↪→ B̂2 → B2 ↪→ B̂1 → B1 = B.

Let C → B be a map of connected CW -complexes. A map C → A is a tower lift of

C → B if there is a tower A→ B such that the following diagram commutes:

A
↗ ↓

C → B

The tower lift C → A is maximal if, for any tower lift C → D of C → A, the map D→ A
is an isomorphism.

There is a more restrictive notion of cyclic tower which is the composition of

subcomplexes and regular covers with infinite cyclic covering groups. We define cyclic

tower lifts and maximal cyclic tower lifts analogously.

The following was proven by Howie for combinatorial maps in [6].

Lemma 2.2. Let S be a compact connected CW-complex and S→ K be a cellular map.

Then S→ K has a maximal [cyclic] tower lift.

Proof. Our proof is similar to Howie’s but uses the following notion of complexity: we

let Cells(X) denote the number of cells in a complex X . Let M be an upper bound on the

number of cells in the image of any maximal tower lift of C → K , where C varies over

the closed cells of S. Let K0 = K and let S→ Ki+1 be a surjective [cyclic] tower lift of
S→ Ki for each i > 0. Observe that Cells(Ki ) 6 M ·Cells(S). Furthermore, if Ki+1 → Ki
is not an isomorphism, then Cells(Ki+1) > Cells(Ki ). Therefore, the number of times

that Ki+1 → Ki fails to be an isomorphism is bounded by M ·Cells(S). Consequently, a
maximal [cyclic] tower lift exists.

2.2. Disc diagrams

We now briefly summarize the basic definitions concerning disc diagrams. We refer the

reader to [4, 12, 14] for more detailed accounts.

Definition 2.3. A disc diagram D is a compact contractible 2-complex with a fixed

embedding in the 2-sphere S2. The boundary cycle of D is the attaching map of the open

2-cell S2
− D so that S2 is a 2-complex. Choosing a starting vertex and an orientation, we

can regard it as a closed path ∂p D called the boundary path of D. Observe that ∂p D→ ∂D

https://doi.org/10.1017/S1474748020000237 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000237


Coherence, local indicability and nonpositive immersions 663

is surjective, and ∂p D traverses a 1-cell e of ∂D once if e lies on the boundary of a 2-cell

and twice otherwise.

Let P → X be a closed path factoring as P ∼= ∂p D→ D→ X where D is a disc

diagram. We then say D→ X is a disc diagram for P → X . A theorem of van Kampen’s

asserts that a disc diagram D→ X exists for each null-homotopic closed path P → X .

Let D→ X be a map from a disc diagram to a 2-complex. A cancellable pair consists

of a pair of distinct 2-cells R1, R2 in D with the following property: there is a 1-cell e
in D that is traversed by the boundary paths ∂p R1, ∂p R2 of two 2-cells, so ∂p Ri = eAi
for each i , and eA1, eA2 project to the same path in X . The map D→ X is reduced if

it has no cancellable pair. If there is a cancellable pair, then one can remove the open
cells R1 ∪ e∪ R2 and glue to obtain a smaller area diagram. Considering disc diagrams

with a minimal number of 2-cells, we see that every null-homotopic path P → X actually

bounds a reduced disc diagram.

3. Local indicability and asphericity

Lemma 3.1. Let H be a finitely generated group. There exists a finitely presented group

K and a surjection K � H such that the map H1(K )→ H1(H) is an isomorphism.

Proof. Let H be generated by 〈h1, . . . , hr 〉. Since every finitely generated abelian group

is finitely presented, we can choose a finite presentation 〈h1, . . . , hr | R1, . . . , Rs, [hi , h j ] :

i < j〉 for the abelianization H1(H) of H in terms of the original generators of H . For each

i we have Ri =H Wi , where Wi is a product of commutators. Regard Ri (h1, . . . , hr ) and

Wi (h1, . . . , hr ) as words in h±1
i , and rewrite these in terms of new generators {k1, . . . , kr }

to obtain a group K presented by:

〈k1, . . . , kr | R1(k1, . . . , kr ) = W1(k1, . . . , kr ), . . . , Rs(k1, . . . , kr ) = Ws(k1, . . . , kr )〉.

There is an obvious surjection K � H induced by ki 7→ hi , and it induces an isomorphism

H1(K )→ H1(H) by construction.

Definition 3.2. The 2-complex X has nonpositive cyclic towers if for each cyclic tower

map Y → X with Y compact and connected, either χ(Y ) 6 0 or π1Y = 1.

Theorem 3.3. Let X have nonpositive cyclic towers. Then π1 X is locally indicable.

Note that Theorem 3.3 implies Theorem 1.3 since nonpositive immersions implies

nonpositive cyclic towers, and likewise Theorem 3.4 implies Theorem 1.6.

We use the notation βi for the ith betti number.

Proof. Let H be a finitely generated subgroup of π1 X with β1(H) = 0. By Lemma 3.1,

there is a finitely presented group K with β1(K ) = 0 and a surjection K � H .

Let Y be the standard 2-complex of K , and let Y → X be a based cellular map such

that π1Y maps surjectively to H . Let Y → T be a maximal tower lift of Y → X , as

indicated by the following diagram:

T
↗ ↓

Y → X

https://doi.org/10.1017/S1474748020000237 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000237


664 D. T. Wise

By maximality of the tower lift, Y → T is surjective, and hence T is compact. Also, by

maximality of the tower lift, Y → T is π1-surjective, and hence π1T maps surjectively to

H . Since π1Y → π1T is surjective, we see that β1(T ) = 0. But then χ(T ) > 1−β1(T ) > 1,

so χ(T ) > 1. But then π1T is trivial by Definition 1.1, and hence H is trivial since the

surjection K � H factors through the trivial group π1T .

We close this section by noting that while the 2-sphere has nonpositive immersions, in

practice, 2-complexes with nonpositive immersions tend to be aspherical because of the
following:

Theorem 3.4. Suppose that χ(Y ) 6 1 for any cyclic tower map Y → X with Y compact

and connected. Then X is aspherical.

Proof. Let S→ X be a cellular map of a sphere. Let S→ T be a maximal tower lift. Since

H1(T ) = 0 we have β1(T ) = 0. Thus β2(T ) = 0 since 1−β1(T )+β2(T ) = χ(T ) 6 1, and
hence H2(T ) = 0. By Hurewicz’s theorem we have π2T = H2(T ) = 0. Therefore, S→ T
and hence S→ X is null-homotopic.

4. Negative immersions and coherence

The goal of this section is to prove coherence in the case of negative immersions. While the

result is broader, the proof closely follows the argument proving coherence for negative

generalized sectional curvature. We borrow an additional idea from the proof of the

coherence of 3-manifold groups to easily ensure our immersions have no free faces or
isolated edges.

A 1-cell of a 2-complex is isolated if it is not traversed by the boundary path of any

2-cell.

Lemma 4.1. Let Y → X be a combinatorial map of connected 2-complexes that is not

π1-injective. Then there is a complex Y+, and an immersion Y+→ X , such that Y → X
factors as Y → Y+→ X and the following hold:

(1) Y → Y+ is π1-surjective but not π1-injective;

(2) all but finitely many cells of Y+ are in the image of Y → Y+;

(3) each isolated 1-cell of Y+ is the image of an isolated 1-cell of Y ;

(4) each free face of Y+ is the image of a free face or isolated 1-cell of Y .

Proof. By the failure of π1-injectivity, we may choose a closed immersed path P → Y
whose image in X is null-homotopic. Let D→ X be a reduced disc diagram whose

boundary path is P. Form the complex Y ∪P D which is obtained by gluing Y and D
together along the images of edges of P. The induced map Y → Y ∪P D is not π1-injective

since P → Y ∪P D is null-homotopic.

The map Y → Y ∪P D is π1-surjective is proven inductively as follows: by ignoring all

1-cells of D that do not lie in ∂D, we may pretend that D is a disc diagram D′ obtained

from (larger) 2-cells that are glued together with each other and with isolated 1-cells

along their boundaries. Each arc of isolated 1-cells of D′ is associated to a pair Pi , P ′i of
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subpaths of P mapping to the same path in Y . We choose a pair of P that are innermost

in the sense that P has a subpath Pi Q P−1
i where Q does not contain a paired path,

so Q bounds a single 2-cell Di of D. We glue Di to Y along Q after identifying its

endpoints, and then fold Pi and P ′i to obtain a complex Ȳ . Note that the map Y → Ȳ is

π1-surjective since Di kills the new element obtained by identifying the endpoints of Q,

and the folding is π1-surjective. Finally, note that Ȳ bounds a diagram containing fewer

pretend 2-cells. In the base case where D is nonsingular, π1-surjectivity is immediate

since the map between 1-skeleta is an isomorphism.

Let Y+→ X be the top of a maximal tower lift of Y ∪P D→ X . Note that the map

Y → Y+ is π1-surjective since Y ∪P D→ X , and not π1-injective since Y factors through
Y ∪P D.

Finally, note that under a combinatorial map A→ B, the preimage of an isolated 1-cell

consists of isolated 1-cells, so this holds for the map Y ∪P D→ Y+. But all isolated 1-cells

of Y ∪P D must lie in the image of Y . Let e be an edge of Y+ that is a free face of a

2-cell R. Then for any edge ê in the preimage of e, either ê is isolated or a free face, or ê
lies in the boundary of two 2-cells R̂, R̂′ that fold together along ê as they map to R. For
the map Y ∪P D→ Y+, no such 1-cell can lie in the interior of D, since we have assumed

D is reduced. Thus all free face 1-cells arise from the image of 1-cells of Y , which must

themselves be isolated or free faces since Y → X is an immersion.

The following is repeated from [21].

Lemma 4.2 (No self-immersion). Let φ : Z → Z be a combinatorial immersion where Z
is a compact connected n-complex. Then φ is an isomorphism.

Proof. For n > 0, let Zn = φ
n(Z) and observe that for each n, φ restricts to a map

φ : Zn → Zn+1. Since Z has finitely many subcomplexes, for some q > p > 1 we have

Zq = Z p, and so the restriction of φq−p to Z p is an isomorphism onto Z p. Furthermore,

as Z p is finite the group Aut(Z p) is finite, so for some n, the restriction of (φ(q−p))n to

Z p is the identity. It follows that φn(q−p) is a retraction of Z onto the subcomplex Z p.

If φ is not an isomorphism, then since Z is finite and φ is combinatorial, φ is

not surjective and so Z p = φ
p(Z) is a proper subcomplex of Z . Therefore, since Z is

connected, some cell c in Z − Z p is adjacent to a 0-cell v of Z p. Since both c and
φn(q−p)(c) are adjacent to v = φn(q−p)(v) we see that φn(q−p) is not an immersion at v,

which contradicts the hypothesis that φ is an immersion.

The following consequence of Grushko’s theorem is a result arising in the proof of the

coherence of 3-manifolds [16, 18]. A group is indecomposable if it is not isomorphic to the
free product of two nontrivial groups.

Lemma 4.3 (Indecomposable). Let H be a finitely generated indecomposable group.

Suppose each subgroup J generated by fewer elements than H is finitely presented. Then

there is a finitely presented group K and a surjective homomorphism K → H with the

following property: whenever K → H factors as K → L → H with K → L surjective, the

group L is indecomposable.
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Lemma 4.4 (Boundedly many immersions). Let X be a locally finite 2-complex. For each

A, B > 0 there exists f (A, B) > 0 such that the following holds: there are at most f (A, B)
distinct compressed based immersions Y → X such that Area(Y ) 6 A and Y has at most

B isolated 1-cells.

Note that we regard Y1 → X and Y2 → X as distinct if there is no isomorphism Y1 → Y2
such that Y1 → X factors as Y1 → Y2 → X .

Proof. Each 0-cell and nonisolated 1-cell of Y lies on a 2-cell of Y , so Y can be built by

gluing together at most A 2-cells and B 1-cells mapping to X . By local finiteness, there

is an upper bound C on the number of 1-cells and 2-cells of X , that can be reached by

a path which is the concatenation of at most A+ B subpaths, each of which is a single

edge or lies on a single 2-cell of X . Hence the 2-cells of Y map to at most C possible

2-cells of X , and the isolated 1-cells map to at most C possible 1-cells of X . Finally, there

is a uniform number of ways of gluing these 2-cells together (depending on their sides

lengths). And in particular, there are finitely many ways of gluing them together so that

there is an induced map to X .

The following was already asserted in [21, § 14] as a generalization of the negative

sectional curvature case:

Theorem 4.5. Let X be a locally finite 2-complex with negative immersions. Then π1 X is

coherent.

Proof. Let H ⊂ π1 X be a finitely generated subgroup, and let X̂ → X be the based cover

with π1 X̂ = H . The proof is by induction on the minimal number of generators of H .
In the base case, H is finitely presented since it is trivial. Suppose H is generated by

n elements, and suppose each finitely generated subgroup with fewer than n elements is

finitely presented. We may assume that H is indecomposable, since if H ∼= A ∗ B, then A
and B are finitely presented so H is finitely presented. By Lemma 4.3, there is a finitely

presented group K and a surjective homomorphism K → H such that whenever K → H
factors as K → L → H with K → L surjective, the group L is indecomposable. Let Z be

a compact connected based 2-complex with π1 Z ∼= K , and consider a based cellular map

Z → X̂ such that π1 Z → π1 X̂ induces the homomorphism K → H . By Lemma 2.2, there

is a lift Z → T of Z → X to a maximal tower T → X̂ . Note that T → X̂ is a π1-surjective

immersion, and T is compact.
We claim that T contains a subcomplex Y1 such that Y1 has no free faces or isolated

1-cells, and Y1 → X̂ is π1-surjective using a different basepoint. Indeed, let Y1 be obtained

from T by collapsing free faces, and note that we allow the collapse of a free face at the

basepoint, which merely results in a conjugation of the image by the corresponding edge
in the fundamental groupoid. We now use the property of K to see that by possibly

passing to a proper subcomplex, we may also assume that Y1 has no isolated 1-cell e. If

e separates Y1, then let Y1− e = A t B, and observe that π1Y1 ∼= π1 A ∗π1 B, and hence

since K → π1Y1 is surjective, we see that either π1 A or π1 B is trivial, and we may pass

to a smaller subcomplex that is still π1-surjective. In the nonseparating case, Y1 = C ∪ e,

and π1Y1 ∼= C ∗Z, and hence π1C must be trivial, and this violates our assumption that

H is not cyclic or trivial.
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We will construct below a sequence Y1 → Y2 → Y3 → · · · , where each Yi is a compact

complex with a π1-surjective map Yi → X̂ . We will show that this sequence must

terminate at a complex Yt such that π1Yt → π1 X̂ is π1-injective, and so H is finitely

presented.

For each i , either Yi → X̂ is π1-injective, or else, by Lemma 4.1 we can form a new

based map Yi+1 → X̂ and a map Yi → Yi+1 such that Yi → X̂ factors as Yi → Yi+1 → X̂ ,

and π1Yi → π1Yi+1 is surjective but not injective. Lemma 4.1 also ensures that each

isolated edge of Yi+1 is the image of an isolated edge of Yi , and each free face of Yi+1 is

the image of an isolated edge or free face of Yi . Since Y1 has this property, we see that

no Yi has an isolated edge or free face.
By negative immersions, Area(Yi ) 6 −kχ(Yi ). By π1-surjectivity, −χ(Yi ) < b1(Yi ) 6

b1(Y1) for each i . Hence, Area(Yi ) < kb1(Y1) is uniformly bounded.

By Lemma 4.4, there exists i < j such that Yi → X̂ and Y j → X̂ are the same. However,

the map Yi → X̂ factors as Yi → Y j → X̂ , and the map Yi → Y j is not π1-injective since

the map Yi → Yi+1 is not. There is thus an immersion Yi → Yi with Yi compact, that is

not an isomorphism since it is not π1-injective. This is impossible by Lemma 4.2.

5. Negative immersions and cyclometered complexes

In [21], we studied angled 2-complexes, and specifically examined nonpositive and

negative generalized sectional curvature. These notions imply nonpositive and negative

immersions, respectively, and we refer to [21] for a variety of examples.

Two stronger statements are proven there for negative generalized sectional curvature:

first, there is a compact core for a finitely generated subgroup of π1 X . Second, in the

additional presence of a CAT(0) metric, one actually obtains local quasiconvexity. In [13]

this is generalized to a setting that allows a proper action, which is quite natural since

many examples arise from presentations whose relators are proper powers.

Conjecture 5.1. Let X be a compact 2-complex with negative immersions. Then π1 X is a

locally quasiconvex hyperbolic group.

Even the hyperbolicity is not yet known. The conjecture is unknown in the stronger

setting of negative generalized sectional curvature, unless all angles are nonnegative in

which case hyperbolicity is a consequence of the Gersten–Pride weight test [4]. Some

progress towards hyperbolicity is given in [3], where it was shown for many 2-complexes

where all attaching maps of 2-cells are proper powers.

The connection between ‘negative immersions’ and torsion appears in [22, Remark 5.2],

and though I had already understood that the coherence conclusion generalizes from the

negative sectional curvature to the negative immersion framework [21, § 14], this did not
seem to be the best route then since I thought that I had proven Conjecture 1.10. The

local quasiconvexity assertion of Conjecture 5.1 remains an important objective.

Definition 5.2 (Counting w-cycles). Let A→ B be an immersion of directed graphs. Let

w→ B be an immersed aperiodic cycle. Let A⊗w denote the fibre-product of A→ B
and w→ B. Its vertices are pairs (u, v) of vertices u ∈ A and v ∈ w that map to the
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Figure 1. There are three components in A⊗w, and A⊗̂w contains the two circular components. They
cover w with degrees 1 and 2.

same vertex in B. Its edges are pairs (d, e) where d ∈ Edges(A) and e ∈ Edges(w), and

the initial and terminal vertices are ι(d, e) = (ι(d), ι(e)) and τ(d, e) = (τ (d), τ (e)). Note

that there are immersions A⊗w→ A and A⊗w→ w that are induced by ignoring the

right or left factor. Indeed, one can interpret A⊗w as a subspace of A×w and these are

restrictions of projection maps. See Figure 1.

Let A ⊗̂w be the subgraph of A⊗w consisting of the union of components that are

covers of w. Let #w(A) = deg(A ⊗̂w→ w). For a set {wi → B} of immersed cycles and

an immersion A→ B, we let #(A) =
∑

i #wi (A).

The strategy advocated in [22] for verifying nonpositive immersions focuses on the

following stronger property:

Definition 5.3 (Cyclometered). Let {wi → B} be a set of immersed circles in a graph. We

say it is cyclometered if the following holds: let A→ B be an immersion, and suppose

each 1-cell e of A is either isolated or traversed at least twice by w-cycles, in the sense

that e has at least two preimages under the map ∪i A ⊗̂wi → A. Then #(A) < β1(A).
The 2-complex X is cyclometered if its set of 2-cell attaching maps {wi → X1

} is

cyclometered.

Remark 5.4. It is easy to check that X is cyclometered when X is an angled 2-complex

with nonpositive generalized sectional curvature. It is also easy to check that any finite

complex X has a finite branched cover that is cyclometered thus yielding another proof

that 〈a1, a2, . . . | w
n1
1 , . . . , w

nm
m 〉 is coherent for ni sufficiently large. In [5, Theorem 6.1], it

is shown that X is cyclometered when X is ‘bi-slim’ which is a technical generalization of

the notion of ‘staggered’ described in Definition 5.6. There are examples of 2-complexes

with nonpositive immersions that are not cyclometered. One such example is the

2-complex associated to 〈a, b | abb, a〉.

Lemma 5.5. Let X be a cyclometered 2-complex. Let Ẋ → X be a branched cover, where

the branching points are the centres of 2-cells, and where each branching degree is >2.

Then Ẋ has negative immersions.

In practice, Ẋ arises from X as follows: first form a complex X ′ by replacing each

2-cell of X with attaching map wi by a 2-cell with attaching map wni
i for some ni > 2.
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Then pass to a finite regular cover X̂ ′ where each wi has order ni in Aut(X̂ ′). Finally, we

obtain Ẋ from X̂ ′, by either a quotient map identifying equivalent 2-cells having the same

boundary cycle, or by taking a subcomplex where all but one 2-cell in each equivalence

class is discarded.

Proof. Let Y → Ẋ be an immersion with Y compact, collapsed, and connected. It suffices

to consider the case where Y has no isolated edge, since χ(Y ) 6
∑
χ(Yi ) where removing

arcs of isolated edges results in the disjoint union of components tYi . The induced map

Y 1
→ Ẋ is also an immersion, and each w-cycle in Y 1 with respect to Ẋ is a w-cycle with

respect to X whose multiplicity is the minimal branch degree n. As X is cyclometered,

we have: nArea(Y ) < β1(Y 1). Consequently:

χ(Y ) = (1−β1(Y 1))+Area(Y ) 6 (−n+ 1)Area(Y ) 6 −Area(Y ).

Definition 5.6. A 2-complex is staggered if there is a total ordering on its 1-cells, and

a total ordering on its 2-cells, so that for 2-cells α < β, we have max(α) < max(β) and

min(α) < min(β), where max(α) and min(α) denote the highest and lowest 1-cells traversed

by the boundary path of α. A group is staggered if it is the fundamental group of a

staggered 2-complex. We use the term staggered with torsion to indicate that all attaching

maps of 2-cells are proper powers, and we likewise use this term for a group with a

staggered presentation and relators that are proper powers. Finally, we note that the
order of a relator in the group is equal to the power. We refer to [8, 9, 12].

Theorem 5.7. Every virtually torsion-free staggered group with torsion is coherent. In

particular, every one-relator group with torsion is coherent.

Note that one-relator groups with torsion are virtually torsion-free [12], and finitely

presented staggered groups with torsion are residually finite and hence virtually

torsion-free [20].

Proof. Consider the staggered presentation with torsion 〈a1, a2, . . . | w
n1
1 , w

n2
2 , . . .〉 for

Ġ. Let G be the associated group without torsion, so G is presented by 〈a1, a2, . . . |

w1, w2, . . .〉 where no w j is a proper power. Let X be the 2-complex associated to the

presentation for G. Let Ẋ → X be a finite branched cover of X corresponding to a finite

index normal subgroup of Ġ with the property that each w j has order n j in the associated

quotient. Finally, Ẋ has negative immersions by Lemma 5.5. Thus coherence holds by

Theorem 4.5.

6. Ascending HNN extensions of free groups have nonpositive immersions

Let F be the free group 〈ai : i ∈ I 〉, and let {Ai : i ∈ I } be a set of words in a±1
i which

freely generate a subgroup. Let φ : F → F be the monomorphism induced by φ(ai ) = Ai .

Let X be the standard 2-complex of the presentation 〈t, a1, . . . | at
i = φ(ai ) : i ∈ I 〉 for the

ascending HNN extension associated to φ. In this section we show:

Theorem 6.1. For any immersion Y → X with Y compact and connected, either χ(Y ) 6 0
or Y collapses to a 0-cell.
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Proof. Let Y → X be an immersion with Y compact and connected. Since collapsing

along free faces does not change χ , it is sufficient to prove the theorem in the case that

Y has no free faces. We first prove the theorem under the additional assumption that Y
has no isolated 1-cell.

The HNN decomposition naturally corresponds to a graph of spaces structure on X ,

induced by a map X → 0X , where in this case 0X is just a circle corresponding to the

stable letter t .
The decomposition of X → 0X as a graph of spaces induces a decomposition Y → 0Y as

a graph of spaces. Specifically, the vertex spaces of Y are the components of the preimage

of the vertex space of X , and the edge spaces of Y correspond to the components of
the preimage of the edge spaces of X . The graph 0Y is the quotient of Y obtained by

identifying vertex spaces Yv of Y to vertices v ∈ 0Y , and edge spaces Ye× (0, 1) of Y to

edges e ∈ 0Y . Consider the following formula where ι(e) and τ(e) denotes the initial and

terminal vertices of the directed edge e:

χ(Y ) =
∑
v∈0

χ(Yv)−
∑
e∈0

χ(Ye) =
∑
v∈0

[
χ(Yv)−

∑
ι(e)=v

χ(Ye)

]
.

Thus, to see that χ(Y ) 6 0, it suffices to verify the following for each v ∈ 0Y

χ(Yv)−
∑
ι(e)=v

χ(Ye) 6 0.

It is easy to see that for any subgraph B of a compact connected graph C with χ(C) 6 0,

we have χ(C)−χ(B) 6 0, so it is sufficient to check that χ(Yv) 6 0. However, we will

show that if Yv is a tree then Yv is all of Y and consists of a single 0-cell. Indeed, it follows

that Ye is a tree for each e with ι(e) = v or τ(e) = v. This is because in each case the

map Ye → Yv is π1-injective since it projects to a map Xe → Xv which is π1-injective.

But if Ye is a tree, then the corresponding edge space Ye× I ⊂ Y either contains free

faces corresponding to the leaves of Ye, or consists of an isolated 1-cell if Ye consists of

a single 0-cell. It follows that there are no edge spaces attached to Yv, and so Y = Yv by

connectedness. Finally, Y is a tree with no free faces and therefore consists of a single

0-cell as claimed.

We now prove the general case by induction on the number of isolated 1-cells in Y .

Suppose that Y has an isolated 1-cell e, then either e does not separate and Y = Y0 ∪ e,

or e separates and Y = Y1 ∪ e∪ Y2. In the former case, by induction on the number of

isolated 1-cells, we can assume that χ(Y0) 6 1, and so χ(Y ) 6 0. In the latter case, again

by induction on the number of isolated 1-cells, the theorem holds for Y1 and Y2, and hence
χ(Y ) 6 χ(Y1)− 1+χ(Y2) 6 1 with equality if and only if both Y1 and Y2 are 0-cells, and

hence Y collapses to a point.

7. 3-manifold spines

In this section, we explain that if G is the fundamental group of a compact

irreducible 3-manifold with nonempty boundary then G ∼= π1 X where X is a 2-complex

with nonpositive immersions. We note that fundamental groups of 3-manifolds are
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coherent [16], and are locally indicable provided that all the rational homology spheres

in their prime decomposition are simply connected [7, § 6].

Lemma 7.1. Let N be a compact connected aspherical 3-manifold with nonempty

boundary. Then either π1 N is trivial, or χ(N ) 6 0.

Proof. Since N̄ = N ∪∂N N is a closed 3-manifold, we have 2χ(N )−χ(∂N ) = χ(N̄ ) = 0,

and hence χ(N ) = 1
2χ(∂N ). In particular, if no component of ∂N is a 2-sphere, then

χ(N ) 6 0. If some component S of ∂N is a 2-sphere, then π1 N is trivial. For if there is

more than one component of the preimage of S in the universal cover Ñ , then each of

these represents a nontrivial 2-cycle, and so Ñ is not aspherical. Therefore, π1 N = 1.

A 2-complex X is diagrammatically reducible if there does not exist a combinatorial
map S→ X which is an immersion on S− S0, where S is a 2-complex homeomorphic

with the 2-sphere. This notion was introduced by Sieradski [17] and further studied by

Gersten [4]. Note that a diagrammatically reducible 2-complex X is aspherical, and that

if Y → X is an immersion then Y is also diagrammatically reducible.

Theorem 7.2. Let M be a compact irreducible 3-manifold with nonempty boundary. Then

M has a 2D spine with nonpositive immersions.

Proof. It was shown in [1] that M has a strong deformation retraction onto a 2D spine

X that is diagrammatically reducible.
Let R(X) be a closed regular neighbourhood of X in M . Since R(X) deformation retracts

to the aspherical 2-complex X , we see that R(X) is aspherical.

Consider a handle decomposition of R(X) consisting of a closed B3 neighbourhood

for each 0-cell of X , a closed B2
× B1 neighbourhood for each 1-cell of X , and a closed

B1
× B2 neighbourhood for each 2-cell of X .

For any immersion Y → X , there is an induced 3-manifold thickening R(Y ) of Y , where

the handle corresponding to each cell y of Y maps homeomorphically to the handle

corresponding to the cell x , where x is the cell that y maps to.

Observe that since X is diagrammatically reducible, Y is diagrammatically reducible

and hence aspherical. Consequently, R(Y ) is aspherical, since its deformation retracts to

the aspherical 2-complex Y .

If Y is compact, then R(Y ) is a compact aspherical 3-manifold with nonempty boundary,

and so we see from Lemma 7.1 that either R(Y ) and hence Y is contractible, or χ(Y ) =
χ(R(Y )) 6 0 as claimed.

Remark 7.3. It was shown in [10, Theorem E] that if X is a 2-complex associated

with a handle decomposition with no 3-handles of an irreducible 3-manifold, then every

subcomplex of X is aspherical. Hence, the proof of Theorem 7.2 shows that if X is any

2D spine of an irreducible 3-manifold, then X has nonpositive tower maps.

8. Small cancellation and perimeter

We refer the reader to [12] or [14] for the notions pieces and C(p)-T (q) small-cancellation

complexes. For simplicity, we will assume here that no 2-cell has a periodic attaching map,
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but we note however that the results presented here do generalize using an appropriate

variant of the Euler characteristic.

A piece weighting on a 2-complex X is a choice of a real number Wt(R, P) for each 2-cell

R→ X and each piece P → X that factors through ∂R. This notion is more flexible than

the weighted perimeter notion considered in [15] where ‘sides of 2-cells’ are weighted.

Theorem 8.1. Let X be a T (q) 2-complex with a piece weighting. Then X has nonpositive

immersions provided that the following two conditions hold: for each 2-cell R, and for

each expression of ∂R as the concatenation of pieces P1 P2 · · · Pk , we have

k∑
i=1

Wt(R, Pi ) > 1. (1)

And for each piece P → X we have

2
q
+

∑
occurrences of P in ∂Ri

Wt(Ri , P) 6 1. (2)

Proof. Consider an immersion Y → X , and suppose that Y is compact and connected

but does not consist of a single 0-cell. Without loss of generality, we may assume that

Y does not have any free faces, and in particular, Y has no 0-cells of valence 1. If Y 1 is

a circle, then either χ(Y ) = 0 or Y contains a 2-cell and hence π1Y is trivial. Otherwise,

Y 1 is the union of maximal arcs P beginning and ending at 0-cells of valence > q, and

each such P maps to a piece in X . (The computation below focuses on the alternative

complex obtained by ignoring valence 2 vertices of Y .) Let f , e, and v denote the numbers

of 2-cells, maximal arcs, and 0-cells with valence >q of Y . Now

χ(Y ) = v− e+ f 6
2
q

e− e+
∑

R in Y

( ∑
P in ∂R

Wt(R, P)
)

=
2
q

e− e+
∑

P in Y

( ∑
P in ∂R

Wt(R, P)
)
=

∑
P in Y

(
2
q
− 1+

∑
P in ∂R

Wt(R, P)
)
6 0.

The 2-complex X satisfies the (p, q, r) condition provided X is C(p) and T (q), and
each 1-cell occurs at most r times along the boundaries of 2-cells.

Corollary 8.2. If X is a (p, q, r) 2-complex and 2
q +

r
p 6 1, then X has nonpositive

immersions.

Proof. Weight the occurrence of each piece P in ∂R by 1
p . Then apply Theorem 8.1.

Corollary 8.3. A T (q) 2-complex X has nonpositive immersions provided the following

condition holds: for each 2-cell R, and each piece P occurring in ∂R, the number of times

P occurs as a piece in X is at most q−2
q
|∂R|
|P| .

Proof. We assign Wt(R, P) to equal |P|
|∂R| . Then equation (1) obviously holds, and

equation (2) holds because of the following inequality, where R0 is the smallest 2-cell
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containing P as a piece and K is the number of times P occurs as a piece in X .

2
q
+

∑
R

|P|
|∂R|

6
2
q
+ K

|P|
|∂R0|

6
2
q
+

q − 2
q
= 1.
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