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Abstract Chladni figures are formed when particles scattered across a plate move due to an external
harmonic force resonating with one of the natural frequencies of the plate. Chladni figures are precisely
the nodal set of the vibrational mode corresponding to the frequency resonating with the external force.
We propose a plausible model for the movement of the particles that explains the formation of Chladni
figures in terms of the stochastic stability of the equilibrium solutions of stochastic differential equations.
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1. Introduction

In the late eighteenth century Chladni observed that sand randomly scattered across a
plate assumed beautiful patterns as the border of the plate was excited with a particular
pitch using the bow of a violin. Chladni’s observation can be roughly explained as a
resonant phenomenon when the frequency of the exciting force coincides with one of the
natural frequencies of the plate. Essentially, the patterns, which are known as Chladni
figures, are the nodal set of the vibrational mode whose frequency resonates with the
external force. We recall that the nodal set Nφ of the vibrational mode φ is defined by

Nφ = {x ∈ Ū : φ(x) = 0}.

In this paper we propose a stochastic model that takes into account the wiggly motion
of the particles when the external force resonates with one of the natural frequencies of
the plate, say that frequency corresponding to the vibrational mode φ. As the experi-
mentation shows, the motion of the particles resembles that of Brownian motion, yet the
particles jump further and the jumps become more dispersed near the local extrema of φ,
while in the neighbourhood of the nodal lines of φ, the particles settle down. Further, one
expects particles to have, on average, a horizontal velocity component opposite to the
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Figure 1. (a) Trajectories of the SDE (1.1) (for α = 2, β = 1) converging to the nodal lines
of the mode φ, whose contours are pictured in (b). Experimental trajectories of particles were
captured for the same mode φ and are shown in (c).

gradient of the vibrating mode after bouncing against the bending plate. Accordingly, it
seems reasonable that the random dynamics governing the particles’ motion has a drift
direction contrary to ∇φ and a diffusion component somehow proportional to φ.

Laboratory experiments with iron plates, numerical experimentation with stochastic
differential equations (SDEs) and some elementary physical considerations suggest that
the random dynamics of the moving particles obey an SDE similar to

dXt = −αφ(Xt)∇φ(Xt) dt + βφ(X) dWt, X0 = x, (1.1)

where Wt is a standard two-dimensional Brownian motion, φ is a vibrational mode of the
plate defined on a planar region U (the plate at rest), and α � 0 and β ∈ R are constants.
According to this model, the particles move in one among many possible trajectories of
the SDE starting at some point x ∈ U . The main result of this paper establishes that
non-critical points belonging to the nodal set of φ, i.e. points in Nφ at which ∇φ does not
vanish, are stochastically stable equilibria of a class of SDEs of which (1.1) is a particular
case. Setting α = 0 in (1.1), we improve the stability result to cover all but isolated points
of the nodal set Nφ.

To summarize our investigation, we refer to Figure 1, illustrating in the centre the
level sets of a vibrational mode φ of a free square plate. In part (a) we see several
trajectories of SDE (1.1) converging to the nodal lines of φ. The reader may compare
these trajectories with those obtained experimentally (Figure 1(c)) and captured using
the library for image processing, OpenCV [2].

Figure 2(b) shows the final positions of the trajectories starting at an initial grid of
360 random points uniformly distributed on the unit square (part (a)). Our goal is to
show that the outcomes pictured in Figures 1 and 2 are typical for all vibrational modes
of plates under free or clamped boundary conditions.

In this paper we model Chladni’s experiment as a stochastic process defined by the
solutions of a more general SDE,

dXt = μφ(Xt)∇φ(Xt) dt + σφ(Xt) dWt, X0 = x, (1.2)

where μφ and σφ fulfil the following conditions.
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(a) (b)

Figure 2. (a) An initial grid of 360 random points uniformly distributed on a square of side 1.
(b) Final positions of the trajectories of the SDE (1.1) (for α = 2, β = 1) after time t = 10.

Assumption 1.1. μφ and σφ are 2 × 2 continuous matrix-valued functions such that
(1.2) has a unique solution defined for all t � 0 and

(1) μφ(x) = 0 and σφ(x) = 0 for all x ∈ Nφ;

(2) the drift matrix μφ(x) satisfies μφ(x) = f(φ(x))νφ(x), where νφ(x) is positive def-
inite for all x ∈ Nφ with ∇φ(x) �= 0 and f is a scalar odd Lipschitz function that
either identically vanishes or is negative in some interval (0, ε), ε > 0;

(3) there exists a uniformly positive definite matrix A, such that its coefficients are
Hölder continuous and

σ(x)σTr(x) = (σ2
11(x) + σ2

22(x))A(x)

in a neighbourhood of Ū , where σ(x) ≡ σφ(x).

Despite its apparent simplicity, Chladni’s experiment hides quite complicated physical
processes beneath the movement of the particles. It was known by Chladni himself that
finely granulated particles, ground table salt for example, collect not near the nodal lines,
as normal sand or salt would collect, but close to the local extrema of φ (the antinodes
of the plate motion). The full explanation of this was given by Faraday [5], but not until
1830.

In § 2 we review the basic facts on the transverse vibration of a plate, define the
vibrational modes of a plate and go over some well-known cases in which the modes
of vibration φ can be computed explicitly (sort of). In § 3 we give a justification for
the stochastic model and prove the stability results (see Theorems 3.2 and 3.4). One
important assumption we made for these results is that the nodal set has no isolated
points.

2. The transverse vibration of a plate

The goal of this section is to define the vibrational modes of a plate as the solutions of an
eigenvalue problem. We refer the reader to [7] and references therein for a recent account
on Chladni figures and the mathematical model for vibrations of plates.
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Let us consider a plate of constant thickness h made up of a uniform material with
density ρ, Poisson ratio ν and Young’s modulus of elasticity E, vibrating due to an
external force F (t, x, y). Let us write u(t, x, y) to denote the vertical position of the plate
at a point (x, y) at time t. According to the classical theory of plate vibration, we have

DΔ2u + ρh
∂2u

∂t2
= F (t, x, y), t � 0, (x, y) ∈ U, (2.1)

where

D =
Eh3

12(1 − ν2)
, Δ2u =

∂4u

∂x4 + 2
∂4u

∂x2y2 +
∂4u

∂y4

and U is a planar bounded region that we identify with the plate at rest. The constant
D is known as the flexural rigidity of the plate and Δ2 is called the biharmonic operator.
Notice that Δ2u = Δ(Δu), where Δ is the Laplace operator.

Regarding the boundary conditions, we suppose that the plate is either free or clamped
at the border ∂U . The conditions (free or clamped) that a solution u satisfies at the
boundary are denoted by

B(u) = 0 on ∂U.

Later on we shall give concrete expressions for the boundary operator B.
According to well-established results on the spectral theory of partial differential oper-

ators (see [1]), there exist countably many pairs (λn, φn)n∈N, with λn ∈ R, φn ∈ H2(U),
such that the solutions to (2.1) can be written in the form

u(t, x, y) =
∞∑

n=0

Tn(t)φn(x, y),

where for all n ∈ N the pair (λn, φn) satisfies the eigenvalue problem

Δ2φn = λ4
nφn in U, B(φn) = 0 on ∂U. (2.2)

As it is known, given n ∈ N, the eigenspace defined by (2.2) is of finite dimension.
Moreover, we can order the eigenvalue sequence λ4

n such that

0 � λ4
1 � λ4

2 � · · · with lim
n→∞

λ4
n = ∞.

Additionally, if

F (t, x, y) = cos λt
∞∑

n=0

fnφn(x, y),

then Tn satisfies
d2Tn

dt2
+

(
Dλ4

n

ρh

)
Tn(t) = fn cos λt, t � 0. (2.3)

Roughly speaking, the vibration of the plate is a superposition of the standing waves
Tn(t)φn(x, y), n ∈ N. The eigenfunction φn is called the nth vibrational mode of the
plate. Had we λ2 = Dλ4

m/ρh for some m, then the standing wave Tm(t)φm(x, y) would
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become dominant and the contributions Tn(t)φn(x, y), n �= m, could be neglected. Since
the nodal lines of the mth mode of vibration N(φm) are at rest for all t � 0, the particles
scattered throughout the plate tend to settle down near the nodal lines of the mth mode
of vibration.

We go on reviewing some well-known examples in which the eigenpairs solving (2.2)
can be given explicitly, at least up to real roots of transcendental functions.

2.1. Circular plates

In circular domains it is convenient to label the eigenpairs of (2.2) as

(λnm, φnm), n = 0, 1, . . . , m = 1, 2, . . . .

In polar coordinates (r, θ), any bounded solution of Δ2φn = λ4
nφn in a disk of radius 1

can be written as (see [3, Chapter 4])

φ(r, θ) = cos(nθ − η0)(pJn(λr) + qIn(λr)), n = 0, 1, . . . , (2.4)

where Jn and In are, respectively, the Bessel function of the first kind and the modified
Bessel function of the first kind. η0 is an arbitrary constant, whereas p and q depend on
the boundary conditions.

2.1.1. All around clamped circular plates

For circular clamped plates the boundary equation B(φ) = 0 reads

φ|r=1 = 0 =
∂φ

∂r

∣∣∣∣
r=1

= 0. (2.5)

Replacing boundary conditions (2.5) in the general solution (2.4) yields(
Jn(λ) In(λ)
J ′

n(λ) I ′
n(λ)

) (
p

q

)
=

(
0
0

)
, (2.6)

and the characteristic equation for the clamped plate is

Jn(λ)I ′
n(λ) − J ′

n(λ)In(λ) = 0. (2.7)

The value λ has to be a root of the characteristic equation (2.7) in order to guarantee the
boundary condition (2.5). Now, it is known that for any n = 0, 1, . . . , there are countably
many solutions λnm, m = 1, 2 . . . , of the characteristic equation (2.7). Table 1 shows an
approximation of several of the roots λnm.

Once we determine the value λnm, the corresponding vibrational mode is easily
obtained by noticing (recall (2.6)) that the coefficients p and q in (2.4) satisfy

pJn(λnm) + qIn(λnm) = 0,
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Table 1. Roots λnm of the characteristic equation for the clamped plate.

m︷ ︸︸ ︷
n 1 2 3 4

0 3.1962 6.3064 9.4395 12.5771
1 4.6109 7.7992 10.9581 14.1086
2 5.9057 9.1969 12.4022 15.5795

0201

11 12

0201

11 12

(a) (b)

Figure 3. Nodal lines of several vibrational modes φnm for circular plates (the dots indicate the
points in Ω at which ∇φnm vanishes). (a) The clamped plate and (b) the free plate.

which determine p and q up to a common scalar multiple. Say that

p =
−In(λnm)√

J2
n(λnm) + I2

n(λnm)
,

q =
Jn(λnm)√

J2
n(λnm) + I2

n(λnm)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.8)

and the expression (up to scalar multiples) for the vibrational mode φnm follows:

φnm(r, θ) = cos(nθ − η0)(pJn(λnmr) + qIn(λnmr)), (2.9)

where η0 is arbitrary and p and q satisfy (2.8).
We now observe that for n = 0 the vibrational mode φ0m spans a one-dimensional

eigenspace of the eigenvalue problem (2.2) along with the clamped boundary condition.
Each of these eigenspaces is made up of radially symmetric functions. Note that for
n � 1 the eigenspace is two dimensional. Figure 3(a) illustrates Nφnm for n = 0, 1 and
m = 1, 2. We draw attention to the fact that the circle r = 1 is a common nodal line of
every vibrational mode for the clamped circular plate.
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Table 2. Approximations of several roots λnm of the characteristic
equation for the free plate (the value λ00 = 0 is omitted).

m︷ ︸︸ ︷
n 1 2 3 4

0 2.971 6.1873 9.3591 12.5165
1 4.5140 7.7260 10.9008 14.0619
2 2.3637 5.9418 9.1837 12.3793

2.1.2. All around free circular plates

The treatment of free plates is analogous to the clamped case. The boundary condition
B(φ) = 0 for a circular plate with free border can be written as[

Δφ − 1 − ν

r

(
∂φ

∂r
+

1
r

∂2φ

∂θ2

)]∣∣∣∣
r=1

= 0,

[
∂

∂r
(Δφ) +

1 − ν

r

∂

∂r

(
1
r

∂2φ

∂θ2

)]∣∣∣∣
r=1

= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.10)

Writing the Laplacian in polar coordinates and replacing the set of boundary conditions
on (2.4), we obtain the characteristic equation for the free circular plate. The resulting
expression is a bit more elaborate than (2.7). We omit the details and refer the reader to
[3, Chapter 4] for a more complete discussion. The main point is that, given n = 0, 1, . . . ,
we can compute the sequence λnm of zeros of the characteristic equation of the free
circular plate and obtain, analogous to the procedure for the clamped circular plate, the
expressions of the corresponding vibrational modes.

Table 2 shows some of the roots of the characteristic equation for the free circular
plate. Here we omit the first value λ00 = 0 since the term cos λ00t has no clear meaning
as an external harmonic force in (2.3). The nodal lines of circular clamped and free plates
look similar (see Figure 3), but r = 1 is never a nodal line of the vibrational modes φnm

of the free plate.

2.2. General domains

Solutions to (2.2) are known to be smooth in bounded domains U . Moreover, if
φ1

n, . . . , φk
n span the eigenspace corresponding to the nth eigenvalue λ4

n, then

φi
n ∈ C∞(U) ∩ C(Ū), i = 1, . . . , k.

Regularity at the boundary ∂U is a matter that depends on the smoothness of the
boundary itself. In domains with corners, it can be difficult to guarantee the existence
of, say, the second derivatives of the vibrational modes at the corner points. We refer the
reader to [8, Chapter 3] for more details on the existence and regularity of solutions to
the eigenvalue problem we consider.
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= 4.891 = 6.439 = 9.973λ λ λ

Figure 4. Nodal lines (white) of an equilateral triangular plate under free boundary condition
(above). The corresponding Chladni figures were obtained through home-made experiments
carried out by the authors (below).

Table 3. Values λn for an equilateral triangular plate with all
around free border (the value λ0 = 0 is omitted).

n 1 2 3 4 5 6 7 8 9

λn 2.93 3.06 4.63 4.89 5.43 6.37 6.43 7.33 8.14

In general domains it is necessary to draw upon numerical approximations to compute
the eigenpairs (φn, λ4

n) (see, for example, [7]). We used FreeFem++ [10] to compute
eigenpairs under free as well as clamped boundary conditions in several domains; for
example, in an equilateral triangle. In Table 3 we list the first nine values of λn and
in Figure 4 we illustrate the level sets of some of the vibrational modes as well as their
corresponding Chladni figures, obtained through home-made experiments by the authors.
We refer the reader to the beautiful illustrations crafted by Chladni himself in his book
Die Akustik [4]. Chladni drew the figures for the equilateral triangle in pictures 219–243
(see [4, p. 281].

3. A stochastic model

It is tempting to think of Chladni’s experiment as the result of the kicks that the bending
plate impinge on the particles when the external force resonates with one of the natural
frequencies of the plate. When several modes of vibration contribute to the bending, they
tend to cancel each other and as a result the particle translation is barely noticeable.
The energy transmitted to a particle can be assumed to be proportional to the bending
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amplitude. On the other hand, the jumps of a particle are random due to its shape,
the roughness of the plate and the phase time between the frequency of the plate and
the frequency by which particles bump the plate. Now, since the plate will be moving
upwards when it hits a particle one could expect the particle’s movement to be biased
toward the opposite direction to the gradient of the resonating mode φ. In this sense
Assumption 1.1 (2) is more general since it asks only that the outward normal vector to
a nodal line and the drift of a particle form an angle −π/2 < θ < π/2 at nodal points
where ∇φ �= 0.

We may think of the particle’s motion as the limiting case of a discrete stochastic
process obeying the following axioms.

(1) The particles move independently of each other.

(2) Any particle’s motion is described by a stochastic process (Xn)∞
n=0, where Xn

represents its position after the nth jump. We agree to the convention that Xn = q

for all n � n0 whenever Xn0−1 ∈ U and Xn0 = q with q �∈ U .

(3) The jumps Xn+1 −Xn are independent random variables having a two-dimensional
vector mean μn such that

Xn+1 − Xn = μn + σnξn, (3.1)

where ξn are independent identically distributed random variables having mean
zero, covariance matrix I (the 2 × 2 identity matrix), possess a finite (2 + δ)th
absolute moment for some δ > 0 and have a bounded or square-integrable density.
Regarding μn and σn, we assume

μn = δtμφ(Xn)∇φ(Xn), σn =
√

δtσφ(Xn),

where μφ and σφ fulfil Assumption 1.1 and δt > 0 is constant.

We see that (3.1) defines a generalized Euler–Maruyama approximation with step size
δt for the solution of the stochastic differential equation

dXt = μφ(Xt)∇φ(Xt) dt + σφ(Xt) dWt, X0 = x, (3.2)

where Wt is a standard two-dimensional Brownian motion.
As we highlighted in § 2.2, the modes of vibration φ are smooth in U and continuous

in Ū . We assume there is a C2 compact support extension of the vibrational mode φ

such that (3.2) fulfils the standard existence and uniqueness theorem of SDEs (see, for
example, [13, Chapter 6]) and that any solution is defined for all t � 0. Solutions of (3.2)
starting at x ∈ U at t = 0 will be denoted by Xx

t . If the context is clear, the superscript
x will be omitted.

On the other hand, it is known that the mode of vibration φ as well as its gradient ∇φ

are bounded in U for clamped and free plates (see, for example, [8]). As a consequence,
we may assume that the compact support extension of the vibrational mode is such that

‖μφ(x)∇φ(x)‖ + ‖σφ(x)‖ � L, x ∈ R
2, (3.3)
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for some positive constant L. Taking into account axioms (1), (2) and (3) and inequality
(3.3), we can apply a result of Kanagawa [12] to guarantee that the polygonal continuous
interpolation defined by (3.1), with starting value x, weakly converges, in the sense of
the Lp-Wasserstein metric, p � 1, to the unique solution Xx

t of (3.2). We refer the reader
to [15, § 10.3] for a deeper discussion of the Wasserstein metric and the approximation
of SDEs.

Furthermore, we note that Assumption 1.1 (1) guarantees that any point of the nodal
lines of φ is an equilibrium of (3.2). The main result of this paper pertains to the stochastic
stability of the equilibria of (3.2), which coincide with the Chladni figure of the corre-
sponding mode.

It is known that (3.2) defines a probability space on the sample set Ω of trajectories of
(3.2). We denote by P the probability function on this space. For the reader’s convenience
we recall the definition of a stochastically stable equilibrium, and refer the reader to [13]
for a more detailed discussion.

Definition 3.1. We say that q0 is a stochastically stable equilibrium of (3.2) if, for
every ε > 0,

lim
q→q0

P
[

sup
0�t<∞

|Xq
t − q0| � ε

]
= 0.

In the case of clamped plates, the boundary ∂U is itself a nodal line of φ. Thus, any
solution to (3.2) starting in U will remain in U with probability 1. For free plates the
matter is different: a solution to (3.2), Xt, starting at U may leave U in a finite time
with a non-vanishing probability.

The stability result in our investigations will depend heavily on the application of Itô’s
formula. It will be convenient to define the following elliptic operator L, closely related
to the infinitesimal generator of the stochastic process given by SDE (3.2):

L =
2∑

i,j=1

aij
∂2

∂xi∂xj
with (aij) = A.

By Assumption 1.1 (3), L is uniformly elliptic on a neighbourhood of Ū , and notice
that for SDE (1.1), L coincides with the Laplace operator Δ. For a given subdomain
D ⊂ U and a given non-constant function g ∈ C2,γ(D̄), with γ > 0 (where the notation
follows [9]), we shall consider the boundary-value problem

Lv = 0 in D, v = g on ∂D. (3.4)

If ∂D is made up of regular boundary points (we refer the reader to the definition of
regular boundary points of elliptic operators in [9, Chapter 8]), it is known that (3.4)
possesses a unique solution v ∈ C2(D) ∩ C(D̄). Furthermore, u ∈ C2(D ∪ Γ ) provided
that Γ is a C2 piece of ∂D. Also, by the maximum principle, we have that 0 < v < 1
in D whenever 0 � g � 1 on ∂D.

A point x0 ∈ Nφ is called a critical point if ∇φ(x0) vanishes or does not exist.

Theorem 3.2. If Assumption 1.1 is fulfilled, then any non-critical point of Nφ is a
stochastically stable equilibrium of SDE (3.2).
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Proof. Let x0 ∈ Nφ ∩ U be a non-critical point. Since Nφ is locally a regular curve
at x0, there exists ε > 0 such that Nφ splits Bε(x0) into two sub-domains of U in which
φ has definite sign. For any of these domains D ⊂ U , let us define a continuous function
g on ∂D such that g(x0) = 1, g(x) = 0 when |x−x0| = ε and 0 � g � 1. We shall assume
that g admits a C2,γ(D̄) extension.

Now, consider the unique solution v to boundary-value problem (3.4). By Hopf’s
boundary-point lemma, ∇v(x0) points in the outward direction of D. Moreover, for
some non-vanishing scalar λ we have ∇v(x0) = λ∇φ(x0) with sign(λ) = − sign(φ).
By Assumption 1.1 (2), there exists a neighbourhood V of x0 such that

sign(νφ(x)∇φ(x) · ∇v(x)) = sign(λ) = − sign(φ(x)) = sign(f(φ(x)))

for x ∈ V ∩ D. Thus, μφ(x)∇φ(x) · ∇v(x) � 0 for x ∈ V ∩ D. Furthermore, one may
choose V such that ∂(V ∩ D) ⊂ Nφ ∪ {x ∈ D : v(x) = δ} for some 0 < δ < 1.

By Itô’s formula, we have

E[v(Xt)] = v(x) + E

[ ∫ t

0
μφ(Xs)∇φ(Xs) · ∇v(Xs) + 1

2 (σ2
11(Xs) + σ2

22(Xs))Lv(Xs) ds

]
,

where σ(x) ≡ σφ(x). Denote by τδ the hitting time of Xt with ∂(D ∩ V ) and let T > 0.
We have

E[v(XT∧τδ
)] = v(x) + E

[ ∫ T∧τδ

0
μφ(Xs)∇φ(Xs) · ∇v(Xs) ds

]
� v(x).

On the other hand, since Nφ is not attainable (see [6, Chapter 13]), we have

E[v(XT∧τδ
)] =

∫
τδ>T

v(XT ) dP + δP (τδ � T ) � P (τδ > T ) + δP (τδ � T ),

and so
P (τδ > T ) + δP (τδ � T ) � v(x).

This implies that

(1 − δ)P (τδ > T ) = P (τδ > T ) + δ(P (τδ � T ) − 1) � v(x) − δ.

Letting T → ∞, we finally obtain

P (τδ = ∞) � v(x) − δ

1 − δ
,

and therefore P (τδ = ∞) → 1 as x → x0, x ∈ D, so x0 is a stochastically stable
equilibrium of (3.2).

If x0 ∈ ∂U is a non-critical point, we can repeat the above argument to obtain the
stability result. However, outside the domain U , the model does not represent the motion
of the particles in Chladni’s experiment. �
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The question remains as to whether critical points of Nφ are stochastically stable in the
general model (3.2). Sadly, the technique of the above proof fails to determine the non-
negativity of the expression νφ(x)∇φ(x) · ∇v(x) for x ∈ V ∩ D, rendering the argument
useless when ∇φ(x0) = 0.

We know for sure that, for any vibrational mode φ of the circular free plate, there are
only finitely many critical points in Nφ, which are precisely the crossings of the radial
lines and the circular lines of Nφ as shown in Figure 3(b). However, for the clamped
plate, in addition to finitely many isolated singular points, the border of the circle is a
line of critical points of Nφ. Regarding convex domains with free boundary condition,
numerical experimentation suggests that Nφ has a similar structure to the nodal lines of
the free circular plate (see, for example, Figure 4 or [7, Figure 4.1]). We know in general
that the vibrational modes are real analytic in U , which implies that U ∩ Nφ is locally
the union of finitely many isolated points and arcs (homomorphic images of [0, 1]), where
arcs are analytic, except possibly at isolated points.

Definition 3.3. We say that x0 ∈ Nφ is a nodal regular point if there exists ε > 0
such that Nφ splits Bε(x0) into a finite number of sub-domains Di such that ∂Di is made
up of regular boundary points for the operator L.

The condition to be a nodal regular point is relatively weak. It is satisfied by non-
critical points, cusp points, crossing points of several nodal arcs, and the end points of
loose arcs in Nφ. We succeed in proving the stochastic stability of any nodal regular point
of Nφ, though only in a particular case of (3.2).

Theorem 3.4. If Assumption 1.1 is fulfilled, then any nodal regular point of Nφ is a
stochastically stable equilibrium of

dXt = σφ(Xt) dWt.

Proof. We solve problem (3.4) in each of the sub-domains Di in which Nφ splits
Bε(x0) with a continuous boundary function gi defined on ∂Di such that gi(x0) = 1,
gi(x) = 0 when |x − x0| = ε, and 0 � gi � 1. The rest is step by step the proof of
Theorem 3.2. �

Isolated points of Nφ are not nodal regular points and they need not be stochastically
stable equilibria. The following calculation shows this for equilibrium (0, 0) of the SDE

dXt = |Xt| dWt.

The above equation can be written in polar coordinates Rt = |Xt| and θt = arg(Xt) to
obtain the explicit solution

Rt = R0eWr(t), θt = θ0 + Wθ(t),

where Wr(t) and Wθ(t) are standard one-dimensional Brownian processes while R0 and
θ0 are the starting values of Rt and θt respectively. Clearly, the equilibrium (0, 0) is
unstable.
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Figure 5. Final positions of some trajectories of (1.1) (α = 0, β = 1)
starting at an initial grid of random points uniformly distributed.

4. Numerical experiments

Computing plate vibrational modes is a well-established trade associated with the
development of free and commercial software. In this investigation we made use of
FreeFem++, Version 3.23 [10] and a good deal of self-made Python code, using stan-
dard Python libraries such as MatPlotLib, SciPy and NumPy [14], to compute the
vibrational modes φ in several regions U under free and clamped boundary conditions.

The stochastic simulations to obtain Figures 1 and 5 implement the Euler–Maruyama
method [11] with a step size parameter δt and a final T simulating T = ∞ tailored to
the vibrational mode φ. Figure 5 is a collage of the outcomes of numerical simulations
in several regions U : a square, an equilateral triangle and a boomerang-like region, all
of them with free border. We start from an initial grid of random points uniformly
distributed in U , then we numerically approximate the solution to (1.1) (with α = 0)
and show the final position of the particles.
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