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The Liouville equation is of fundamental importance in the derivation of continuum
models for physical systems which are approximated by interacting particles.
However, when particles undergo instantaneous interactions such as collisions, the
derivation of the Liouville equation must be adapted to exclude non-physical particle
positions, and include the effect of instantaneous interactions. We present the weak
formulation of the Liouville equation for interacting particles with general particle
dynamics and interactions, and discuss the results using two examples.
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1. Introduction

Many physical systems can be modelled as a collection of interacting particles, for
example, interactions in and between molecules [18], colloidal systems [9] or sys-
tems of granular media [3,12,15]. However, when considering a large number of
particles, simulating such a system as a discrete set of particles quickly becomes
computationally intractable. In these cases, it is necessary to consider a continuous
approximation of the system. One of the most popular first steps to a valid contin-
uous model is the Liouville equation (when particle dynamics are deterministic) or
the Kramers equation (when particle dynamics are stochastic) [16].

We assume that a system of N particles in d dimensions with positions X(t) ∈
R

dN and velocities V (t) ∈ R
dN at time t ∈ R is governed by Newton’s equations:

dX(t)
dt

=
V (t)
m

,
dV (t)

dt
= G(X(t), V (t), t), (1.1)
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The Liouville equation for hard particles 1041

where G(X,V, t) incorporates external effects such as gravity and friction, and inter-
particle interactions such as cohesion in granular media or intermolecular forces
in molecular dynamics. Under the assumption that the microscopic dynamics are
smooth, associated with the microscopic dynamics is the Liouville equation, a par-
tial differential equation which determines the dynamics of the N -body distribution
function f (N), which is formally given by

M[f (N)] :=

[
∂

∂t
+

1
m

v · ∇X −∇V · G(X,V, t)

]
f (N)(X,V, t) = 0. (1.2)

For point-like particles and sufficiently-smooth G, equation (1.2) fully describes the
evolution of an initial configuration of particles f

(N)
0 . However, when particles are

of finite volume, adjustments have to be made to the microscopic dynamics to avoid
non-physical particle overlap. Under the assumption that particles are spherical and
of radius ε > 0, and that interaction is through pairwise collisions, a binary collision
rule can be introduced that instantaneously changes the velocities of two particles
so that they are moving away from each other immediately after contact. Indeed, if
at time t particles i and j have positions xi, xj and velocities vin

i , vin
j , respectively,

such that (vin
i − vin

j ) · (xi − xj) < 0 and ‖xi − xj‖ = ε, under the assumption that
collisions are elastic (i.e. no energy is lost due to the collision) velocities are updated
using the following rules:

vout
i = vin

i − xi − xj

‖xi − xj‖ · (vin
i − vin

j )
xi − xj

‖xi − xj‖ ,

vout
j = vin

j +
xi − xj

‖xi − xj‖ · (vin
i − vin

j )
xi − xj

‖xi − xj‖ . (1.3)

Notably the velocity components in the direction of xi − xj are swapped and
reflected.

At an informal level, the collisional effect is not recognized at the level of
the Liouville equation, but is derived in the Bogoliubov–Born–Green–Kirkwood–
Yvon (BBGKY) hierarchy [1,19], for example, as a consequence of additional
assumptions on an interaction force [10]. However, by instantaneously changing
the velocities of two particles that undergo a collision, a fundamental assumption
in the Liouville derivation is no longer valid—the dynamics of an individual particle
are no longer smooth. We therefore cannot rely on the correctness of the statement
of the Liouville equation in equation (1.2) above, and must resort to an alternative
formulation to derive an equation for f (N)(X,V, t). A suitable alternative is the
weak formulation of the Liouville equation [20].

In a paper of the third author [20], a system of N = 2 spherical particles with
diameter ε > 0 and G(X,V, t) = 0 is fully characterized, and, under no additional
assumptions, it is shown that for all smooth, compactly supported test functions Φ,
given initial data f

(2)
0 ∈ C0(D) ∩ L1(D) (i.e. the space of all continuous functions

with compact support), such that f
(2)
0 integrates to 1 on the phase space, and is

always positive, there exists a unique f (2) ∈ C0((−∞,∞), L1(D)) which satisfies
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the weak formulation∫
Pε

∫
R6

∫ ∞

−∞

[
∂Φ(X,V, t)

∂t
+ (V · ∇X)Φ(X,V, t)

]
f (2)(X,V, t) dt dV dX

=

−
∫

∂Pε

∫
R6

∫ ∞

−∞
Φ(X,V, t)f (2)(X,V, t)V · ν̂(X) dt dV dH(X) (1.4)

for all test functions Φ, and which conserves linear and angular momentum, and
kinetic energy. In the above:

• we define the spatial integral on Pε := {X ∈ R
6 : ‖x1 − x2‖ � ε}, as particles

cannot overlap;

• D ∈ R
12 represents all possible configurations of positions and velocities, given

that two particles cannot overlap (X ∈ Pε);

• the vector ν̂ ∈ R
6 is the outward unit normal to the surface ∂P;

• H is the Hausdorff measure [6] on ∂Pε.

In this case, we say that f (2) is a global-in-time weak solution of the Liouville
equation given by

∂f (2)

∂t
+ (V · ∇X)f (2) = BX [f (2)], (1.5)

where BX [f (2)] is determined in the weak sense against all differentiable, compactly
supported test functions Φ ∈ C1

c ((−∞,∞),D):

〈BX [f (2)],Φ〉 =
∫

∂Pε

∫
R6

f (2)(X,V, t)Φ(X,V, t)V · η̂Y dV dH(Y ). (1.6)

In contrast to classical formulations [11], a collisional term BX [f (2)] is derived at
the level of the Liouville equation. Furthermore, under the assumptions of molecular
chaos, BX [f (2)] admits the elastic Boltzmann collision operator [4,7] in the first
equation of the weak formulation of the BBGKY hierarchy, agreeing with previous
results. Under restrictions on initial data, for example, on the particle density of
the system, an analogue to equation (1.5) should also hold in systems with more
than 2 particles.

From this point, a clear question to consider is how more complicated dynam-
ics, or other instantaneous interactions between particles, affect the derivation of
equation (1.5). In this paper, we derive the weak formulation of the Liouville
equation for two particles with general free dynamics (i.e. where there are no instan-
taneous interactions between particles), and general instantaneous interactions (i.e.
general collisional events and events where particles are refracted away from one
another). The microscopic dynamics are first discussed in § 2, which leads to the
derivation of the Liouville equation in § 3. This careful examination of the dynamics
provides useful insights for mathematical modelling of materials approximated by
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hard particles, e.g. granular media. In particular, the collision operators (in both
position and velocity) constructed at the level of the Liouville equation in the weak
formulation should be of interest.

Following this, we consider an example in § 4 where collisions are inelastic and
the free dynamics are affected by external friction and a constant external potential.
Upon consideration of the weak Liouville equation, and the admissible initial data
for the given dynamics, this example leads to a modified collisional term at the level
of the BBGKY hierarchy. We provide a further example which displays our results
in equation (5), where we consider a system of particles where the free dynamics
are linear, but particles interact via a discrete square-shoulder interaction potential,
equation (5.1). The inclusion of this discrete potential then leads to an additional
collision term in the Liouville equation, which translates to a truncated Boltzmann
collision operator in the BBGKY hierarchy. We discuss our findings and future
directions for research in § 6.

1.1. Set-up

1.1.1. Free particle dynamics At the microscopic level, we consider the initial data
of two particles. The first particle has initial position x ∈ R

3 and velocity v ∈ R
3,

the second has initial position x̄ ∈ R
3 and velocity v̄ ∈ R

3, all assumed at time
t = 0. When considering the initial position of particles, we refer to the position
of their centres of mass. It is useful to consider the concatenation of position and
velocities as X = [x, x̄] ∈ R

6 and V = [v, v̄] ∈ R
6. In some cases it is useful to define

Z = [X,V ] ∈ R
12 in the same spirit.

One of the important requirements of our method is an understanding of admis-
sible initial data, i.e. initial data that produces a solution to equation (1.1) for all
time t ∈ R. In this paper, we assume that the admissible initial position data for the
free dynamics (i.e. for point-like particles) encompasses the entirety of R

6, i.e. any
initial positions can provide dynamics that are defined for all times t ∈ R. However,
the initial position data X ∈ R

6 may restrict the admissible initial velocity data to
a subset of R

6. Therefore, for each X ∈ R
6, we define V f(X) ⊆ R

6 to be the set of
initial velocity data which produces a solution to equation (1.1) for all times t ∈ R,
and take V ∈ V f(X).

Many calculations in this derivation refer to relative differences of position and
velocity of the two particles, for example, the binary collision rule equation (1.3)
is used in the dynamics when (x − x̄) · (v − v̄) < 0. Thus we introduce the follow-
ing notation: for a vector A = [a, ā] ∈ R

6, we write ã = a − ā ∈ R
3 as its relative

difference. Much of the intuition in the derivation can be considered in terms of
relative differences of particle data. For example, we can rewrite the dynamics of
the pair of particles in terms of relative differences, which effectively fixes one point
at position 0 with radius ε, and a collision is seen as a reflection of an intersecting
point-particle trajectory.

Given initial data X ∈ R
6 and V ∈ V f(X), we define the free particle flow maps

for position and velocity by Φx
t (X,V ) and Φv

t (X,V ), respectively, and assume that
they satisfy the Newton equations of motion, namely

∂tΦx
t (X,V, t) = Φv

t (X,V, t), ∂tΦv
t (X,V, t) = G(Φx

t (X,V, t),Φv
t (X,V, t), t). (1.7)
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We write Φt = [Φx
t ,Φv

t ] as the flow map defined on initial data Z ∈ D for all times
t ∈ R. We also assume that the flow maps produce unique trajectories for any given
initial data.

1.1.2. Dynamics with instantaneous interactions When instantaneous interactions
are considered, a careful understanding of the admissible data is required. Outside
of the discrete set of interaction times the particles follow trajectories determined
by Φx

t and Φv
t . In this section, we will construct the flow maps Ψx

t and Ψv
t that

include instantaneous interactions.
Admissible Data. In both of the examples we consider, the particles are hard

spheres with diameter ε. The possible initial data for X is therefore restricted to
the hard sphere table

Pε = {X = [x, x̄] ∈ R
6 : ‖x − x̄‖ � ε}. (1.8)

The subset Pε ⊆ R
6 is a real analytic manifold with boundary ∂Pε, which has

outward unit norm vector

ν̂ =
1√
2ε

[−x̃, x̃] (1.9)

for X ∈ ∂Pε.
We assume that the motion of the spherical particles is non-rotational, i.e. we

do not furnish the equations of motion with an evolution equation for the angular
velocity of the spheres. Adopting the assumption of smooth spherical particles is
very popular in the literature, whilst the introduction of particles which are non-
spherical is also of interest and has been studied, for example, computationally
in [5].

The introduction of instantaneous interactions between particles will change
which initial velocities are admissible. We define the set of admissible velocity data
for dynamics with instantaneous interactions as V(X) for each X ∈ Pε, which we
assume has a piecewise analytic boundary. Furthermore, we define C(X) ⊂ V(X) to
be the set of initial data which leads to instantaneous interactions, and also assume
that ∂C(X) is a piecewise analytic submanifold of R

6. We validate this in the two
examples considered.

We may consider additional interaction diameters Pε̃ for ε̃ > ε, e.g. square well
interactions discussed in [2], but importantly for X ∈ R

6\Pε, V(X) = ∅. We define
the set of interaction diameters by Θ = {εi ∈ R

+, i = 1, . . . , m : εm > εm−1 > · · · >
ε0 > 0} where m is the number of interaction diameters of an individual particle.

We assume that the dynamics with instantaneous interactions have flow maps
Ψx

t (X,V ) and Ψv
t (X,V ), which are defined globally in time.

Event Times. We will characterize each instantaneous event by an event time,
an interaction diameter and an event map that changes the particle velocities. As
interactions are instantaneous, the event times can be enumerated as a discrete set,
which can be finite or infinite. We write the event times as τi ∈ R for i = −M,−M +
1, . . . ,−1, 0, 1, . . . , N − 1, N , where M = M(X,V ), N = N(X,V ) ∈ N ∪ {∞}, and

−∞ = τ−M (X,V ) < τ−M+1(X,V ) < · · · < τN−1(X,V ) < τN (X,V ) = ∞, (1.10)
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where we choose τ0 to be the closest event time to time t = 0:

τ0 = arg min|s|{s ∈ R : Φ̃s(X,V ) ∈ ∂Pε̄, ε̄ ∈ Θ}. (1.11)

In turn each τi can be defined in terms of the previous or next event time. When
the previous event time has been defined:

τi+1(X,V ) := arg min|s|{s ∈ (τi,∞) : Φs−τi
(Ψx

τi
,Ψv

τi
) ∈ ∂Pε̄, ε̄ ∈ Θ}, (1.12)

and when the next event has been defined:

τi−1(X,V ) := arg min|s|{s ∈ (−∞, τi) : Φs−τi
(Ψx

τi
,Ψv

τi
) ∈ ∂Pε̄, ε̄ ∈ Θ}. (1.13)

Events occur when particles reach an interaction diameter. We will assume that
there exists δ > 0 such that for all i = −M, . . . , N , τi − τi−1 > δ, and we define
two special event times, namely τ−M (X,V ) = −∞, τN (X,V ) = ∞. Between each
pair of event times, the particle dynamics are determined by equation (1.1). At
each time τi, the particles experience an instantaneous change in velocity. For hard
spheres, for example, this will ensure that the two particles do not overlap.

Event Maps. At each time τi, the velocities of the particles experience an instan-
taneous change. By the formal axioms of classical mechanics, it is necessary for the
change in velocities to conserve linear and angular momentum, i.e. if an event
τi(X,V ),X ∈ Pε, V ∈ V(X) occurs at time t = 0 (without loss of generality), then

v′ + v̄′ = v + v̄, (1.14)

and for all a ∈ R
3,

(x − a) × v′ + (x̄ − a) × v̄′ = (x − a) × v + (x̄ − a) × v̄, (1.15)

where primed velocities denote post event velocities. In fact, to show conservation
of angular momentum one only needs to check equation (1.15) is satisfied for 4
values of a.

Proposition 1.1. Equations (1.15) and (1.14) are true for all a ∈ R
3 if and only

if

(x − pi) × v′ + (x̄ − pi) × v̄′ = (x − pi) × v + (x̄ − pi) × v̄, (1.16)

for i = 1, . . . , 4, where {pi}4
i=1 ⊂ R

3 are the vertices of a (non-degenerate) polytope
in R

3.

Proof. The necessity of this statement is trivial. For sufficiency, by equation (1.14)
we may assume x = 0 without loss of generality, and so for each pj , for all constants
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cj ∈ R, we have

− cjpj × v′ + cj(x̄ − pj) × v̄′ = −cjpj × v + cj(x̄ − pj) × v̄

=⇒ −
4∑

j=1

cjpj × v′ +
4∑

j=1

cj(x̄ − pj) × v̄′ = −
4∑

j=1

cjpj × v +
4∑

j=1

cj(x̄ − pj) × v̄.

If we now suppose that
∑4

j=1 cj = 1, then we have that equation (1.15) is satisfied
for all q in the set

C =

⎧⎨⎩
4∑

i=1

cjpj :
4∑

j=1

cj = 1

⎫⎬⎭ . (1.17)

As C is a convex set in R
3, we infer that C = R

3, as required. �

Considering the ‘concatenation’ notation, the change in velocity is determined by
a map σi : R

6 → R
6, where σi(X,V ) ∈ R

6×6. We have the following result on the
form of σ(X,V ).

Theorem 1.2. Let X ∈ R
6 and V ∈ R

6, and set X = [x, x̄], V = [v, v̄]. Assume that
x̄ �= x, and set

N(X) =
1

‖x − x̄‖ [x − x̄, x̄ − x]. (1.18)

Then the following are equivalent:

(i)

σ(X,V ) = I + η(X,V )N(X) ⊗ N(X), (1.19)

for some η : R
12 → R.

(ii) The map σ respects the conservation of total linear and angular momen-
tum:
(a) (COLM)

v′ + v̄′ = v + v̄; (1.20)

(b) (COAM) For any a ∈ R
3,

(x − a) × v′ + (x̄ − a) × v̄′,= (x − a) × v + (x̄ − a) × v̄, (1.21)

where v′ = (σ(X,V )V )(1,2,3), and v̄′ = (σ(X,V )V )(4,5,6)
1.

1i.e. the effect of σ(X, V ) on the first and last three entries of V respectively.
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Proof. We note that equation (1.21) can be written as Aσ(X,V )V = AV , where

Aa =

⎛⎝ 0 −xa
3 xa

2 0 −x̄a
3 x̄2

xa
3 0 −xa

1 x̄a
3 0 −x̄a

1

−xa
2 xa

1 0 −x̄a
2 x̄a

1 0

⎞⎠ , (1.22)

where we have written xa
i = xi − a. One can show that (1 =⇒ 2) by a direct

calculation. We see that

A + aσ(X,V ) = Aa(I − η(X,V )N ⊗ N),

= Aa − η(X,V )AaN(X) ⊗ N(X) = Aa,

where it holds that AaN(X) = (0, 0, 0). With a view to demonstrating that
(2 =⇒ 1), we note that the matrix Aa is rank 3 (by considering its row-
echelon form), and that it is enough to show that equation (1.21) holds for
a = {a1, a2, a3, a4}, if equation (1.20) holds.

We note that Aaσ(X,V )V = AaV for all V ∈ R
6 implies that

Aa(σ(X,V )V − V ) = 0. Therefore, σ(X,V )V − V ∈ ker(Aa) for all a ∈ R
6. Let

Y = (σ(X,V )V − V ); then

−Y2x
a
3 + Y3x

a
2 − Y5x̄

a
3 + Y6x̄

a
2 = 0, Y1x

a
3 − Y3x

a
1 + Y4x̄

a
3 − Y6x̄

a
1 = 0,

−Y1x
a
2 + Y2x

a
1 − Y4x̄

a
2 + Y5x̄

a
1 = 0.

We consider the values of observation vectors given by

a1 = (x1, x2, x3), a2 = (x1, x2, x̄3),

a3 = (x1, x̄2, x̄3), a4 = (x̄1, x̄2, x̄3),

which form the four vertices of a tetrahedron, which results in

Y = η̃(x, v)

⎛⎜⎜⎜⎜⎜⎜⎝
x1 − x̄1

x2 − x̄2

x3 − x̄3

x̄1 − x1

x̄2 − x2

x̄3 − x3

⎞⎟⎟⎟⎟⎟⎟⎠ = η(X,V )N(X), (1.23)

where η(X,V ) = ‖x − x̄‖η̃(X,V ). We note, taking dot products on both sides of
equation (1.23) with N(X) and rearranging, that

N(X) · (σ(X,V ) − V ) = η(X)

=⇒ (I − N(X) ⊗ N(X))σ(X,V )V = (I − N(X) ⊗ N(X))V,

i.e. σ can only change the component of V in the direction of N(X). Thus, if
N(X) · V = 0, then V is contained in the hyperplane orthogonal to N(X), and
we must have that σ(X,V )V = V . Therefore, without loss of generality, for any
V ∈ R

6 we can take η(X,V ) = N(X) · V η̃(X,V ), and so

σ(X,V )V = (I + η(X,V )N(X) ⊗ N(X))V (1.24)

as claimed. �
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Equations (1.14), (1.15) are not enough to fully determine the map σ; an addi-
tional constraint must be supplied. For example, in [20], it is shown that the
Boltzmann (elastic) scattering map can be determined by including the conserva-
tion of kinetic energy. In this case σ is an involution, i.e. σ(X,V )2 = I. Alternative
maps can be derived using different constraints on the Jacobian of the scattering
map (for inelastic Boltzmann scattering maps considered in § 4), or on kinetic
energy (for boost or damping maps considered in [2]). We call this the event map
constraint.

We define the forward time map σ+
i as the map which takes pre-event veloc-

ities to post-event velocities, and the backward time map σ−
i taking post-event

velocities to pre-event velocities. For the dynamics to be reversible we require
σ+

i (X,V )σ−
i (X,V ) = I. Note that if we assume that σ−

i (X,V ) = σ+
i (X,V ) then

η(X,V ) = 0 or η(X,V ) = −2. The former value of η(X,V ) produces the identity
map, while the latter is the elastic Boltzmann scattering map.

We can fully define the flow maps for dynamics with instantaneous interactions,
using Φx

t ,Φv
t , τi and σ±

i . We split the initial data into two cases.

No Instantaneous Events. If X,V are such that no instantaneous events
happen, then M + N = 1 and ΨX

t ,Ψv
t obey

∂tΨx
t (X,V ) = Φx

t (X,V ), ∂tΨv
t (X,V ) = G(X,V, t) (1.25)

in the classical sense.

Instantaneous Events. When X,V are such that instantaneous events
occur in finite time, then

∂tΨx
t (X,V )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φv

t (X,V ), τi0−1 � t � τi0 ,

Φv
t−τi

(Ψx
τi

(X,V ), σ+
i Ψv

τi
(X,V )),

τi < t � τi+1,
i = i0, . . . , N − 1,

Φv
t−τi

(Ψx
τi

(X,V ), σ−
i Ψv

τi
(X,V )),

τi−1 � t < τi,
i = −(M + 1), . . . , (i0 − 1),

(1.26)

and

∂tΨv
t (X,V )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(X,V, t), τi0−1 � t � τi0 ,

G(Ψx
τi

(X,V ), σ+
i Ψv

τi
(X,V ), t − τi),

τi < t � τi+1,
i = i0, . . . , N − 1,

G(Ψx
τi

(X,V ), σ−
i Ψv

τi
(X,V ), t − τi),

τi−1 � t < τi,
i = −(M + 1), . . . , (i0 − 1),

(1.27)

where i0 = 1 if τ0 < 0 and μ = 0 if τ0 > 0.

Note that free particle flow maps need not be defined globally to be used in these
flow maps, if the instantaneous interaction renders the trajectory admissible.
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We now have all the necessary notation to state the main results of this paper.

1.2. Main results

Now that we have fully defined the dynamics of two particles, we are in a position
to state the main results of this paper. To do so, we state the following definition,
which is generalized from [20].

Definition 1.3 (Global in time weak solutions of the Liouville equation). Suppose
we are given an initial condition f0 ∈ C0(D) ∩ L1(D), such that∫

Pε

∫
V(X)

f0(X,V ) dV dX = 1, f0(X,V ) � 0. (1.28)

Then f ∈ C0((−∞,∞), L1(D)) is a physical global in time solution of the Liouville
equation

∂tf + V · ∇Xf + ∇V · (G(X,V, t)f) = BX [f (2)] + BV [f (2)] (1.29)

if and only if for all test functions Φ ∈ C1
c (TR

6 × (−∞,∞)) with spatial support
in Pε, it holds that∫

Pε

∫
V(X)

∫ ∞

−∞
f(X,V, t)[∂tΦ(X,V, t) + V · ∇XΦ(X,V, t)

+ ∇V · (G(X,V, t)Φ(X,V, t))] dt dV dX

=

−
∫

∂Pε

∫
V(X)

∫ ∞

−∞
f(X,V, t)Φ(X,V, t)V · ν̂X dt dV dH(X)

−
∫
Pε

∫
∂V(X)

∫ ∞

−∞
f(X,V, t)Φ(X,V, t)G(X,V, t) · ν̂V dt dH(X,V ) dX, (1.30)

and f obeys the conservation of linear and angular momentum for all t ∈ (−∞,∞):∫
Pε

∫
V(X)

(v + v̄)f(X,V, t) dV dx =
∫
Pε

∫
V(X)

(v + v̄)f0(X,V ) dV dx, (1.31)∫
Pε

∫
V(X)

(x × v + x̄ × v̄)f(X,V, t) dV dx =
∫
Pε

∫
V(X)

(x × v + x̄ × v̄)f0(X,V ) dV dx,

(1.32)

and the microscopic dynamics satisfy the associated event map constraints.

With this, we state the main result of this paper.

Theorem 1.4 Existence of global-in-time weak solutions of the Liouville equation.
For any f0 ∈ C0(D) ∩ L1(D), there exists a physical global-in-time weak solution of
the Liouville equation (1.30).
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Before identifying important transport identities and proving theorem 1.4, we make
some remarks on this result.

Firstly, we have made very few assumptions on the free dynamics of the particles;
they can be affected by external or interparticle forces. In § 4 we consider inelas-
tic collisions, but the same formulation can be used to consider any interactions
determined by discrete step potentials [2]. Our result is therefore quite general,
and should be appropriate for a range of systems.

The Liouville equation is derived for a system of two particles. In principle,
systems of many particles may involve many body interactions. However, given the
correct subset of initial data, which ensures that all instantaneous interactions are
pairwise, the equation (1.30) should also be accurate for systems of many particles,
and may be used to approximate systems where the initial data is not so carefully
constructed.

We can also state a general form of the BBGKY hierarchy. We start with a
definition of global in time weak solutions thereof.

Definition 1.5. Let f0 ∈ C1(D) ∩ L1(D) be symmetric in its particle arguments
(i.e. [v, x] and [v̄, x̄] can be interchanged, leaving its value unchanged). We say that
a pair of maps (f (1)

0 , f
(2)
0 ) with membership

f (1) ∈ C0((−∞,∞), L1(TR
3)), f (2) ∈ C0((−∞,∞), L2(D)) (1.33)

is a global in time weak solution of the BBGKY hierarchy associated to the initial
data

f
(1)
0 =

∫
R3\Bε(x)

∫
V(x,x̄,v)

f0(X,V ) dv̄ dx̄ for all [x, v] ∈ TR
3, (1.34)

where Bε(x) ⊂ R
3 is the ball of radius ε centred at x, and

f
(2)
0 (X,V ) = f0(X,V ) for all [X,V ] ∈ D, (1.35)

if and only if, for all test functions φ ∈ C∞
c (TR

3 × (−∞,∞)),∫
R3

∫
R3

∫ ∞

−∞
(∂t + v · ∇x)φ(x, v, t)f (1)(x, v, t) dt dv dx

+
∫

R3

∫
R3\Bε(x)

∫
R3

∫
V(x,x̄,v)

∫ ∞

−∞
∇V · (G(X,V, t)φ(x, v, t))

× f (2)(X,V, t) dt dv̄ dv dx̄ dx

= (1.36)

− 1√
2

∫
R3

∫
S2

∫
V(X)

∫ ∞

−∞
φ(x, v, t)f (2)([x, x̄ + εn], [v, v̄], t)(v − v̄) · n dt dV dn dx

−
∫
Pε

∫
∂V(X)

∫ ∞

−∞
φ(x, v, t)f (2)(X,V, t)G(X,V, t) · ν̂V dt dH(V,X) dX, (1.37)

and f (2) satisfies equation (1.30).
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After a straightforward partition of phase space, the derivation of the BBGKY
hierarchy then follows as a corollary of theorem 1.4. For more applicable results,
one must have a good understanding of the admissible data. For example, in linear
elastic hard sphere dynamics, this would result in the Boltzmann collision operator
on the right-hand side of equation (1.36) [20]. The following is a quick corollary of
our main result.

Corollary 1.6. For any f0 ∈ C0(D) ∩ L1(D), there exists a global-in-time weak
solution to the BBGKY hierarchy as given by definition 1.5.

Before formulating the Liouville equation we state and prove some microscopic
properties that are used in the derivation.

2. Properties of the microscopic dynamics

The proof of theorem 1.4 relies on transport identities for τi(X,V ) and σi(X,V ).
These identities are given in the case for linear elastic particles in [20]. Here we
generalize to our case and interpret the results physically.

We first consider the results for the free dynamics.

Proposition 2.1 (Transport Identity I). Given X ∈ R
6 and V ∈ V(X), let τ(X,V )

be a particular event time in the dynamics determined by Ψx
t (X,V ) and Ψv

t (X,V ).
Then for all t ∈ (τi−1, τi+1)

[Φv
t · ∇Y + G(Φx

t ,Φv
t ) · ∇W ]τ(Y,W )|Y =Φv

t ,W=Φv
t

= −1. (2.1)

Proof. For ease of notation, we omit the arguments of Φx
t and Φv

t . Firstly, we note
that the event time τ(X,V ) can be written as [20]

τ(X,V ) = arg min{s : Φx
s (X,V ) ∈ ∂Pε}.

We first consider τ as a function of the data at time t, i.e. τ̃(Ψt(X,V ),Ψt(X,V )) =
τ(X,V ). To construct the time derivative of τ̃ , we appeal to the definition of the
classical derivative. Indeed, let h > 0 and assume that h � δ. Then, we have

τ(Ψx
t+h,Ψv

t+h) = arg min{s ∈ (τi−1, τi+1) : ‖Φ̃x
s (Ψx

t+h,Ψv
t+h)‖ = ε}

= arg min{s ∈ (τi−1, τi+1) : ‖Φ̃x
s−h(Ψx

t ,Ψv
t )‖ = ε}

= arg min{s + h ∈ (τi−1, τi+1) : ‖Φ̃x
s (Ψx

t ,Ψv
t )‖ = ε}.

We have assumed that there exists a unique value s̄ for which this is true. It follows
that

1
h

(τ(Ψx
t ,Ψv

t ) − τ(Ψx
t+h,Ψv

t+h)) =
1
h

(s̄ − (s̄ + h)) = −1.

Using results from generator theory [14], we find that, for t ∈ (τi−1, τi+1):

∂tτ(Ψx
t ,Ψv

t ) = [∂tΦx
t · ∇Y + ∂tΦv

t · ∇W ] τ(Y,W )|Y =Φx
t ,w=Φv

t
.

By appealing to the Newton equations for the free particle dynamics, we arrive at
the required result. �
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The time derivative of τ offers an insight to the geometric meaning of the result:
advancing forward in time towards an event in the future decreases the time until
the event proportionally. We note that for linear dynamics equation (2.1) reduces
to

V · ∇Xτ(X,V ) = −1, (2.2)

which is the first transport identity given in [20]. The second transport identity of
interest involves the event maps σ± in an analogous result to the second transport
identity in [20].

Proposition 2.2 (Transport Identity II). Given X ∈ R
6 and V ∈ V(X), let σi be

a particular event map in the dynamics determined by Ψx
t (X,V ) and Ψv

t (X,V ).
Then for all t ∈ (τi−1, τi+1),

[Φv
t · ∇Y + G(Φx

t ,Φv
t ) · ∇W ]σ(Y,W )|Y =Ψv

t ,W=Ψv
t

= 0. (2.3)

Proof. Generator theory provides a link between the time derivative of σi(Φx
t ,Φv

t )
and the left-hand side of equation (2.3). We note that, by shifting in time,

∂tσ(Φx
t ,Φv

t ) = ∂t

(
η[Φx

τi−t(Ψ
x
t ,Ψv

t ),Φv
τi−t(Ψ

x
t ,Ψv

t )]

× (N [Φx
τi−t(Ψ

x
t ,Ψv

t )] ⊗ N [Φx
τi−t(Ψ

x
t ,Ψv

t )]
) )

= ∂t

(
η
[
Φx

τi
,Φv

τi

]
N [Φx

τi
] ⊗ N [Φx

τi
]
)

= 0,

which completes the proof. �

The right-hand side confirms that the scattering maps are not dependent on time:
they depend only on the instantaneous positions and velocities at the time of the
interaction.

We can now use these microscopic properties to derive the Liouville equation in
the next section.

3. Derivation of the Liouville equation

We consider the following three integrals

I(Φ) =
∫
Pε

∫
V(X)

∫ ∞

−∞
f (2)(X,V, t)∂tΦ(X,V, t) dt dV dX, (3.1)

J(Φ) =
∫
Pε

∫
V(X)

∫ ∞

−∞
f (2)(X,V, t)V · ∇XΦ(X,V, t) dt dV dX, (3.2)

K(Φ) =
∫
Pε

∫
V(X)

∫ ∞

−∞
f (2)(X,V, t)∇V · [G(X,V, t)Φ(X,V, t)] dt dV dX, (3.3)

which we call the time, space and velocity derivative terms respectively. The method
to derive the Liouville equation in both of our examples is similar to the method
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used in [20]: we wish to find weak solutions f (2) to the equation

M[f (2)] = B[f (2)],

where the operator M is the Liouville operator associated to our choice of dynamics
for point-like particles. To derive the operator on the right-hand side, we consider
the Liouville operator acting on test functions Φ ∈ C∞

c (D × (−∞,∞)). We then
multiply M[Φ(X,V, t)] by f (2) and integrate to find∫

Pε

∫
R6

∫ ∞

−∞
f (2)(X,V, t)M[Φ(X,V, t)] dX dV dt = 0. (3.4)

We then separate the phase space into parts where f (2) is smooth, and evaluate
each of the corresponding integrals so constructed. Surface terms that arise then
contribute to the collisional term on the right-hand side of the Liouville equation
in its weak form.

3.1. The time derivative term

Using the flow maps Ψx
t and Ψv

t , we can write the integral I(Φ) as follows:

I(Φ) =
∫
Pε

∫
V(X)

N(X,V )∑
i=−M(X,V )+1

∫ −τi−1

−τi

f
(2)
0 (Ψx

−t,Ψ
v
−t)∂tΦ(X,V, t) dt dV dx. (3.5)

On each interval (τi−1, τi) the flow is described by the free dynamics, so we may
apply integration by parts, keeping in mind that evaluating Ψt(X,V ) at event
times from the left or right provides a different result, and that using a compactly-
supported test function Φ yields zero at τ−M = −∞, τN = ∞:

I(Φ) =
∫
Pε

∫
V(X)

N−1∑
i=−M+1

{
Φ(X,V, τi)(f

(2)
0 (Ψτ−

i
) − f

(2)
0 (Ψτ+

i
))

}

−
N∑

i=−M+1

{∫ −τi−1

−τi

Φ(X,V, t)∂tf
(2)
0 (Ψx

−t,Ψ
v
−t) dt

}
dV dX,

where

Ψτ− = lim
t→τ−

Ψt, Ψτ+ = lim
t→τ+

Ψt,

meaning that the summation of the surface terms in this integral do not cancel (due
to the application of σi at each event time τi). For each interval (τi−1, τi), the flow
maps Ψx

t and Ψv
t are determined by the free dynamics Φx

t and Ψv
t . We apply the

chain rule on each of these intervals. For the second term in this result, we consider
three separate cases. If there are no particle–particle interactions for initial data
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X,V such that M + N = 1, we have that

∂tf
(2)
0 (Ψx

−t,Ψ
v
−t) = [∂tΦx

−t · ∇Y + ∂tΦv
−t · ∇W ]f (2)

0 |Y =Φx
−t,W=Φv

−t
,

= [Φv
−t · ∇Y + G(X,V,−t) · ∇W ]f (2)

0 |Y =Φx
−t,W=Φv

−t
,

= −[Ψv
−t · ∇X + G(X,V,−t) · ∇V ]f (2)(X,V, t).

For initial data which causes particle–particle collisions, we define i0 = 0 if τ0 < 0
(i.e. the closest event to t = 0 is in the past) and i0 = 1 if τ0 > 0 (the closest event
is in the future). Then for τi0−1 � t � τi0 ,

∂tf
(2)
0 (Ψx

−t,Ψ
v
−t) = −[Ψv

−t · ∇X + G(X,V,−t) · ∇V ]f (2)(X,V, t),

for τi < t < τi+1, i = i0, . . . , N − 1,

∂tf
(2)
0 (Ψx

−t,Ψ
v
−t) = −[Ψv

−(t−τi)
· ∇Y

+ G(Ψx
−τi

, σ+
i Ψv

−τi
,−(t − τi)) · ∇W ]f (2)(Y,W, t),

and for τi < t < τi+1, i = −M + 1, . . . , (i0 − 1),

∂tf
(2)
0 (Ψx

−t,Ψ
v
−t) = −[Ψv

−(t−τi)
· ∇Y

+ G(Ψx
−τi

, σ−
i Ψv

−τi
,−(t − τi)) · ∇W ]f (2)(Y,W, t).

We partition the result into the surface terms and the new integrals:

I1(Φ) =
∫
Pε

∫
V(X)

N−1∑
i=−M+1

Φ(X,V, τi)(f
(2)
0 (Ψτ−

i
) − f

(2)
0 (Ψτ+

i
)) dV dX, (3.6)

I2(Φ) = −
∫
Pε

∫
V(X)

N∑
i=−M+1

∫ −τi−1

−τi

Φ(X,V, t)∂tf
(2)
0 (Ψx

−t,Ψ
v
−t) dt dV dX. (3.7)

3.2. The space derivative term

We write J(Φ) as a sum of time integrals, where for each integral the argument
is smooth:

J(Φ) =
∫
Pε

∫
V(X)

N∑
i=−M+1

∫ −τi−1

−τi

f
(2)
0 (Ψx

−t,Ψ
v
−t)V · ∇XΦ(Z, t) dt dV dX, (3.8)

so that on each interval we can apply the following rule:

f
(2)
0 V · ∇XΦ = ∇X · (V f

(2)
0 Φ) − ΦV · ∇Xf

(2)
0 . (3.9)

Then we have

J(Φ) =
∫
Pε

∫
V(X)

{
N∑

i=−M+1

∫ −τi−1

−τi

∇X · (V f
(2)
0 Φ)dt

−
∫ ∞

−∞
Φ(X,V, t)V · ∇Xf (2)(X,V, t) dt

}
dV dX. (3.10)
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We then consider the first (divergence) term in J(Φ). We split this integral according
to regions whose velocities V ∈ C(X) cause interactions and V ∈ V(X)\C(X) that
do not. For the latter case we have

M1(Φ) :=
∫
Pε

∫
V(X)\C(X)

∫ ∞

−∞
∇X · (V f

(2)
0 (Φx

−t,Φ
v
−t)Φ(X,V, t)) dt dV dX (3.11)

which then, by the divergence theorem yields

M1(Φ) =
∫

∂Pε

∫
V(X)\C(X)

∫ ∞

−∞
Φ(X,V, t)f (2)(X,V, t)V · ν̂(X,V ) dt dV dH(X),

(3.12)

where ν̂(X,V ) is the outward unit normal to the surface ∂Pε ⊆ R
6.

For the collisional integrals, we use Reynold’s transport theorem [13] on each
term in the sum to find∫
Pε

∫
C(X)

N∑
i=−M+1

∫ −τi−1

−τi

∇X · (V f
(2)
0 Φ)dt dV dX

=
∫
Pε

∫
C(X)

N∑
i=−M+1

∇X ·
∫ −τi−1

−τi

V Φ(X,V, t)f (2)
0 (Ψ−t) dt dV dX

+
∫
Pε

∫
C(X)

N∑
i=−M

(V · ∇Xτi)Φ(X,V, τi)[f
(2)
0 (Ψτ−

i
) − f

(2)
0 (Ψτ+

i
)] dV dX.

(3.13)

Once again, we split the result J(Φ) into several parts:

J1(Φ) =
∫
Pε

∫
C(X)

N∑
i=−M

(V · ∇Xτi)Φ(X,V, τi)[f
(2)
0 (Ψτ−

i
) − f

(2)
0 (Ψτ+

i
)] dV dX,

(3.14)

J2(Φ) = −
∫
Pε

∫
V(X)

∫ ∞

−∞
Φ(X,V, t)V · ∇Xf (2)(X,V, t) dt dV dX, (3.15)

J3(Φ) =
∫

∂Pε

∫
V(X)\C(X)

∫ ∞

−∞
Φ(X,V, t)f (2)(X,V, t)V · ν̂(X,V ) dt dV dH(X)

+
∫

∂Pε

∫
C(X)

N∑
i=−M+1

∇X ·
∫ −τi−1

−τi

V Φ(X,V, t)f (2)
0 (Ψ−t) dt dV dX.

(3.16)

3.3. The velocity derivative term

The velocity derivative follows a similar argument to the one above in that we
use the following calculus identity between each two event times, as in the spatial
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derivative case:

f (2)∇V · (GΦ) = ∇V · (Gf (2)Φ) − ΦG · ∇V f (2). (3.17)

For the first term on the right-hand side of equation (3.17) we initially consider the
case of no interactions. As we have assumed that for each X ∈ Pε, V(X)\C(X) is a
piecewise analytic submanifold of R

6, the divergence theorem provides us with the
following result:

M2(Φ) : =
∫
Pε

∫
V(X)\C(X)

∫ ∞

−∞
∇V · (G(X,V, t)Φ(X,V, t)f (2)

0 (Φ−t)) dt dV dX,

=
∫
Pε

∫
∂(V(X)\C(X))

∫ ∞

−∞
f (2)(X,V, t)Φ(X,V, t)G · η̂V (V ) dt dH(V ) dX.

(3.18)

For the collisional part, we have, using the Reynolds transport theorem in an analo-
gous fashion to before, under the assumption that C(X) is an analytic submanifold
of V(X), that:

∫
Pε

∫
C(X)

N∑
i=−M+1

∫ τi−1

−τi

∇V · (GΦf
(2)
0 (Ψ−t)) dt dV dX

=
∫
Pε

∫
C(X)

N∑
i=−M+1

∇V ·
∫ −τi−1

−τi

Gf (2)(Z, t)Φ(Z, t) dt dV dX

+
∫
Pε

∫
C(X)

N−1∑
i=−M+1

[G · ∇V τi]Φ(Z, τi)[f
(2)
0 (Ψτ−

i
) − f

(2)
0 (Ψτ+

i
)] dV dX.

(3.19)

We partition the result as follows:

K1(Φ) =
∫
Pε

∫
C(X)

N−1∑
i=−M+1

[G · ∇V τi]Φ(Z, τi)[f
(2)
0 (Ψτ−

i
) − f

(2)
0 (Ψτ+

i
)] dV dX

(3.20)

K2(Φ) = −
∫
Pε

∫
V(X)

∫ ∞

−∞
Φ(X,V, t)G · ∇V f (2)(X,V, t) dt dV dX, (3.21)

K3(Φ) =
∫
Pε

∫
∂(V(X)\C(X))

∫ ∞

−∞
f (2)(X,V, t)Φ(X,V, t)G · η̂V (V ) dt dH(V ) dX

+
∫
Pε

∫
∂C(X)

N∑
i=−M+1

∇V ·
∫ −τi+1

−τi

Gf (2)(Z, t)Φ(Z, t) dt dV dX. (3.22)
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3.4. Combining all terms

We now combine all contributions into one equation. We note that, by theorem
2.1,

I1(Φ) = −(J1(Φ) + K1(Φ)), (3.23)

and so when combining all contributions, these terms disappear.
By an application of generator theory on Ψx

−t and Ψv
−t [14], and the results of

theorems 2.1, 2.2, we see that

I2(Φ) = −(J2(Φ) + K2(Φ)). (3.24)

The remaining terms J3(Φ) and K3(Φ) are surface terms in position and velocity
phase space, respectively. By applying the dominated convergence theorem [17],
and the divergence theorem on the second term of J3(Φ) and K3(Φ), we find

J3(Φ) =
∫

∂Pε

∫
V(X)

∫ ∞

−∞
f (2)(X,V, t)Φ(X,V, t)V · ν̂ dt dV dH(X), (3.25)

K3(Φ) =
∫
Pε

∫
∂V(X)

∫ ∞

−∞
f (2)(X,V, t)Φ(X,V, t)G(X,V, t) · ν̂V dt dH(X,V ) dX.

(3.26)

This concludes the proof of theorem 1.4.
As previously noted, the results of theorem 1.4 are quite general. To provide

more of an insight into our methodology, we now consider an example of particle
dynamics and interparticle interactions that involves energy loss through collisions,
external friction and a constant external spatial potential, which, for example, is of
interest for modelling systems of granular media [8].

4. Dynamics with friction, gravity and inelasticity

4.1. Free dynamics

For some G = [g, g] ∈ R
6 where g ∈ R

3 and γ > 0, we consider the following
differential equations:

dΦx
t (X,V )
dt

= Φv
t (X,V ),

dΦv
t (X,V )
dt

= −γV − G. (4.1)

Physically, these equations are used to model viscous drag and gravitational force
acting on particles. The resulting paths of motion for free particles are well known
and can be easily derived:

Φx
t (X,V ) = X − t

γ
G +

1
γ

(
V +

1
γ

G

)
(1 − e−γt), (4.2)

Φv
t (X,V ) = − 1

γ
G +

(
V +

1
γ

G

)
e−γt. (4.3)
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4.2. Inelastic collisions

We consider these dynamics where collisions between particles are inelastic, so
that the energy of the system is reduced when two particles collide. To determine
the associated scattering map, we include the following event map constraint on
the forward and reverse event maps σ±:

|∇V σ+(X,V )V | = −α, |∇V σ−(X,V )V | = − 1
α

(4.4)

We give the following result on the form of the scattering map.

Lemma 4.1. Under the conditions eqs. (1.14), (1.15), (4.4), under the additional
assumption that η in theorem 1.2 is constant, the event maps σ± have the form

σ+(X,V ) = I − (1 + α)N(X) ⊗ N(X), σ−(X,V ) = I − 1 + α

α
N(X) ⊗ N(X).

(4.5)

Proof. From theorem 1.2, we know that σ±(X,V ) = I − ηN(X) ⊗ N(X). Then,
it follows that ∇V (σ±(X,V )V ) = I − ηN(X) ⊗ N(X). It remains to solve
equation (4.4). As the determinant of a matrix is the product of its eigenvalues
λi, we have that

6∏
i=1

λ+
i = −α,

6∏
i=1

λ−
i = − 1

α
.

For both maps λ±
i = 1 for i = 1, . . . , 5, by using the 5 independent eigenvectors

which are perpendicular to N(X). For σ+(X,V ), the remaining eigenvalue, asso-
ciated to a vector parallel with N(X), must be −α. Thus, V + η(X,V )V = −αV .
Rearranging we find ηV = (1 + α)V , which gives the required result. The result for
σ−(X,V ) is analogous. �

We remark that upon relaxing the assumption that η(X,V ) is constant, the (first)
Monge–Ampère equation becomes

|I − N(X) · V N(X) ⊗∇V (η+(X,V )) − η+(X,V )N(X) ⊗ N(X)| = −α. (4.6)

In particular, this could result in physically valid non-linear scattering maps σ±

for a particular event. Understanding this equation is an interesting topic for future
work. In this section we focus on the inelastic Boltzmann scattering maps defined
in theorem 4.1 and note that when α = 1 these reduce to the elastic Boltzmann
scattering map considered in [20].

4.3. Velocity cones and collision times

As the reduced difference dynamics Φ̃x
t (X,V ) follow straight lines (parametrized

exponentially in −γt), we see that two particles satisfying eqs. (4.2), (4.3) can
experience at most one collision. The initial data can be partitioned into non-
interacting, pre-collisional and post-collisional cases.
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For X ∈ Pε and V ∈ R
6, we write L(X,V ) ⊂ R

6 to denote the line

L(X,V ) =
{

X − gt

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γt) : t ∈ R

}
, (4.7)

and define the two infinite half lines

L−(X,V ) =
{

X − gt

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γt) : t � 0

}
, (4.8)

L+(X,V ) =
{

X − gt

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γt) : t � 0

}
. (4.9)

The velocity collision cone is then defined analogously:

C(X) =
{
V ∈ R

6 : L(X,V ) ∩ ∂Pε �= ∅} . (4.10)

We split this set into pre-collisional and post-collisional velocities respectively:

C−(X) =
{
V ∈ C(X) : L+(X,V ) ∩ ∂Pε �= ∅} , (4.11)

C+(X) =
{
V ∈ C(X) : L−(X,V ) ∩ ∂Pε �= ∅} . (4.12)

We note that a constant external potential G does not have an effect on the
shape of the collision cones, as it does not affect the dynamics determined by
the relative distance of the particles. The frictional constant γ truncates the pre-
collisional velocity cone (when compared to linear dynamics). However, for these
dynamics, for any given X ∈ Pε, all initial velocities V ∈ R

6 are admissible, and
so in particular the second surface term in the weak formulation of the Liouville
equation disappears.

In this case we can analytically construct the unique event time τ(X,V ).

Lemma 4.2 (Characterization of the collision time map for dynamics with gravity
and friction). For any X ∈ Pε, the following statements hold:

(i) If V ∈ C+(X), then x̃ · ṽ > 0 and

τ(X,V ) = − 1
γ

log
(

1 +
γ

‖ṽ‖
{

x̃ · ̂̃v +
[
(x̃ · ̂̃v)2 − (‖x̃‖2 − ε2)

]1/2
})

. (4.13)

(ii) If V ∈ C−(X), then −(1/2)(γ(‖x‖2 − ε2) + (‖ṽ‖2/γ)) < x̃ · ṽ < 0 and

τ(X,V ) = − 1
γ

log
(

1 +
γ

‖ṽ‖
{

x̃ · ̂̃v −
[
(x̃ · ̂̃v)2 − (‖x̃‖2 − ε2)

]1/2
})

. (4.14)
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Proof. The collision occurs when

‖Φ̃x
t (X,V )‖2 = ε2 =⇒ ‖x̃ +

1
γ

(ṽ)(1 − e−γτ )‖ = ε2.

By expanding the left-hand side and rearranging, we have that if the particles
collide, then τ(X,V ) must take one of the two following values

τ−(X,V ) = − 1
γ

log
(

1 +
γ

‖ṽ‖
{

x̃ · ̂̃v −
[
(x̃ · ̂̃v)2 − (‖x̃‖2 − ε2)

]1/2
})

,

τ+(X,V ) = − 1
γ

log
(

1 +
γ

‖ṽ‖
{

x̃ · ̂̃v +
[
(x̃ · ̂̃v)2 − (‖x̃‖2 − ε2)

]1/2
})

.

We note that the argument in the square root requires x̃ · ˆ̃v < −(‖x̃‖2 − ε2)1/2

or x̃ · ˆ̃v > (‖x̃‖2 − ε2)1/2, and if both τ±(X,V ) exist, then τ−(X,V ) < τ+(X,V ).
Assume now that V ∈ C+(X); then τ±(X,V ) < 0, and so τ+(X,V ) > τ−(X,V ),
whence τ(X,V ) = τ+(X,V ) is required. Furthermore,

x̃ · ṽ >
‖ṽ‖
γ

+ ((x̃ · ṽ)2 − (‖x̃‖2 − ε2))1/2 > 0,

and so x̃ · ṽ > 0. Alternatively, if V ∈ C−(X), τ(X,V ) > 0 and so we take τ(X,V ) =
τ−(X,V ). Thus

x̃ · ˆ̃v +
‖ṽ‖
γ

> ((x̃ · ˆ̃v)2 − (‖x̃‖2 − ε2))1/2.

Squaring both sides and rearranging, we find

x̃ · ṽ > −1
2

(
γ(‖x̃‖2 − ε2) +

‖ṽ‖
γ

)
.

�

Remark 4.3. The inequality in the pre-collisional case relates to the presence of
friction in the dynamics: if particles do not have enough energy in the direction x̃,
then the particles will never meet.

4.4. Flow maps

Given the free particle dynamics, the scattering maps, and a full characterization
of the admissible data, we are now in a position to define the hard sphere flow maps
Tt. We split our considerations into collision-free and collisional dynamics. For the
purposes of this section we introduce the operators Πi : R

12 → R
6 for i = 1 and 2,

where (Π1 ◦ Tt)Z restricts the action of Tt on Z to its first 6 entries (i.e. spatial
information), and (Π2 ◦ Tt)Z restricts the action of Tt on Z to its last 6 entries (i.e.
velocity information).
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4.4.1. Collision-free dynamics If (X,V ) ∈ {X} × R
6\C(X), then

(Π1 ◦ Tt)Z = X − gt

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γt) (4.15)

(Π2 ◦ Tt)Z = − g

γ
+
(

V +
g

γ

)
e−γt. (4.16)

4.4.2. Collisional dynamics Firstly, if X ∈ Pε and V ∈ C−(X), then if −∞ <
t < τ(X,V ),

(Π1 ◦ Tt)Z = X − gt

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γt), (4.17)

(Π2 ◦ Tt)Z = − g

γ
+
(

V +
g

γ

)
e−γt, (4.18)

and if τ(X,V ) < t < ∞, then

(Π1 ◦ Tt)Z =
[
X − gτ

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γτ )

]
− g(t − τ)

γ
(4.19)

+
1
γ

[
σ−

(
(V +

g

γ
)e−γτ − g

γ

)
+

g

γ

]
(1 − e−γ(t−τ)), (4.20)

(Π2 ◦ Tt)Z = − g

γ
+
[
σ−

(
(V +

g

γ
)e−γτ − g

γ

)
+

g

γ

]
e−γ(t−τ). (4.21)

If X ∈ Pε and V ∈ C+(X), then if −∞ < t < τ(X,V ),

(Π1 ◦ Tt)Z =
[
X − gτ

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γτ )

]
− g(t − τ)

γ
(4.22)

+
1
γ

[
σ+

(
(V +

g

γ
)e−γτ − g

γ

)
+

g

γ

]
(1 − e−γ(t−τ)), (4.23)

(Π2 ◦ Tt)Z = − g

γ
+
[
σ+

(
(V +

g

γ
)e−γτ − g

γ

)
+

g

γ

]
e−γ(t−τ), (4.24)

and if τ(X,V ) < t < ∞, then

(Π1 ◦ Tt)Z = X − gt

γ
+

1
γ

(
V +

g

γ

)
(1 − e−γt), (4.25)

(Π2 ◦ Tt)Z = − g

γ
+
(

V +
g

γ

)
e−γt. (4.26)

Finally, if X ∈ ∂Pε,

(Π1 ◦ Tt)Z =

⎧⎨⎩X − gt
γ + 1

γ

(
V + g

γ

)
(1 − e−γt) if −∞ < t < 0,

X − gt
γ + 1

γ

(
σ−V + g

γ

)
(1 − e−γt) if 0 < t < ∞,

(4.27)
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Figure 1. Example trajectories of particles that are affected by gravity, friction and collide
with different coefficients of restitution α. (a) Trajectories of two particles that never
collide. (b) Trajectories where two particles collide with α = 1 (blue), α = 0.7 (red) and
α = 0.2 (green). The coloured dots on each trajectory represent the position at a particular
time t. Figure 1(c) shows the same trajectories (using the same colours) considered in the
reduced difference space x̃, where the black circle is the boundary ∂Pε.

and

(Π2 ◦ Tt)Z =

⎧⎨⎩− g
γ +

(
V + g

γ

)
e−γt if −∞ < t < 0,

− g
γ +

(
σ−V + g

γ

)
e−γt if 0 < t < ∞.

(4.28)

Two-dimensional diagrams of the trajectories that can occur in this system of
dynamics is provided in figure 1, with the result in three dimensions being sim-
ilar. We note that in figure 1a, although the trajectories overlap, the particles do
not collide as they reach the intersection point at different times.

4.5. The Liouville equation

Using theorem 1.4, as we have characterized the admissible data X,V for the
particle dynamics, we can write down the Liouville equation for these particular
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dynamics. For any f
(2)
0 ∈ C0(D) ∩ L1(D) by theorem 1.4, there exists a physical

global in time weak solution of[
∂

∂t
+ V · ∇X − G · ∇V −∇V · (γV )

]
f (2)(X,V, t) = BX [f (2)], (4.29)

where the scattering map defining collisions satisfies equation (4.4).

4.6. The BBGKY hierarchy

We define f (1)(x, v, t) as in theorem 1.6, which then satisfies (by using G = [g, g]),∫
Pε

∫
R6

∫ ∞

−∞
(∂t + v · ∇x + g · ∇v)φ(x, v, t)f (1)(x, v, t) dt dV dX

= − 1√
2

∫
R3

∫
S2

∫
R6

∫ ∞

−∞
φ(x, v, t)f (2)([x, x + εn], [v, v̄], t)(v − v̄) · n dt dV dn dx.

The collisional term BX [f (2)] in the above equation can then be separated into a
pre-collisional and a post-collisional term:

BX [f (2)] =
1√
2

∫
R3

∫
S2

∫
C−(X)

∫ ∞

−∞
φ(x, v, t)f (2)([x, x + εn], [v, v̄], t)

× (v − v̄) · n dt dV dn dx

− 1√
2

∫
R3

∫
S2

∫
C+(X)

∫ ∞

−∞
φ(x, v, t)f (2)([x, x + εn], [v, v̄], t)

× (v − v̄) · n dt dV dn dx,

where

C+(n) = {V ∈ R
6 : (v − v̄) · n > 0},

and

C−(n) = {V = [v, v̄] ∈ R
6 : −‖v − v̄‖2

2γ
< (v − v̄) · n < 0}

= {V = [v, v̄] ∈ R
6 : (v − v̄) · n < 0},

where the lower bound has disappeared because we are considering X ∈ ∂Pε. We
introduce the change of variables for the post-collisional integral that is motivated
by the backward time scattering map:

V �→
(

I − 1 + α

2α

{
n − n

}⊗ {n − n
})

V.

This transform has Jacobian 1/α. We note that

(v′
n − v̄′

n) · n = − 1
α

(v − v̄) · n,
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where the primed values are determined by the backward time Boltzmann inelastic
scattering map, which in terms of v, v̄ is the inverse inelastic collision rule

v′
n = v − 1 + α

2α
(n · (v − v̄))n, (4.30)

v̄′
n = v +

1 + α

2α
(n · (v − v̄))n, (4.31)

and so we obtain the inelastic collision operator in the first equation of the BBGKY
hierarchy:∫

∂Pε

∫
R6

∫ ∞

−∞
Φ(X,V, t)f (2)(X,V, t)V · ν̃(X) dt dV dX, (4.32)

=
1√
2

∫
R3

∫
S2

∫
C+(n)

∫ ∞

−∞
Φ(x, v, t)

[
f (2)(x, v, x + εn, v̄, t) (4.33)

− 1
α2

F (2)(x, v′, x + εn, v̄′, t)

]
(v − v̄) · n dt dV dn dx.

We note that, under additional assumptions (i.e. molecular chaos), this is a weak
analogue of the inelastic Boltzmann collision operator for particles of diameter ε.

4.7. Extension to general external and interaction potentials

In this example, as the relative trajectory of the particles is linear, two particles
can only experience one event, namely the inelastic collision. By including more
complicated smooth interaction potentials (e.g. a quadratic interaction potential
which attracts particles to one another), multiple collisions can occur between two
particles. The resulting Lioville equation will still be described by equation (1.30),
under the condition that the collisions that particles experience are well separated.

Alternatively, multiple events can occur between particles by including additional
interaction diameters where non-collisional events can occur. We now present an
example where multiple instantaneous interactions can occur between two particles.

5. Square-shoulder particle dynamics

We now include an additional interaction diameter ε1 > ε > 0, where particle tra-
jectories are refracted away from one another, provided they can overcome an energy
barrier. If the particles do not have enough energy to overcome the barrier, then they
are instead reflected away. Such dynamics are sometimes considered by including a
discrete interaction potential:

G(‖x̃‖) =

⎧⎪⎨⎪⎩
∞, ‖x − x̄‖ < ε,

a, ε < ‖x − x̄‖ < ε1,

0, ‖x − x̄‖ > ε1,

(5.1)

where a > 0. The potential is shown in figure 2.
As an alternative to using a discrete interaction potential, we will construct a

new interaction type that takes place at the interaction boundary ε1.
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Figure 2. The step potential that is considered for this system of particles. The dashed
line at ‖x̃‖ = ε represents the hard core of the particle.

5.1. Free dynamics

For this example we will consider linear particle dynamics:

dΦx
t (X,V )
dt

= Φv
t (X,V ),

dΦv
t (X,V )
dt

= 0. (5.2)

The free dynamics of the system are then given by

Φx
t (X,V ) = X + V t, (5.3)

Φv
t (X,V ) = V. (5.4)

By considering linear dynamics we can fully characterize all possible trajectories
of particles. However, we stress that a full characterization of all trajectories is
not necessary to construct the Liouville equation, so more general external and
interaction potentials may also be considered, provided there is a firm understanding
of the admissible data for the system.

5.2. Particle interactions

5.2.1. Elastic collisions At the core interaction diameter ε, we will consider elastic
collision interactions given by equation (4.5) with α = 1. When α �= 1, the derivation
should be similar, with some additional consideration of valid admissible intial data.

5.2.2. Particle refractions At the interaction diameter ε1 > ε > 0, we construct a
refractive boundary depending on the kinetic energy in the direction of the collision,
the particles will undergo a collision or a refraction. For X ∈ ∂Pε1 = {[x, x̄] ∈ R

6 :
‖x̃‖ = ε1}, there are three possible cases:

(i) ṽ · x̃ < 0 and |ṽ · ˆ̃x|2 < a. In this case, the two particles are moving towards
each other, but the energy in the direction of the interaction is not large
enough to overcome the energy barrier, so the particles undergo an elastic
collision.
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(ii) ṽ · x̃ < 0 and |ṽ · ˆ̃x|2 > a. Here the particles are moving towards each other
and have enough energy to overcome the barrier, so the particles continue
towards each other but their velocity in the direction of the interaction is
reduced.

(iii) ṽ · x̃ > 0. In this case, the particles are moving away from one another. As
the energy difference in this direction is negative, the particles are always
refracted, and their velocities are increased in the direction of the interaction
diameter.

For case 1, we can use the collision rule equation (4.5) with α = 1. In cases 1
and 3 we require a new event rule which provides the correct dynamics: η+ and
η− should change the speed of colliding particles in a collision, proportional to the
energy barrier and the speed of the incoming particles. For these reasons we propose
that

η+ = −‖(N ⊗ N)V ‖ − ε2
1a

‖(N ⊗ N)V ‖ η−. (5.5)

This leads to the following definition of η±:

η+ = −
(

1 − ‖(N ⊗ N)V ‖ − ε2
1a

‖(N ⊗ N)V ‖
)

, η− = −
(

1 − ‖(N ⊗ N)V ‖
‖(N ⊗ N)V ‖ − ε2

1a

)
.

In terms of incoming and outgoing velocities of individual particles, this event is
written as

v′ =v − 1
2

[
ṽ · ˆ̃x − sign

(
ṽ · ˆ̃x

)((
ṽ · ˆ̃x

)2

− a

)1/2
]
ˆ̃x,

v̄′ =v̄ +
1
2

[
ṽ · ˆ̃x − sign

(
ṽ · ˆ̃x

)((
ṽ · ˆ̃x

)2

− a

)1/2
]
ˆ̃x.

For a = 0, this equation reduces to V ′ = V , i.e. the particles do not interact. When
a > 0, the particles lose energy of order a in the direction of the outward normal of
∂Pε1 . We can see that when (ṽ · ˆ̃x)2 < a, the event rule cannot be applied, thus in
this case we must provide an alternative event rule.

5.3. Collision times

The times at which particles reach an interaction diameter depends solely on the
free dynamics. Instead of considering the collision times for individual interaction
diameters, we therefore only need to consider an arbitrary diameter ε̂ > 0. Under
the assumption that the particles do reach a distance ε̂ from one another given
initial conditions X ∈ Pε, V ∈ R

6, we have to find the time τ where

τ(X,V ) = min
t∈R

{
‖Φ̃x

t (X,V )‖ = ε̂
}

. (5.6)
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By using equation (5.3), we find that if V ∈ C−(X) then

τ(X,V ) = min
t∈R

{
t = − 1

‖ṽ‖
[
− ˆ̃v · x̃ ±

[
(ˆ̃v · x̃)2 − (‖x̃‖2 − ε̂2)

]1/2
]

: t > 0
}

, (5.7)

and if V ∈ C+(X), then

τ(X,V ) = max
t∈R

{
t = − 1

‖ṽ‖
[
− ˆ̃v · x̃ ±

[
(ˆ̃v · x̃)2 − (‖x̃‖2 − ε̂2)

]1/2
]

: t < 0
}

. (5.8)

Depending on the initial data, one can then determine all event times between the
particles by taking ε̂ = ε1 or ε̂ = ε, and ordering the events accordingly.

5.4. Flow maps

Given the collision times τ(X,V ) for all initial data X ∈ Pε, V ∈ R
6, it is then

possible to construct flow maps for every possible pair of trajectories for two par-
ticles, based on eqs. (1.25)– (1.27) in a similar approach to §§ 4.4. We reduce
notational burden by omitting the precise details of the flow maps, and including
an overview of the types of trajectories that can occur. A diagram of the possible
trajectories is then given in figure 3, along with the corresponding trajectories in
the reduced difference phase space in figure 4.

We define the subset of initial data that has an interaction with the surface ∂Pε1

as

C1(X) = {V ∈ R
6 : ∃t ∈ R : ‖Ψ̃x

t ‖ = ε1}. (5.9)

5.4.1. Collision-free dynamics For X ∈ Pε1 and V ∈ R
6\C1(X), the two particles

never reach the interaction perimeter ∂Pε1 , so their dynamics are described by the
free dynamics eqs. (5.3), (5.4).

5.4.2. External bounce When X ∈ Pε1 and V ∈ C1(X) such that (ṽ · x̃)2 < a, the
particles experience a single elastic collision at the boundary ∂Pε1 and are reflected
away from one another.

5.4.3. Refractive dynamics For all other initial data, i.e. either X ∈ Pε\Pε1 and
V ∈ R

6, or X ∈ Pε1 and V ∈ C1(X) such that (ṽ · x̃)2 > a, there are two possible
trajectory types:

(i) The particles are refracted at the boundary ∂Pε1 at time τ0, with outgoing
velocity Ψv

τ0
(X,V ) such that Ψv

τ0
(X,V ) ∈ R

6\C(Ψx
τ0

(X,V )). In this case the
particles will experience a further refraction event at time τ1 when leaving
the space Pε\Pε1 ;

(ii) The particles are refracted at the boundary ∂Pε1 at time τ0, with outgoing
velocity Ψv

τ0
(X,V ) such that Ψv

τ0
(X,V ) ∈ C(Ψx

τ0
(X,V )). The particles will

then experience a core collision at time τ1, before leaving the space Pε\Pε1

at time τ2 and experiencing a final refraction at the perimeter ∂Pε1 .
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Figure 3. Example trajectory pairs between two square-shoulder particles. (a) Trajecto-
ries of two particles that do not collide. (b) Trajectories where two particles experience
an elastic collision at the external interaction diameter. (c) The two particles expe-
rience two refraction events. (d) The two particles experience a refraction, an elastic
collision with the interior interaction diameter and a further refraction event. Each tra-
jectory has a number of coloured points to display the location of particles at particular
times t.

We consider these two interactions together as we shall see that they provide the
same contribution to the Liouville equation.

5.5. The Liouville equation

To construct the Liouville equation, we partition the space of admissible ini-
tial data into three parts, then sum the corresponding contributions to derive the
Liouville equation for square-shoulder particles.

5.5.1. Collision-free dynamics We consider trajectories where X ∈ Pε1 and V ∈
R

6\C1(X). Then equation (1.30) provides us with the Liouville equation for this
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Figure 4. The corresponding reduced difference representations of the trajectories consid-
ered in figure 3. The black, solid line represents the surface ∂Pε where elastic collisions take
place, and the black dashed line is the surface ∂Pε1 , where particles are either refracted
or reflected.

system of admissible initial data:

∫
Pε1

∫
R6\C(X)

∫ ∞

−∞
f(X,V, t)[∂tΦ(X,V, t) + V · ∇XΦ(X,V, t)] dt dV dX =

−
∫

∂Pε1

∫
R6\C1(X)

∫ ∞

−∞
f(X,V, t)Φ(X,V, t)V · ν̂X dt dV dH(X). (5.10)

In this case, the collision term is zero, as for X ∈ ∂Pε1 , R
6\C1(X) = ∅.

5.5.2. External bounce For the set X ∈ Pε1 and V ∈ {[v, x̄] ∈ R
6 : |ṽ · x̃|2 < a} =:

V1(X), we have

∫
Pε1

∫
V1(X)

∫ ∞

−∞
f(X,V, t)[∂tΦ(X,V, t) + V · ∇XΦ(X,V, t)] dt dV dX =

−
∫

∂Pε1

∫
V1(X)

∫ ∞

−∞
f(X,V, t)Φ(X,V, t)V · ν̂X dt dV dH(X). (5.11)

When X ∈ ∂Pε1 , V(X) = {V ∈ C1(X) : |ṽ · x̃|2 < a}.

5.5.3. Refractive dynamics For dynamics where the particles have sufficient energy
to overcome the barrier at ε1 we must consider X ∈ Pε1 and V in the set

V2(X) := {[v, v̄] ∈ R
6 : V ∈ C1(X) and |ṽ · x̃|2 > a if X ∈ Pε1}. (5.12)

In this case, there is more than one instantaneous interaction in the system, but
by the results of theorem 1.4 we know that these interactions will not directly
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contribute to the Liouville equation. Thus, we have∫
Pε

∫
V2(X)

∫ ∞

−∞
f(X,V, t)[∂tΦ(X,V, t) + V · ∇XΦ(X,V, t)] dt dV dX

= −
∫

∂Pε

∫
V2(X)

∫ ∞

−∞
f(X,V, t)Φ(X,V, t)V · ν̂X dt dV dH(X). (5.13)

For the surface integral term, when X ∈ ∂Pε, we have V ∈ R
6.

5.5.4. Combining terms Combining the results of eqs. (5.10)–(5.11), we return the
Liouville equation for square-shoulder particle dynamics:∫

Pε

∫
R6

∫ ∞

−∞
f(X,V, t)[∂tΦ(X,V, t) + V · ∇XΦ(X,V, t)] dt dV dX

= −
∫

∂Pε

∫
R6

∫ ∞

−∞
f(X,V, t)Φ(X,V, t)V · ν̂X dt dV dH(X)

−
∫

∂Pε1

∫
V3(X)

∫ ∞

−∞
f(X,V, t)Φ(X,V, t)V · ν̂X dt dV dH(X), (5.14)

where

V3(X) := {[v, v̄] ∈ R
6 : |ṽ · x̃|2 < a}. (5.15)

Thus the inclusion of a square-shoulder potential term produces a partial colli-
sion operator term at the Liouville equation, and information on refraction events
between particles is absorbed into the left-hand side of the equation.

We note that upon construction of the BBGKY hierarchy for square-shoulder
potential systems, in addition to the standard Boltzmann collision operator given
by equation (4.33), another collision term is included of the form

Ba
X [f (2)] =

1√
2

∫
R3

∫
S2

∫
C+

a (n)

∫ ∞

−∞
Φ(x, v, t)

[
f (2)(x, v, x + ε1n, v̄, t) (5.16)

− f (2)(x, v′, x + ε1n, v̄′, t)

]
(v − v̄) · n dt dV dn dx,

where

C+
a (n) = {[v, v̄] ∈ R

6 : ṽ · x̃ > 0 and |ṽ · x̃|2 < a} (5.17)

The additional contribution is due to the collisional effects at the external interac-
tion diameter. In addition, the function f (2) (and in turn f (1)) must obey a kinetic
energy law on ∂Pε1 , so that it obeys equation (5.5).

6. Conclusions and future work

In this paper, we have presented derivation of the weak formulation of the Liouville
equation for particles under the influence of a general dynamical form, with general
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instantaneous interactions. We have an example which is consistent with results in
the literature on inelastic collision operators in the BBGKY hierarchy, and gen-
eralizes the Liouville equation for elastic hard sphere interaction. This shows the
potential of the results for more complicated particle systems.

In the future, we aim to consider examples which have interactions modelled by
arbitrary step potentials. This would involve considering more complicated versions
of the example considered in equation (5), by using square wells where a < 0,
and multiple interaction diameters εi. From here we can consider homogenization
procedures to construct an effective potential term for particles with interactions
based on step potentials, which can then be incorporated into a computational
model.

The results presented could also be extended to systems with additional
degrees of freedom, for example rotation or ‘colour’. This would involve an
analogous investigation into valid interaction types, with other conservation
laws in addition to eqs. (1.14), (1.15) for the preservation of new degrees of
freedom.

Finally, by investigating systems of many particles, we aim to see what initial
configurations can be modelled by the Liouville equation presented here. For sys-
tems where particles experience only pairwise instantaneous interactions, we expect
that for the set of admissible data which ensures that instantaneous events are well-
separated, the results of this paper can be extended to systems of N particles, by
partitioning the particle dynamics into subsets which can be considered as two
particle systems. We also hope that the work here can motivate derivations for
many-particle systems with smooth and instantaneous pairwise interactions, and
that it may lead to work where the assumption that particle events are well sepa-
rated can be relaxed, which for example will allow for consideration of systems that
can experience inelastic collapse.

Appendix A. Tensor notation

In this paper, we also use the tensor product in several calculations. Given
A = (aij)i=1,...,n,j=1,...,m ∈ R

n×m and B = (bij)i=1,...,k,j=1,...,l ∈ R
k×l, the tensor

product A ⊗ B ∈ R
nk×ml is given by:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11b11 a11b12 . . . a11b1l . . . . . . a1mb11 a1mb12 . . . a1mb1l

a11b21 a11b22 . . . a11b2l . . . . . . a1mb21 a1mb22 . . . a1mb2l

...
...

. . .
...

...
...

. . .
...

a11bk1 a11bk2 . . . a11bkl . . . . . . a1mbk1 a1mbk2 . . . a1mbkl

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

an1b11 an1b12 . . . an1b1l . . . . . . anmb11 anmb12 . . . anmb1l

an1b21 an1b22 . . . an1b2l . . . . . . anmb21 anmb22 . . . anmb2l

...
...

. . .
...

...
...

. . .
...

an1bk1 an1bk2 . . . an1bkl . . . . . . anmbk1 anmbk2 . . . anmbkl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.1)
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We extend the tensor products to vectors A = (ai)i=1,...,n, ∈ R
n and B =

(bi)i=1,...,m ∈ R
m as A ⊗ B ∈ R

n×m where

A ⊗ B =

⎛⎜⎜⎜⎝
a1b1 a1b2 . . . a1bm

a2b1 a2b2 . . . a2bm

...
...

. . .
...

anb1 anb2 . . . anbm

⎞⎟⎟⎟⎠ . (A.2)

Tensor product notation is particularly useful when considering multidimensional
derivatives of vectors in this paper; for A ∈ R

n we and a differentiable function
F : A → R

m,we define ∇AF (A) ∈ R
n×m as

∇AF (A) =
(
∂a1 ∂a2 . . . ∂an

)⊗ F (A). (A.3)

For example,

∇X x̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ =
(
1 − 1

)⊗ I3, (A.4)

where I3 ∈ R
3×3 is the identity matrix. Derivations also involve matrix vector prod-

ucts, and to avoid ambiguity, for a vector a ∈ R
n and matrix b ∈ R

n×n, we define
a · B and B · a element-wise by

(a · B)i =
n∑

j=1

ajBji, (B · a)i =
n∑

j=1

ajBij , (A.5)

for i = 1, . . . , n.

Appendix B. One dimensional solutions to the Monge–Ampère
equation

In § 4 we introduced an event map constraint in the form of a Monge–Ampère
equation equation (4.6). Under the additional assumption that η(X,V ) is a con-
stant, we find η+(X,V ) = −(1 + α) and η−(X,V ) = − (1+α)

α . It is unclear whether
other (non-linear) solutions to equation (4.6) exist. In this appendix, we produce a
non-linear solution in one dimension. Firstly, in one dimension,

N(X) =
1√
2
[1,−1], N(X) ⊗ N(X) =

1
2
(
1 −1 − 1 1

)
,

and so

|Dσ(X,V )V | =
∣∣∣∣(1 + 1

2 (v − v̄)∂vη + η
2

1
2 (v − v̄)∂v̄η − η

2− 1
2 (v − v̄)∂vη − η

2 1 + 1
2 (v − v̄)∂v̄η + η

2

)∣∣∣∣ . (B.1)
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Thus, after some cancellations we have that

2η + (v − v̄)(∂v − ∂v̄)η = −2(1 + α). (B.2)

Here upon assuming that η is constant we see that the unique solution is
η = −(1 + α). If we write η(X,V ) = η(ṽ), then

η + ṽ∂ṽη = −(1 + α). (B.3)

Then for any c ∈ R,

η =
c

ṽ
− (1 + α) (B.4)

is a solution of equation (4.6). As we require σ−(X,V )σ+(X,V ) = I, we have that

η+(X,V ) =
c

ṽ
− (1 + α), η−(X,V ) =

ṽ

c − αṽ
− 1. (B.5)

We note that if ṽ = c/α, η−(X,V ) is not defined, so these scattering maps can only
be applied on a restricted set of initial data. However, existence of a non-linear
solution to equation (4.6) encourages further investigation.
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