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Abstract

In a seminal paper, Stallings introduced folding of morphisms of graphs. One consequence
of folding is the representation of finitely-generated subgroups of a finite-rank free group
as immersions of finite graphs. Stallings’s methods allow one to construct this representa-
tion algorithmically, giving effective, algorithmic answers and proofs to classical questions
about subgroups of free groups. Recently Dani–Levcovitz used Stallings-like methods to
study subgroups of right-angled Coxeter groups, which act geometrically on CAT(0) cube
complexes. In this paper we extend their techniques to fundamental groups of non-positively
curved cube complexes.

2020 Mathematics Subject Classification: 20F65 (Primary); 20F67 (Secondary)

1. Introduction

In the seminal paper [12], Stallings studies subgroups of free groups by introducing a
technique called folding. For finitely generated subgroups, Stallings’s technique gives an
algorithmic method for answering classical algebraic questions about the subgroup, such
as answering the membership problem, determining the subgroup’s rank and index, and
determining whether or not it is normal.

More explicitly, Stallings showed that if f : (�, p) → (�, q) is a map of basepointed
graphs, then the map f factors as
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where the map f̂ is an immersion (i.e. a local isometry), and the map p is surjective and can
be realized as a sequence of elementary moves called folds, which identify pairs of edges in
the domain graph. Moreover, if � is a finite graph, then �̂ can be computed algorithmically.
The group-theoretic results from this technique follow when � is a rose with n petals and
f∗(π1(�, p)) is a finitely generated subgroup of Fn = π1(�, q).

Recently, Dani–Levcovitz [5] used Stallings-like methods to study subgroups of right-
angled Coxeter groups. Specifically, to any subgroup H they associate a completion, a non-
positively curved cube complex XH equipped with a local isometry to the Davis complex
for the right-angled Coxeter group, which plays the role of the rose with n petals. Their
techniques are combinatorial, inspired by those of Kharlampovich, Miasnikov and Weil in
[8]. Using Dunwoody’s theory of tracks, Beeker and Lazarovich [1] study Stallings folding
for cubulated hyperbolic groups. The purpose of this paper is to unite these common threads:
we show how to perform Stallings folding for fundamental groups of non-positively curved
cube complexes. Another folding algorithm appears in Brown’s PhD thesis [3]. We relate
the completions of Dani–Levcovitz to the geometry of the cube complex in question, thus
proving a uniqueness result left as a question in [5].

THEOREM 1·1 Let (Y,q) be a basepointed non-positively curved cube complex. Let H be a
subgroup of π1(Y , q) with generating set S given as a based map ι(�S, p) → (Y , q), where �S

is a graph. Then, there exists a unique pointed non-positively curved cube complex (XH , q)
and a local isometry (XH , q) → (Y , q) whose image on fundamental groups is H and through
which f factors.

Moreover, there is an algorithm which takes as input H and S and produces (in the limit)
XH. If S is finite and H is quasi-convex (i.e. convex cocompact on the universal cover Ỹ),
then XH is compact and the algorithm terminates in finite time.

We use this algorithm to prove several results about quasi-convex subgroups of cubical
groups. Namely, we prove the following:

THEOREM 5·12. Let G = π1(Y , q) for a nonpositively-curved cube complex Y. Let H
be a quasiconvex subgroup of G. Then there is an algorithm that solves the following
problems:

(i) the membership problem for H;

(ii) whether, given g ∈ G, there exists an n such that gn ∈ H;

(iii) whether H is normal in G;

(iv) whether H is of finite index G, and determines the index if so.

The algorithm is essentially identical to the extension of Stallings’s folding presented in
[5]: for �S to reflect properties of H, one wants ι to be a local isometry. To accomplish this,
one alters �S by means of three moves:
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(i) folding, Stallings’s original move, which identifies pairs of edges in the 1-skeleton of
the domain cube complex;

(ii) cube attachment, which fills in cubes “missing” from the domain cube complex; and

(iii) cube identification, which acts as a kind of higher-dimensional generalisation of
folding.

The uniqueness result stems from the following fact. Covering space theory associates to
the map ι : (�S, ∗) → (Y , q) a map ι̃ : (�̃S, ∗̃) → (Ỹ , q̃) of universal covers. In the case that ι

is a local isometry, the map ι̃ will be an isometric embedding. Using the same notation as
above, we have the following result.

THEOREM 1·2 Let H and S be as in Theorem 1·1. If f : (XH , p) → (Y , q) is the local
isometry constructed in Theorem 1·1, the image of the isometric embedding f̃ : (X̃H , p̃) →
(Ỹ , q̃) is the cubical convex hull of the lift ι̃ : T → Ỹ, where T is the universal cover of �S.

2. A cubical completion

Recall that a cube complex is a metric cell complex constructed from Euclidean unit cubes
[ − 1, 1]n glued together by isometries of their faces.

The local structure of a cube complex X near a vertex v is captured by its link, LkX(v). The
link may be thought of as a small sphere around the vertex. As such, combinatorially LkX(v)
has one n-simplex for each (n + 1)-cube containing v, and the faces of such an n-simplex
correspond to the faces of the (n + 1)-cube which also contain the vertex v. For example, the
link of a vertex in a 3-cube is a 2-simplex. A cube complex is non-positively curved—i.e.
the induced path metric locally satisfies the CAT(0) condition—if the link of each vertex is
a flag simplicial complex [6, 11]; a higher-dimensional simplex is present if and only if its
1-skeleton is.1 A simply connected, non-positively curved cube complex is globally CAT(0).
In particular, it is contractible. A CAT(0) cube complex is a simply connected non-positively
curved cube complex.

Let X and Y be non-positively curved cube complexes, and let f : X → Y be a cubical
map—that is, f sends n-cubes of X isometrically to n-cubes of Y . Then for each vertex v
of X, f induces a map fv : LkX(v) → LkY (f (v)). We say that the map f is an immersion if
each induced map fv is injective. If additionally the image of each fv is a full subcomplex of
LkY (f (v)), we say that f is a local isometry. We have the following basic fact [2, Proposition
4·14].

PROPOSITION 2·1 Let f : (X, p) → (Y , q) be a map of basepointed, non-positively curved
cube complexes which is a local isometry. Then the induced map f∗ : π1(X, p) → π1(Y , q) is
injective.

If additionally f is surjective and each local map fv : LkX(v) → LkY (f (v)) is an isomor-
phism, then f is a covering map.

Consequently, if in Proposition 2·1, Y is a CAT(0) cube complex (and so simply con-
nected), then so is X, and the map f is an isometric embedding, provided that X is
connected.

Let (Y ,q) be a compact, connected, basepointed non-positively curved cube complex and
G = π1(Y , q). In this section we describe a method that takes as input a subgroup H ≤ G

1 Warren Dicks: “every non-simplex contains a non-edge.”
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and a generating set S for H represented as a set of loops in Y (1) based at q, and pro-
duces a local isometry of non-positively curved cube complexes f : (X, p) → (Y , q) such that
f∗(π1(X, p)) = H. In the case that H is a quasi-convex subgroup and S is a finite generating
set, then the method is an algorithm which terminates in finite time.

Let |S| = n. Let X be a wedge of n circles with basepoint b. We can obtain a map of
X into Y whose image on fundamental groups is H. Subdivide each edge of the graph so
that the resuling map is cubical. At this stage we have a graph (X,p) with a cubical map
f : (X, p) → (Y , q) such that f∗(π1(X, p)) = H.

The idea, as in [5], is to progressively alter X so that the map f : (X, p) → (Y , q) becomes
closer and closer to a local isometry. In the direct limit, a local isometry is always achieved,
but if H is assumed to be quasi-convex, then a finite number of operations suffice.

Folding. Suppose first that the restriction of f to the 1-skeleton of X is not an immersion. If
this is the case, then there are a pair of edges e1 and e2 with a common initial vertex v such
that f (e1) = f (e2). The map f : (X, p) → (Y , q) factors through the quotient map identifying
e1 with e2. Replacing X with this quotient cube complex is the operation of folding. By
repeatedly folding when necessary, we may replace any cubical map f : (X, p) → (Y , q) with
a map which restricts to an immersion of the 1-skeleton of X into Y . Note that because
folding decreases the number of edges of X, if X is compact, only finitely many folds are
possible.

Cube identification. Suppose that in X, there are a pair of n-cubes c1 and c2 whose 1-skeleta
are equal. Since Y is non-positively curved, we conclude that f (c1) = f (c2). In order for f to
be a local isometry, we require c1 = c2. Therefore we replace X by the quotient cube complex
obtained by identifying c1 with c2. This process is cube identification; one may think of it
as a higher-dimensional analogue of folding. As with folding, the number of cubes of X
decreases, so if X is compact, only finitely many cube identifications are possible.

In particular, by repeatedly folding and then repeatedly performing cube identifications,
we may assume that for each vertex v ∈ X, the local map fv : LkX(v) → LkY (f (v)) is injective.
However, for f to be a local isometry, we need the image fv(LkX(v)) to contain each simplex
it spans. This leads us to our final operation.

Cube attachment. Suppose that f fails to be a local isometry because the image of fv is not a
full subcomplex. That is, there is a set of n + 1 vertices of LkX(v) whose image under fv span
a n-simplex in LkY (f (v)) but do not span a n-simplex in LkX(v). These vertices correspond
to edges e1, . . . , en+1 incident to v whose image in Y are the n + 1 edges contained in an
(n + 1)-cube of Y incident to a common vertex f (v). Call this (n + 1)-cube c—note that
it is determined by the edges f (e1), . . . , f (en+1). To remedy the situation in X we attach an
(n + 1)-cube c’ to v and the edges e1, . . . , en+1. The map f extends uniquely to c’ by mapping
c’ to c preserving the images of the edges e1, . . . , en+1. This operation is cube attachment.
If X is compact (or more generally locally finite) then only finitely many cube attachments
may be performed at each vertex.

Observe that in performing each operation on (X,q), there is a resulting natural cubi-
cal map from the “old” cube complex to the “new” cube complex. Thus by performing
a sequence of foldings, cube identifications and cube attachments, we obtain a sequence of
basepointed cube complexes (X, p) = (X1, p1) → (X2, p2) → · · · . Let (X̂, q̂) denote the direct
limit of this sequence. By the universal property of the direct limit, (X̂, p̂) is a cube complex
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equipped with a cubical map f̂ : (X̂, p̂) → (Y , q). We say that X̂ is a completion of X if the
map f̂ is a local isometry.

THEOREM 2·2 Let f : (X, p) → (Y , q) be a cubical map, where Y is compact and non-
positively curved and X is connected. There exists a completion of X.

Proof. We are interested in the case where (X,p) is compact, so we shall assume (X,p)
is compact. The general case presents no real new difficulties, except that one may have to
pass to direct limits multiple times in the process of constructing a completion. Consider the
sequence

(X, p) = (X1, p1) −→ (X2, p2) −→ (X3, p3) −→ · · ·

defined by performing the following procedure: begin by performing all possible folds, then
perform all possible cube identifications. If (Xk+1, pk+1) is obtained from (Xk, pk) by attach-
ing a cube, then (Xk, pk) is naturally a subcomplex of (Xk+1, pk+1). If (Xk, pk) admits no folds
or cube identifications, we thus perform all possible cube attachments at the various vertices
of (Xk, pk). This done, we repeat the process beginning with folding.

Let (X̂, p̂) denote the direct limit of this sequence. We claim that (X̂, p̂) is a completion
of (X,p). Suppose c1 and c2 are cubes incident to a vertex v, and that f̂ (c1) = f̂ (c2). Then
there exists k such that we may identify c1 and c2 as belonging to Xk, and we must have that
fk : (Xk, pk) → (Y , q) satisfies fk(c1) = fk(c2). This implies that at some later stage k’, after
performing foldings and cube identifications, the images of c1 and c2 in Xk′ are equal. Thus

we see that each f̂v is injective.
To see that its image is a full subcomplex, we argue similarly: for every collection of edges

e1, . . . en+1 incident to v whose image under f̂v span an n-simplex of LkY (f̂ (v)), there exists
k such that we may identify e1, . . . , en+1 as edges of Xk incident to v. But this implies that
at some later stage k’, possibly after performing cube attachments, there exists an (n + 1)-
cube c in Xk+1 having e1, . . . , en+1 as faces. This implies that in LkX(v) in X̂, the vertices
corresponding to e1, . . . , en+1 span an n-simplex, and the process of cube identification
ensures that this n-simplex is unique. Thus we see that f̂ is a local isometry.

We will refer to the completion obtained by the method described in the proof as the
standard completion of X. Later we will show that this completion coincides with any
completion of X.

PROPOSITION 2·3 Let G be a right-angled Coxter group. Let H ≤ G be a finitely generated
torsion-free subgroup, and let X be a boquet of circles in one-to-one correspondence with
the generators of H. Then the completion of X̂ described above is the same as the standard
completion � from [5].

Proof. In [5], there are three operations applied to obtain a completion. There, the role of
Y is played by the quotient of the Davis complex Ỹ by the action of G. Because G contains
torsion, G is not the usual fundamental group of Y . Nevertheless, because G acts freely on
the vertices of Ỹ there is a well-defined local map fv for each vertex of X, and we may use
the data of this local map to perform the completion as in our theorem. In the absence of
elements of order two, these two methods are identical.
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Remark 2·4. A more sophisticated approach to the above proposition might consider the
quotient of the Davis complex as a complex of groups, and perform our operations on a
map f : (X, p) → (Y , q) of complexes of groups. This approach could allow one to consider
arbitrary cubulated groups and subgroups with torsion.

3. Constructing completions in the universal cover

We now present another look at the completion, using the hyperplanes of the universal
cover to construct a completion.

Let us recall: a midcube in an n-cube [ − 1, 1]n is the set of points with kth coordinate 0
for some fixed k satisfying 1 ≤ k ≤ n. Let X be a cube complex. We say two edges of X, e and
e’ are related if they intersect a common midcube, and let ∼ denote the equivalence relation
on the set of edges generated by the above relation. The equivalence classes of ∼ are the
hyperplanes of X. By gluing together the corresponding common midcubes, one may think
of each hyperplane of X as a (possibly immersed) subspace h⊂ X. We say a hyperplane is
dual to each edge in the corresponding ∼-equivalence class. In a CAT(0) cube complex X,
hyperplanes are convexly embedded; each hyperplane h separates X into two components,
H+ and H−, called half-spaces, and in each cube h meets, h is a subspace of codimension
one.

Hyperplanes turn out to be key to the study of CAT(0) cube complexes. In particular, if X is
a CAT(0) cube complex, consider the path metric on its 1-skeleton; this is the combinatorial
or �1 metric. A subcomplex Y of X is cubically convex if;

(i) given vertices v and w of Y , the 1-skeleton of Y contains every combinatorial geodesic
(shortest path) from v to w;

(ii) if the 1-skeleton of an n-cube is contained in Y , then the n-cube is contained in Y .

If S is a subset of X, its cubical convex hull is the smallest cubically convex subcom-
plex of X containing S. Let γ be a combinatorial geodesic between vertices v and w. Since
hyperplanes are separating we see that γ crosses every hyperplane which separates v from
w. Moreover, a path ζ in the 1-skeleton is a combinatorial geodesic v to w if and only the
hyperplanes ζ crosses are exactly those separating v from w and each is crossed exactly
once.

Let f : (X, p) → (Y , q) be a basepointed cubical map. Let X̃ and Ỹ denote the universal
covers of X and Y , respectively. The map f induces a map of universal covers f̃ : (X̃, p̃) →
(Ỹ , q̃). We shall use the hyperplanes of Ỹ to construct a completion of X.

Here is the idea: if the map f were a local isometry, then the map f̃ would recognize X̃ as
a cubically convex subcomplex of Ỹ . If not, we will essentially replace X̃ with the cubical
convex hull of its image.

A completion via Sageev’s construction. Let h be a hyperplane of Ỹ . If h∩ f̃ (X̃) is
nonempty, then both of the corresponding half-spaces H+ and H− have nonempty inter-
section with f̃ (X̃). The collection of half-spaces of Ỹ which meet f̃ (X̃) form a poset with
complementation see [11, p. 11] or [9]. The poset structure is given by inclusion (in Ỹ), and
the order-reversing involution is given by the complementation H+ ↔ H−. Call this collec-
tion H. It is a sub-poset of the collection of all half-spaces of Ỹ . Let Z be the dual CAT(0)
cube complex obtained by applying Sageev’s construction [10] to H. Recall that this means
Z has the following description. A vertex v of Z is a consistent choice of orientation (or
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half-space) for each hyperplane in H. That is, v is a subset of H satisfying the following
three conditions.

(i) Choice. For each hyperplane h such that H+ and H− belong to H, exactly one of H+
or H− belongs to v.

(ii) Upward-closed. If H and H’ are half-spaces satisfying H ⊂ H′ such that H belongs to
v, then H’ belongs to v.

(iii) Descending chains. If H0 ⊃ H1 ⊃ H2 ⊃ · · · is a descending chain of half-spaces
belonging to v, then this chain terminates—there is some integer N such that Hn = HN

for all n ≥ N.

The key example to keep in mind is the collection of all half-spaces in a CAT(0) cube
complex containing a given vertex: the reader may wish to verify that this collection satisfies
the three conditions above.

An edge of Z connects two vertices v and w when they differ by a single choice of half-
space. This means that there is some hyperplane h such that one half-space H+ belongs to
v, say, while H− belongs to w—otherwise a half-space belongs to v if and only if it belongs
to w. This defines the 1-skeleton of Z; to finish we declare that a higher-dimensional cube is
present if and only if its 1-skeleton is. The result is a CAT(0) cube complex (see [11, sec-
tion 2]). The half-spaces in H are canonically identified with the half-spaces associated to
the hyperplanes of Z. This duality between posets with complementation and CAT(0) cube
complexes goes by the name Roller duality; we shall make light use of it in what follows.

Completion is the cubical convex hull. The CAT(0) cube complex Z comes equipped with
a map f̂ : Z → Ỹ defined in the following way. Consider the collection of half-spaces of Ỹ
containing the basepoint q̃. Since q̃ is in the image of f̃ , the restriction of this collection to
H defines a vertex of Z. Call this vertex p̂ and define f (p̂) = q̃. The collection of half-spaces
of Z is H, which is a subset of the collection of half-spaces of Ỹ . Let z be a vertex of Z. We
claim that there exists a unique vertex f̂ (z) of Ỹ in the intersection of the following collection
of half-spaces of Ỹ

{H ∈ H | H belongs to z} ∪ {H /∈ H | q̃ ∈ H}.

To see this, it suffices to show that this collection of half-spaces satisfies the upward-
closed condition. So suppose H and H’ are half-spaces satisfying H ⊂ H′, and suppose
H belongs to the above collection. Recall that H belongs to H if and only if H ∩ f̃ (X̃) is
nonempty. Therefore if we have H ∈ H, then H’ is in H as well, and we conclude that H’
belongs to z as required. On the other hand, if H does not belong to H, then its complement
has empty intersection with f̃ (X̃), as does the complement of H’. Therefore H’ does not
belong to H but does contain q̃, as required.

PROPOSITION 3·1 The map f̂ : (Z, p̂) → (Ỹ , q̃) is an isometric embedding. Its image is the
cubical convex hull of f̃ (X̃) in Ỹ.

Proof. To prove the former statement, it suffices to show that f̂ is a local isometry. So let
v ∈ Z be a vertex. We want to show that the map f̂v : LkZ(v) → LkỸ (f̂ (v)) is injective, and that
its image is a full subcomplex of LkỸ (f̂ (v)). Indeed, vertices of LkZ(v) correspond to edges
dual to hyperplanes of H. The map f̂ takes hyperplanes in H to themselves, so the map is
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injective. A set of vertices spans a simplex in LkỸ (f̂ (v)) by definition if and only if they span
a simplex in LkZ(v), so the image is a full subcomplex.

Since the map f̂ is an isometric embedding, its image is cubically convex in Ỹ and contains
f (X) by definition. Conversely, any combinatorial geodesic between points of f (X) crosses
only hyperplanes in H, so is contained in the image of f̂ .

4. Equivalences

The main result of this section is the following theorem, which refines cubicalconvexhull.

THEOREM 4·1 Let f : (X, p) → (Y , q) be a basepointed cubical map, and write H =
f∗(π1(X, p)) ≤ π1(Y , q). Let (X̂, p̂) denote the completion in completiondownstairs with local
isometry f̂ : (X̂, p̂) → (Y , q). and let Z denote the cube complex obtained from f̃ (X̃) in
completionupstairs isometrically embedded in Ỹ.

Then Z/H = X̂, or equivalently Z is the universal cover of X̂.
Proof. Let (U, p̃) denote the universal cover of (X̂, p̂). Because the map f̂ is a local isome-

try, its lift to an isometric embedding f̃ : (U, p̃) → (Ỹ , q̃). The image of f̃ contains the image
of the universal cover X̃ of X, by definition, and is a convex subcomplex of Ỹ . Since Z is
the cubical convex hull of the image of X̃ in Ỹ , we have Z ⊂ f̃ (U). On the other hand, using
Roller duality, we see that U is contained in the cube complex obtained from the collection
of half-spaces intersecting the image of X̃. That is, f̃ (U) ⊂ Z, so we conclude f̃ (U) = Z.

We can use the previous theorem to prove the uniqueness of the completion obtained in
completiondownstairs.

THEOREM 4·2 Let Z and Z’ be completions of f : (X, p) → (Y , q). Then Z = Z′.

Proof. Let Z̃ and Z̃′ denote the universal covers of Z and Z’, thought of as cubically
convex subcomplexes of Ỹ . Note that every hyperplane of Z̃ and Z̃′ intersects f̃ (X̃). Thus we
conclude that Z̃ and Z̃′ are both the convex hull of f̃ (X̃) in Ỹ .

Since π1(Z) = π1(Z′), and the cube complexes Z and Z’ have the same universal cover,
we conclude Z = Z′.

5. Consequences

In this section, we collect group theoretic results following from our results on comple-
tions. First let us complete the proof of mainthm, which follows from the following theorem.
Throughout this section let G = π1(Y , q).

THEOREM 5·1 Let T be a maximal tree in the 1-skeleton of the finite nonpositively-curved
cube complex (Y,q). Let S be the set of edges not in T. Thus S is a generating set for G. Let
H be a subgroup of G which is quasiconvex with respect to the generating set S, and let
(X,p) be a finite graph with a map f : (X, p) → (Y , q) realizing the inclusion H ↪→ G. Then
the completion of X is a finite cube complex.

To complete the proof of mainthm assuming quasiconvexsubgroup, note that because the
completion of X is finite, the algorithm outlined in completiondownstairs will terminate in
finite time.
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Conversely, note also that if some completion of a realization of H is finite, then H is a
quasiconvex subgroup—thus quasiconvexity on fundamental groups may be recognized by
topological properties of the completion.

Proof of 5.1. The image of f̃ (X̃) in Ỹ is a quasiconvex subset. To see this, note that collaps-
ing the preimage of the maximal tree in Ỹ yields a complex whose 1-skeleton is the Cayley
graph of G with respect to S, and that the image of f̃ (X̃) under this collapse contains the
vertices belonging to H.

From [7, theorem H] we see that the convex hull of f̃ (X̃) has a cocompact H-action whose
quotient is a completion of X. Thus the completion of X is finite.

Another property recognized by the completion is the property of H having finite index
in G. In [5], some care needs to be taken in the case that the right-angled Coxeter group
has a nontrivial finite central subgroup. This happens exactly when the action of the right-
angled Coxeter group on its Davis complex is not essential. Recall that if G acts properly
and cocompactly on a CAT(0) cube complex Ỹ , then there exists a subcomplex on which the
action is essential [4].

THEOREM 5·2 Let G be a group acting freely, properly, cocompactly and essentially2 on
a CAT(0) cube complex Ỹ, and let Y = Ỹ/G. Let H be a subgroup of G and let Z denote a
corresponding completion of H. Then H has finite index in G if and only if Z is a finite cover
of Y.

Proof. The assertion which needs proof is that if H has finite index in G, then the comple-
tion Z is a finite cover of Y . Let h+ and h− be complementary half-spaces of Ỹ . Since G acts
essentially on Ỹ and H has finite index, if v ∈ Ỹ is a vertex, there exists a power k such that
gk.v ∈ h+ and g−k.v ∈ h− (see [4]). This implies the corresponding hyperplane belongs to
the collection of hyperplanes used in completionupstairs to construct the universal cover of
Z. Thus we conclude that the universal cover of Z is all of Ỹ . Therefore Z = Ỹ/H is a finite
cover of Y .

We now move to a characterization of H being normal in G. As in [5], we require a kind
of “core graph” for our completion. First let us discuss normal forms for a group that is the
fundamental group of a nonpositively-curved cube complex.

LEMMA 5·3 Let Y be a cube complex. Let T be a maximal tree in the 1-skeleton of Y. Let
E be the set of edges of Y and S the set of squares in Y. Then π1(Y , q) has a presentation of
the form

π1(Y , q) = 〈E | {e ∈ E | e ∈ T} ∪ {∂s | s ∈ S}〉.
The above presentation is the cubical presentation for π1(Y , q).

There is a natural map from the 1-skeleton of Ỹ to the Cayley graph for G = π1(Y , q) with
respect to the generating set E given by identifying the vertices in each lift of T to Ỹ .

Definition 5·4. Let w be a word in the cubical presentation for G. We say that w is a
cubical word if it lifts to a path in Ỹ .

A cubical word w is reduced if it lifts to a combinatorial geodesic in Ỹ .

2 O’Donnell calls this kind of action a “cube-awesome” action.
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Every element of G can be represented by a cubical word. If a word does not lift to a
path in X̃, then there are points of discontinuity when trying to construct a lift. We can fill
these in with edges in the tree T . In fact, we can make this process algorithmic which will
be important for answering algorithmic questions later.

PROPOSITION 5·5. Let (Y, q) be a non-positively curved cube complex. Let P = 〈E | R〉 be
the associated cubical presentation. Let w be a word in F(E). Then there is an algorithm that
computes all reduced cubical words equal to w.

Proof. We begin by replacing w by a cubical word. We can view w as a sequence of edges
(e0, e1, . . . , el). In the case that ι(ei) �= τ (ei−1) we can take a path in the maximal tree from
τ (ei−1) to ι(ei) and add this to our sequence to ensure this path is continuous. It is clear that
this procedure does not change w. A similar procedure is used to ensure that the path starts
and ends at q.

We have now represented w as a loop in Y based at q. View this as a map (I, 0) → (Y , q)
subdivided to be made cubical. We can now take the completion of this map. This will be a
finite cube complex as the π1(I, 0) = {e}. This will contain the convex hull of {q̃, w · q̃} in Ỹ .
Hence, it will contain every combinatorial geodesic between q̃ and w · q̃. Since this complex
is finite we can write down all such combinatorial geodesics.

Throughout we will freely pass between cubical words and paths in the CAT(0) cube
complex Ỹ . There are two operations we can apply to cubical words that do not change the
element of G represented.

(i) Collapse. Remove or insert a pair ee−1 or e−1e for some edge e in X.

(ii) Square slide. Replace a pair st with uv if stv−1u−1 is the boundary of some square
in X.

The proof of the following lemma follows from the simplicial approximation theorem.

LEMMA 5·6 Suppose that w and w’ are two cubical words that represent g ∈ G. Then
they are related by a sequence of collapses and square slides.

The following definition comes from [5].

Definition 5·7. Let (Z, p̂) be a completion of f : (X, p) → (Y , q). The core graph C(Z, p̂)
of Z is the collection of all loops in Z based at p̂ giving reduced cubical words in G.

Equivalently, C(Z, p̂) is the 1-skeleton of the quotient of the cubical convex hull of Hq̃ by
H. The core graph contains all the information of the completion in the following sense.

LEMMA 5·8 The inclusion C(Z, p̂) → Z is surjective on fundamental groups.

Proof. Let g be an element of π1(Z, p̂) = H. We can pick a cubical word w representing
g which lies in the image of Z̃. Since Z̃ is convex in X̃, there is a reduced cubical word
representing g in Z̃. This loop projects to a loop in C(Z, p̂).

LEMMA 5·9 Let (Z, p̂) and (Z′, p̂′) be completions of cube complexes representing H in
G. Then C(Z, p̂) = C(Z′, p̂′).
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Proof. Suppose w is the label of a loop in C(Z, p̂). Then w represents an element g of H.
Thus there is a loop in (Z′, p̂′) that represents g. Since Z̃′ is convex in X̃ every reduced path
representing g is in Z̃′. Thus the path w is in Z̃′.

Definition 5·10. Let g ∈ G be a group element and γ : [0, 1] → Y be a loop in the 1-
skeleton of Y based at q representing g. Let H be a finitely-generated subgroup of G and
(X,p) a cube complex representing H. Let (Xg, p) be the cube complex obtained from X by
attaching an interval at p and extending f : (X, p) → (Y , q) by γ on this interval. (Subdivide
as necessary to make this a cubical map.) Let x be the endpoint of the interval that is not p.
The g-normalised completion of X is the completion (Zg, p̂) of Xg. Let z be the image of x
in Zg.

LEMMA 5·11 Let H be a subgroup of G represented by a cube complex f : (X, p) →
(Y , q). Let (Z, p̂) be the completion of X. Then H is normalised by g if and only if C(Z, p̂) =
C(Zg, z).

Proof. It is clear that (Xg, x) represents the subgroup g−1Hg. Thus if g normalises H, then
C(Zg, z) = C(Z, p̂) by samecoresamegroup.

By coregraphsurjective, the core graph contains all the information about the funda-
mental group. Thus if the completions have the same core graph, then g−1Hg = H, so g
normalises H.

We summarise the results of this section for quasiconvex subgroups as a theorem. For an
alternative proof of the membership problem one can use biautomaticity and [8].

THEOREM 5·12 Let G = π1(Y , q) for a nonpositively-curved cube complex Y. Let H be a
quasiconvex subgroup of G. Then there is an algorithm that solves the following problems:

(i) the membership problem for H;

(ii) whether, given g ∈ G, there exists an n such that gn ∈ H;

(iii) whether H is normal in G;

(iv) whether H is of finite index G, and determines the index if so.

Proof. The only statement that requires proof is 2. Similar to [5], we show the following

CLAIM 5·13 A power of g is in H if and only if gk ∈ H for some k ≤ L, where L is the
number of vertices of XH.

One direction is clear, thus we focus on the forward direction. Suppose that gn ∈ H for
some n. Then any reduced cubical representative of gn can be read in the 1-skeleton of H.
I.e. the map [0, 1] → Y representing gn factors through H. This implies that g · p̃ ∈ X̃H ⊂ Ỹ .
There are L orbits of vertices in X̃H thus for some k ≤ L we have that gk · p̃ = p̃. Thus gk

gives a loop in XH based at p and gk is an element of H.
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