Crystal structure and electrical transport property of KMF_3 (M = Mn, Co, and Ni)

S.L. Wang,¹ W.L. Li,¹ G.F. Wang,¹ D.Y. Dong,¹ J.J. Shi,¹ X.Y. Li,¹ P.G. Li,^{1,2,a)} and W.H. Tang² ¹Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China

²School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China

(Received 28 November 2012; accepted 30 March 2013)

The transition metal fluorides KMF_3 (M = Mn, Co, and Ni) were synthesized through a simple solution route. The crystal structure, morphology and electrical transport property of the resulting products were investigated. The compound KMF_3 crystallizes in a cubic perovskite structure with space group Pm-3m (No. 221). A crystal structure of KMF_3 was refined by the Rietveld method based on the X-ray powder diffraction data. The unit-cell parameters are 4.189 46(4), 4.075 58(4), and 4.025 70(2) for KMnF_3, KCoF_3 and KNiF_3, respectively. A metal–insulator transition was observed in temperature-dependent electrical transport characterization in the temperature range from 250 to 280 K for these three compounds, which is considered to be related to spin-exchange in this kind of material. © 2013 International Centre for Diffraction Data. [doi:10.1017/S0885715613000316]

Key words: KMF₃, crystal structure, Rietveld method, electrical property

I. INTRODUCTION

Recently, complex perovskites fluorides have attracted considerable attention because of their various important properties, such as piezoelectric characteristics, ferromagnetic, nonmagnetic insulator behavior, and photoluminescence (Alcala et al., 1982; Heaton and Lin, 1982; Mortier et al., 1994; Tan and Shi, 2000; Manivannan et al., 2008). The typical compound KMF_3 (M: transition metal) shows that the magnetic property and spin configuration can be changed by the crystal structure itself and external conditions (Dovesi et al., 1997). The cubic room temperature perovskite structure of KMnF3 transforms to an orthorhombic phase at 184 K (Beckman and Knox, 1961; Kizhaev and Markova, 2011), and transition into the tetragonal phase with the space group -P4/mbm at 91.5 K (Du et al., 2005; Salje et al., 2009). The change of structure causes a transition to uniaxial antiferromagnetism below 88.3 K (Heeger et al., 1961). For the perovskite-type cobalt fluoride of KCoF₃, the crystal structure is slightly distorted and its spin state is changed with the temperature shift (Onishi and Yoshioka, 2007). Although the magnetic property of KMF_3 has been widely investigated, the electrical transport properties were seldom reported.

In this work, KMF_3 (M = Mn, Co, and Ni) was synthesized through a simple solution route. The crystal structure of KMF_3 was refined by the Rietveld method (Rietveld, 1967) and the temperature-dependent electrical transport property was investigated.

II. EXPERIMENTAL

Te complex fluorides KMF_3 (M = Mn, Co, and Ni) were synthesized by the solution method from a stoichiometric mixture of KF, $MnCl_2 \cdot 4H_2O$, $CoCl_2 \cdot 6H_2O$ and $NiCl_2 \cdot 4H_2O$. The purity of all chemical reagents is of analytical grade. For synthesis of KMF_3 , KF and MCl_2 (M = Mn, Co, and Ni), were added in a 3:1 molar ratio into a water-bath along with 100 mL of deionized water. The reaction in this system may occur as follows:

 $3KF + MnCl_2 \cdot 4H_2O \rightarrow KMnF_3 + 2KCl + 4H_2O \quad (1)$

- $3KF + CoCl_2 \cdot 6H_2O \rightarrow KCoF_3 + 2KCl + 6H_2O$ (2)
- $3KF + NiCl_2 \cdot 4H_2O \rightarrow KNiF_3 + 2KCl + 4H_2O$ (3)

The crystallographic information of prepared samples were analyzed by the powder X-ray diffraction (XRD) method using a Bruker AXS D8 DISCOVER X-ray diffractometer with CuK α radiation ($\lambda = 1.5406$ Å). The accelerating voltage and applied current were 40 kV and 40 mA, respectively. The diffraction data were collected in the $10-120^{\circ}2\theta$ range by a dynamic scintillation detector using an integrated slit (1× 0.6 mm^2 slit, 2.5° solar slit), and a $0.6 \times 0.2 \text{ mm}^2$ receiving slit, with steps of $0.02^{\circ}2\theta$ and 10 s per step. The crystal structures of the synthesized products were refined by the Rietveld method using MAUD software (Lutterotti et al., 1997). The morphology of the as-prepared products was characterized by field emission scanning electron microscope (FESEM, S-4800) with acceleration voltage of 5 kV. Temperature dependence of resistance was measured on the electrical transport properties measurement system (SHI-4S-1) in a four-probe configuration.

III. RESULTS AND DISCUSSION

XRD analysis was adopted to analyze the crystal structure and phase composition of synthesized products. Figure 1 shows the XRD pattern of KMF_3 (M = Mn, Co, and Ni). All

^{a)}Author to whom correspondence should be addressed. Electronic mail: pgli@zstu.edu.cn

Figure 1. XRD patterns of KMnF₃, KCoF₃, and KNiF₃.

the diffraction peaks in each pattern can be indexed to cubic perovskite structure KMnF₃ (PDF no. 17-0116), KCoF₃ (PDF no. 18-1006), and KNiF₃ (PDF no. 21-1002) with space group *Pm*-3m, respectively. No other diffraction peaks are detected, indicating that all the as-prepared products are pure KMF₃. The Rietveld method was used to refine the crystal structure of KMF₃ (*M* = Mn, Co, and Ni) compound. The final values of the agreement factors were: R_P = 3.57%, R_{WP} = 4.14%, R_{exp} = 3.02%, R_B = 6.61% for KMnF₃, R_P = 3.65%, R_{WP} = 3.92%, R_{exp} = 2.71%, R_B = 7.12% for KCoF₃, and R_P = 5.84%, R_{WP} = 5.91%, R_{exp} = 4.23%, R_B = 8.56% for KNiF₃. Unit-cell parameters were refined to be *a* = 4.189 46 (4) Å for KMnF₃, *a* = 4.075 58(4) Å for KCoF₃, and *a* = 4.025 70(2) Å for KNiF₃. As an example of the Rietveld

TABLE I. Crystallographic data, experimental details of X-ray powder diffraction and Rietveld refinement data for KMnF₃, KCoF₃, and KNiF₃.

Chemical formula	KMnF ₃ , KCoF ₃ , KNiF ₃			
Crystal system	Cubic, cubic, cubic			
Space group	<i>Pm</i> -3m, <i>Pm</i> -3m, <i>Pm</i> -3m			
a (Å)	4.18946(4), 4.075 58(4), 4.025 70(2)			
Volume ($Å^3$)	73.531(6), 67.696(8), 65.241(5)			
Z	111			
$d_{\rm c} ({\rm g/cm^3})$	3.410(3), 3.802(6), 3.939(6)			
<i>R</i> _B (%)	6.61, 7.12, 8.56			
$R_{ m P}$ (%)	3.57, 3.65, 5.84			
$R_{\rm WP}$ (%)	4.14, 3.92, 5.91			
R_{\exp} (%)	3.02, 2.71, 4.23			
Diffractometer	D8 DISCOVER, Bruker AXS			
Radiation type	CuKα			
Profile range (°2 θ)	10-120			
Step width (°2 θ)	0.02			
$\overline{R_{\rm B}} = \frac{\sum I_{\rm o} - I_{\rm c} }{\sum I}, R_{\rm P} = \frac{\sum I_{\rm o} - I_{\rm c} }{\sum I}$	$\frac{ Y_{io} - Y_{ic} }{\sum V}, R_{WP} = \left\{\frac{\sum W_i (Y_{io} - Y_{ic})^2}{\sum W_i V^2}\right\}^{1/2},$			
$R_{\rm exp} = \left\{ \frac{(N-P)}{\sum W_{\rm i} Y_{\rm io}^2} \right\}^{1/2}.$	$\sum I_{io}$ ($\sum W_i I_{io}$)			

results, the final refinement pattern of $KCoF_3$ was given in Figure 2. The main results of Rietveld structural refinement are presented in Table I, and the atomic parameters of KMF_3 are listed in Table II.

Figure 3 depicts the crystal structure of KMF_3 (M = Mn, Co, and Ni). The complex fluoride KMF_3 has a cubic perovskite structure. The center M^{2+} ion is octahedrally surrounded by fluorines. FESEM was used to observe the morphology of the synthesized complex fluorides. Figures 4(a–c) show FESEM images of KMnF₃, KCoF₃, and KNiF₃, respectively.

Figure 2. Final Rietveld refinement plots of the compound $KMnF_3$. The small cross (+) and continuous line correspond to the experimental data and calculated pattern, respectively. The vertical bar (*I*) indicates the position of Bragg peaks. The bottom trace depicts the difference curve between the experimental and the calculated patterns.

TABLE II. Fractional atomic coordinates and isotropic thermal parameters for KMnF₃, KCoF₃, and KNiF₃.

Atom	Site	x	у	Z	Occupancy	$B_{\rm iso}$ (Å ²)
KMnF ₃						
K	1a	1/2	1/2	1/2	1	1.594
Mn	1b	0	0	0	1	-0.119
F	3c	1/2	0	0	3	2.583
KCoF ₃						
K	1a	0	0	0	1	0.875
Co	1b	1/2	1/2	1/2	1	1.177
F	3c	0	1/2	1/2	3	0.398
KNiF ₃						
K	1a	0	0	0	1	0.214
Ni	1b	1/2	1/2	1/2	1	1.847
F	3c	0	1/2	1/2	3	0.588

Figure 3. Crystal structure of KMF_3 (M = Mn, Co, Ni).

As shown in these images, the complex fluorides formed in cubic-shaped particles. These particles have regular morphology and this implies that the products are a pure and single phase.

The temperature dependence of resistance (R–T) for KMF_3 (M = Mn, Co, and Ni) was measured in the temperature range from 100 to 320 K (shown in Figure 5). The R–T curves of KMnF₃, KCoF₃, and KNiF₃ are similar. Above 262 K (275 K for KCoF₃ and 250 K for KNiF₃), the resistance of KMnF₃ decreased with the increase of temperature. Below 262 K, the resistance starts to decrease, and after a minimum value around 175 K (212 K for KCoF₃ and 160 K for KNiF₃), it eventually goes up along with decreasing temperature. It can be seen clearly that there is an abnormal transition in the temperature range from 250 K to room temperature. For these

compounds, the electron transport depends on the spin-exchange between adjacent transition metal ions significantly. Crystal parameters and magnetic properties are two important factors affecting spin-exchange. With the decrease of temperature, abnormal transitions in R-T curves should be caused by weakening of spin-exchange. For KMnF₃, there is cubic to tetragonal transition at ~ 185 K in a single crystal, but the tetragonal short range order extends to T >215 K (Salje et al., 2009). For KNiF₃, a ~250 K Neel temperature was reported (Nouet et al., 1972; Newman, 1973). For KCoF₃, there is a transition from cubic to tetragonal at ~110 K, accompanied with a magnetic transition from paramagnetic to anti-ferromagnetic (Holedn et al., 1971). It is reasonable for KMnF3 and KNiF3 to have abnormal transition of resistance caused by crystal structure changing and magnetic phase changing, respectively. For KCoF₃, we supposed that there was a tiny tetragonal phase existing at temperature up to \sim 275 K because of the strain in polycrystalline sample. The magnetic order is much related to the crystal phase. Not like magnetic properties, the electrical transport property is quite sensitive to local state. The sharp increase of resistance is possibly attributed to the occurrence of anti-ferromagnetic order which is related to the tetragonal phase. The upturn of resistance at low temperature is possibly because of the existence of grain boundary in KMF₃ polycrystalline compounds.

IV. CONCLUSION

 KMF_3 (M = Mn, Co, and Ni) was synthesized through a simple solution route. The compound KMF_3 crystallizes in a cubic perovskite structure with space group Pm-3m. The crystal structure of KMF_3 was refined by the Rietveld method on the basis of the X-ray powder diffraction data. An abnormal electrical transport behavior was observed in the temperature range between 250 and 280 K. Such a phenomenon was

Figure 4. SEM images of KMF₃: (a) KMnF₃, (b) KCoF₃, and (c) KNiF₃.

Figure 5. The temperature-dependent resistance of KMnF₃, KCoF₃, and KNiF₃.

considered to be related to the spin-exchange behavior which occurred in the temperature range mentioned above.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51072182, 51172208, 51202218, 61274009, 61274017, and 61264007), Science and Technology Department of Zhejiang Province Foundation (Grant No. 2012C23037), and the Natural Science Foundation of Zhejiang Province (Grant No. Y1110519).

- Alcala, R., Sardar, D. K., and Sibley, W. A. (1982). "Optical transitions of Eu²⁺ ions in RbMgF₃ crystals," J. Lumin. 27, 273–284.
- Beckman, O. and Knox, K. (1961). "Magnetic properties of KMnF₃. I. Crystallographic studies," Phys. Rev. 121, 376–380.
- Dovesi, R., Fava, F. F., Roetti, C., and Saunders, V. R. (1997). "Structural, electronic and magnetic properties of KMF₃ (*M*=Mn, Fe, Co, Ni)," Faraday Discuss. 106, 173–187.
- Du, G. F., Zuo, J., and Yang, Q. (2005). "Simple chemical solution synthesis and photoluminescence property of KMnF₃ crystal," Chin. J. Chem. Phys., 18, 569–572.
- Heaton, R. A. and Lin, C. C. (1982). "Electronic energy-band structure of the KMgF₃ crystal," Phys. Rev. B 25, 3538–3549.
- Heeger, A. J., Beckman, O., and Portis, A. M. (1961). "Magnetic properties of KMnF₃.II. Weak ferromagnetism," Phys. Rev. 123, 1652–1660.

- Holedn, T. M., Buyers, W. J. L., Svensson, E. C., Cowley, R. A., Hutchings, M. T., Hukin, D., and Stevenson, R. W. H. (1971). "Excitations in KCoF₃-I. Experimental," J. Phys. C: Solid State Phys. 4, 2127–2138.
- Kizhaev, S. A. and Markova, L. (2011). "Structural and magnetic phase transitions in KMnF₃," Phys. Solid State 53, 1851–1854.
- Lutterotti, L., Matthies, S., Wenk, H. R., Schultz, A. J., and Richardson, J. (1997). "Texture and structure analysis of deformed limestone from neutron diffraction spectra," J. Appl. Phys., 81, 594–600.
- Manivannan, V., Parhi, P., and Kramer, J. W. (2008). "Metathesis synthesis and characterization of complex metal fluoride, KMF₃ (*M*=Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation," Bull. Mater. Sci., 31, 987–993.
- Mortier, M., Gesland, J. Y., and Rousseau, M. (1994). "Experimental and theoretical study of second-order Raman scattering in BaLiF₃," Solid State Commun. 89, 369–371.
- Newman, D. J. (1973). "Crystal field and exchange parameters in KNiF₃," J. Phys. C: Solid State Phys., 6, 2203–2208.
- Nouet, J., Zarembowitch, A., Pisarev, R. V., Ferre, J., and Lecomte, M. (1972). "Determination of TN for KNiF₃ through elastic, magneto-optical, and heat capacity measurements," Appl. Phys. Lett. 21, 161–163.
- Onishi, T. and Yoshioka, Y. (**2007**). "The theoretical study on the spin states of the perovskite-type KCoF₃ solid," J. Surf. Sci. Nanotech. **5**, 17–19.
- Rietveld, H. M. (1967). "Line profile of neutron powder diffraction peaks for structure refinement," Acta. Crystallogr. 22, 151–152.
- Salje, E. K. H., Zhang, M., and Zhang, H. L. (2009). "Cubic-tetragonal transition in KMnF₃: IR hard-mode spectroscopy and the temperature evolution of the (precursor) order parameter," J. Phys.Condens. Matter, 21, 33–35.
- Tan, Y. W. and Shi, C. S. (2000). "Optical spectroscopy properties and charge compensation of BaLiF3 doped with Ce³⁺," J. Solid State Chem. 150, 178–182.