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Galloping is a type of fluid-elastic instability phenomenon characterized by large-
amplitude low-frequency oscillations of the structure. The aim of the present study is
to reveal the underlying mechanisms of galloping of a square cylinder at low Reynolds
numbers (Re) via linear stability analysis (LSA) and direct numerical simulations. The
LSA model is constructed by coupling a reduced-order fluid model with the structure
motion equation. The relevant unstable modes are first yielded by LSA, and then the
development and evolution of these modes are investigated using direct numerical
simulations. It is found that, for certain combinations of Re and mass ratio (m∗), the
structure mode (SM) becomes unstable beyond a critical reduced velocity U∗c due
to the fluid–structure coupling effect. The galloping oscillation frequency matches
exactly the eigenfrequency of the SM, suggesting that the instability of the SM
is the primary cause of galloping phenomenon. Nevertheless, the U∗c predicted by
LSA is significantly lower than the galloping onset U∗g obtained from numerical
simulations. Further analysis indicates that the discrepancy is caused by the nonlinear
competition between the leading fluid mode (FM) and the SM. In the pre-galloping
region U∗c <U∗ <U∗g , the FM quickly reaches the nonlinear saturation state and then
inhibits the development of the SM, thus postponing the occurrence of galloping.
When U∗ > U∗g , mode competition is weakened because of the large difference in
mode frequencies, and thereby no mode lock-in can happen. Consequently, galloping
occurs, with the responses determined by the joint action of SM and FM. The unstable
SM leads to the low-frequency large-amplitude vibration of the cylinder, while the
unstable FM results in the high-frequency vortex shedding in the wake. The dynamic
mode decomposition (DMD) technique is successfully applied to extract the coherent
flow structures corresponding to SM and FM, which we refer to as the galloping
mode and the von Kármán mode, respectively. In addition, we show that, due to the
mode competition mechanism, the galloping-type oscillation completely disappears
below a critical mass ratio. From these results, we conclude that transverse galloping
of a square cylinder at low Re is essentially a kind of single-degree-of-freedom
(SDOF) flutter, superimposed by a forced vibration induced by the natural vortex
shedding. Mode competition between SM and FM in the nonlinear stage can put off
the onset of galloping, and can completely suppress the galloping phenomenon at
relatively low Re and low m∗ conditions.
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1. Introduction
Flow-induced vibrations (FIVs) of elastic or elastically mounted bluff bodies are

common in nature (e.g. plants in wind) and frequently encountered in a great variety
of engineering applications (e.g. bridges, riser tubes, offshore and submarine structures
and heat exchanger tubes (Naudascher & Rockwell 1994)). These vibrations can lead
to fatigue damage and even catastrophic failure of the structure, such as the collapse of
the Tacoma Narrows bridge (Billah & Scanlan 1991). To model, predict and suppress
the vibrations, a deep understanding of the underlying fluid–structure interaction (FSI)
mechanisms is required. In the past half-century, the prevalence and importance of
FIV has motivated a large number of researches aiming to characterize the FIV
responses, as was comprehensively reviewed by Blevins (1990) and Païdoussis, Price
& de Langre (2010). Two particular FIV phenomena, vortex-induced vibration (VIV)
and galloping, have received considerable attention for their ubiquity and serious
implications in engineering applications. A circular cross-section bluff body is prone
to VIV, but not susceptible to galloping. Whereas for non-axisymmetric cylinders,
such as square cylinders and D-section cylinders, the FIV response is strongly
dependent on the angle of attack relative to the incoming flow. At different angles of
attack, VIV, galloping or combined VIV–galloping would occur, respectively (Names
et al. 2012; Zhao et al. 2014).

VIV is a kind of self-sustained vibration with limited vibration amplitude. When
the natural frequency of the structure approaches the vortex-shedding frequency, the
frequency of shedding deviates from the Strouhal relation and synchronizes with the
oscillation frequency of the body. At large mass ratio conditions, they are close to the
natural frequency of the structure (Bishop & Hassan 1964). The phenomenon of wake–
body synchronization was referred to as frequency lock-in (Feng 1968). Under lock-in,
the body often shows large-amplitude vibration over a well-defined reduced velocity
range. It is worth noting that at sufficiently low mass ratios, the vibration frequency
can deviate substantially from the structural natural frequency due to the variation
of effective added mass (Bourguet & Jacono 2014). As a typical FIV phenomenon,
VIV has been extensively investigated via the canonical problem of a rigid circular
cylinder free to vibrate in the cross-flow direction. Through lots of experiments and
numerical simulations, various aspects of VIV (such as response amplitudes, frequency
characteristics and wake patterns) have been systematically studied and summarized
(Sarpkaya 2004; Williamson & Govardhan 2004; Bearman 2011).

However, it is not until recently that the underlying mechanism of frequency lock-in
has been fully revealed and understood, owing to the progress of theoretical analysis
methods, such as semi-empirical or semi-analytical models (de Langre 2006), and
global linear stability analysis (LSA) approaches (Cossu & Morino 2000; Meliga &
Chomaz 2011; Zhang et al. 2015a; Navrose & Mittal 2016; Yao & Jaiman 2017).
Among them, de Langre (2006) adopted a linear wake oscillator model with all the
nonlinear terms neglected to represent the flow, and then coupled this wake oscillator
model with the structure oscillator to form a linear dynamic model for the coupled
system. His analysis results indicate that VIV is essentially a kind of coupled-mode
flutter. In fact, the concept of flutter has been applied to the study and interpretation
of the VIV phenomenon for a long time. The earliest study can be traced back to
the work of Nakamura (1969), in which he treated the vortex-excited oscillation of
a circular cylinder as a binary flutter. In a recent work, Meliga & Chomaz (2011)
investigated VIV of a spring-mounted circular cylinder at low Reynolds numbers by
performing an asymptotic analysis of the Navier–Stokes equations. They showed that
lock-in as well as the vortex shedding at subcritical Re is due to instability of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.160


518 X. Li, Z. Lyu, J. Kou and W. Zhang

structure mode (SM). Moreover, they conducted nonlinear approximate analysis in the
unstable region and proposed a criterion for lock-in based on the oscillation amplitude
of the cylinder. Inspired by the works of de Langre (2006) and Meliga & Chomaz
(2011), Zhang et al. (2015a) investigated the mechanism underlying frequency lock-in
via global LSA of the FSI system. The linear dynamic model was constructed by
coupling a reduced-order model (ROM) for the wake with the structure motion
equation. They showed that the lock-in phenomenon at a low Reynolds number
of 60 can be divided into two patterns according to different induced mechanisms,
namely the ‘resonance-induced lock-in’ and the ‘flutter-induced lock-in’. For the
former case, only the wake mode (WM) is unstable. Lock-in occurs because of the
vicinity of the frequency of WM to the natural frequency of the structure. For the
latter case, both the WM and the SM are unstable. Lock-in results from the nonlinear
interaction between the two unstable modes. In the linear stage, the WM and the
SM coexist and a beating phenomenon is observed. However, after enough time, the
nonlinearity begins to dominate the wake dynamics and leads to strong competition
between the two modes. Ultimately, the SM wins the competition and locks the WM,
resulting in the famous lock-in phenomenon. In the present study, we will show
that the mode competition mechanism also plays an important role in the inherent
dynamics of transverse galloping of a square cylinder at low Reynolds number (Re).
Recently, Navrose & Mittal (2016) also investigated the lock-in phenomenon in the
laminar flow regime via LSA based on the linearized Navier–Stokes equations. They
demonstrated that not all unstable modes result in lock-in; only those modes whose
energy ratio is above a certain threshold value can lead to lock-in in the saturated
state. In another recent work, Yao & Jaiman (2017) proposed a ROM for the laminar
unsteady wake flow using the eigensystem realization algorithm and successfully
employed it for stability analysis of VIV. They demonstrated that the flutter and
resonance regimes do not always exist during the lock-in process, and the regimes
are strongly dependent on the shape of the bluff body, the Reynolds number and
the mass ratio. For instance, when the Re for VIV of a circular cylinder exceeds
70, the resonance regime disappears and the entire lock-in region is dominated by
flutter. Whereas for VIV of a square cylinder at low Re, the lock-in is found to be
dominated by resonance, without any flutter regime.

Galloping is another classical flow-induced vibration phenomenon. It mainly occurs
for non-axisymmetric bluff bodies when the structural natural frequency is sufficiently
larger or lower than the vortex shedding frequency. The former is known as low-speed
galloping and the latter is called high-speed galloping (Païdoussis et al. 2010). In
particular, high-speed galloping is a kind of unbounded vibration characterized
by a ‘build up’ phenomenon: the vibration amplitude increases vigorously with
increasing flow speed when the flow speed is greater than a critical threshold value.
A lot of experimental and numerical studies have focused on the dynamic response
characteristics of transverse galloping (Bearman et al. 1987; Sen & Mittal 2011,
2015; Names et al. 2012; Zhao, Cheng & Zhou 2013; Zhao et al. 2014, 2018; Cui
et al. 2015; Jaiman, Sen & Gurugubelli 2015; Gao & Zhu 2017). Among them,
Names et al. (2012) and Zhao et al. (2014) carried out systematic experiments
in the Reynolds number range Re = 1000–13 000 to investigate the influence of
angle of attack on the free transverse vibration of an elastically supported square
cylinder. They showed that, depending on the angle of attack, the structure can
undergo combinations of VIV and galloping: for α = 0◦ the FIV is dominated by
transverse galloping; for α = 45◦, the FIV response is dominated by VIV; while for
10◦ < α < 22.5◦ the underlying FIV phenomenon is very complex and difficult to
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determine, a new response branch was found that has amplitude larger than the ‘upper
branch’ of classical VIVs but has vibration frequency locked onto approximately half
of the vortex-shedding frequency for a fixed body. Moreover, they reported that,
when the vortex-shedding frequency is in the vicinity of an odd-integer multiple of
the galloping oscillation frequency, the vortex shedding frequency may synchronize
to the multiple of the galloping oscillation frequency. The synchronization ultimately
leads to the ‘kinks’ in the galloping amplitude response for light bodies. Recently,
Zhao et al. (2018) further investigated the time–frequency characteristics of the FIV
response of a square cylinder using continuous wavelet transforms (CWT). Their
analysis results revealed the intermittency behaviour of the response at the boundaries
of synchronization regions as well as the mode competition at branch boundaries.
This work demonstrates the importance of mode competition in FIV problems. In
the aspect of numerical simulations, Sen & Mittal (2011, 2015) studied the free
response of a square cylinder in the laminar flow regime, and found that with
the increase of Re, the response can be characterized by three branches: primary
lock-in, desynchronization and secondary lock-in. They indicated that the lock-in
region of a square cylinder is much narrower than that of its circular cylinder
counterpart, and the maximum vibration amplitude only reaches 50 % of the one of
the circular cylinder. The second lock-in region denotes the galloping branch because
the oscillation amplitude increases proportionally with the reduced velocity and the
vibration frequency is locked onto the structural natural frequency. It is important to
note that the second lock-in here is essentially different from the traditional frequency
lock-in for which the vortex-shedding frequency is synchronized with the vibration
frequency. For galloping response, the vortex shedding frequency is not synchronized
with but much higher than the vibration frequency (Cui et al. 2015).

As described previously, the underlying mechanism of VIV has been studied in
depth by various unsteady analysis methods. However, the research on the underlying
mechanism of galloping is comparatively rare and has not been thorough. Up to now,
most of the relevant works are still limited to quasi-steady analysis. Since the Den
Hartog (1932) criterion was proposed, the quasi-steady theory has been widely used
for galloping analysis (Parkinson 1989; Païdoussis et al. 2010; Mannini, Marra &
Bartoli 2014; Dimitriadis 2017). In particular, some interesting new considerations
on the prediction methods based on the quasi-steady assumption are provided in the
recent book of Dimitriadis (2017). The classical quasi-steady model is constructed
based on the time-averaged loads measured from stationary structures at different
angles of attack, so it cannot take into account the unsteady effects caused by the
structural motion as well as the unsteady vortex shedding. Therefore, it is only
applicable to the analysis of low-frequency galloping occurring at considerably high
reduced velocities, but cannot be used for the analysis of the unsteady galloping or
combined VIV–galloping instability that occurs at relatively low reduced velocities
close to the vortex-resonance region (Bokaian & Geoola 1985; Bearman et al. 1987;
Bearman & Luo 1988; Mannini, Marra & Bartoli 2015). Besides, Mannini, Marra &
Bartoli (2016) demonstrated that the interference between VIV and galloping produces
significant effects even in reduced velocity ranges far apart from the vortex-resonance
region.

Due to the ignorance of unsteady effects, the results predicted by quasi-steady
analysis often deviate greatly from the true values. Actually, the critical reduced
velocity U∗g predicted by the quasi-steady approach diminishes linearly with the
decrease of the mass-damping parameter (Scruton number, Sc), as demonstrated in
Païdoussis et al. (2010). Therefore, it is expected that the quasi-steady approach
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becomes first inaccurate and then inapplicable as the Sc decreases. Below a certain
value, the effect of unsteady vortex shedding cannot be neglected anymore. For
instance, Parkinson & Wawzonek (1981) found that the onset reduced velocity of
galloping predicted by quasi-steady models is usually lower than the real starting
speed at low Sc conditions. Moreover, Joly, Etienne & Pelletier (2012) numerically
studied the transverse galloping of a square cylinder at low Reynolds numbers.
They reported that when the mass ratio is less than a certain critical value, the
galloping-type oscillation completely disappears, although the classical quasi-steady
model still predicts that galloping will occur. By adding a forced excitation term
representing the effect of unsteady vortex shedding to the quasi-steady model, this
unexpected phenomenon was well recovered. This indicates that vortex shedding has
a great influence on the response characteristics of galloping and must be considered,
especially for low-speed galloping.

Many scholars have attempted to propose effective unsteady analysis models, but
almost none have gone beyond the theoretical framework of quasi-steady analysis
(Gao & Zhu 2017). For example, Bouclin (1977) constructed an unsteady aerodynamic
model by simply combining the classical quasi-steady model and the Hartlen & Currie
(1970) model for VIV. Corless & Parkinson (1988, 1993) further generalized the
model by considering the impact of acceleration term on the fluctuating force. Tamura
& Shimada (1987) proposed a similar model by combining the wake oscillator model
developed by Tamura & Matsui (1979) with the quasi-steady model. Remarkably, the
wake oscillator model was conceived based on physical considerations rather than
on empirical methods. However, these models have only achieved limited success.
Although qualitative agreement between theory and experiment was observed, it is
hard for them to acquire quantitative accuracy (Païdoussis et al. 2010). Recently,
Mannini, Massai & Marra (2018) improved Tamura and Shimada’s model by slightly
modifying the model formulation and changing the way to determine the crucial
parameter. They concluded that the modified model is able to predict the vibrational
response with a satisfactory qualitative and to a certain extent quantitative agreement
with experimental data.

In fact, both galloping and flutter are well known as fluid-elastic instability
phenomena induced by negative aerodynamic damping; there is no essential difference
between them from the perspective of the mechanical principle. However, the
academic community has always discussed and analysed galloping and flutter
separately. Blevins (1990) attributed this to historical reasons. The scholars in civil
engineering were accustomed to using galloping, while the scholars in aerospace
engineering have been using flutter to describe these kinds of aeroelastic instability
phenomena. The use of different terminologies often leads to confusion, especially for
researchers who have just entered the academic field. We deem that the discrepancy
is probably due to the lack of an effective unsteady analysis method for galloping. By
contrast, the unsteady analysis theory for flutter of streamlined bodies is quite already
mature, and has been successfully applied to flutter prediction and the underlying
mechanism analysis (Dowell 1980; Gao, Zhang & Ye 2016). Through linear stability
analysis, the unstable modes leading to flutter and their interaction mechanisms can
be revealed. Therefore, it is time to establish more accurate unsteady analysis models
to study the unsteady characteristics of galloping, and thereby to establish a clear
connection between galloping and flutter.

The motivation for the present study is to reveal the underlying mechanisms
of the galloping of a transversely vibrating square cylinder in the laminar flow
regime (Re 6 200) via linear stability analysis and the direct computational fluid
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dynamics/computational structural dynamics (CFD/CSD) simulation method. Special
attention is paid to the mechanism of mode competition between the fluid and
the structure, which is responsible for the interference between VIV and galloping.
Moreover, through the combination of these two methods, we hope to bridge the gap
between galloping and flutter. The linear dynamic model is constructed by coupling
a low-dimensional fluid model with the structure motion equation. The ROM of
unsteady wake flow is identified using the autoregressive with exogenous input (ARX)
technique based on the Navier–Stokes equations. Compared with previous studies
which focus mainly on the saturated galloping response, we are more concerned
with the entire evolution process of the coupled system from the equilibrium steady
state to the ultimate saturated limit-cycle oscillation. First, the most unstable modes
that are relevant to the galloping phenomenon are extracted using LSA. Then, direct
numerical simulations are carried out to study the evolution or development of the
unstable modes as well as their competition mechanism. As such, we can deeply
study the effect of unsteady vortex shedding on galloping responses. Finally, the
coherent flow structures for galloping responses are extracted using the dynamic
mode decomposition (DMD) method.

2. Numerical simulation method
2.1. Navier–Stokes equations

The compressible Navier–Stokes equations were utilized to simulate the two-
dimensional laminar flow past a square cylinder at low Reynolds numbers (Re6 200).
The Mach number was set to be Ma=0.1. It has been confirmed that the compressible
Navier–Stokes equations with Mach numbers less than 0.3 can be used as an efficient
alternative to study incompressible flows as well as the flow-induced vibrations
of bluff bodies (Wanderley & Levi 2002). The Reynolds number, based on the
oncoming flow velocity (U∞) and the side length of the square cylinder (D), is
defined as Re= ρU∞D/µ, where ρ and µ are the density and the dynamic viscosity
of the fluid, respectively. To cope with the deforming mesh due to the vibration of
the cylinder, the arbitrary Lagrangian–Eulerian form of the Navier–Stokes equations
was employed. The non-dimensional governing equations, with all physical variables
normalized by U∞ and D, are given as follows:

∂

∂t

∫ ∫
Ω

Q dV +
∮
∂Ω

F(Q,Vgrid) · n dS=
∮
∂Ω

G(Q) · n dS, (2.1)

where Ω denotes the control surface element, ∂Ω represents the boundary of the
control surface element, t is the dimensionless time and n is the identity normal vector.
The vector of conservative variables Q, the modified inviscid flux vector F(Q, Vgrid)
and the viscous flux vector G(Q) are given as follows:

Q=

 ρρu
ρv
e0

 , Fx(Q,Vgrid)=

 ρ(u− ugrid)

ρu(u− ugrid)+ P
ρ(u− ugrid)v

e0(u− ugrid)+ Pu

 , (2.2a,b)

Fy(Q,Vgrid)=

 ρ(v − vgrid)
ρu(v − vgrid)

ρ(v − vgrid)v + P
e0(v − vgrid)+ Pv

 , (2.3)
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FIGURE 1. Computational domain for a square cylinder: (a) hybrid mesh employed in the
present study and (b) close-up view of the mesh near the surface of the cylinder.

Gx(Q)=µ



0

2ux −
2
3
(ux + vy)

vx + uy

u
[

2ux −
2
3
(ux + vy)

]
+ v(vx + uy)+

1
γ − 1

Tx

Pr


, (2.4)

Gy(Q)=µ



0
vx + uy

2vy −
2
3
(ux + vy)

u(vx + uy)+ v

[
2vy −

2
3
(ux + vy)

]
+

1
γ − 1

Ty

Pr


, (2.5)

where u, v are the x-wise and y-wise components of the velocity vector of the
flow, ugrid, vgrid are the x-wise and y-wise components of the velocity vector of
the deforming grid and e0, P denote the total energy and pressure, respectively.
The subscripts x and y denote the partial derivatives of the flow velocity; T is the
temperature, Pr is the Prandtl number and γ = 1.4 is the ratio of specific heats.

The computational domain as well as the generated mesh is shown in figure 1. The
overall size of the computational domain is 60D× 40D, and the centre of the square
cylinder is 20D from the upstream boundary. The unstructured hybrid mesh employed
for the present computations consists of 18 741 nodes and 34 408 elements. We refer
to this mesh as M1. The convergence of M1 has been verified by a finer mesh in § 2.3.
No-slip boundary condition was applied on the velocity of the cylinder surface. The
location and velocity of the cylinder were updated at each real-time step. The far
field was assigned a non-reflective boundary condition using the Riemann invariants.
The entire mesh was deformed at each time step and was updated using the radial
base function interpolation method (Boer, Van der Schoot & Bijl 2007). A compact
Wendlands C2 function was chosen as the basis function. The quality of the meshes
after deformation is high enough to perform accurate flow calculations.
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x
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FIGURE 2. Schematic diagram of an elastically mounted square cylinder subjected to a
uniform flow; m, c and k are the mass, damping and stiffness of the system.

2.2. Structure motion equation
In this study, we focus on the dynamic response characteristics of an elastically
mounted square cylinder subjected to a uniform flow, as sketched in figure 2. The
square cylinder is free to vibrate in the transverse direction only. The rigid motion
of the body along the Cartesian axes is given by:

Ÿ + 4πFsζ Ẏ + (2πFs)
2Y =

CL

2m∗
, (2.6)

where Fs= fsD/U∞ is the reduced natural frequency in a vacuum related to the natural
frequency of a mass–spring system ( fs); ζ is the structural damping ratio and is set
to be zero to encourage large-amplitude oscillations; m∗ is the non-dimensional mass
of the body defined as m∗=m/ρD2 with m the actual mass of the oscillator per unit
length; CL is the instantaneous lift coefficient acting on the body; Ÿ , Ẏ and Y denote
the acceleration, velocity and displacement of the cylinder in the transverse direction
normalized by D and U∞. In particular, the reduced velocity is defined as U∗=1/Fs=

U∞/fsD.

2.3. Numerical scheme and verification
The cell-centred finite volume method was employed to solve the Navier–Stokes
equations. Spatial discretization of the inviscid flux terms was accomplished using
the second-order AUSM+-up scheme (Liou 2006), while the viscous flux terms
were discretized by the standard central scheme. A second-order accurate full implicit
scheme was used to integrate the equations in time domain, and an implicit symmetric
Gauss–Seidel iterative time-marching scheme was applied in the pseudo time step.

A fourth-order hybrid linear multi-step scheme was adopted to solve the nonlinear
FSI problems (Zhang, Jiang & Ye 2007). The flow and structural equations were
solved separately using a partitioned approach. At each real-time step, the fluid
force acting on the square cylinder was obtained from the solution of Navier–Stokes
equations; and then the displacement of the inner boundary was updated by solving
the structural motion equation, which was necessary for the solution of the flow
equations at the next time step. A more detailed process and extensive validations
of the numerical method have been documented in our previous works (Zhang et al.
2015a; Li, Zhang & Gao 2018). For completeness, further validations of the numerical
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Reference CD Crms
D Cmax

L Crms
L St

Present M1 (1t= 0.20) 1.433 0.0050 0.2502 0.1768 0.1409
Present M1 (1t= 0.10) 1.434 0.0050 0.2525 0.1785 0.1421
Present M1 (1t= 0.05) 1.435 0.0051 0.2560 0.1810 0.1430
Present M1 (1t= 0.02) 1.435 0.0051 0.2561 0.1811 0.1432
Present M2 (1t= 0.05) 1.438 0.0052 0.2569 0.1817 0.1434
Singh & Mittal (2005) 1.510 — — 0.1600 0.1470
Sen & Mittal (2011) 1.529 0.0055 — 0.1928 0.1452
Zhao et al. (2013) 1.452 0.0057 — 0.1908 0.1447
Park & Yang (2016) 1.421 — — 0.1680 0.1430

TABLE 1. Mesh dependency and time step convergence study: comparison of the present
calculation results with the published numerical data in the literature for the flow past a
stationary square cylinder at Re= 100.

method for the flow and VIV of a square cylinder at low Re were performed. Mesh
dependency and time step convergence study was also carried out.

Firstly, we computed the flow past a stationary square cylinder at Re = 100. To
study the convergence of the time step, four computations were conducted at 1t =
0.20, 0.10, 0.05 and 0.02 for M1. In addition, a finer mesh M2 with 24 764 nodes
and 44 648 elements was generated for the mesh dependency study; M2 has the same
domain size as M1 but has higher spatial resolution especially close to the surface of
the square cylinder. Table 1 shows the comparison of the mean drag coefficient (CD),
root-mean-square (r.m.s.) drag coefficient (Crms

D ), amplitude of lift coefficient (Cmax
L ),

r.m.s. lift coefficient (Crms
L ) and Strouhal number of the vortex shedding (St) with the

published results in the literature. As can be seen, with the decrease of the time step,
the results for M1 gradually converge and remain almost unchanged when 1t 6 0.05.
Thus, the time step was set to be 1t = 0.05 for most of the present computations.
On the other hand, the results from M1 and M2 at 1t= 0.05 are in good agreement
and the differences of the values between the two meshes are generally less than 1 %.
This indicates that M1 is adequate for the present study. Besides, our results compare
reasonably well with those of other researchers, verifying that the numerical method
we adopted is reliable.

To further verify our numerical solver, VIV of a square cylinder with two degrees
of freedom was simulated. The parameter settings were consistent with one of the
numerical cases in Zhao et al. (2013), i.e. Re = 100, m∗ = 3 and ζ = 0. The square
cylinder is free to vibrate in both the transverse and in-line directions. The reduced
velocity U∗ is varied by changing the reduced natural frequency of the structure
Fs. Since the vibration amplitude in the transverse direction is much larger than
that in the in-line direction, we only present the results for transverse vibrations.
Figure 3 shows the transverse vibration amplitude of the cylinder varying with U∗.
The vibration amplitude in the transverse direction is defined as Ay = (Ymax

− Ymin)/2
with Ymax and Ymin being the maximum and minimum transverse displacements
of the cylinder, respectively. As can be seen, remarkable VIV begins to occur at
U∗ = 4, and the response amplitude increases rapidly in the range 4 < U∗ < 5. The
maximum vibration amplitude is achieved at U∗ = 5, approximately, with a value
of Ay = 0.315. When U∗ > 5, the transverse vibration amplitude decreases gradually
with the increase of U∗. It is worth noting that the critical reduced velocity for
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FIGURE 3. (Colour online) Transverse vibration amplitude for VIV of a two-degree-of-
freedom elastically mounted square cylinder at Re= 100, m∗= 3 and ζ = 0. The numerical
results of Zhao et al. (2013) are also plotted for comparison; U∗r =1/St denotes the critical
reduced velocity for vortex-shedding resonance.

vortex-shedding resonance U∗r = 1/St falls in the descending branch of the VIV
response. Moreover, as will be shown in figure 8(b), when the mass ratio is further
reduced, the response curve of VIV expands on the left-hand side of U∗r . This is
opposite to the cases of high Reynolds numbers and high mass ratios, for which U∗r
falls at the beginning of the VIV response pattern and the excitation range expands
on the right-hand side (Bearman & Obasaju 1982; Nakamura & Matsukawa 1987).

The present numerical results agree excellently well with those of Zhao et al.
(2013). This indicates that our numerical method is effective and applicable to study
the FIV problems of a square cylinder at low Re.

3. Linear stability analysis for FSI system
3.1. Reduced-order modelling of the unsteady wake flow

The model reduction for unsteady flow has been an active area of research in recent
years (Lucia, Beran & Silva 2004; Ghoreyshi, Jirasek & Cummings 2014; Rowley
& Dawson 2017). Compared to high-fidelity numerical simulations, reduced-order
models (ROMs) can retain the dominant flow dynamics of the original system with
significant lower orders, which results in a great improvement of computational
efficiency. In this section, we focus on developing ROMs for the unsteady flow past
a transversely vibrating square cylinder. The system identification method based on
the ARX model was adopted for model reduction. This method has been discussed
in detail in our previous works (Zhang et al. 2015a; Gao et al. 2017; Kou & Zhang
2019). For completeness, we give a brief introduction of the ROM method here. The
linear time-invariant input–output model is given as:

yF(k)=
na∑

i=1

AiyF(k− i)+
nb−1∑
i=0

Biu(k− i), (3.1)

where yF is the output vector and u is the input vector of the system. For the current
single-input–single-output model, u = [Y] (transverse displacement) and yF = [CL]

(instantaneous lift coefficient); Ai and Bi are the constant coefficients to be estimated.
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FIGURE 4. (Colour online) Steady-state base flow of a stationary square cylinder at
Re= 150: (a) streamwise and (b) cross-flow velocity fields.
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FIGURE 5. (Colour online) (a)Time history and (b) fast Fourier transformation of the
training signal.

The least squares method is employed for the estimation procedure; na and nb are
the delay orders determined by the user. By varying na and nb, we can find the
model that minimizes the error between the training data and ROM predictions.

The discrete-time fluid model (3.1) can be further converted into the continuous-
time state-space form as:

ẋF(t)= AFxF(t)+ BFu(t),
yF(t)= CFxF(t)+ DFu(t),

}
(3.2)

where xF is the state vector with the order of (na + nb); (AF, BF, CF, DF) are the
system matrices. Once the ROM is established, the stability characteristics of the flow
can be quickly obtained by computing the eigenvalues of matrix AF in the state-space
equation (3.2). It is remarkable that, for the stable flow at subcritical Re, the ROM
can be directly identified based on the steady flow. However, for the unstable flow at
supercritical Re, the ROM should be trained based on the unstable steady-state base
flow.

Here, we take the unsteady flow modelling of Re = 150 as an example to verify
the correctness of the ROM method. The steady-state base flow was computed using
a time-filtering method based on the unsteady flow solver (Zhang, Liu & Li 2015b), as
shown in figure 4. A smoothed chirp signal with an increasing frequency is adopted as
the training signal. The time history as well as the fast Fourier transformation (FFT)
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FIGURE 6. (Colour online) Identified results under the training signal compared with that
of direct numerical simulation at Re= 150.

of the signal is shown in figure 5. As can be seen, the signal has a wide reduced
frequency band ranging from 0 to 0.4 approximately, which covers the vortex-shedding
frequency of a square cylinder in the laminar flow regime. When the data training
is completed, we vary the delay orders to construct an accurate enough model. The
identification error used for model-order selection is defined as:

e=

N∑
i=1

|yF(i)− yiden
F (i)|

N∑
i=1

|yF(i)|

, (3.3)

where yiden
F denotes the vector of the identified lift coefficient and N is the size of the

training data. The identified results with various delay orders are compared with those
of direct numerical simulation in figure 6. For clarity, only the results for na= nb are
presented. As can be seen, the identification error gradually decreases with increasing
delay orders. The best identification is achieved at na= nb= 80 with an identification
error less than 1 %. Hence, for the case of Re= 150, we set the delay orders equal
to na= nb= 80.

For further verification, the ARX-based ROM was applied to predict the instability
onset of the square cylinder wake flow due to a Hopf bifurcation. The eigenvalues of
the first two least-stable modes at various Reynolds numbers are plotted in figure 7.
As can be seen, the base flow starts to become unstable at Recr ≈ 45.2 when the
eigenvalue of the leading fluid mode crosses the imaginary axis and moves into the
right half of the complex plane, which is consistent with the numerical predictions
of Yoon, Yang & Choi (2010), Park & Yang (2016) and Yao & Jaiman (2017). In
addition, the eigenvalue of the second fluid mode gradually approaches the imaginary
axis as the Re increases. This indicates that the second mode tends to be a weak-stable
mode (light-damped mode) at large Re, and therefore cannot be neglected anymore in
fluid-elastic stability analysis. We will show in § 5 that the second fluid mode plays
an important role in the fluid–structure coupling mechanism that inherently leads to
the galloping-type oscillation of the structure.
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FIGURE 7. (Colour online) Eigenvalue analysis via the ARX-based ROM for the flow past
a stationary square cylinder: (a) least-stable fluid mode and (b) second least-stable fluid
mode. The flow becomes unstable at the critical Recr = 45.2 when the eigenvalue of the
least-stable fluid mode crosses the imaginary axis and moves into the right half of the
complex plane.

3.2. ROM-based FSI model

By defining a structure state vector xs=[Y, Ẏ]T for the present one-degree-of-freedom
transversely vibrating square cylinder, the structure motion equation (2.6) can be
written in the state-space form as:

ẋS(t)= ASxS(t)+ qBSyF(t),
Y(t)= CSxS(t)+ qDSyF(t),

}
(3.4)

where AS=
[ 0 1
−(2πFs)

2
−4πFsζ

]
, BS=

[
0
1

]
, CS= [1 0], DS= [0] and q= 1/(2m∗). By coupling

the structural state equation (3.4) with the aerodynamic state equation (3.2), we obtain
the state and output equations for the linear coupled system as follows:

ẋFS(t)=
[

AS + qBSDFCS qBSCF
BFCS AF

]
· xFS = AFSxFS(t)

Y(t)= [CS, 0] · xFS(t),

 (3.5)

where xFS = [xS, xF]
T . The ROM-based linear dynamic model for FIV of a square

cylinder is now constructed. The fluid-elastic stability problem is then converted
into solving and analysing the eigenvalues of AFS, expressed as λ = λr + iλi. The
real part λr represents the growth rate of the eigenmodes, while the imaginary part
λi denotes the angular frequency, which is equal to 2π times the eigenfrequency
of the eigenmodes. Tracking the eigenvalues varying with structural parameters
(Fs, ζ and m∗), we can obtain the stability characteristics of the coupled system.
Specifically, in the present study, we investigate the trajectories of eigenvalues by
varying the reduced natural frequency of structure Fs (1/U∗) while maintaining the
Re, m∗ and ζ fixed at given values.

4. Overview of the galloping response
In this section, systematic numerical computations were performed to get an

overview of the response characteristics of transverse galloping in the laminar flow
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FIGURE 8. (Colour online) Transverse vibration amplitude of the square cylinder as a
function of U∗ for various (Re,m∗) combinations: (a) results for m∗ = 10 at different Re
and (b) results for Re= 150 at different m∗. Note that the results for (Re,m∗)= (150, 10)
are shown in both plots.

regime. The reduced velocity U∗ is varied by changing the reduced natural frequency
of structure Fs while keeping the Re and m∗ fixed. The structural damping ratio ζ
is set to be zero. The focus is on the response amplitudes, frequency characteristics,
force coefficients and wake patterns.

4.1. Response amplitude
The transverse vibration amplitudes of the square cylinder as a function of U∗ at
various (Re, m∗) combinations are shown in figure 8. Figure 8(a) shows the results
for m∗ = 10 at four representative Reynolds numbers, Re = 140, 150, 160 and 180.
Figure 8(b) shows the results for Re= 150 at four representative mass ratios, m∗ = 2,
5, 10 and 20. Overall, there exist two typical FIV responses: VIV and galloping.
When the structure natural frequency approaches the vortex-shedding frequency of
a stationary cylinder in the range 4 < U∗ < 8, vortex-excited resonance leads to a
relatively large-amplitude vibration of the structure. Compared to its circular cylinder
counterpart, the vibration amplitude and lock-in regime for VIV of a square cylinder
are much smaller and narrower, which is in agreement with the numerical results of
Sen & Mittal (2011). This is mainly because VIV of a square cylinder is dominated
by resonance without any flutter regime (Yao & Jaiman 2017). As demonstrated
in Zhang et al. (2015a), flutter is the root cause of frequency lock-in, which can
lead to larger vibration amplitude of the structure than that induced by resonance.
Galloping mainly occurs at relatively large reduced velocities, generally U∗ > 10.
When the reduced velocity is greater than a critical threshold U∗g , the transverse
vibration amplitude increases progressively with the increase of U∗. Unlike VIV,
which only shows large-amplitude oscillations in the lock-in region, galloping is a
kind of unbounded vibration. There exists no upper instability boundary with regard
to U∗ beyond which galloping will cease.

For the case of m∗= 10, the response amplitude of VIV decreases slightly as the Re
increases. Moreover, the reduced velocity corresponding to the peak value of vibration
amplitude varies little with Re and locates at U∗ = 5.75, approximately. On the other
side, the galloping onset U∗g decreases gradually and the galloping vibration amplitude
increases monotonically with increasing Re. It is noteworthy that there is a kink in the
amplitude response of Re= 180 near U∗= 16 (figure 8a). This phenomenon has been
previously investigated by Zhao et al. (2014) and Jaiman, Guan & Miyanawala (2016),
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FIGURE 9. (Colour online) Variation of the transverse vibration amplitude with Re for
m∗ = 10 at a sufficiently large U∗ = 40.

and is attributed to the 1 : 3 synchronization between the vortex-shedding frequency
and the body oscillation frequency. With the increase of Re, the onset of galloping
gradually extends to lower reduced velocities where the unsteady effect is very
strong. For the present study in the laminar flow regime, VIV and galloping are
always separated with a desynchronization region between them. No combined
VIV–galloping phenomenon is observed. It is remarkable that the vibration amplitude
of galloping drops suddenly when the Reynolds number is reduced from 150 to 140.
This indicates the existence of a critical Re below which galloping will not occur. To
accurately determine the critical Re, further computations were conducted for various
Re at a sufficiently large reduced velocity U∗ = 40. Figure 9 shows the vibration
amplitude of the cylinder as a function of Re. As can be seen, the critical Reynolds
number Recg for galloping is approximately 139, which is close to the value of 140
predicted by Joly et al. (2012).

For the case of Re = 150, with the decrease of m∗, the resonance peak of VIV
gradually increases while the corresponding reduced velocity U∗ where the peak is
acquired slightly decreases. This indicates that VIV is intensified when the mass ratio
is decreased. In contrast, the onset of galloping increases and the galloping vibration
amplitude decreases rapidly with decrease in m∗. This is a bit counter-intuitive
since the intensity of galloping oscillation is reduced as the mass ratio decreases.
More specifically, the galloping-type oscillation completely vanishes for m∗ = 2. This
indicates that there exists a critical mass ratio below which galloping completely
disappears and the response will be dominated by VIV only. This phenomenon was
first reported by Joly et al. (2012) and then confirmed by Sen & Mittal (2015)
through numerical simulations. However, as far as we know, the primary cause that
leads to this strange phenomenon has not been thoroughly investigated and discussed
until now. In this study, we try to give an explanation for this peculiar phenomenon
from the point view of mode competition between the fluid and the structure, as will
be shown in § 5.

4.2. Frequency characteristics and lift force
Here, we take the case of (Re, m∗) = (150, 10) as an example, to further study
other aspects of galloping response. Figure 10 presents the vibration amplitude Ay,
frequency ratios of vibration and vortex shedding F∗ = F/Fs, amplitude of lift
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FIGURE 10. (Colour online) FIV response of a transversely vibrating square cylinder as a
function of U∗ for (Re,m∗)= (150, 10): (a) the vibration amplitude of cylinder Ay, (b) the
amplitude of lift coefficient Cmax

L , (c) the dominant frequency ratios of cylinder vibration
F∗y and lift coefficient F∗CL

, and (d) the phase angle φ between CL and Y at the vibration
frequency. The frequency ratio is defined as F∗=F/Fs with Fs being the reduced natural
frequency of the structure.

coefficient Cmax
L and phase angle φ between the lift coefficient CL and transverse

displacement Y , as a function of U∗. Figure 11 shows the time histories of the
lift coefficient and transverse displacement as well as their power spectral densities
(PSDs) at three typical U∗. As can be seen, the response can be divided into three
branches by two critical reduced velocities (U∗ = 5.75 and U∗ = 17): the initial
branch (U∗ 6 5.75), the lower branch (5.75 < U∗ < 17) and the galloping branch
(U∗ > 17). The first two branches belong to VIV. In the initial branch, the vibration
amplitude increases rapidly with increasing U∗, and the maximum vibration amplitude
is acquired at U∗ = 5.75 with a value of 0.138. In the lower branch, the vibration
amplitude decreases gradually with increasing U∗. When the galloping is triggered at
U∗g = 17, the vibration amplitude increases monotonously again with increasing U∗.

As can be seen from figures 10(c) and 11(a–d), in the VIV region, the dominant
frequencies of vortex shedding and cylinder vibration are always identical. In a
very narrow region 5.75 6 U∗ 6 6.5, they are both synchronized with the natural
frequency of the structure, i.e. the classical lock-in phenomenon occurs. Outside the
lock-in region, the vibration frequency and the vortex-shedding frequency for VIV
are nearly equal to the vortex-shedding frequency of a stationary square cylinder.
In the galloping branch, the dominant frequencies of vortex shedding and cylinder
vibration are not synchronized but become well separated. A typical response for
galloping is presented in figure 11(e). From the PSD results in figure 11( f ), we
can see that both the fluctuating lift and vibration displacement contain two distinct
frequency components, which correspond to the natural frequency of the structure
and the vortex-shedding frequency of a stationary square cylinder, respectively. The
dominant vibration frequency is close to, but slightly lower than the structural natural
frequency in vacuum (Fy/Fs ≈ 0.83), while the dominant vortex-shedding frequency
is consistent with the vortex-shedding frequency of a stationary square cylinder. The
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FIGURE 11. (Colour online) Time histories of transverse displacement and lift coefficient,
and their power spectral densities for (Re,m∗)= (150, 10) at three representative reduced
velocities: (a,b) U∗=6, (c,d) U∗=10 and (e, f ) U∗=20. The power spectra are normalized
by peak values.

difference between the vibration frequency and the natural frequency of the structure
is attributed to the added mass effect. According to Khalak & Williamson (1999), the
effective added mass coefficient for a freely vibrating cylinder can be represented by

CEA =
1

2π3

C′L cos φ
A′y

[
U∞
fsD

]2

, (4.1)

where C′L is the lift coefficient amplitude, A′y is the oscillation amplitude and φ is the
phase angle between the lift coefficient and transverse displacement at the dominant
oscillation frequency. These values can be obtained by standard Fourier analysis using
the numerical simulation data. When CEA is evaluated, the structural natural frequency
with consideration of added mass effect can be given as

Fsa =

√
m∗

m∗ +CEA
· Fs. (4.2)

Figure 12 shows the variation of CEA and the modified frequency ratio Fy/Fsa with
U∗ in the galloping regime. As can be seen, the effective added mass coefficient
measured from numerical results remains around 3.3, which is close to the value of
3.5 reported in Joly et al. (2012) for a freely oscillating square cylinder at Re= 200.
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FIGURE 12. (Colour online) (a) Effective added mass coefficient CEA and (b) modified
frequency ratio Fy/Fsa as a function of U∗ for (Re,m∗)= (150,10) in the galloping regime.

From figure 12(b), we can see that the dominant vibration frequency of the cylinder
matches exactly the natural frequency of the structure when the effective added mass
is considered. The above analysis indicates that, for galloping responses, the structure
vibration and the vortex shedding are basically decoupled, and they only interfere with
each other by means of forced excitation.

The amplitude of the lift coefficient is closely related to the phase angle between
CL and Y , as demonstrated in figure 10(b,d). The phase angle jumps suddenly
from 0◦ to 180◦ in the lock-in region around U∗ = 5.75, where Cmax

L achieves the
minimum value. This phenomenon has also been observed in the experimental study
of Khalak & Williamson (1999). They indicated that the phase change through
resonance is matched by a switch in the timing of vortex shedding. After the phase
transition point, Cmax

L increases gradually with increasing U∗. However, the phase
angle undergoes an abrupt change again from 180◦ to 0◦ around U∗ = 17 due to the
occurrence of galloping instability. As evident from figure 11(e), during galloping, the
low-frequency oscillation of CL is in phase with the vibration of the cylinder. Besides,
the amplitude of the lift coefficient Cmax

L experiences a relatively small increase near
the galloping onset.

4.3. Wake pattern
Figures 13 and 14 show the vorticity fields at typical reduced velocities for VIV
(U∗= 6 and U∗= 10) and galloping (U∗= 20), respectively. The classical terminology
of Williamson & Roshko (1988) is employed to identify the wake patterns. As can be
seen, for VIV responses, all the wakes present as the 2S mode (two single vortices
shed during a vibration cycle). For the galloping response, the wake characteristics
have no essential difference with those of VIV. However, because the vibration

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.160


534 X. Li, Z. Lyu, J. Kou and W. Zhang

y

4
2
0

-2
-4

0 5 10 15
x

20

4
2
0

-2
-4

0 5 10 15
x

20

(a) (b)

FIGURE 13. (Colour online) Typical vorticity fields for VIV of a square cylinder at
(Re,m∗)= (150, 10): (a) U∗ = 6, (b) U∗ = 10. Both the two wakes behave as 2S mode.

frequency of the cylinder is much lower than the vortex-shedding frequency, there are
multiple vortex-shedding cycles during a single vibration period. Within one cycle
of oscillation, the vortex-shedding structures in different vortex-shedding periods are
very similar to each other. We refer to this kind of wake pattern as N(2S) mode
with N= Fvs/Fy, where Fvs is the vortex-shedding frequency and Fy is the vibration
frequency of the square cylinder. As shown in figure 14(a), for the case of U∗ = 20,
N equals to 4, approximately. Thus, the wake for U∗ = 20 is referred to as the 4(2S)
mode.

5. Mechanism of galloping

The aim of the present study is to reveal the underlying mechanisms of galloping.
With this purpose in mind, LSA of the fluid–structure interaction system is carried
out in this section using the ROM-based linear dynamic model constructed in § 3.
Direct numerical simulations are also performed to validate the results of LSA. First,
a classification of the eigenmodes is presented based on their frequency characteristics.
Second, the primary causes that lead to the unique features of galloping are discussed.
Third, the mode competition mechanism is explored and its impact on the galloping
responses is elaborated. Lastly, the effects of Re and m∗ on the dynamics of galloping
are investigated.

5.1. Clarification of modes
In the earlier studies on LSA for VIV of bluff bodies (Cossu & Morino 2000; Meliga
& Chomaz 2011), the eigenmodes of coupled systems were classified based on their
characteristics in the limit of very large mass ratios, wherein the fluid–structure
coupling effect is very weak. The strength of fluid–structure coupling increases with
the decrease of mass ratio (Yao & Jaiman 2017). It is demonstrated that for large
m∗, the two leading modes are absolutely distinct for all U∗, i.e. the two modes
are decoupled. Cossu & Morino (2000) referred to these two modes as the ‘nearly’
structure mode and the von Kármán mode, and subsequently Meliga & Chomaz (2011)
renamed them the structure mode (SM) and the wake mode (WM), respectively. The
frequency of the SM is close to the natural frequency of the structure, while the
eigenvalue of the WM tends to the leading eigenvalue of the flow past a stationary
cylinder. However, for sufficiently low m∗, the two leading modes may transform
into mixed or coupled modes (Zhang et al. 2015a; Navrose & Mittal 2016; Yao
& Jaiman 2017). They exchange roles in the synchronization region when their
eigenfrequencies approach each other. Navrose & Mittal (2016) defined such coupled
modes as fluid-elastic mode I (FEMI) and fluid-elastic mode II (FEMII), respectively.
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FIGURE 14. (Colour online) Instantaneous vorticity fields of a representative galloping
response during one vibration cycle for (Re,m∗)= (150, 10) at U∗= 20. There are nearly
four vortex-shedding cycles during a vibration period. Thus, the wake is referred to as the
4(2S) mode.

FEMI resembles the WM at low U∗ while resembles the SM at large U∗. FEMII
does the opposite.

To classify the eigenmodes of the present FIV system, a systematic analysis is
conducted by tracking the eigenvalues of the linear coupled model for a range
of U∗, while maintaining Re and m∗ fixed. Figure 15 presents the eigenvalues of
the three leading modes of the coupled system for Re = 150 at two typical mass
ratios, m∗ = 10 and m∗ = 50. The corresponding growth rates and frequencies of the
eigenmodes as a function of U∗ are plotted in figure 16. It can be seen that, for a
relatively large mass ratio, m∗ = 50, the three modes are well decoupled. According
to their frequency characteristics, we define them as the wake mode I (WM-I), wake
mode II (WM-II) and structure mode (SM), respectively. WM-I and WM-II tend to
the leading eigenvalues of the flow past a stationary square cylinder, respectively. The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.160


536 X. Li, Z. Lyu, J. Kou and W. Zhang

U*
c = 7.85 U*

c = 9.54

Im
(¬

)

WM-I
CM-I
CM-II
Stationary

WM-I
SM
WM-II
Stationary

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
-0.1 0 0.1

Re(¬)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
-0.1 0 0.1

Re(¬)

(a) (b)

FIGURE 15. (Colour online) Root loci of the coupled system as a function of U∗ for
Re= 150 at two representative mass ratios: (a) m∗ = 10 and (b) m∗ = 50.

modes responsible for the global instability of the fluid-only system are denoted as
the stationary modes, marked by red diamonds in figure 15. On the other hand, the
eigenfrequency ratio of the SM is almost constant and equals unity throughout the
U∗ investigated (figure 16d). This implies that the frequency of the SM follows the
natural frequency of the structure. For a relatively low m∗ = 10, the leading mode
remains unchanged, still behaves as WM-I. However, the second and the third modes
are coupled and exchange roles in the process of increasing U∗. This is clearly
demonstrated in figure 16(c) where the frequencies of the eigenmodes are plotted
against U∗, frequency transition of the two modes occurs when their eigenfrequencies
get close to each other in the range 7 6 U∗ 6 9. Thus, they cannot be simply
classified as SM or WM-II. In this study, we define them as coupled mode I (CM-I)
and coupled mode II (CM-II), respectively. CM-I acts as the WM-II at low U∗ but
acts as the SM at large U∗. On the contrary, CM-II acts as the SM at low U∗ while
acts as the WM-II at large U∗.

It is worth noting that, for m∗ = 10, the eigenfrequency ratio of CM-I for U∗ >U∗c
(in this region, CM-I behaves as SM) deviates considerably from unity due to the
added mass effect (figure 16c), as discussed in § 4.2. Besides, the results from the
two typical mass ratios indicate that there exists a critical mass ratio, below which
the two distinct modes develop into mixed modes. For Re = 150, the critical mass
ratio is m∗cr = 32, approximately.

5.2. Primary cause of galloping
The mechanisms underlying galloping are investigated in this section from the
perspective of linear dynamics. As can be seen from figure 15, the leading fluid
mode WM-I is located in the right half of the complex plane and is therefore always
unstable. It is in the shape of a ring, accumulating around the leading eigenvalue of
the flow past a stationary square cylinder, and is almost unaffected by U∗ and m∗. This
implies that its coupling with SM is very weak, which explains why the oscillation
of the structure and the vortex shedding in the wake are essentially decoupled during
the galloping. In contrast, the SM has a relatively strong coupling with the second
fluid mode WM-II. For m∗ = 50, the eigenvalue of SM gradually moves downwards
and approaches that of WM-II as the U∗ increases. In this process, the coupling
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FIGURE 16. (Colour online) Growth rates λr and frequency ratios F∗LSA of the eigenmodes
as a function of U∗ for (a,c) m∗ = 10 and (b,d) m∗ = 50. The eigenfrequency ratio is
defined as F∗LSA = λi/(2πFs).

between SM and WM-II is enhanced. The two modes first attract and then repel
each other in the interference region. Importantly, due to the repelling effect, the SM
becomes unstable beyond a critical reduced velocity U∗c = 9.54. For m∗ = 10, the
coupling between SM and WM-II becomes stronger, which ultimately leads to the
mode transition phenomenon. The two distinct modes change into coupled modes as
CM-I and CM-II, respectively. CM-II is always stable while CM-I becomes unstable
beyond U∗c = 7.85. Since CM-I practically behaves as SM in the whole unstable
region U∗ >U∗c , and to give a more comprehensible explanation, we use SM instead
of CM-I for further discussion of the galloping mechanism in the following parts
of this paper. We suppose that the instability of SM may be closely related to the
occurrence of galloping-type oscillation.

To verify this conjecture, a comparative study between the results from LSA and
CFD/CSD simulations is conducted; (Re,m∗)= (150,10) is selected as a representative
case to explore the inherent dynamics of galloping. Figure 17(a) illustrates the
vibration amplitude of the square cylinder obtained from numerical simulations;
figure 17(b,c) presents the growth rates and eigenfrequencies of the leading unstable
modes analysed by LSA, as a function of U∗. The vibration frequency of the
cylinder and the vortex-shedding frequency in the nonlinear saturation state obtained
from CFD/CSD simulations are also plotted in figure 17(c) for comparison. The
frequencies are all normalized by the structural natural frequency Fs. As can be seen,
the response range can be divided into three regimes (marked by I, II and III in
the figure) by two critical reduced velocities, i.e. the instability onset of SM (U∗c )
obtained from LSA and the critical threshold of galloping (U∗g ) acquired from direct
numerical simulations. The FIV responses corresponding to the three regimes are VIV,
pre-galloping and galloping, respectively. In essence, the pre-galloping regime also
belongs to VIV. As will be discussed later, we use the term ‘pre-galloping’ primarily
to denote the regime where the SM is unstable but galloping does not occur.
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FIGURE 17. (Colour online) Flow-induced vibration of a square cylinder at (Re, m∗) =
(150, 10): (a) transverse vibration amplitude obtained from CFD/CSD simulations,
(b) growth rates and (c) eigenfrequencies of the leading three unstable modes obtained
from LSA. The dominant vibration frequency (black solid squares) and vortex-shedding
frequency (red hollow circles) in the saturated state obtained from CFD/CSD simulations
are also plotted in (c) for comparison. The frequencies are normalized by the reduced
natural frequency of the structure Fs.

In regime I, only the leading fluid mode WM-I is unstable, the response of the
coupled system is dominated by vortex-excited resonance and no coupled-mode
flutter occurs, which is consistent with the LSA results of Yao & Jaiman (2017).
As a consequence, the square cylinder only shows large-amplitude vibrations
in a quite narrow lock-in region. During lock-in, the vibration frequency as
well as the vortex-shedding frequency is synchronized with the structural natural
frequency. Outside the lock-in region, both the cylinder vibration frequency and
the vortex-shedding frequency coincide with the vortex shedding frequency of a
stationary square cylinder. The response behaves as a forced vibration under the
effect of unsteady vortex shedding. It is worth noting that the eigenfrequency of
WM-I (FWM−I = Stl = 0.09) deviates substantially from the nonlinear vortex-shedding
frequency (Stn = 0.151), as shown in figure 17(c). This is because the linear model
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can only predict the characteristic frequency of the wake in the vicinity of the critical
Re, but fails to capture the frequency for Re far away from the critical point, where
the vortex-shedding frequency is strongly modulated by nonlinear effects (Barkley
2006). For the present case, the selected Re = 150 is far from the critical Reynolds
number of a square cylinder Recr = 45.2.

In regime III, both the WM-I and SM are unstable. It is well known that the
instability of SM is an important feature of flutter, and flutter often leads to larger
vibration amplitude of the structure than that induced by vortex-excited resonance
(Zhang et al. 2015a). As expected, the vibration amplitude of the cylinder increases
monotonically with increasing U∗ in this regime. Very importantly, the dominant
vibration frequency of the square cylinder exactly matches the eigenfrequency of
SM during the galloping, as demonstrated in figure 17(c). This confirms that the
instability of SM is the primary cause of galloping-type oscillation. In other words,
the instability of SM is a necessary condition for the occurrence of galloping. On
the other hand, the dominant frequency of vortex shedding still follows the Strouhal
law and is close to the vortex shedding frequency of a fixed square cylinder with a
value of 0.151. The variation trend of vortex-shedding frequency ratio is qualitatively
consistent with that of WM-I with regard to U∗. Thus, it can be inferred that the
high-frequency vortex shedding in the cylinder wake is induced by the leading fluid
mode WM-I. As discussed previously, the essential nature of decoupling between the
low-frequency vibration and the high-frequency vortex shedding during galloping is
owing to the weak coupling between SM and WM-I.

In regime II, the SM is also unstable. However, numerical simulation results indicate
that the FIV response in this regime is still dominated by VIV with no galloping-type
oscillation. As can be seen from figure 17, the critical reduced velocity of galloping
predicted by LSA (U∗c = 7.85) is much lower than that calculated by direct CFD/CSD
simulation method (U∗g =17.0). This means that the linear dynamic model significantly
underestimates the onset reduced velocity of galloping. In the next section, we try to
reveal the fundamental reason for this discrepancy from the perspective of nonlinear
competition between the SM and the leading fluid mode WM-I.

5.3. Mode competition mechanism
Two important and interesting questions arise from the former results: for the case of
more than one eigenmode being linearly unstable, how do the unstable modes interact
with each other? And which one will dominate the final response?

Zhang et al. (2015a) investigated the underlying mechanism of VIV lock-in through
LSA and direct numerical simulation. They reported that in the flutter-induced lock-in
region, the SM and WM are both unstable, and the essential characteristic of flutter
is the competition between the two unstable modes. It was found that, in the initial
development stage of numerical simulation, the two modes co-exist. However, as
the vibration amplitude increases, the SM gradually dominates the dynamics of the
coupled system and locks the WM, causing the vortex-shedding frequency to be
locked onto the structural natural frequency.

Inspired by previous work, in this section, we attempt to uncover the interaction
mechanism between SM and WM-I by means of direct numerical simulations. To
study the evolution and development of the unstable modes (SM and WM-I), the
simulations were initiated from the equilibrium state (steady-state base flow with zero
displacement and zero velocity of the cylinder). In this way, we can acquire more
dynamical information of the coupled system, especially for the mode competition
process.
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FIGURE 18. (Colour online) (a) Evolution process of the transverse displacement Y of
the square cylinder with time for (Re,m∗)= (150, 10) at U∗= 10. (b,c) Illustrate the PSD
results at different time stages. The simulation is initiated from the equilibrium steady
state.

Figures 18 and 20 show the representative time histories of cylinder displacement
for regimes II and III, respectively, as well as the corresponding PSD results at
different time stages. The case of U∗ = 10 belongs to regime II (pre-galloping)
while the case of U∗ = 20 belongs to regime III (galloping). As can be seen, for
U∗ = 10, in the initial stage of development 200 < t < 340, the response amplitude
does not increase exponentially, but exhibits uneven features, which indicates that
there are multiple frequency components at this stage. This is evident from the
PSD analysis result shown in figure 18(b), wherein the spectrum has two peak
frequencies corresponding to WM-I and SM, respectively. Therefore, it confirms the
LSA results: both the WM-I and SM are linearly unstable in regime II. However,
as time goes on, WM-I quickly reaches the nonlinear saturation state, and the wake
flow is gradually dominated by nonlinear dynamics. In the nonlinear stage, rigorous
competition between WM-I and SM is observed because the frequencies of the two
unstable modes are very close to each other (FWM−I/FSM = 1.08). As a result, the
SM is locked by the WM-I during the nonlinear mode competition. It can be seen
from figure 18 that, over time, the SM gradually disappears and the response is
ultimately dominated by WM-I. The process of mode competition is more clearly
shown in figure 19 where the time–frequency spectrum of the cylinder displacement
is presented. The time–frequency spectrum is achieved using continuous wavelet
transforms (CWT), which can provide an insight into the temporal evolution of
the frequency content (Zhao et al. 2018). In this work, the Morlet wavelet was
employed for CWT analysis. As can be seen, in the linear stage, the intensity of both
unstable modes increases gradually with time. However, when the nonlinearity occurs
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FIGURE 19. (Colour online) Time–frequency spectrum of the transverse displacement
based on CWT for (Re,m∗)= (150, 10) at U∗ = 10.
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FIGURE 20. (Colour online) (a) Evolution process of the transverse displacement Y of the
square cylinder with time for (Re, m∗) = (150, 10) at U∗ = 20. (b–d) Illustrate the PSD
results at different time stages. The simulation is initiated from the equilibrium steady
state.

the intensity of SM progressively decreases and eventually disappears during the
competition with WM-I. The above analysis explains why galloping is not observed
in regime II even though the SM is unstable.

This kind of mode lock-in is different from the one observed in coupled-mode
flutter of VIV reported in Zhang et al. (2015a). For coupled-mode flutter, the WM
and SM are both unstable and their eigenfrequencies are also very close (0.75 <
FWM/FSM < 0.95). But, eventually, it is the SM that locks the WM in the nonlinear
competition, resulting in the classical frequency lock-in phenomenon. However, for the
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Phenomenon Unstable modes FWM/FSM Winner Principle

Flutter
(6.02 6 U∗ 6 7.52) WM and SM 0.75–0.95 SM Frequency lock-in

Pre-galloping
(7.85 6 U∗ 6 17.0) WM-I and SM 1.06–1.75 WM-I Desynchronization

TABLE 2. Phenomenon and principle for mode competition in flutter of VIV of a circular
cylinder (Zhang et al. 2015a) and in pre-galloping of a square cylinder (present study).
For both cases, the mode with higher frequency finally wins the competition.

present case in the pre-galloping region (1.06< FWM−I/FSM < 1.75), it is the leading
fluid mode WM-I that wins the competition and finally locks the SM. Consequently,
the structure response in regime II exhibits as vortex-excited forced vibration and the
galloping-type oscillation is suppressed. In other words, the onset U∗ of galloping
is postponed. Table 2 compares the two mode lock-in phenomena and summarizes
the underlying physical principles. As can be seen, for both cases, it is the higher-
frequency mode that finally wins the competition. Navrose & Mittal (2016) examined
the mode lock-in phenomenon from the energy transfer viewpoint. They showed that
the energy transfer coefficient of SM is larger than that of WM in the flutter regime of
VIV. As a result, the SM ultimately drives the response of the coupled system towards
lock-in.

To gain more quantitative insight into the mode competition mechanism, we
estimated the energy transfer coefficients Ec of the leading unstable modes by the
ROM-based FSI model (see the derivation in appendix A). The energy transfer
coefficient denotes the non-dimensional energy transfer over one period of cylinder
oscillation from the fluid to the structure that excludes the exponential growth/decay.
It is a function of (m∗, λ) and can be written as

Ec = 2π2Ŷ2m∗λrλi, (5.1)

where Ŷ represents the magnitude of the eigenmode for the structural part. The
expression shows that the sign of Ec is determined by the sign of the real part of
eigenvalue (λr). Therefore, Ec is positive for unstable modes while negative for stable
modes. It is also noted that Ec is directly proportional to the real and imaginary
parts of the eigenmode. This means that the mode with larger growth rate and higher
frequency is generally associated with a larger energy transfer coefficient. Figure 22
shows the energy transfer coefficients of the three leading modes as a function of
U∗ for (Re, m∗) = (150, 10). It can be seen that Ec of WM-I is always larger than
that of SM in the whole unstable region. Thus, WM-I is expected to dominate the
temporal evolution of cylinder displacement in the pre-galloping region when strong
mode competition occurs.

For the case of a larger reduced velocity U∗= 20 (figure 20), since the frequency of
SM departs too far from that of WM-I (FWM−I/FSM = 2.04), the competition between
the two unstable modes becomes weaker and no mode lock-in can happen. As a
result, the two modes coexist all the time and act in a nearly decoupled manner to
contribute to the response of the fluid–structure system. Because the growth rate of
WM-I is much larger than that of SM (figure 17b), the developing process of galloping
contains two interesting stages, as illustrated in figure 20(a). In the first stage, WM-I
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FIGURE 21. (Colour online) Time–frequency spectrum of the transverse displacement
based on CWT for (Re,m∗)= (150, 10) at U∗ = 20.
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FIGURE 22. (Colour online) Variation of energy transfer coefficients of the three leading
modes with U∗ for (Re,m∗)= (150, 10).

develops rapidly and quickly reaches the nonlinear saturation state. At this time stage,
the contribution of SM to the coupled system is very weak and has not been clearly
reflected in the response. The second stage of growth in the vibration amplitude is
contributed by SM. For that the growth rate of SM is quite small, the response takes
a very long time to reach the final nonlinear saturation state (quasi-periodic oscillation
state). Figure 21 presents the time–frequency spectrum of the cylinder displacement
for U∗ = 20. As can be seen, during the entire development process, the frequency
spectrum contains two distinct frequency components, corresponding to WM-I and
SM, respectively. It is worth noting that an intermediate frequency F ≈ 0.07 appears
when t> 3000. The peak power spectrum of this frequency is nearly two orders lower
than those of WM-I and SM. Moreover, it has a close relation with the frequencies of
WM-I and SM in the saturated state, i.e. F≈FWM−I − 2FSM. Hence, the appearance of
this frequency component is the result of the nonlinear interaction between the fluid
mode and the structure mode.

To further verify the correctness of the linear model, the growth rates of the unstable
modes predicted by LSA are compared with those measured from the time histories of
the cylinder displacement in the linear stage, as shown in figure 23. The autoregressive
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FIGURE 23. (Colour online) Comparison of the growth rates predicted by LSA and
those measured from direct numerical simulations for (Re,m∗)= (150, 10) at various U∗.

moving-averaging approach (Box, Jenkins & Reinsel 1994) was employed to recover
the growth rates from the calculated time-series data. This method has been shown to
be able to correctly estimate the damping ratios of fluid–structure interaction systems
(Zhu & So 2000; McNamara & Friedmann 2007). As can be seen, the results are in
good agreement for all U∗ considered, which indicates that the ROM-based FSI model
has accurately captured the linear dynamics of the coupled system.

From the above analysis, we know that the instability of SM is the primary cause
of the galloping phenomenon. This provides clear evidence that transverse galloping
is essentially a kind of single-degree-of-freedom (SDOF) flutter (Nakamura 1990). As
this kind of SDOF flutter occurs at relatively large reduced velocities, the vibration
frequency of the structure is far from the natural vortex-shedding frequency (natural
vortex-shedding frequency refers to the frequency component which is close to the
vortex-shedding frequency of a stationary square cylinder). Hence, the oscillation
of the structure is unable to lock the vortex shedding in the wake, resulting in the
existence of a high-frequency component in the structure response. Therefore, the
high-speed galloping can be understood as a type of SDOF flutter, superimposed by
a forced vibration induced by the natural vortex shedding.

5.4. Effect of mass ratio
The numerical study of Joly et al. (2012) indicated that when the mass ratio is
less than a critical value, the galloping phenomenon will not occur. This interesting
phenomenon is also confirmed by the present numerical results, as demonstrated
in § 4.1. To determine the critical mass ratio, the variation of oscillation amplitude
with m∗ at a large U∗ = 40 is investigated, as illustrated in figure 24. It can be
seen that, with the decrease of m∗, the vibration amplitude first gradually decreases
(m∗ > 4) and then slightly increases (m∗ < 4). Therefore, the critical mass ratio is
m∗cg = 4, approximately. Below this value galloping completely disappears and the
response of the coupled system is dominated by VIV for all U∗.

To further understand this phenomenon, we present the root loci as a function
of U∗ for Re = 150 at various m∗ in figure 25. As can be seen, with the decrease
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FIGURE 24. (Colour online) Variation of the transverse vibration amplitude with m∗ for
Re= 150 at a sufficiently large U∗ = 40.
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FIGURE 25. (Colour online) LSA results for Re= 150 at various m∗: (a) root loci of the
coupled system; (b,c) present the growth rate and frequency ratio of CM-I, as a function
of U∗. Note that CM-I resembles the SM in the unstable region.

of m∗, the growth rate of CM-I increases gradually. Note that CM-I exhibits as the
SM in the unstable region for all mass ratios. This means that the SM tends to
be more unstable at lower m∗. However, numerical simulation results show that the
galloping-type oscillation completely vanishes at sufficiently low m∗ conditions. As an
example, we show the time evolution of cylinder displacement and the corresponding
PSD results for (Re,m∗)= (150, 2) at a representative U∗= 40 in figure 26. Similarly,
the simulation was initiated from the unstable steady-state base flow with zero initial
displacement and velocity of the cylinder. From figure 26(b), we can see that in
the early stage, there exist two unstable modes in the response, namely the SM
and the WM-I, which is consistent with the LSA results. The two unstable modes
develop rapidly and quickly enter the nonlinear stage. The nonlinear mode competition
eventually leads to the mode lock-in of SM by WM-I in the whole unstable region
U∗ >U∗c , resulting in the disappearance of the galloping phenomenon. This is mainly
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FIGURE 26. (Colour online) (a) Evolution process of the transverse displacement Y of
the square cylinder with time for (Re, m∗) = (150, 2) at U∗ = 40. (b,c) Illustrate the
corresponding PSD results at different time stages. The simulation is initiated from the
equilibrium steady state.

because, although the instability of SM is intensified at low m∗, the forced vibration
effect induced by the natural vortex shedding is also enhanced when the structure is
getting lighter.

5.5. Effect of Reynolds number
The Reynolds number has a great influence on the FIV response of a square cylinder.
As shown in figure 9, for m∗ = 10, galloping starts to occur when Re> 139. Below
this value, the response is dominated by VIV only. The quasi-steady analyses by
Barrero-Gil, Sanz-Andrés & Roura (2009) and Joly et al. (2012) indicated that the
Re threshold can be determined by using the Den Hartog criterion. The slope of the
vertical force coefficient changes sign when the Re passes though the critical value.
In this section, we further investigate the effect of Re on the FIV response of a
square cylinder. The intention is to reveal whether mode competition still exists at
lower Re.

Figure 27 shows the root loci of the coupled system for m∗ = 10 at three typical
Reynolds numbers, Re = 80, 100 and 120. As can be seen, the SM begins to
become unstable at large U∗ when Re > 100, approximately. However, numerical
simulation results suggest that galloping is not observed until Re > 139. Apparently,
the inconsistency is also due to the mode competition mechanism, as discussed
previously. A typical case for Re=139 at a large U∗=40 is given in figure 28 to show
the mode competition process. Since Re= 139 is very close to the critical Reynolds
number, the SM decays very slowly and takes quite a long time to completely vanish.

Figure 29 shows the neutral stability curve of the SM analysed by LSA and
the onset boundary of galloping acquired from direct numerical simulations in the
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FIGURE 27. (Colour online) Root loci of the coupled system as a function of U∗ for m∗=
10 at three representative Reynolds numbers: (a) Re= 80, (b) Re= 100 and (c) Re= 120.
As can be seen, the SM begins to be unstable at large U∗ when Re> 100, approximately.
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FIGURE 28. (Colour online) (a) Evolution process of the transverse displacement Y of
the square cylinder with time for (Re, m∗) = (139, 10) at U∗ = 40. (b,c) Illustrate the
corresponding PSD results at different time stages. The simulation is initiated from the
equilibrium steady state.

(Re,U∗) plane for m∗= 10. It can be seen that the critical reduced velocity predicted
by LSA is generally lower than the onset reduced velocity calculated by CFD/CSD
simulation method. The grey shaded region between the two critical boundaries
indicates the regime where strong mode competition occurs. In this region, both the
SM and WM-I are linearly unstable, but the WM-I locks the SM in the nonlinear
stage. As a result, the galloping-type oscillation is suppressed and the response is
still dominated by VIV in this region.

It should be noted that the critical mass ratio and Reynolds number are determined
based on the numerical computations at a large U∗ = 40. The critical values may
slightly change when the test reduced velocity is further increased.
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FIGURE 29. (Colour online) Neutral stability curve of the SM obtained from LSA (blue
squares) and the galloping onset boundary obtained from direct CFD/CSD simulations
(dark circles) for m∗ = 10 in the (Re,U∗) plane. The plane is divided into three regions:
VIV, galloping and pre-galloping (grey shaded).

6. Dynamic mode decomposition
From §§ 4 and 5, we know that under high reduced velocities, the galloping

vibration and the vortex shedding are basically decoupled. They only interfere
with each other by means of forced excitation. Consequently, both the vibration
displacement and lift coefficient contain two distinct frequency contents, corresponding
to the WM-I and SM respectively. In this section, we use the dynamic mode
decomposition (DMD) technique to extract the coherent structures of the wake
flow for galloping responses. The objective is to resolve the flow structures relevant
to WM-I and SM, respectively.

DMD is an efficient method to capture the dominant flow patterns from an
infinite-dimensional linear Koopman approximation of the nonlinear flows (Rowley
et al. 2009; Schmid 2010). The most attractive characteristic of DMD is that each
mode it yields corresponds to one eigenvalue with a specific frequency. Therefore,
unlike proper orthogonal decomposition method, DMD can provide fluid modes with
pure frequency contents. The application of DMD to various types of flows has been
well documented in Rowley & Dawson (2017). To accurately capture the dominant
modes, an improved mode selection criterion was adopted (Kou & Zhang 2017). This
criterion can take into account the stability and evolution characteristics of dynamic
modes through temporal integration of the mode coefficients in the whole sampling
space.

The DMD analysis is performed based on the pressure snapshots collected over
one vibration cycle in the saturated state. Figure 30 illustrates the leading two DMD
modes at various U∗ for (Re, m∗) = (150, 10). Figure 31 shows the comparison of
characteristic frequencies of the two DMD modes with the nonlinear vortex-shedding
frequency and the vibration frequency analysed from numerical simulation data. It
can be seen that the first DMD mode presents as a typical von Kármán vortex street,
and its strength is almost unaffected by U∗. Its frequency is consistent with the
vortex-shedding frequency of a static square cylinder, so the first DMD mode is
relevant to the vortex shedding past the stationary cylinder. Thus, we refer to this
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FIGURE 30. (Colour online) The two leading modes analysed by DMD (shown as
pressure contours) for (Re, m∗) = (150, 10) at various U∗: (a,b) U∗ = 18, (c,d) U∗ = 22,
(e, f ) U∗= 26 and (g,h) U∗= 30. (a,c,e,g) Show the first mode and (b,d, f,h) represent the
second mode. The first and second modes are referred to as the von Kármán mode and
the galloping mode, respectively, according to their frequency characteristics.
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FIGURE 31. (Colour online) Comparisons of (a) the frequency of the first DMD mode
with the dominant vortex-shedding frequency and (b) the frequency of the second DMD
mode with the dominant frequency of cylinder vibration in the galloping region for
(Re,m∗)= (150, 10).

mode as the von Kármán mode. The second DMD mode is induced by the galloping
oscillation of the structure. Its scale and frequency are closely related to the vibration
amplitude and vibration frequency. With the increase of U∗, the vibration frequency
of the structure Fy decreases inversely. Accordingly, the second DMD mode changes
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FIGURE 32. (Colour online) The two leading modes analysed by DMD (shown as
pressure contours) for (Re, m∗) = (200, 10) at various U∗: (a,b) U∗ = 15, (c,d) U∗ = 20,
(e, f ) U∗= 25 and (g,h) U∗= 30. (a,c,e,g) Show the first mode and (b,d, f,h) represent the
second mode. The first and second modes are referred to as the von Kármán mode and
the galloping mode, respectively, according to their frequency characteristics.

gradually from small-scale high-frequency mode to large-scale low-frequency mode.
This is more clearly reflected in the DMD analysis results for (Re, m∗) = (200, 10),
as shown in figure 32. For this case, the onset speed of galloping is further reduced,
which means that the frequency of galloping oscillation can be higher. As can be
seen, for U∗ = 15, there are four pairs of small-scale vortices in the displayed
domain. While for U∗ = 30, only two pairs of large-scale vortices can be formed
at this spatial scale. In addition, the frequency of the second DMD mode coincides
with the dominant vibration frequency of the cylinder which is close to the natural
frequency of the structure. Hence, we refer to this mode as the galloping mode.

The above analysis provides further evidence that the vortex shedding in the
cylinder wake and the galloping oscillation of structure are indeed decoupled, and
their mutual interference is very weak. This is consistent with the linear stability
analysis results: both the SM and the WM-I are unstable, and they contribute
jointly to the response of the fluid–structure interaction system. The instability of
SM leads to the occurrence of galloping, while the instability of WM-I results in the
high-frequency vortex shedding. Although the two modes are basically decoupled, they
in turn interfere with each other in a forced vibration manner. The natural vortex
shedding acts as a forced excitation on the structure, leading to a high-frequency
component in the structure response; while the low-frequency oscillation of the
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structure acts as a forced perturbation to the flow, resulting in a low-frequency
large-scale vortex-shedding mode in the wake.

7. Conclusion

In this study, the mechanisms underlying the galloping of a square cylinder are
investigated in the laminar flow regime. Linear stability analysis and direct numerical
simulations are performed. The LSA results show that, due to the fluid–structure
coupling effect, the SM becomes unstable at relatively large U∗ at certain (Re, m∗)
combinations. The instability of SM is the primary cause of the galloping phenomenon
since the vibration frequency of the cylinder is identical to the eigenfrequency of
SM during galloping. However, the critical onset of galloping depends highly on
the nonlinear competition between the SM and the leading fluid mode WM-I. The
instability onset of SM predicted by LSA (U∗c ) is considerably lower than the critical
threshold of galloping (U∗g ) obtained from numerical simulations. For U∗c < U∗ < U∗g ,
the SM and WM are both unstable, and their eigenfrequencies are very close. This
results in strong competition between the two modes in the nonlinear stage. The
simulation results indicate that WM-I quickly reaches the nonlinear saturation state
and then locks the SM during the competition, thereby postponing the occurrence of
galloping. For U∗>U∗g , the frequencies of the two unstable modes are far apart from
each other. Thus, no mode lock-in could happen. Consequently, the two unstable
modes co-exist in the whole evolution process and contribute jointly to the galloping
response. The instability of SM leads to the low-frequency galloping vibration of the
structure, while the unstable WM-I results in the high-frequency vortex shedding in
the wake. Some specific conclusions can be summarized as follows:

(i) Transverse galloping of a square cylinder at low Re can be understood as a kind
of single-degree-of-freedom flutter induced by the unstable SM, superimposed
by a forced vibration induced by the natural vortex shedding in the wake. The
natural vortex shedding is closely related to the leading fluid mode WM-I. In
short, transverse galloping = SDOF flutter + forced vibration.

(ii) Strong mode competition occurs when the frequencies of unstable modes
approach each other. In the pre-galloping region, WM-I wins the competition
and locks the SM, leading to the absence of galloping oscillation in this
regime. Accordingly, the galloping onset is delayed. Moreover, due to the mode
competition mechanism, the natural vortex shedding can completely suppress the
galloping-type instability at relatively low Re and low m∗ conditions.

(iii) For galloping at large U∗, the structure oscillation and the vortex shedding
are inherently decoupled. This is mainly due to the weak coupling between
WM-I and SM. The wake vortices shed alternately at a relatively high frequency
close to the vortex-shedding frequency of a stationary square cylinder, while the
structure oscillates at a relatively low frequency close to the natural frequency
of the structure. DMD successfully reveals the flow structures corresponding to
WM-I and SM, which are referred to as the von Kármán mode and the galloping
mode, respectively.

In summary, LSA based on unsteady ROMs can efficiently reveal the unstable
modes of the coupled fluid–structure system, which are the essential origins of
various kind of complex FSI phenomena. However, beyond the linear growth stage,
the evolution of unstable modes is severely affected by nonlinearity. The ultimate
response is determined by the nonlinear competition between the unstable modes.
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With the help of CWT technique, direct numerical simulation initiated from the
equilibrium state to the final saturated limit-cycle oscillation is an effective tool to
resolve the mode competition process. The novel insights into the underlying mode
competition mechanism are helpful to building reasonable and effective unsteady
analytical models for galloping.

It is worth noting that the present galloping responses at low Re have many
characteristics in common with those obtained from experiments at high Re, such as
the ‘build-up’ behaviour of vibration amplitude and the mismatch of frequency
between vortex shedding and body oscillation. This implies that the induced
mechanism of galloping might be similar for both flow conditions. However, at
high Re, the topology of vortex shedding is quite different from that in the laminar
flow regime due to the effects of turbulence and three-dimensionality. As a result,
the interference between VIV and galloping is more complex. As discussed in
Païdoussis et al. (2010), for systems with only moderate mass-damping parameters,
where U∗g predicted by the quasi-steady model is slightly larger or lower than the
vortex-resonance speed U∗r , experimental observations show that galloping always
starts at U∗ ' U∗r . A possible future research is to extend the proposed methods to
the study of the combined VIV–galloping phenomenon at high Re, and thereby to
generalize the mode competition mechanism.
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Appendix A. Energy transfer coefficient of eigenmode
Following previous works of Navrose & Mittal (2016) and Yao & Jaiman (2017),

the time evolution of the cylinder displacement and lift coefficient corresponding to
an eigenmode for the linear coupled system is given as:

Y = Ŷeλr t cos(λit),
CL = ĈLeλr t cos(λit+ φ),

}
(A 1)

where λ = λr + iλi denotes the eigenvalue, Ŷ and ĈL represent the magnitudes of
eigenmodes. The phase angle φ can be derived by substituting (A 1) into the structural
motion equation (2.6) as:

sin φ =
2λrλiŶπm∗

ĈL

. (A 2)

Next, the non-dimensional energy transferred from the fluid to the cylinder over one
vibration period is evaluated as:

E(t)=
∫ t+2π/λi

t
CL(t)Ẏ(t) dt. (A 3)

Plunging (A 1) into (A 3) and neglecting the exponential growth/decay of eigenmode,
we can obtain the energy transfer coefficient

Ec =πĈLŶ sin φ. (A 4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.160


Mode competition in galloping 553

Using (A 2), the energy transfer coefficient for an eigenmode can also be written
as:

Ec = 2π2Ŷ2m∗λrλi. (A 5)
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