
Robotica (2022), 40, pp. 835–861
doi:10.1017/S0263574721000849

RESEARCH ARTICLE

A method for autonomous collision-free navigation of a
quadrotor UAV in unknown tunnel-like environments
Taha Elmokadem∗ and Andrey V. Savkin

School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney 2052, Australia
∗Corresponding author. Email: t.elmokadem@unsw.edu.au

Received: 23 October 2020; Revised: 22 May 2021; Accepted: 25 May 2021; First published online: 24 June 2021

Keywords: 3D autonomous navigation; quadrotor UAVs; collision avoidance; flying robots; navigation in unknown environments;
autonomous tunnel inspection

Abstract
Unmanned aerial vehicles (UAVs) have become essential tools for exploring, mapping and inspection of unknown
three-dimensional (3D) tunnel-like environments which is a very challenging problem. A computationally light
navigation algorithm is developed in this paper for quadrotor UAVs to autonomously guide the vehicle through such
environments. It uses sensors observations to safely guide the UAV along the tunnel axis while avoiding collisions
with its walls. The approach is evaluated using several computer simulations with realistic sensing models and
practical implementation with a quadrotor UAV. The proposed method is also applicable to other UAV types and
autonomous underwater vehicles.

1. Introduction

Recent developments in technologies related to unmanned aerial vehicles (UAVs) have made them very
popular in many applications as agile mobile platforms with low operational costs. It has become pos-
sible with UAVs to perform hard tasks in unreachable harsh environments that are risky to human lives.
One important problem in this area is the safe navigation of unmanned aerial vehicles through unknown
tunnel-like environments which is the main focus of this study. This problem arises in many indus-
trial applications such as navigation of flying robots through underground mines and connected tunnels,
navigating small aerial vehicles in cluttered indoor environments, 3D mapping of cave networks, inte-
rior inspection of pipeline networks, search & rescue missions during disaster events in underground
rail networks, etc. For example, some variants of these applications that have gained a great interest
by researchers recently are dam penstocks inspection and/or mapping [1, 2, 3, 4], chimney inspection
[5], hazardous deep tunnels inspection [6, 7], mapping and navigation in underground mines/tunnels
[8, 9, 10, 11, 12, 13, 14, 15, 16], search & rescue in underground mines [17, 18], inspection of ventila-
tion systems [18], inspection of narrow sewer tunnels [19] and inspection tasks in the oil industry [20]. In
all these applications, a UAV should navigate through a tunnel-like unknown environment while avoid-
ing collisions with the tunnel walls. A more favorable behavior is to have a fully autonomous operation
with least human interaction. This problem is highly challenging due to several factors that may vary
from one environment to another such as poor lighting conditions, narrow flying space, absence of GPS
signals and featureless structures. Some other challenging factors are vehicle-specific such as sensing
capability, payload capacity, onboard computing power and maximum flight time. All these factors have
a great effect on the overall system design and navigation algorithm development.

The problem under consideration is also of great importance to many marine applications with
autonomous underwater vehicles (AUVs) where it is required to navigate through underwater tunnel-
like environments. This include applications in underwater geology and archeology, inspecting different

© The Author(s), 2021. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849
https://orcid.org/0000-0003-1154-9579
mailto:t.elmokadem@unsw.edu.au
https://doi.org/10.1017/S0263574721000849


836 Taha Elmokadem and Andrey V. Savkin

kinds of underwater structures, military operations, inspecting flooded spring tunnels, bypass tun-
nels for dams, storm run-off networks and freshwater delivery tunnels, etc (for example, see refs.
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] and references therein).

In general, existing solutions to the navigation problem in unknown environments may be classified
into planning-based or reactive methods. Planning-based approaches require a map representation of
the environment and localization information to find safe paths locally. Local path planning normally
adopts an optimization-based or sampling-based search approach. As the search space size increases,
the computational cost of such algorithms becomes more expensive [32]. These approaches mostly rely
on simultaneous localization and mapping (SLAM) techniques to allow for autonomous operation in
unknown environments. On contrary, reactive approaches may directly generate motion decisions based
on light processing of current sensors observations to produce reflex-like reactions [33]. These methods
can provide a better computational cost compared with planning-based methods without the need for
accurate localization.

The available methods addressing the navigation problem of interest suggest different approaches
in terms of the overall system design, the level of autonomy and the algorithm adopted to traverse
the tunnel. The choices made for UAV system design are mostly made specifically to serve a specific
application. The use of redundant sensors may be found common among different systems to attain a
fully autonomous operation in some harsh environments by combining range and vision-based sensors.
Depending only on one kind of sensors may cause the system to fail at some situations. For example,
range sensors can suffer from wet structures causing them to fail sometimes, and vision-based solutions
may be useless against textureless environments [2]. An evaluation of localization solutions in under-
ground mines based solely on cameras can be found in ref. [34]. Therefore, it is common in the available
solutions to use multi-modal sensors which can improve localization and/or reactive responses to cope
with the harsh conditions in tunnel environments. The following subsection summarizes some of the
recent solutions.

1.1. Related work

Many of the available navigation methods tackling the same problem fall under the planning-based
category where the main focus of the development is shifted toward the localization system design. For
example, the approach presented in ref. [1] suggested a combination of Unscented Kalman Filter (UKF)
and a particle filter to process IMU and range measurements for UAV localization in dam penstocks
where a map was available a priori. Then, the navigation was achieved in a semi-autonomous fashion
to perform an inspection task where a remote operator was sending goal position commands to guide
the UAV through the tunnel environment. Extensions were then proposed in refs. [2] and [3] in an effort
toward a more autonomous solution for penstocks inspection with UAVs. In ref. [2], UKF was used
to provide 6-DOF estimation of the UAV pose by fusing data from IMU, two range sensors and four
cameras against a 3D occupancy grid map known in advance. However, a remote operator was still
needed to provide waypoints to guide the UAV. A SLAM-based approach was then suggested in ref. [3]
combining range and vision-based estimators. An algorithm was proposed to perform local mapping
where fitting a cylindrical model was applied to point clouds obtained from the heterogeneous sensors.
Then, the tunnel axis is estimated from the local map, and the UAV position is determined along the
tunnel axis which was then used to guide the UAV.

Another SLAM-based method was presented in ref. [9] to address the problem of autonomous explo-
ration and mapping in underground tunnels using a UAV equipped with two IMUs, four cameras and
three depth sensors. The open-source Robust Visual Inertial Odometry framework [35] was adopted in
that work to perform SLAM. A local planner based on rapidly exploring random tree algorithm was
used in a receding horizon manner to generate motion commands toward a direction that maximizes
some exploration gain. The same SLAM framework and local planning algorithm were also used in
ref. [36]. Similarly, a local planner based on the rapidly exploring random graph algorithm is used in

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 837

refs. [37] and [17] to guide the UAV maximizing volumetric exploration gain in underground tunnels
with multiple branching locations. In these works, data from range, thermal, vision and inertial sensors
are fused as a part of their SLAM implementation (sometimes using only a subset of these sensors).
In ref. [18], a different approach was presented for operations in extremely narrow tunnels to find safe
paths using a modified A* algorithm in 2D occupancy maps generated by onboard SLAM. A low-level
model predictive controller was used to track generated local trajectories based on the planned paths.

Inspection of deep tunnels (i.e. vertical) was also addressed in refs. [6, 7] where the authors suggested
the use of a UAV with a rotating camera for minimal field-of-view (FOV) obstructions when collecting
images for inspection. Localization was performed using measurements from an array of laser range
sensors to estimate the UAV position and heading in the tunnel with a prior knowledge about its geome-
try. They also proposed a method to estimate the tunnel axis using measurements from the sensors array.
Their navigation method was based on maintaining the localized position of the UAV at the center of
the tunnel. Additionally, an optical-flow sensor was used with a time-of-flight range sensor to estimate
the distance travelled along the tunnel axis.

A rather different approach based on deep learning was presented in refs. [8, 15, 13] for navigation
in underground mines. These works suggested a low-cost UAV system design which relies only on a
single camera with LED light bar. Convolution Neural Network was used to classify images into three
categories (left, center and right) which was then used to correct the UAV heading to avoid collisions
with tunnel walls without relying on localization information. The UAV motion was controlled in the
horizontal plane with a fixed altitude provided by a remote operator. The performance of such methods
relies on how good the training data set is which can be challenging when deployed in new environments.

On the other hand, some reactive methods have been proposed to address the general problem of
navigation in tunnel-like environments such as refs. [38, 39, 40] which rely only on local sensory depth
information of the surrounding tunnel walls. In these works, a 3D nonholonomic kinematic model is
considered for the motion, and rigorous mathematical proofs of the methods’ performance are provided.
In ref. [38], a control law was developed to maintain a movement in a direction parallel to the tunnel
axis while keeping a safe distance from tunnel walls. Alternatively, refs. [39, 40] presented a method
based on estimating a direction parallel to a nearby sensed patch of the tunnel surface in the direction
of progressive motion through the tunnel.

1.2. Paper contributions

The main contributions of this paper can be highlighted as follows:

• A novel collision-free autonomous navigation method is proposed in this work for UAVs flying in
unknown 3D tunnel-like environments.

• Rigorous mathematical proof is provided, in contrast to many of the existing methods, to show that
our method can safely guide the UAV to progressively advance through the environment.

• Detailed implementation approach is suggested for quadrotor UAVs considering the system dynamics
and suggesting a low-level sliding mode controller design.

• Perception pipelines and algorithms with different computational costs based on the suggested method
are proposed for simple and robust implementations with narrow field-of-view sensors.

• Experimental results with a quadrotor are given to further validate the overall approach and discuss
some of the practical aspects to consider.

The novelty of the approach is that it can handle movements in tunnel-like environments that changes
shape and direction in 3D in a reactive manner where it is not suitable to use any of the existing 2D
reactive approaches as they constraint UAV movement to some fixed altitude. On contrary to avail-
able 3D planning-based approaches, our method can provide a computationally light solution for the
autonomous navigation problem which can be suitable for vehicles with limited resources. Motion deci-
sions are mainly based on available measurements from onboard sensors to guide the UAV with no

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


838 Taha Elmokadem and Andrey V. Savkin

need for accurate localization. The suggested method can also benefit from available local maps of the
surroundings if one exists.

The general idea adopted here is to move the UAV toward estimated 3D points on the tunnel curvy
axis in the direction of progressive movement through the tunnel. These points are interpreted from
available depth measurements of the tunnel walls which can be for example in the form of 3D point
clouds represented in a sensor-fixed coordinate frame. Note that we do not consider environments filled
with obstacles. However, it is possible to extend our approach to consider those environments by combin-
ing it with a reactive obstacle avoidance law using a behavior-based control approach; for example, see
refs. [33, 41, 42, 43] and references therein. The use of a general kinematic model for the development
makes our approach applicable to vehicles moving in 3D such as UAVs of different types (multi-rotors
and fixed-wing) and autonomous underwater vehicles. Slight modifications could be done to take into
consideration nonholonomic constraints related to some vehicles such as fixed-wing UAVs. Computer
simulations and practical experiments were carried out to evaluate the performance of our approach in
different and complex 3D tunnel-like structures. A realistic sensing model was used in all simulations
in addition to considering noisy measurements to investigate the robustness of the suggested method,
and different sensors configurations and perception algorithms were used in the real experiments.

1.3. Paper outline

This paper is structured as follows. The UAV navigation problem in tunnel-like environments is defined
in Section 2 considering a general kinematic model. The proposed navigation algorithm is then pre-
sented in Section 3. Our navigation algorithm is first validated through several simulation scenarios
considering different environments, the details and results of these simulations are given in Section 4.
After that, implementation details with quadrotor UAVs are presented in Section 5. Proof-of-concept
experiments were carried out to validate the performance of our navigation method. The used quadrotor
UAV system and the experiment set-up are described in Section 6 along with the results. Finally, this
work is concluded in Section 7.

2. Kinematic model and navigation problem

We consider an autonomous UAV whose motion is described by the kinematic model: let c(t) :=
[x(t), y(t), z(t)] be the three-dimensional vector of the UAV’s Cartesian coordinates defined in a world
(inertial) reference frame. Then, the motion of the UAV is described by the equation:

ċ(t) = V (t). (1)

Here, V (t) ∈R
3 is the linear velocity vector, ‖V (t)‖ = v for all t, where v> 0 is some given constant,

and ‖ · ‖ denotes the standard Euclidean vector norm. The vector variable V (t) is the control input, v is
the speed or linear velocity of the UAV, hence, the UAV is moving with a constant speed. We assume
that the control input V (t) is updated at discrete times 0, δ, 2δ, 3δ, . . .:

V (t) := Vk ∀t ∈ [kδ, (k + 1)δ), ∀k = 0, 1, 2, . . . (2)

where δ > 0 is the sampling period. The kinematics of many unmanned aerial and underwater vehicles
can be described by the model (1) or its slight modifications.

We consider a quite general three-dimensional problem of autonomous UAV navigation in unknown
tunnel-like environments with collision avoidance.

Definition 1. Let I be a straight line inR3, and P be a closed, bounded, connected and linearly connected
planar set. Then, the three-dimensional set T := I × P is called a perfect cylindrical tunnel, and the
straight line I is called the axis of the perfect cylindrical tunnel T (see Fig. 1(a)). Furthermore, the set
W of all the boundary points of T is called the wall of the perfect tunnel T . Furthermore, let C be a

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 839

Figure 1. An illustration of tunnels definitions. (a) Perfect cylindrical tunnel. (b) Perfect torus-shaped
tunnel. (c) Deformed cylindrical tunnel. (d) Deformed torus-shaped tunnel.

circle in R
3, and P be a closed, bounded, connected and linearly connected planar set. Then, the three-

dimensional set T := C × P is called a perfect torus-shaped tunnel, and the circle C is called the axis
of the perfect torus-shaped tunnel T (see Fig. 1(b)).

Now we can introduce the following definition generalizing Definition 1.

Definition 2. Let C be a smooth non-self-intersecting infinite (or closed) curve in R
3. Assume that

for any point q ∈ C there exists a closed, bounded, connected and linearly connected planar set P(q)
intersecting C at the only point q and such that the plane of P(q) is orthogonal to C at the point q.
Also, we assume that P(q1) and P(q2) do not overlap for any q1 �= q2. Then, the three-dimensional set
T := ∪q∈CP(q) is called a deformed cylindrical (or torus-shaped) tunnel, and the curve C is called the
curvy axis of the deformed tunnel T , see Fig. 1(c)–(d). Furthermore, the set W of all the boundary
points of T is called the wall of the deformed cylindrical (torus-shaped) tunnel T .

It is obvious that perfect tunnels are special cases of deformed tunnels where the axis is either a
straight line or a circle and all sets P(q) are identical.

Notations: We introduce some curvilinear coordinate along the curvy axes C so that the difference
of the coordinates of any two points of C is the length of the segment of C between them. In the
case of a deformed cylindrical tunnel, the curvilinear coordinate takes values in ( − ∞, +∞), and in
the case of deformed torus-like tunnel, the curvilinear coordinate takes values in [0, L) where L> 0
is the length of the closed axis curve C. By Definition 2, for any point a in the deformed tunnel T ,
there exists a unique q(a) ∈ C such that a ∈ P(q(a)). Let q̃(a) denote the curvilinear coordinate of

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


840 Taha Elmokadem and Andrey V. Savkin

Figure 2. An illustration of available measurements along with the corresponding gravity centers
computed according to our method.

q(a). Also, let r(a) denote the distance between the points a and q(a). Moreover, w(a) will denote
the tangent vector to the curve C at the point q(a), see Fig. 1(c). Furthermore, let a be some point in
the deformed tunnel, F be some vector, and D2 >D1 ≥ 0 be given numbers. We introduce the points
O1(a, F) and O2(a, F) ahead of the point a at the distances D1 and D2, respectively, in the direction
of the vector F. Let P1(a, F) and P2(a, F) be the planes that are orthogonal to F and contain the
points O1(a, F) and O2(a, F), correspondingly; see Fig. 2 for a = c(kδ). Then, let G1(a, F) ∈P1(a, F)
and G2(a, F) ∈P2(a, F) be the gravity centers of the sets of the tunnel wall points belonging to the
planes P1(a, F) and P2(a, F), respectively. Furthermore, we introduce the vector A(a, F) departing
from G1(a, F) to G2(a, F). Moreover, let h(a, F) denote the distance from the point a to the straight line
connecting G1(a, F) and G2(a, F).

Available Measurements: Let D2 >D1 ≥ 0 be given. We assume that for any time t ≥ 0, the UAV
can measure the coordinates of all the points of the tunnel wall lying in the planes P1(c(t), V (t)) and
P2(c(t), V (t)); Fig. 2. Hence, the UAV can calculate the vector A(c(t), V (t)) and the number h(c(t), V (t)).

Definition 3. Let dsafe > 0 be a given constant, and let d(t) denote the distance between the robots’
coordinates c(t) and the wall of the deformed cylindrical or torus-shaped tunnel T . A UAV navigation
law is said to be safely navigating through the deformed cylindrical tunnel T if

d(t)> dsafe ∀t ≥ 0, (3)

q̃(c(t)) → ∞ as t → ∞. (4)

Moreover, a UAV navigation law is said to be safely navigating through the deformed torus-shaped tunnel
T if (3) holds and for any Q ∈ [0, L) there exists a sequence tk → +∞ such that

q̃(c(tk)) = Q. (5)

The requirement (4) means that in the case of deformed cylindrical tunnel, the UAV will go to
infinity inside the tunnel, and the requirement (5) means that in the case of deformed torus-shaped
tunnel, the UAV will do infinitely many loops inside the tunnel.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 841

Problem Statement: Our objective is to design a navigation law for quadrotor UAVs to safely navigate
through the deformed cylindrical or torus-shaped tunnel T .

3. Navigation algorithm

In the following assumptions, the deformed tunnel can be either cylindrical or torus-shaped. Suppose
that there exist constants 0<α < π

2 , β > 0, β0 > 0, R> 0 such that β + β0 <α, and the following
assumptions hold.

Assumption 3.1. At time 0 the UAV is inside the deformed tunnel T , that is c(0) ∈ T , and r(c(0)) ≤
R − ε0 where ε0 := vδ. Moreover, the UAV knows some estimate V0 of the tangent vector w(c(0)) such
that the angle between the vectors V0 and w(c(0)) is less than α. This V0 is used as the first input in the
controller (2).

Assumption 3.2. Any set P(q) of the deformed tunnel contains the disc WR consisting of the points H
such that r(H) ≤ R. Moreover, for all such points H, the safety constraint (3) holds.

Assumption 3.3. For any points a1, a2 ∈ WR and any vector F1 such that ‖a1 − a2‖< ε0 and the angle
between the vectors F1 and w(a1) is less than α, the angle between the vectors A(a1, F1) and w(a2) is
less than β.

Assumption 3.4. For any points a1, a2 ∈ WR and any vector F1 such that ‖a1 − a2‖< ε0, and the angle
between the vectors F1 and w(a1) is less than α, the inequality |h(a1, F1) − r(a2)|< ε1 holds where
ε1 := vδ sin β0

2 .

In the case of a deformed cylindrical tunnel, Assumptions 3.3 and 3.4 describe how close the
deformed tunnel is from a perfect tunnel, as it is obvious that for any perfect tunnel, these assump-
tions hold with β = ε1 = 0. In the case of a deformed torus-shaped tunnel, Assumptions 3.3 and 3.4
hold as the minimum curvature of the axis C is small enough.

We introduce the vector B(c(t), V (t)) such that the angle between the vectors B(c(t), V (t)) and
A(c(t), V (t)) equals β0, and ‖B(c(t), V (t))‖ = v. It is clear from the construction that A(c(t), V (t)) �= 0.
Now, introduce the following navigation law defined by (2) and the following rule:

Vk :=
{ v

‖A(kδ)‖A(kδ), h(c(kδ), V (kδ))< R − 2ε0 (M1)

B(c(kδ), V (kδ)), h(c(kδ), V (kδ)) ≥ R − 2ε0 (M2)
(6)

for k = 1, 2, · · · .
Now, we are in a position to present the main theoretical result of this paper.

Theorem 1. Let a constant dsafe > 0 and a deformed cylindrical or torus-shaped tunnel T be given.
Suppose that 0<α < π

2 , β > 0, β0 > 0, R> 0, ε0 := vδ and ε1 := vδ sin β0
2 are constants such that β +

β0 <α and Assumptions 3.1–3.4 hold. Then, the UAV navigation law (2), (6) with V0 from Assumption
3.1 is safely navigating through the deformed tunnel T .

Proof of Theorem 1: At any time, the navigation law (2), (6) operates in either mode (M1) or (M2).
In any case, over any time interval (kδ, (k + 1)δ], the UAV makes the distance ε0 = vδ. Therefore, in
the mode (M1), due to Assumption 3.3, the angle between the vectors V (t) = v

‖A(kδ)‖A(kδ) and w(c(t))
is less than β. Correspondingly, in the mode (M2), due to Assumption 3.3, the angle between the vec-
tors V (t) = v

‖A(kδ)‖A(kδ) and w(c(t)) is less than β + β0 <
π
2 . Since w(c(t)) is a tangent vector of the

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


842 Taha Elmokadem and Andrey V. Savkin

tunnel axis, this implies that q̃(c(t)) ≥ q̃(c(0)) + t cos (β + β0) → ∞ in the case of a deformed cylindri-
cal tunnel, or the UAV makes an infinite number of loops in the case of deformed torus-shaped tunnel.
Therefore, the condition (4) ((5)) of Definition 3 holds for a deformed cylindrical (torus-shaped) tun-
nel. Furthermore, if over some time interval (kδ, (k + 1)δ], the UAV operates in the mode (M1), then
it follows from (6) that h(c(kδ), V (kδ))< R − 2ε0, and since the UAV makes the distance ε0 = vδ over
this time interval, this implies that h(c(t), V (t))< R − ε0 for all t ∈ (kδ, (k + 1)δ]. If over some time
interval (kδ, (k + 1)δ], the UAV operates in the mode (M2), then it follows from (6) and Assumption
3.4 that h(c((k + 1)δ), V ((k + 1)δ)) ≤ h(c((kδ), V (kδ)). This and (6) imply that h(c(t), V (t))< R in the
mode (M2). Therefore, h(c(t), V (t))< R for all t, hence, according to Assumption 3.2, the requirement
(3) of Definition 3 holds. This completes the proof of Theorem 1.

Note that we do not consider tunnels whose axes branch off at some points according to the problem
definition in Section 2. However, it is possible to extend our navigation algorithm defined by the control
law (6) to address such cases by defining a third mode (M3). This mode could be responsible for guiding
the UAV through one of the branches selected arbitrary or based on some heuristics. The switching
mechanism from and to this mode can be based mainly on interpreting the tunnel axis branching off
scenario from sensors measurements.

4. Computer simulations

The proposed navigation strategy was validated through many simulation scenarios. Several 3D tunnel-
like environments have been considered including tunnels with nonsmooth walls and sharp turnings.
In all simulations, the environment was represented using a 3D point cloud. The UAV sensing module
has only access to a fraction of the environment limited by some sensing range dsensing mimicking the
behavior of onboard sensors commonly used in practice. Additionally, noisy sensor measurements were
also considered in one of the simulation cases.

Our navigation algorithm provided in (6) was implemented in these simulations as follows. Initially,
we provide the first control input V0 based on some initial knowledge about the environment in accor-
dance with Assumption 3.1. This assumption is valid in practice at the time of UAV deployment before
the mission starts. At each subsequent time step kδ, a heading unit vector F represents the current
direction of motion is determined using:

F(kδ) = V ((k − 1)δ)/‖V ((k − 1)δ)‖ (7)

Then, two points ahead of c(kδ) are computed in the direction of F(kδ) using:

Oi(c(kδ), F(kδ)) = c(kδ) + DiF(kδ), i = {1, 2} (8)

Let Ws := {p ∈W:‖p − c(kδ)‖ ≤ dsensing} be the fraction of tunnel wall within the sensing range
(represented as a point cloud). We then determine the two sets O1 ⊂Ws and O2 ⊂Ws of tunnel wall
points within sensing range belonging to the planes P1(c(kδ), F(kδ)) and P2(c(kδ), F(kδ)) by a filtering
process according to the following:

Oi := {p ∈Ws:〈p − Oi, F(kδ)〉 = 0}, i = {1, 2} (9)

where 〈·, ·〉 is the dot product of the two vectors. Notice that some tolerance ε > 0 is used to pick the
points within a very small proximity of P1(c(kδ), F(kδ)) and P2(c(kδ), F(kδ)) to handle point clouds
discontinuities. That is, the condition in (9) becomes:

Oi := {p ∈Ws:|〈p − Oi, F(kδ)〉| ≤ ε},i = {1, 2} (10)

where ε is some small positive constant. After that, G1 and G2 are computed as the centroids of O1 and
O2 respectively. These can then be used to get A(kδ), h(c(kδ), V (kδ)) and B(c(kδ), V (kδ)) to apply our
navigation law (6).

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 843

Figure 3. Simulation cases of deformed tunnel environments with different shapes considering smooth
(a–c) and nonsmooth (d–f) boundaries. (a) A pipe with a smooth bend. (b) A torus-shaped tunnel.
(c) A helix-shaped tunnel. (d) A pipe with sharp bends. (e) S-shaped tunnel with sharp edges. (f) A
rectangular-shaped tunnel.

Figure 3(a)–(f) present simulation scenarios for six different environments showing the executed
paths by the UAV using our navigation algorithm. Scenarios (a)–(c) considered deformed tunnels with
smooth 3D deformations. On contrary, environments with nonsmooth boundaries were handled in sce-
narios (d)–(f). It was observed that the UAV managed to quickly reach and follow the curvy axis C of the
tunnel in cases (a)–(c) keeping a safe distance from the tunnel boundary. In cases like (d)–(f), the UAV
could sometimes diverge from moving across C for a short segment when there is a sharp change in the
direction of the tunnel boundary. However, it still manages to maintain a safe distance from the wall.
These results clearly confirms the performance of our control approach. Even though our algorithm was
developed assuming that tunnel walls are smooth, it clearly shows good performance in tunnels with
nonsmooth walls and sharp turnings.

An additional simulation scenario was carried out to investigate the robustness of our method against
noisy sensor measurements. The UAV was required to navigate through some pipeline structure as shown

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


844 Taha Elmokadem and Andrey V. Savkin

Figure 4. Simulation scenario g: movement in a complex tunnel environment with noisy sensor obser-
vations. (a) A complex pipeline segment. (b) The executed motion based on the noisy point cloud as seen
by the UAV sensors.

Figure 5. Simulation scenario g: movement in a complex tunnel environment with noisy sensor
observations (different camera views). (a) XY view. (b)XZ view.

in Fig. 4(a). A Gaussian noise was added to the point cloud seen by the sensing module as presented in
Fig. 4(b) along with the executed motion by the UAV (different view prospectives are shown in Fig. 5 for
better visualization). Figure 6 shows the time evolution of the UAV position c(kδ). The actual distance
to the tunnel wall during the motion along with the distance based on the noisy point cloud are shown
in Fig. 7. It is clear that the motion executed by the vehicle is collision-free. Notice that the vehicle gets
close to the tunnel walls around t = 42 s because of the very sharp bend of the pipe structure at that
location. Clearly, these results shows how robust our method is against noisy measurements which is
a key feature for practical implementation. The simulations update time was selected as δ = 0.1 s, and
the parameters used for each scenario are provided in Table I. Animations of all simulation cases with
corresponding time plots showing distance to tunnel walls are available at https://youtu.be/r2Add9lctEU.

5. Implementation with a quadrotor UAV

Our navigation algorithm was developed using a general kinematic model applicable to many vehicles
moving in 3D constrained environments. Specific implementation details for quadrotor UAVs including
control design and online trajectory generation method description are provided in this section. This is
the implementation used in our proof-of-concept experiment.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://youtu.be/r2Add9lctEU
https://doi.org/10.1017/S0263574721000849


Robotica 845

Table I. Parameters used in simulations.

Simulation scenario
Parameters a b c d e f g

v (m/s) 1.0 2.0 2.0 1.0 2.0 1.0 5.0
D1 (m) 1.0 1.5 1.0 1.0 1.0 1.0 2.0
D2 (m) 3.0 3.0 3.0 2.5 3.0 3.0 5.0
R (m) 1.5 1.0 1.5 1.5 1.5 1.5 1.5
β0 (rad) π/4 π/5 π/5 π/4 π/5 π/5 π/5
dsensing (m) 20 20 10 30 10 10 25

Figure 6. Simulation scenario g: the time evolution of the UAV position (i.e c(t)).

0 10 20 30 40 50 60
Time(s)

0

2

4

6

8

10

d 
(m

)

Noisy distance
Actual distance

Figure 7. Simulation scenario g: the distance between the UAV and the tunnel wall versus time.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


846 Taha Elmokadem and Andrey V. Savkin

5.1. Quadrotor dynamics

The kinematic model (1) can be extended to include quadtrotor dynamics. To that effect, we define two
coordinate frames, namely an inertial frame {I} and a body-fixed frame {B} attached to the UAV. The
origin of {I} can be chosen arbitrary inR3, and the origin of {B} coincides with the UAV’s center of mass
(COM). The attitude of the UAV is expressed as a rotation matrix R ⊂ SO(3):{B} → {I}. An associated
vector � is defined in {B} representing the angular velocity of the UAV relative to {I}. Additionally,
Euler angles (roll φ, pitch θ and yaw ψ) or quaternions can also be used to describe the UAV attitude
where transformations between the three representations are widely known. Hence, the model from refs.
[44, 45] is used neglecting wind and rotor drag effects which is given by:

ċcc(t) = V(t) (11)

V̇VV (t) = −ge3 + T (t)R(t)e3 (12)

Ṙ(t) = R(t)�̂(t) (13)

�̇(t) = J−1 (τ (t) − �(t) × J�(t)) (14)

where g is the gravitational constant, e3 = [0, 0, 1]T , T (t) ∈R
+ is the mass-normalized collective thrust,

�̂(t) is a skew-symmetric matrix defined according to �̂r = � × r for any vector r ∈R
3, J is the inertia

matrix with respect to {B} and τ (t) ∈R
3 is the torques input vector defined in {B}. The above model

can be modified to consider the effects of disturbances as in refs. [45, 46] for a more robust control
design especially when flying near to tunnels boundaries in narrow spaces. We will assume that a low-
level attitude controller exists for τ (t) which can achieve any desired attitude Rdes(t). Hence, the control
design provided in the next subsection considers T (t) and Rdes(t) as control inputs. Note that this section
adopts the notation of representing vectors and matrices using boldface letters while scalar quantities
are represented using light letters.

5.2. Control

A sliding-mode based controller design is presented here for the system (11)–(14) based on the
differential-flatness property of quadrotor dynamics. In refs. [47, 45], it has been shown that the model
(11)–(14) is differentially flat such that it is possible to express the system states and inputs in terms of
four flat outputs, namely x, y, z and ψ , and their derivatives.

Consider a smooth reference trajectory to be tracked characterized by r(t) = [xr(t), yr(t), zr(t),ψr(t)]
with bounded time derivatives. We define trajectory tracking errors according to (i.e. position and
velocity tracking errors):

ec(t) = cr(t) − c(t), eV (t) = ċccr(t) − V(t) (15)

where cr(t) = [xr(t), yr(t), zr(t)]T . A sliding variable is then introduced as follows:

σ (t) = eV (t) + K1 tanh (μec(t)) (16)

where K1 ∈R
3×3 is a positive-definite diagonal matrix, tanh (v) ∈R

3 is the element-wise hyperbolic
tangent function for a vector v ∈R

3, and μ> 0. By applying Lyapunov’s direct method, it can be eas-
ily found that this choice of a sliding variable will guarantee that both ec(t) and eV (t) asymptotically
converge to 0 = [0, 0, 0]T when the system trajectories reach the sliding surface σ (t) = 0.

By taking the time derivative of (16), one can get:

σ̇ (t) = c̈ccr(t) − V̇VV (t) +μK1
(
eV (t) � sech2(μec(t))

)
(17)

where sech2(v) = [sech2(vx), sech2(vy), sech2(vz)]T for some vector v = [vx, vy, vz]T , and v1 � v2 ∈R
3 is

defined as the element-wise product between the two vectors v1, v2 ∈R
3.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 847

Let acmd(t) = T (t)R(t)e3 be regarded as a virtual input (i.e. a command acceleration). Now, we
propose the following control law:

acmd(t) = c̈r(t) + ge3 +μK1
(
eV (t) � sech2(μec(t))

)
+ K2 tanh (μσ (t)) (18)

where K2 ∈R
3×3 is a positive-definite diagonal matrix. By substituting (12) and (18) into (17), we obtain

the following:

σ̇ (t) = −K2 tanh (μσ (t)) (19)

Equation (19) clearly implies that σ (t) is asymptotically stable. Hence, the control law (18) will force
the system trajectories to reach the sliding surface σ (t) = 0 which leads to ec(t) → 0 and eV (t) → 0 as
t → ∞.

Now, the input thrust T (t) and the desired attitude Rdes = [xB,des(t), yB,des(t), zB,des(t)] can be
obtained to achieve (18) and ψr(t) according to the following:

zB,des(t) = acmd(t)
‖acmd(t)‖ (20)

yB,des(t) = zB,des(t) × xC(t)
‖zB,des(t) × xC(t)‖ (21)

xB,des(t) = yB,des(t) × zB,des(t) (22)

T (t) = aT
cmd(t)R(t)e3 (23)

where xC(t) is defined as:

xC(t) = [ cosψr(t), sinψr(t), 0]T (24)

A low-level attitude controller is then used to compute τ (t) that can achieve the tracking R(t) → Rdes(t).

5.3. Online trajectory generation

In the current implementation, we use G1 and G2 defined in the proposed strategy to determine the
direction of progressive motion through the tunnel with minimum jerk trajectories. A computationally
efficient solution proposed in ref. [48] is adopted to generate minimum jerk trajectories for (x, y, z) which
can be done independently for each axis. This solution treats the problem as an optimal control problem
of a triple integrator system for each output with a state vector s(t) = [q(t), q̇(t), q̈(t)] where q = {x, y, z},
and the jerk

...q (t) is taken as input. Furthermore, to produce minimum jerk solutions, the following cost
function is used:

Jc = 1
tf

∫ tf

0

...q 2(t)dt (25)

where tf is the duration of a motion segment. The optimal solution to this problem is ref. [48]:

s∗(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1

120
t5 + k2

24
t4 + k3

6
t3 + q̈0

2
t2 + q̇0t + q0

k1

24
t4 + k2

6
t3 + k3

2
t2 + q̈0t + q̇0

k1

6
t3 + k2

2
t2 + k3t + q̈0

⎤
⎥⎥⎥⎥⎥⎥⎦

(26)

where (q0, q̇0, q̈0) are the components of the initial state vector s(0), and (k1, k2, k3) are solved for to
satisfy the desired final state s(tf ).

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


848 Taha Elmokadem and Andrey V. Savkin

So, at every computation cycle, Eq. (26) is used for each flat output to generate a trajectory segment
by setting the boundary conditions as follows:

• Initial state: the current state of the UAV s(t0) where t0 is the time at which computation starts or a time
ahead to allow for computation latency where the states gets estimated from the trajectory currently
being executed.

• Final state: the final position (x(tf ), y(tf ), z(tf )) is set to be G1, and ψ(tf ) is determined such that the
vehicle is oriented toward G2 from G1. Furthermore, the final velocity is set to be

(ẋ(tf ), ẏ(tf ), ż(tf )) = vavg
G2 − G1

‖G2 − G1‖ (27)

where vavg is some desired average velocity to keep the UAV moving.

Note that a smooth trajectory for the yaw angle can be generated considering some constant yaw rate
with the boundary conditions ψ(t0) and ψ(tf ).

Another possible implementation for our approach is by relying directly on velocity commands based
on (6) in the quadrotor control design without the need for localization. In this case, the command
acceleration in (18) can be designed differently such as:

acmd(t) = K3 tanh (μ(Vcmd(t) − V(t)))+ ge3 (28)

where K3 is a positive definite gain matrix with some condition related to the bound of ||V̇VVcmd(t)||, and
Vcmd(t) is a filtered version of (6) obtained by applying some smoothing technique.

5.4. Perception pipelines & robust implementation

Good interpretation of sensors measurements is a crucial component for navigation. There are differ-
ent factors that affect the design of perception systems. Overall system cost, payload capacity, power
requirements and required UAV size have great impact on deciding what kind of sensors to use. For
example, lightweight 3D LIDARs can be used to provide a sensing solution with a great field of view
(FOV) but their sizes and expensive costs need to be considered. Recently, solid-state 3D LIDARs have
been developed to a state where they can even provide better solutions for UAVs in terms of size and
cost. Alternatively, the use of stereo and depth cameras tends to be popular with small sized UAVs [49].
However, such depth sensors have narrow FOV, limited range, noisy depth measurements and problems
with reflective or highly absorptive surfaces [50]. This adds more challenges on perception algorithms
development to produce reliable and robust solutions. In this section, we provide two possible perception
pipelines based on the suggested navigation approach with different computational costs. The goal of
both algorithms is to determine an estimate of the gravity centers G1 and G2 described by our navigation
strategy.

5.4.1. Simple algorithm
The first algorithm is targeted toward vehicles with very limited computational power. It has basic steps
to allow for low-latency perception at the expense of being prone to some situations where the vehicle
may need to hover and rotate to be able to continue progressing through the tunnel.

The recent available point cloud from onboard sensors are processed at certain rate according to the
following. Consider that all calculations are made in a camera-fixed frame {C} which has a known trans-
formation relative to the body-fixed frame. Note that we will use the notation Cp to represent vectors
expressed in the {C} frame. The first step is to downsample the raw point cloud to reduce the compu-
tational cost. Then, the nearest k points to the current UAV position Cc are determined where Cc is the
UAV’s COM expressed in the camera frame and k can be chosen arbitrary. A geometric average CḠa is

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 849

then calculated for the nearest neighbors points. Let C ia = CḠa − Cc be the vector toward CḠa. Then, we
compute α which is the angle between the current velocity vector and C ia using:

α= cos−1
( C ia · CV

‖C ia‖‖CV‖
)

(29)

Another vector C ib is obtained next by rotating CV by −α in the plane containing both CV and C ia. Hence,
a second point CḠb can be computed as the gravity center of the tunnel wall points in the direction of
C ib. Similarly, another two points CḠc and CḠd can be obtained associated with rotating the vector CV
by angles β and −β, respectively, where the relation between α and β is defined in our strategy. Hence,
CG1 and CG2 are computed according to:

CG1 = 0.5(CḠa + CḠb), CG2 = 0.5(CḠc + CḠd) (30)

which can then be transformed to the inertial frame {I} to get G1 and G2.

5.4.2. Complete & robust algorithm
The proposed strategy in this work has shown good results in simulations using sensors with wide
FOV (e.g. LIDAR or multiple cameras). Based on experimental observations, additional layers can be
added to the overall algorithm to deal with some practical aspects when using sensors with narrow FOV
for increased robustness. The algorithm can be summarized using the following steps whenever new
measurements arrive or at some other update rate slower than sensors measurements rate:

1. Downsample the raw point cloud to obtain Ws for improved computational performance.
2. Select N points (CO1, CO2, · · · , CON ) ahead of the vehicle position according to (8) at distances

D1, D2, · · · , DN where D1 <D2 < · · · DN (rather than just 2 as suggested earlier).
3. Filter the downsampled point cloud Ws around each point COi obtained from the previous step to

extract the corresponding sections Oi ⊂Ws as defined in (10) with some tolerance ε > 0.
4. For each filtered section Oi, compute the geometric mean gi ∈R

3 of all the points (i.e. the centroid)
and add those centroids to a list L such that L= {g1, g2, · · · , gN }.

5. Compute the minimum distance from each point in L to the downsampled point cloud Ws, and flag
it as valid if dg,i > dsafe where

dg,i = argminpi∈Oi‖gi − pi‖
Otherwise, flag the point as invalid.

6. For each invalid point in L, compute a safer position by moving it away from the nearest neighbors
in Ws in the direction of the average estimated surface normals at the nearest neighbors with some
distance larger than dsafe − dg,i.

7. Add the adjusted points to L, and flag them as valid or invalid according to step 4.
8. Iterate throughL to obtain the closest two valid points as CG1 and CG2 which can then be transformed

from the sensors frame to obtain G1 and G2.
9. If the number of valid points in L is less than 2, increment some counter i which was initialized with

0. Otherwise, reset i = 0. If the counter i reaches some predefined threshold k, terminate.

6. Proof-of-Concept experiments

6.1. Experiments setup

We conducted different experiments to validate our navigation method using a quadrotor UAV with
two different sensors configurations. Three experimental cases are given in this section showing flights
through deformed tunnel-like structures made in the lab using our suggested method. In all experiments,
the sides of the tunnel were nonsmooth and curved, and the ceiling structure was not even. The first case
deals with a deformed tunnel with approximately 2.4 m width, 2 m height and 5.2 m in length. The last

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


850 Taha Elmokadem and Andrey V. Savkin

(a)

(b)

Figure 8. The quadrotor used in the experiments with different sensor configurations. (a) Single depth
camera. (b) Two depth cameras (wider FOV).

two experiments were carried out using a different structure where the tunnel is more curvy in the middle.
Also, it gets narrower toward the end where it becomes more challenging to fly such that it has a 2.3 m
width and 3 m height at the beginning which reduces to 1.5 m width by 1.4 m in height toward the end
for a total length of approximately 6 m. In the last case, the tunnel floor was elevated at the beginning
by adding a blocking obstacle which was 0.9 m high.

A custom-made quadrotor is used in the experiments which is shown in Fig. 8. It is equipped with a
Pixhawk Flight Controller Unit (FCU) which contains a 32-bit Microcontroller Unit (MCU) running the
PX4 firmware in addition to a set of sensors including gyroscopes, accelerometers, magnetometer and
barometer. The open-source PX4 software stack handles the low-level attitude stabilization and imple-
ments an Extended Kalman Filter (EKF) that fuses IMU data and visual odometry to provide an estimate
of the quadrotor states (i.e. position, attitude and velocity). To allow for a fully autonomous operation,
our UAV is equipped with an onboard computer connected with cameras for localization and sensing.
Hence, all computations needed to implement our navigation method can be done onboard. A powerful
onboard computer (Intel NUC), with an Intel Core i5-8259U CPU @ 2.30GHz, is used to implement the
overall navigation stack. Intel RealSense tracking camera T265 is used for visual localization, and Intel
RealSense D435/L515 depth cameras are used to detect the tunnel surface. The T265 module provides
monochrome fisheye images with a great FOV, and it contains an IMU and a Vision Processing Unit
(VPU) to implement onboard visual SLAM. The D435 camera provides depth information as 3D point
clouds, and it has a Depth FOV of (87◦ ± 3◦ Horizontal × 58◦ ± 1◦ Vertical × 95◦ ± 3◦ Diagonal) and
a maximum range of approx. 10 m. However, a shorter range could be used in practice as the D435 depth
data are more noisy for points further than 3 m. Note that it is possible to use only the D435 camera to
perform both localization and tunnel surface detection on the onboard computer. The RealSense L515
camera provides more accurate depth data with accuracy of about 5–14 mm for a range of 9 m since it is

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 851

Figure 9. Hardware and Software Architecture of our UAV system.

Figure 10. Snapshots of the UAV position during movement for case 1.

based on solid-state LIDAR technology. However, it has a narrower FOV of 70◦ × 55◦ ( ± 3◦). Figure 8
shows the two sensors configuration used in the three experiments where the one on top was used in the
first case and the other configuration was used in the other two cases. The second configuration provides
a wider FOV by combining the depth data from both the D435 and L515 depth cameras, which are
oriented differently, after applying proper transformations.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


852 Taha Elmokadem and Andrey V. Savkin

Figure 11. Snapshots of the UAV position during movement for case 2.

Figure 12. Snapshots of the UAV position during movement for case 3.

Figure 13. A fraction of the tunnel wall sensed at motion start along with cameras feedback for case 1.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 853

Figure 14. Robust perception pipeline visualization for cases 2 and 3.

Figure 15. UAV velocity and distance to closest point versus time for case 1.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


854 Taha Elmokadem and Andrey V. Savkin

Figure 16. Input mass-normalized collective thrust and attitude commands versus time for case 1.

The Robot Operating System (ROS) framework was adopted to implement the overall navigation
software stack as connected nodes (i.e. simultaneously running processes) where each node handles a
specific task. A UAV control node implements the trajectory tracking controller described in Section 5.2
to generate thrust and attitude commands for the low-level attitude controller at 100 Hz. These com-
mands are sent to the flight controller unit through a link with the onboard computer (over USB) using
the MAVLink messaging protocol through MAVROS library. The received visual odometry from the
T265 camera is also sent to the FCU to be fused with IMU data through an extended Kalman filter.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 855

Figure 17. UAV velocity and distance to closest point versus time for case 2.

Also, camera nodes are used to process received 3D point clouds from the depth cameras to make them
available for the other nodes with an update rate of 30 Hz. The proposed simpler algorithm described in
Section 5.4.1 was used in the first experiment, and the more robust approach proposed in Section 5.4.2
was used in the other two cases. These algorithms were running at 2–10 Hz update rates, and they were
implemented in C++ using useful tools from the Point Cloud Library (PCL) to handle point clouds pro-
cessing in a computationally efficient way. A downsampling filter using PCL VoxelGrid is applied to the
3D point clouds to reduce the computational burden combined with some other filtering processes such
as considering measurements that are within 5 m or less. A further processing is applied to assemble a
single point cloud from all depth sensors if multiple are used by applying proper transformations from
the sensors’ frames to the vehicle’s body-fixed frame. The obtained points G1 and G2 from the previ-
ous algorithms are used to generate reference trajectories to be sent to the UAV control node where the
approach described in Section 5.3 was used in the first case. In the last two cases, the similar idea was
used but with slower straight motion trajectories based on trapezoidal velocity profile to deal with the
very narrow flying space (i.e. only (26) was implemented differently). Note that generating minimum
jerk trajectories is recommended to produce less jerky motions; however, some corridor constraints may
need to be considered to refine the result of (26) when flying in very narrow spaces similar to what was
done in ref. [47].

A description of the overall hardware and software architecture of our system is shown in Fig. 9.

6.2. Results

A video of the conducted experiments is available at https://youtu.be/r2Add9lctEU. Snapshots of the
motion at different time instants are shown in Figs. 10, 11 and 12 for the three cases where a line con-
necting positions at each time instant was added for visualization purposes only (i.e. it is not the actual
path). Additionally, visualizations of the sensors feedback along with the results of the implemented
perception pipelines at some specific moments during the flights are shown in Figs. 13 and 14.

Figure 13 shows the detected patch of the tunnel surface, the vector directing from G1 to G2 and
cameras feedback at the initial time for the first experiment. In that figure, the current position of the

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://youtu.be/r2Add9lctEU
https://doi.org/10.1017/S0263574721000849


856 Taha Elmokadem and Andrey V. Savkin

Figure 18. Input mass-normalized collective thrust and attitude commands versus time for case 2.

UAV is indicated by the axes named ‘base_link’ while the red arrow is at G1 and directing toward G2
as described in Section 5.3. Notice that an online mapping algorithm was also performed onboard in
this case to provide a map of the tunnel for visualization purposes only. The velocity of the quadrotor
during the flight and the distance to tunnel walls are shown in Fig. 15. Moreover, the applied control
inputs along with the vehicle’s attitude is shown in Fig. 16. The mass-normalized collective thrust is
further normalized to be within [0, 1] as required by PX4. For safety purposes, the maximum value
of the input thrust was limited to 0.75. Different regions are highlighted on the figures corresponding
to the mode of operation. Initially, sensors and safety checks are done in order to arm the drone before
performing a takeoff to some predefined altitude. Then, the vehicle switches to autonomous mode where
the suggested navigation strategy is applied. Once a terminating condition is detected, the vehicle goes
out of the autonomous mode where the control commands are no longer being used in order to land.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 857

Figure 19. UAV velocity and distance to closest point versus time for case 3.

It can be seen from the video and Fig. 10 that the vehicle manages to maintain its movement along
the tunnel curvy axis in the first experiment until it reaches the tunnel open end where it goes closer
to one of the sides (as can be seen from Fig. 15). It can also be observed that the nonsmooth tunnel
surface results in D1 and D2 being dynamic during the motion when using the approach described in
Section 5.4.1. This counts as a reaction to any bumps on the surface close to the UAV to achieve a
collision-free motion. The computational latency using this simple approach was less than 1 ms using
the mentioned mini computer. It was observed in this experiment that using a depth sensor with small
FOV which detects only a small patch of the tunnel surface can be very challenging. This explains the
behavior near the end of the motion due to the tunnel being open and the depth measurements being
filtered to only consider information within 2 m or less. In that case, a stopping policy was applied at
the end to yaw away from the tunnel side and land immediately. Another possible policy to apply in
these situations is to hover and perform a yaw rotation to proceed the movement using that suggested
simple perception approach. One of the used methods in practice to have a wider 3D FOV is to use a
mechanism to rotate the sensor at some frequency during the motion (for example, see refs. [51, 52]). It
is also possible to integrate more sensors by combining vision-based sensors with LIDARs depending
on the application requirements and the environment conditions; however, this will reflect on the system
overall cost, payload and power requirements.

The observations from the first case motivated the design of the robust algorithm given in
Section 5.4.2 which was applied in the next two experiments. Only three points were computed (i.e.
N = 3) corresponding to D1 = 1.25 m, D2 = 1.5 m and D3 = 1.75 m. Also, the sections extraction
tolerance was selected as ε = 0.1 m, and the safety margin was dsafe = 0.45 m.

Different scenarios based on depth measurements are shown in Fig. 14 where all points in the listL are
represented with spherical markers with different colors. Also, corresponding extracted sections O1, O2
and O3 from the point cloud are highlighted in different colors (green, yellow and orange respectively).
Yellow markers represent valid points obtained directly from step 4 as in Fig. 14(a); hence, steps 6–7
were not executed at that computation cycle. Figure 14(b) shows a case where all computed points were
invalid (red markers), and valid new points (orange markers) were obtained after performing steps 6–7.
This may happen whenever the vehicle senses only a fraction of a certain side without seeing the side in

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


858 Taha Elmokadem and Andrey V. Savkin

Figure 20. Input mass-normalized collective thrust and attitude commands versus time for case 3.

the opposite direction (the lower part of the tunnel is not detected in that case). Similar case is shown in
Fig. 14(c) where the upper part of the tunnel is not within the sensors’ FOV at that point. As a result, the
geometric means will be closer to the detected portion. However, it is clear from the experiments that the
proposed approach managed to handle such cases very well. Further case is shown in Fig. 14(d) where
one of the new obtained points after applying step 6 remains invalid (blue marker). The computational
latency when steps 6–7 are not executed was less than 5 ms. Otherwise, the latency was less than 70 ms
which can be hugely improved by estimating the surface normals for only the closest fraction of the point
cloud rather than the whole downsampled cloud as was done in the experiments. The surface normals
estimation is computationally more expensive than the other steps; however, the overall computational
performance is still very low compared to path planning-based methods.

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000849


Robotica 859

The quadrotor’s velocity, minimum distance to tunnel walls and control inputs are shown in Figs. 17–
20 for the two cases. The velocity of the reference trajectory was designed to be around 0.4 m/s which
can be seen from the actual velocity plot. The minimum distance to tunnel walls was computed based
on the sensors point clouds which might not be a good estimate of the actual distance at some points.
However, these plots indicate that the vehicle maintained a safe distance during the flights. Thus, these
experiments validate the performance of the suggested tunnel navigation strategy.

7. Conclusion

This work presented a computationally light method for UAVs to allow autonomous collision-free nav-
igation in unknown tunnel-like environments. It relies on light processing of sensors’ measurements
to guide the UAV along the tunnel axis. A general 3D kinematic model is used for the development
which extends the applicability of our method to different UAV types and autonomous underwa-
ter vehicles navigating through 3D tunnel-like environments. Several simulations were performed to
validate our method considering tunnels with different structures using a realistic sensing model.
Robustness against noisy sensors measurements was also investigated in simulation. Moreover, we pro-
vided implementation details for quadrotor UAVs including control design based on sliding mode control
technique and differential-flatness property of quadrotor dynamics. Experimental validation was done
by flying through tunnel-like structures built in the laboratory where all computations needed by our
navigation stack were done onboard. Overall, the obtained results from simulations and the practical
implementations show how well our navigation method works in unknown tunnel-like environments.
Acknowledgments. This work was supported by the Australian Research Council. Also this work received funding from the
Australian Government, via grant AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571.

Conflicts of Interest. The author(s) declare none.

References
[1] T. Özaslan, S. Shen, Y. Mulgaonkar, N. Michael and V. Kumar, “Inspection of Penstocks and Featureless Tunnel-like

Environments Using Micro UAVs,” In: Field and Service Robotics (Springer, 2015) pp. 123–136.
[2] T. Özaslan, K. Mohta, J. Keller, Y. Mulgaonkar, C. J. Taylor, V. Kumar, J. M. Wozencraft and T. Hood, “Towards Fully

Autonomous Visual Inspection of Dark Featureless Dam Penstocks Using MAVs,” 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE, 2016) pp. 4998–5005.

[3] T. Özaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M. Wozencraft and T. Hood, “Autonomous navigation and
mapping for inspection of penstocks and tunnels with MAVs,” IEEE Rob. Autom. Lett. 2(3), 1740–1747 (2017).

[4] T. Özaslan, G. Loianno, J. Keller, C. J. Taylor and V. Kumar, “Spatio-temporally smooth local mapping and state estimation
inside generalized cylinders with micro aerial vehicles,” IEEE Rob. Autom. Lett. 3(4), 4209–4216 (2018).

[5] J. Quenzel, M. Nieuwenhuisen, D. Droeschel, M. Beul, S. Houben and S. Behnke, “Autonomous MAV-based indoor chimney
inspection with 3D laser localization and textured surface reconstruction,” J. Intell. Rob. Syst. 93(1–2), 317–335 (2019).

[6] C. H. Tan, M. Ng, D. S. B. Shaiful, S. K. H. Win, W. J. Ang, S. K. Yeung, H. B Lim, M. N. Do and S. Foong, “A smart
unmanned aerial vehicle (UAV) based imaging system for inspection of deep hazardous tunnels,” Water Practice Technol.
13(4), 991–1000 (2018).

[7] C. H. Tan, D. S. bin Shaiful, W. J. Ang, S. K. H. Win and S. Foong, “Design optimization of sparse sensing array for extended
aerial robot navigation in deep hazardous tunnels,” IEEE Rob. and Autom. Lett. 4(2), 862–869 (2019).

[8] S. S. Mansouri, C. Kanellakis, G. Georgoulas and G. Nikolakopoulos, “Towards MAV Navigation in Underground Mine
Using Deep Learning,” 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2018) pp. 880–
885.

[9] F. Mascarich, S. Khattak, C. Papachristos and K. Alexis, “A Multi-Modal Mapping Unit for Autonomous Exploration and
Mapping of Underground Tunnels,” 2018 IEEE Aerospace Conference (IEEE, 2018) pp. 1–7.

[10] C. Kanellakis, P. Karvelis and G. Nikolakopoulos, “Open Space Attraction Based Navigation in Dark Tunnels for MAVs,”
International Conference on Computer Vision Systems (Springer, 2019) pp. 110–119.

[11] D. Li, W. Yang, X. Shi, D. Guo, Q. Long, F. Qiao and Q. Wei, “A visual-inertial localization method for unmanned aerial
vehicle in underground tunnel dynamic environments,” IEEE Access 8, 76809–76822 (2020). https://ieeexplore.ieee.org/
document/9076004

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://ieeexplore.ieee.org/document/9076004
https://ieeexplore.ieee.org/document/9076004
https://doi.org/10.1017/S0263574721000849


860 Taha Elmokadem and Andrey V. Savkin

[12] D. Kominiak, S. S. Mansouri, C. Kanellakis and G. Nikolakopoulos, MAV Development Towards Navigation in Unknown
and Dark Mining Tunnels. arXiv preprint arXiv:2005.14433 (2020).

[13] S. S. Mansouri, C. Kanellakis, P. Karvelis, D. Kominiak and G. Nikolakopoulos, “MAV Navigation in Unknown Dark
Underground Mines Using Deep Learning,” European Control Conference (2020).

[14] H. Li, A. V. Savkin and B. Vucetic, “Autonomous area exploration and mapping in underground mine environments by
unmanned aerial vehicles,” Robotica 38(3), 442–456 (2020).

[15] S. S. Mansouri, C. Kanellakis, D. Kominiak and G. Nikolakopoulos, “Deploying MAVs for autonomous navigation in dark
underground mine environments,” Rob. Auton. Syst. 126, 103472 (2020). https://www.sciencedirect.com/science/article/
pii/S0921889019306256

[16] R. M. Turner, M. M. MacLaughlin and S. R. Iverson, “Identifying and mapping potentially adverse discontinuities in
underground excavations using thermal and multispectral UAV imagery,” Eng. Geol. 266, 105470 (2020). https://www.
sciencedirect.com/science/article/pii/S0013795219314589

[17] T. Dang, F. Mascarich, S. Khattak, H. Nguyen, H. Nguyen, S. Hirsh, R. Reinhart, C. Papachristos and K. Alexis,
“Autonomous Search for Underground Mine Rescue Using Aerial Robots,” 2020 IEEE Aerospace Conference (IEEE, 2020)
pp. 1–8.

[18] M. Petrlík, T. Báča, D. Heřt, M. Vrba, T. Krajník and M. Saska, “A robust UAV system for operations in a constrained
environment,” IEEE Rob. Autom. Lett. 5(2), 2169–2176 (2020).

[19] F. Chataigner, P. Cavestany, M. Soler, C. Rizzo, J. Gonzalez, C. Bosch, J. Gibert, A. Torrente, R. Gomez and D. Serrano,
“ARSI: An Aerial Robot for Sewer Inspection,” In: Advances in Robotics Research: From Lab to Market (Springer, 2020)
pp. 249–274.

[20] A. Shukla and H. Karki, “Application of robotics in onshore oil and gas industry - A review Part I,” Rob. Auto. Syst. 75,
490–507 (2016). https://www.sciencedirect.com/science/article/pii/S0921889015002006

[21] A. Mallios, P. Ridao, D. Ribas, M. Carreras and R. Camilli, “Toward autonomous exploration in confined underwater
environments,” J. Field Rob. 33(7), 994–1012 (2016).

[22] N. Fairfield, G. Kantor and D. Wettergreen, “Real-time SLAM with octree evidence grids for exploration in underwater
tunnels,” J. Field Rob. 24(1–2), 03–21 (2007).

[23] E. Vidal, N. Palomeras and M. Carreras, “Online 3D Underwater Exploration and Coverage,” 2018 IEEE/OES Autonomous
Underwater Vehicle Workshop (AUV) (IEEE, 2018) pp. 1–5.

[24] B. A. am Ende, “3D mapping of underwater caves,” IEEE Comput. Graph. Appl. 21(2), 14–20 (2001).
[25] A. Martins, J. Almeida, C. Almeida and E. Silva, “UXNEXMIN AUV Perception System Design and Characterization,”

2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV) (IEEE, 2018) pp. 1–7.
[26] E. Vidal, N. Palomeras, K. Istenič, N. Gracias and M. Carreras, “Multisensor online 3D view planning for autonomous

underwater exploration,” J. Field Rob. 37(6), 1123–1147 (2020).
[27] E. Nocerino, F. Menna, E. Farella and F. Remondino, “3D virtualization of an underground semi-submerged cave system,”

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. ISPRS Arch. 42(2/W15), 857–864 (2019).
[28] M. Jacobi, “Autonomous inspection of underwater structures,” Rob. Auto. Syst. 67, 80–86 (2015). https://www.sciencedirect.

com/science/article/pii/S0921889014002267
[29] N. Weidner, S. Rahman, A. Q. Li and I. Rekleitis, “Underwater Cave Mapping Using Stereo Vision,” 2017 IEEE International

Conference on Robotics and Automation (ICRA) (IEEE, 2017) pp. 5709–5715.
[30] C. White, D. Hiranandani, C. S. Olstad, K. Buhagiar, T. Gambin and C. M. Clark, “The Malta cistern mapping project:

Underwater robot mapping and localization within ancient tunnel systems,” J. Field Rob. 27(4), 399–411 (2010).
[31] M. Gary, N. Fairfield, W. C. Stone, D. Wettergreen, G. Kantor and J. M. Sharp, Jr., “3D Mapping and Characterization of

Sistema Zacatón from DEPTHX (DEep Phreatic THermal eXplorer),” In: Sinkholes and the Engineering and Environmental
Impacts of Karst (2008) pp. 202–212.

[32] Y. Li and C. Liu, “Efficient and safe motion planning for quadrotors based on unconstrained quadratic programming,”
Robotica 39(2), 317–333 (2021).

[33] M. C. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free navigation of mobile robots in complex cluttered
environments: A survey,” Robotica 33(3), 463–497 (2015).

[34] C. Kanellakis and G. Nikolakopoulos, “Evaluation of Visual Localization Systems in Underground Mining,” 2016 24th
Mediterranean Conference on Control and Automation (MED) (IEEE, 2016) pp. 539–544.

[35] M. Bloesch, S. Omari, M. Hutter and R. Siegwart, “Robust Visual Inertial Odometry Using a Direct EKF-based Approach,”
2015 IEEE/RSJ International Conference on Intelligent Robots and systems (IROS) (IEEE, 2015) pp. 298–304.

[36] C. Papachristos, S. Khattak, F. Mascarich and K. Alexis, “Autonomous Navigation and Mapping in Underground Mines
Using Aerial Robots,” 2019 IEEE Aerospace Conference (IEEE, 2019) pp. 1–8.

[37] T. Dang, F. Mascarich, S. Khattak, H. Nguyen, N. Khedekar, C. Papachristos and K. Alexis, “Field-Hardened Robotic
Autonomy for Subterranean Exploration,” Conference on Field and Service Robotics, Tokyo, Japan (2019).

[38] A. V. Savkin and C. Wang, “A Method for Collision Free Navigation of Non-Holonomic 3D Robots in Unknown Tunnel like
Environments,” 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2017) pp. 936–940.

[39] A. S. Matveev and A. V. Savkin, Proofs of Technical Results Justifying an Algorithm of Reactive 3D Navigation of a Mobile
Robot through an Unknown Tunnel. arXiv preprint arXiv:1803.00803 (2018).

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://www.sciencedirect.com/science/article/pii/S0921889019306256
https://www.sciencedirect.com/science/article/pii/S0921889019306256
https://www.sciencedirect.com/science/article/pii/S0013795219314589
https://www.sciencedirect.com/science/article/pii/S0013795219314589
https://www.sciencedirect.com/science/article/pii/S0921889015002006
https://www.sciencedirect.com/science/article/pii/S0921889014002267
https://www.sciencedirect.com/science/article/pii/S0921889014002267
https://doi.org/10.1017/S0263574721000849


Robotica 861

[40] A. S. Matveev, V. Magerkin and A. V. Savkin, “A method of reactive control for 3D navigation of a nonholonomic
robot in tunnel-like environments,” Automatica 114, 108831 (2020). https://www.sciencedirect.com/science/article/pii/
S0005109820300297

[41] A. S. Matveev, H. Teimoori and A. V. Savkin, “A method for guidance and control of an autonomous vehicle in problems
of border patrolling and obstacle avoidance,” Automatica 47(3), 515–524 (2011).

[42] C. Wang, A. V. Savkin and M. Garratt, “A strategy for safe 3D navigation of non-holonomic robots among moving obstacles,”
Robotica 36(2), 275–297 (2018).

[43] T. Elmokadem, “A Reactive Navigation Method of Quadrotor UAVs in Unknown Environments with Obstacles based on
Differential-Flatness,” Australasian Conference on Robotics and Automation 2019 (ACRA) (2019).

[44] T. Hamel, R. Mahony, R. Lozano and J. Ostrowski, “Dynamic modelling and configuration stabilization for an X4-flyer,”
IFAC Proc. Vol. 35(1), 217–222 (2002).

[45] M. Faessler, A. Franchi and D. Scaramuzza, “Differential flatness of quadrotor dynamics subject to rotor drag for accurate
tracking of high-speed trajectories,” IEEE Rob. Autom. Lett. 3(2), 620–626 (2017).

[46] O. Garcia, E. G. Rojo-Rodriguez, A. Sanchez, D. Saucedo and A. Munoz-Vazquez, “Robust geometric navigation of a
quadrotor UAV on SE (3),” Robotica 38(6), 1019–1040 (2020).

[47] D. Mellinger and V. Kumar, “Minimum Snap Trajectory Generation and Control for Quadrotors,” 2011 IEEE International
Conference on Robotics and Automation (IEEE, 2011) pp. 2520–2525.

[48] M. W. Mueller, M. Hehn and R. D’Andrea, “A computationally efficient motion primitive for quadrocopter trajectory
generation,” IEEE Trans. Rob. 31(6), 1294–1310 (2015).

[49] J. Sanchez-Rodriguez and A. Aceves-Lopez, “A survey on stereo vision-based autonomous navigation for multi-rotor
MUAVs,” Robotica 36(8), 1225–1243 (2018).

[50] S. Naudet-Collette, K. Melbouci, V. Gay-Bellile, O. Ait-Aider and M. Dhome, “Constrained RGBD-SLAM,” Robotica 39(2),
277–290 (2021).

[51] J. Kang and N. L. Doh, “Full-DOF calibration of a rotating 2-D LIDAR with a simple plane measurement,” IEEE Trans.
Rob. 32(5), 1245–1263 (2016).

[52] C. Kownacki, “A concept of laser scanner designed to realize 3D obstacle avoidance for a fixed-wing UAV,” Robotica 34(2),
243–257 (2016).

Cite this article: T. Elmokadem and A. V. Savkin (2022). “A method for autonomous collision-free navigation of a quadrotor
UAV in unknown tunnel-like environments”, Robotica 40, 835–861. https://doi.org/10.1017/S0263574721000849

https://doi.org/10.1017/S0263574721000849 Published online by Cambridge University Press

https://www.sciencedirect.com/science/article/pii/S0005109820300297
https://www.sciencedirect.com/science/article/pii/S0005109820300297
https://doi.org/10.1017/S0263574721000849
https://doi.org/10.1017/S0263574721000849

	A method for autonomous collision-free navigation of a quadrotor UAV in unknown tunnel-like environments
	Introduction
	Related work
	Paper contributions
	Paper outline

	Kinematic model and navigation problem
	Navigation algorithm
	Computer simulations
	Implementation with a quadrotor UAV
	Quadrotor dynamics
	Control
	Online trajectory generation
	Perception pipelines & robust implementation
	Simple algorithm
	Complete & robust algorithm


	Proof-of-Concept experiments
	Experiments setup
	Results

	Conclusion


