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The KP-II equation was derived by Kadmotsev and Petviashvili to explain stability
of line solitary waves of shallow water. Recently, Mizumachi proved nonlinear
stability of 1-line solitons for exponentially localized perturbations. In this paper, we
prove stability of 1-line solitons for perturbations in (1 + z2)*1/2’0H1(R2) and
perturbations in H!(R?) N 0, L?(R?).
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1. Introduction

The KP-II equation,
Dy (Opu + O3u + 30, (u?)) + 38§u =0 fort>0and (z,y) € R? (1.1)

is a generalization to two spatial dimensions of the Korteweg—de Vries (KdV) equa-
tion,

Opu + O3u + 30, (u?) = 0, (1.2)

and has been derived as a model in the study of the transverse stability of solitary
wave solutions to the KdV equation with respect to two-dimensional perturbations
when the surface tension is weak or absent. See [15] for the derivation of (1.1).

The global well-posedness of (1.1) in H*(R?) (s > 0) around line solitons has
been studied by Molinet et al. [31], the proof of which is based on the work of
Bourgain [6]. For the other contributions to the Cauchy problem for the KP-II
equation, see, for example, [10-12,14,36-39] and the references therein.

Let

@e(z) = ccosh 2 (v tcx), ¢>0.
Then @.(z — 2¢ct) is a solitary wave solution of the KdV equation (1.2) and a line
soliton solution of (1.1) as well.

Let us briefly explain known results on stability of 1-solitons for the KdV equation
first. Stability of the 1-soliton ¢.(x—2ct) of (1.2) was proved in [2,4,41] using the fact
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that ¢, is a minimizer of the Hamiltonian on the manifold {u € H*(R) | lull 2 ®) =
l¢cllz2(r)}- As is well known, a solitary wave of the KdV equation travels at a speed
faster than the maximum group velocity of linear waves and the larger solitary
wave moves faster to the right. Using this property, Pego and Weinstein [33] proved
asymptotic stability of solitary wave solutions of (1.2) in an exponentially weighted
space. Later, Martel and Merle established the Liouville theorem for the generalized
KdV equations by using a virial-type identity, and proved the asymptotic stability
of solitary waves in H}. (R) (see, for example, [21]). For stability of multi-solitons
of the generalized KAV equations, see [22].

For the KP-II equation, its Hamiltonian is infinitely indefinite and the variational
approach given in, for example, [9] is not applicable. Hence, it seems natural to
study stability of line solitons using strong linear stability of line solitons. Spectral
transverse stability of line solitons of (1.1) has been studied in [1,7]. See also [13]
for transverse linear stability of cnoidal waves. Alexander et al. [1] proved that
the spectrum of the linearized operator in L?(IR?) consists of the entire imaginary
axis. On the other hand, in an exponentially weighted space where the size of
perturbation is biased in the direction of motion, the spectrum of the linearized
operator consists of a curve of resonant continuous eigenvalues that goes through 0
and the set of the continuous spectrum that is located in the stable half-plane
and is away from the imaginary axis (see [7,24]). The former appears because line
solitons are not localized in the transversal direction, and 0, which is related to
the symmetry of line solitons, cannot be an isolated eigenvalue of the linearized
operator. Such a situation is common with planer travelling wave solutions for the
heat equation; see, for example, [16,19,42].

Using the inverse scattering method, Villarroel and Ablowitz [40] studied solu-
tions around line solitons for (1.1). Recently, Mizumachi [24] proved transversal
stability of line soliton solutions of (1.1) for exponentially localized perturbations.
The idea was to use the exponential decay property of the linearized equation sat-
isfying a secular-term condition and to describe variations of local amplitudes and
local inclinations of line solitons by a system of Burgers equations.

The purpose of the present paper is to prove transverse stability of the line
soliton solutions for perturbations that are the z-derivative of L?(R?) functions
and for polynomially localized perturbations. Let us now introduce our results.

THEOREM 1.1. Let ¢g > 0 and u(t,x,y) be a solution of (1.1) satisfying that
w(0,2,y) = e, (x) + vo(z,y). There exist positive constants €9 and C satisfying
the following: if vo € 0,L*(R?) and

[voll 2Ry + 11Dz |" ?voll L2(rz) + | Dal =21 Dy M 00| p2(z2) < €0,

then there exist Ct-functions c(t,y) and x(t,y) such that, for everyt >0 and k > 0,

lu(t, z,y) — Pe(ty) (@ — 2(t,y))lL2®2) < Cllvoll L2, (1.3)
lle(t, ) = coll mrry + 10y (t, ) ey + 2e(t, ) = 2¢(t, ) ey < Cllvollz2, (1.4)
o ([[8ye(t, )| ) + 072 (t, )| e ) = 0, (1.5)

and, for any R > 0,

A {lut,z +2(8y),y) = Pe(ry) (@) |22 (2> - R)xr,) = 0- (1.6)
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THEOREM 1.2. Let ¢y > 0 and s > 1. Suppose that u is a solution of (1.1) satisfying
w(0,2,Y) = @, () +vo(x,y). Then there exist positive constants g and C' such that
if 1{z)*voll g1 (r2) < €0, there exist c(t,y) and x(t,y) satisfying (1.5), (1.6) and

[u(t, 2,y) = e,y (@ — 2(t, y)) | L2r2) < Cl{@) voll 1 (R2), (L.7)
lle(t, ) = coll ey + 110y (t, ) ey + lze(t, ) = 2¢(t, ) mr@) < Cll@)*voll e (r2)
(1.8)

for everyt >0 and k > 0.

REMARK 1.3. By (1.4) and (1.5),

Jim sup(|e(t,y) — co| + |zy(t,y)|) =0,
— 00 yER

and as ¢ — oo the modulating line soliton . ,)(z — (t,y)) converges to a
y-independent modulating line soliton ¢, (z — z(¢,0)) in L2(R, x (Jy| < R)) for
any R > 0. Hence, it follows from (1.6) that

Jim ffu(t, @ +2(2,0),y) = @eo (0) | L2(@@>—m)x (w1 <r)) = 0-

We remark that the phase shift x(¢,y) in (1.3) and (1.6) cannot be uniform in y
because of the variation of the local phase shift around y = +2,/2cot + O(V/1).
See [24, theorems 1.4 and 1.5].

REMARK 1.4. The KP-II equation has no localized solitary waves (see [5,8]). On
the other hand, the KP-I equation has stable ground states (see [5,20]) and line
solitons of the KP-I equation are unstable (see [34,35,43]). See, for example, [18]
and the references therein for numerical studies of KP-type equations.

REMARK 1.5. Following the idea of Merle and Vega [23], Mizumachi and Tzvetkov
[26] used the Miura transformation to prove stability of line soliton solutions to the
perturbations that are periodic in the transverse directions. They prove that the
Miura transformation gives a local isomorphism between solutions around a 1-line
soliton and solutions around the null solution of KP-II via solutions around a kink
of MKP-ITI (the modified Kadmotsev—Petviashvili-II equation).

The argument in [26] fails for localized perturbations because, in view of the
resonant continuous eigenvalues of MKP-IT in L?(R?; e2*® dz dy) with a € (0, v/2¢g)
(see [24, lemma 2.5]), the motion of waves along the crest of the modulating line
kink of MKP-II is expected to be unilateral, whereas the wave motion along the
crest of a modulating line soliton for the KP-II equation is bidirectional (see [24,
theorem 1.5]).

Now let us explain our strategy for the proof. To prove stability of line solitons
in [24], we relied on the fact that solutions of the linearized equation decay expo-
nentially in exponentially weighted norm as ¢ — oo if the data are orthogonal to
the adjoint resonant continuous eigenmodes. To describe the behaviour of solutions
around a line soliton, we represent them by using an ansatz

U(t, &€, y) = Sﬁc(t,y) (Z) - wc(t,y) (Z + 3t) + U(t7 2, y)7 =T — I(t7 y)v (19)
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where c(t,y) and x(t,y) are the local amplitude and the local phase shift of the
modulating line soliton ¢, ) (z — x(t,y)) at time ¢ along the line parallel to the
x-axis, and 1,y is an auxiliary function such that

/ v(t, z,y)dz = / v(0,z,y)dz for any y € R.
R R

One of the key steps is to prove that [[v(t)|[z2 is square integrable in time. In
[24], we imposed a non-secular condition on v(t) such that the perturbation v(t)
is orthogonal to the adjoint resonant eigenfunctions in order to apply the strong
linear stability property of line solitons (see proposition 2.2) to v. Since the adjoint
resonant eigenfunctions grow exponentially as x — oo, the secular-term condition
is not feasible for a v(t) that is not exponentially localized as x — oco. Following the
idea of [25, 26, 28], we split the perturbation v(¢) into the sum of a small solution
v1(t) of (1.1) satisfying v1(0) = v, and the remainder part vs(t). As is the case
with other long wave models, the solitary wave part moves faster than the freely
propagating perturbations, and the localized L?-norms of v; are square integrable
in time thanks to the virial identity. The remainder part vo(t) is exponentially
localized as * — oo and is mainly driven by the interaction between vy and the line
soliton. We impose the secular-term condition on ve in order to apply the linear
stability estimate. Using the linear stability estimate as well as a virial-type identity,
we have the square integrability of ||e**vy(t)] 2 in time for small a > 0.

For Boussinesq equations, Pedersen [32] heuristically observed that the modula-
tion of line solitary waves is described by a system of Burgers equations. We expect
that the method presented in this paper is applicable to the other two-dimensional
long wave models.

Our plan of the present paper is as follows. In §2 we recollect the strong linear
stability property of line solitons that was proved in [24]. In §3 we decompose a
solution around line solitons into a sum of the modulating line soliton @, (2),
a small freely propagating part vy, an exponentially localized remainder part v
and an auxiliary function . ). In §4 we compute the time derivative of the
secular-term condition on vo and derive a system of Burgers equations that describe
the local amplitude ¢(¢,y) and the local phase shift z(¢,y). In §5 we estimate
¢é(t) := c(t) — co and (). In this paper é(t) and x,(t) are not necessarily pseudo-
measures and we are not able to apply F~!L>°-L? estimates to ¢ and xy. Instead,
we use the monotonicity formula to obtain time global bounds for é(t) and z,(t).
Since the terms related to vy(t) are merely square integrable in time and cubic
terms that appear in the energy identity are not necessarily integrable in time, we
use a change of variables to eliminate these terms to obtain time global estimates.
In §6 we estimate the L?-norm of the remainder term v. In § 7 we introduce several
estimates for vy, which is a small solution of (1.1). First, we show that a virial
identity [8] ensures that a localized norm of vy is square integrable in time. We
then explain that the nonlinear scattering theory in [12] gives a time global bound
for LP-norms with p > 2 if v1(0) = vy € |D,|"/?L?(R?) and vy is sufficiently
smooth. In §8 we estimate the exponentially weighted norm of vy following the
procedure of [24]. We use the semigroup estimate introduced in § 2 to estimate the
low frequencies in y and apply a virial-type estimate to estimate high frequencies
in y to avoid a loss of derivatives. Since we split the perturbation v into two parts
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v1 and vg, we cannot cancel the derivative of the nonlinear term by integration by
parts and we need a time global bound of ||v1(¢)||zs to estimate the exponentially
localized energy norm of vo(t) using the virial identity. In §§9 and 10 we prove
theorems 1.1 and 1.2.

Finally, let us introduce some notation. For Banach spaces V and W, let B(V, W)
be the space of all linear continuous operators from V' to W and let ||T'|| gcv,w) =
SUp|z(|y =1 [ Tullw for T € B(V,W). We abbreviate B(V,V) to B(V). For f €
S(R™) and m € S'(R™), let

(FNE) = f(&) = 2m)/? - fla)e ¢ da,
(F @) = fl@) = f(=z),  (m(Da)f)(x) = (2m) "2 (i f) ().

We use a < b and a = O(b) to mean that there exists a positive constant such that
a < Cb. Various constants will be simply denoted by C and C; (i € N) in the course
of the calculations. We define (z) = /1 + 22 for z € R.

2. Preliminaries

In this section we recollect decay estimates of the semigroup generated by the
linearized operator around a 1-line soliton in exponentially weighted spaces.

Since (1.1) is invariant under the scaling u — A2u(A3t, Az, \%y), we may assume
that cg = 2 in theorems 1.1 and 1.2 without loss of generality. Let

© = o, L=—-02440, — 36;185 — 60, ().

We remark that e** is a C%-semigroup on X := L?(R2?;e2** dx dy) for any a > 0
because Lo 1= —d;+40, —30, ' 02 is m-dissipative on X and £L— Ly is infinitesimally
small with respect to Ly.

We have the following exponential decay estimates for e**° on X.

LEMMA 2.1 (Mizumachi [24, lemma 3.4]). Suppose that o > 0. Then there exists a
positive constant C such that, for every f € C§°(R?) and t > 0,

le0 fllx < Cem@=™ £,
2
6200, fllx + le“00; 18, fllx < C(L+t/2)e (=M1 f||x,
6002 fllx < C(1L 41N oo £l 1 5.

Solutions of d,u = Lu satisfying a secular-term condition decay like solutions to
the free equation 0;u = Lou. To be more precise, let us introduce a family of contin-
uous resonant eigenvalues near 0 and the corresponding continuous eigenfunctions
of the linearized operator L. Let

Bn) =+/1+in, A(n) = 4inB(n),

— Tl 52(a-Bma * _ B(—n)z
g(x,m) = 0: (e sech ), g (z,n) = 0. (e sech x).

Then

Lmg(z,£n) = AXEn)g(x, £n), L) g"(z,£n) = ANFn)g" (=, £n).
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Now we define a spectral projection to the resonant eigenmodes {g+(x,n)}. Let

g1(z,m) =2Reg(z,n),  g2(z,n) = —2nImg(x,n),
gi(z,n) =Reg*(z,n),  gi(x,n)=—-n""Img*(z,n),

and let Py(n) be a projection to resonant modes defined by

Po(no) f (. ) = o Z/ (m)gr(z, m)e" dn,

k=1,2
M )
a(n) /RMligloo( Mf(xl,yl)e’”“” dy1>g;’$(fﬂ1,n) daxy

= \/ﬂ/R(fyf)(xan)gZ(%n) da.

For ny and M satisfying 0 < ng < M < oo, let
1
™

Pilm, Myutaeg) =5 [ [ utwp)en ) gy,
no<|nl<M JR
Py(no, M) == P1(0, M) — Po(no)-
Then we have the following.

PROPOSITION 2.2 (Mizumachi [24, proposition 3.2, corollary 3.3]). Let o € (0,2)
and let 1 be a positive number satisfying Re 6(n1) —1 < «. Then there exist positive
constants K and b such that, for any ng € (0,m], M =no, f € X and t >0,

" Py(no, M) fllx < Ke ™| flIx.
Moreover, there exist positive constants K' and b’ such that, for t > 0,
€2 Pa(mo, M)D fllxc < K™ 720" ],
6" Pa(1j0, M)Dy fllx < K'e " 73/ 4|e f| 1 12

3. Decomposition of the perturbed line soliton

Let us decompose a solution around a line soliton solution p(z — 4t) into the sum
of a modulating line soliton and a non-resonant dispersive part plus a small wave
that is caused by amplitude changes of the line soliton, namely,

u(t, 2,Y) = Qo) (2) = Yety),0(2 +3t) +o(t, 2,y), z=z—2(ty), (3.1)

where ¢ (x) = 2(\/% — 2)¢(x + L), ¥(z) is a non-negative function such that
Y(x) =0if |z > 1, [pep(x)dz =1, and L > 0 is a large constant to be fixed later.
The modulation parameters c(to, yo) and x(tg, yo) denote the maximum height and
the phase shift of the modulating line soliton ¢ ., (x—2z(t,y)) along the line y = yo
at the time ¢ = ty, and 1) 1, is an auxiliary function such that

/ Yo () dz = / (pela) — p(z)) d. (3.2)
R R

https://doi.org/10.1017/50308210517000166 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210517000166

Stability of line solitons 155

Since a localized solution to KP-type equations satisfies fR u(t,z,y)dx = 0 for any
y € Rand t > 0 (see [29]), it is natural to expect small perturbations to appear in
the rear of the solitary wave if the solitary wave is amplified.

In order to use exponential linear stability of line solitons for solutions that are
not exponentially localized in space, we further decompose v into a small solution of
(1.1) and an exponentially localized part, following the idea of [25] (see also [27,28]).
Let 01 be a solution of

Oy + 0501 + 30,(07) + 30, 1020, = o,} 53)
01(0, 2, 9) = vo(z,y),
and
vi(t, z,y) = 01(t, z + 2(t,y),y), wvalt,z,9) =v(t, zy) —vi(t,z,9). (3.4)

Obviously, we have v(0) = 0 and vo(t) € X := L?(R?;e?** dzdy) for t > 0 as long
as the decomposition (3.1) persists. Indeed, we have the following.

LEMMA 3.1. Let vg € HY2(R?) and let #1(t) be a solution of (3.3). Suppose that
u(t) is a solution of (1.1) satisfying u(0,z,y) = @(x) + vo(x,y). Let w(t, z,y) =
u(t,z +4t,y) — o(x) — 01(t, x + 4t,y). Then, for any o € [0,1),

w € C([0,00); X), (3.5)
Oz w, a;layw € L*(0,T;X) for every T > 0.

Moreover, if, in addition, vy € 0,L*(R?), then
0 (u(t,z,y) — p(z — 4t)) € O([0,00); L*(R?)). (3.7)

We remark that, by [31], d,w,d;'0,w € LL*([-T,T] x R,) for any T > 0
provided that vy € L?(R?). To prove lemma 3.1, we use the following embedding
inequalities.

CrLAM 3.2. Let p,(z) = e2*"*(1 + tanh a(x — n)). There exists a positive constant
C such that, for every n € N,

/R2 P (x)®w’(s, 2, y) dz dy
3
< C[/]R2 Pl (2){(0,w)? + (8;13yw)2 (s, oy dady| . (3.8)

Moreover, for any p € [2,6],

ax 3/p—1/2 — _
le®ull e < Cuull¥? ™2 (0wull x + 105 Oyul|x + [luflx)*/>7%. (3.9)

Proof. First, we remark that

0 < pl(z) < 2ap,(2) <4ae®®,  |pi(e)] < 2ap)(z),  |p) ()] < 4a®p,,(2).
(3.10)
Using (3.10), we have (3.8) in the same way as in the proof of [30, lemma 2] and [26,
claim 5.1].
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Equation (3.9) is obvious if p = 2. For p = 6, we have (3.9) with p = 6 by
passing to the limit n — oo in (3.8) because p (z) > 0 for every z € R and p),(x)
is monotone increasing in n. Thus, we have (3.9) by interpolation. O

Proof of lemma 3.1. First, we prove (3.5) assuming that vy € H3(R?) and vy €
0, H?(R?). It then follows from [6,31] that 91, w € C(R; H*(R?)) and 9, 1,0, 'w €
C(R; H?(R?)). Since Loy = 30,%? and u and ©; are solutions of (1.1),

(3.11)

Orw = Low — 0N,
w(07 x? y) = O?

where 91 = 6p(w + 71) + 3w(w + 207). Multiplying (3.11) by 2p, (z)w(¢, z,y) and
integrating the resulting equation by parts, we have

G L@t dedy+ [ o @ew) - 1)) dody
R2 R2

- 6/}1{{2{19;(9;)(61(@ 2,9) + @(x)) — pu() (001 (t, 2, y) + ¢ (@) Jw(t, 2, y)? de dy
— 12/ pn(l')w(t,1'7y)ax(<p(x)@1(t,z,y))dx dy + / pg’(x)w2(t,g;,y) dzdy,
) N (3.12)

where €(w) = 3(0,w)? + 3(9; 1 9,w)?* + 4w?. By claim 3.2,

/ Pl (2)w?(t,z,y) dz dy‘
RZ

< wlis ([ o para) ([ p@ewinegaa)

and it follows from (3.10) and the above that there exist positive constants v and
Cy such that, for any n € N, T > 0 and t € [0, 77,

t
/pn(x)wQ(t,%y)dxderV// P (2)E(w)(s, 2, y) dedy ds
R2 0 JR2
<CiT sup |‘171(t)||%11
t€[0,T)
t
+Cy sup (14 ||o1()]| g + Hw(t)||i2)// P ()w? (s, 7, y) dz dy ds.
t€[0,T) 0 JR2

By Gronwall’s inequality, we have, for ¢ € [0, T],

/ po(@)w?(t, 2, y) dady < Co sup |52 ()%,
R2 te[0,T)

where C5 is a constant independent of n. By passing to the limit n — oo, we have

[w®)|% < Cz sup [[o1(t)][F for t € [0,T],
tel0,T
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since 0 < p,(z) 1 2e%*® as n — oo. Thus, we prove that w € L°(0,T; X) and
pw, 07 10yw € L?(0,T; X) for every T > 0 provided that vy € H?(R?*)N9, H?(R?).

Let p(z) = e2*®. Integrating by parts the second and the third terms of the
right-hand side of (3.12), integrating the result over [0, ¢], and passing to the limit
n — oo, we have

[ e tamdndy+ [ [ paew) - a0t} sa) dedyds
:QAJEQLM+¢@Mﬁ@ﬂﬂ&%w+mww%mwwwﬂ®ﬂy
+ 12/0/]R2 O {p(x)w(s,x,y) }o(x)v1(s, z,y) de dy ds

t
+// " (z)w(s, z,y) dz dy ds.
0 Jr2

By the Holder inequality and claim 3.2,

\ [ @) (s,2,) + p(2) (wdsw) (s, 2,9) 0105, 2,0) + () dady
< (10w(s)[1x + [w()lx) [l (s)l| allor () + @ s
< 51(s) + @l w(s) 11 (w(s) 21
] / 0u{p(@y(s, v, y)}p(@)o (s, 2.y) dxdy] < o1 ()22 1€ (w() /2] x,
and

\ / p(@)w’(s,z.) dxdy\ < ()l ()1 1€ (w(s) 215

Combining the above, we have, for ¢ € [0, 77,

lw@)% + v / 1€ (w(s) 2% ds

S /0 {Ilo1($)lI72 + (o1 ()72 + w(s)[72 + @ + va(s)|Za) ()% } ds, (3.13)

where v is a positive constant independent of T'. Since ||71(¢)||L2 = ||vol| 2 for every
t € R and HY?(R?) ¢ L*(R?), it follows from Gronwall’s inequality that
lw (@) < CoTe o2 for t € [0,7], (3.14)

where C5, Cy are positive constants depending only on ||v1 (¢)||z1/2 and ||Jw(t)]| 2.
By a standard limiting argument, we have (3.14) and (3.6) for every vy € H/?(R?).

Next, we will show that w € C([0,00); X). By claim 3.2, (3.14) and (3.6), we
have that

ax 1/4 3/4
e w] pe < [lw]| X HIE@) 2" € L¥3(0,T; X),
1Mllx S lwllx + [81llzz + (Jwllps + [[o1]pa) e w] o € L3(0, T; X).
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By the variation of constants formula,
t
w(t) = —/ elt=s)Log, M. (3.15)
0
By lemma 2.1, (3.15) and the fact that 9, € L8/3(0,T; X), we have, for h > 0,

+ O(h/?).
X

t
(e + h) = w(®)]lx < ||~ 1) / o709, (s) ds
0

Since e*“0 is a C%-semigroup on X, it follows that w € C([0, 00); X).
Finally, we will show that (3.7) holds. Let (¢, z,y) := u(t,x+4t,y) — p(z). Then,
by the variation of constants formula,

t
a(t) = eFovy — 3830/ et=9)L0 (200 (s) 4+ u3(s)) ds. (3.16)
0
Since e**° is unitary on L?(R?), 97 vy € L?(R?) and a(t) € C(R; H/?(R?)), we
easily see that (3.7) follows from (3.16). Thus, we complete the proof. O
Next, we will show the continuity of H'/2(R?) 3 vy — u — o1 — @(x — 4t) € X.

LEMMA 3.3. Let vg € HY2(R?) and vo,, € HY?(R?) for n € N. Suppose that vy,
01, w and uy, are solutions of (1.1) satisfying

{)1(07$,y) zvo(x,y), U(O,Ji,y) :(p(x)+1]0('ray)7
’El,n(owxay) = UO,n<x7y)7 Un<0,$, y) = @("E) + Uom(l',y).

If limy, .00 [[v0,n — Vo g1/2(r2) = 0, then, for any T € (0, 00),

lim sup ||u(t) — 01(¢) — un(t) + 01,0 (t)]|x = 0.
n—oo tG[O T]

PTOOf. Let 171,n(t,x,y) = '[)1,n(t7x + 4, Z/)7 w"(t,m,y) = un(tax + 4t7y) - 90(1') -

U1 0 (t, z,y) and W, = w — wy,. Then

(3.17)

Oyw,, = Low, — 83;((}{2 + (ﬁ3),
’lI)n(O,J),y) = 07

where

Na(t) = 3(2¢ + 201, (1) + w(t) + wa(t))wn(t),
N3 (1) = 6(p + w(t)) (01, (t) — 02(2))-

Multiplying (3.17) by 2e2*,, and integrating the resulting equation over R? x [0, 1],
we have

[ ()% + 20 / 1€ (i ()2 ds

:_2//]1@2 0. (Ma(s) + My (s)) drdyds.  (3.18)
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Using claim 3.2 and the fact that L*(R?) ¢ H/?(R?), we have

/ 25,0, Ny da dy‘
R2

S e || L (|02twn] x + [[wnllx) (1 + [01nll vz + [w + wnl 2/2)

S U+ Tl v + 1w + w19 |5 1€ @) V21
\ / e, 0,y dxdy\ < (1+ e wl| )91, — 1|z (|l x + [10atnllx)
< (14 1E@) 2| x) 01,0 — Bl a2 1€ () 2
Combining the above with (3.18), we have

1@ (O S (T + 1€ (wn) (|2 0,7:x)) o [v1,n () = 01 () 7272
€10,

t
+ sup (14 [[o1n(8)l[ sz + IIwn(t)+w(t)llH1/2)8/ 1 ()11 ds.
0

te[0,T]
(3.19)
Thanks to the well-posedness of (1.1) (see, for example, [6,31]),
lim sup ||v1,,(t) —v1(t)||g1/2 =0, lim sup ||W,(t)| g1/2 = 0.
n=% (0,7 n=00 ¢c[0,T]
Thus, by (3.14), (3.6) and (3.19), we have, for ¢ € [0,T],
t
[ ()% < Ch Sup [v1,n(8) = v1 ()| 312 + 02/0 [ ()% ds, (3.20)
€10,

where C7 and Cj are positive constants independent of n. Applying Gronwall’s
inequality to (3.19), we obtain lemma 3.3. Thus, we complete the proof. O

To fix the decomposition (3.1), we impose that v (¢, 2, y) is symplectically orthog-
onal to low frequency resonant modes. More precisely, we impose the constraint
that, for k =1, 2,

M — o0

M
lim / / va(t, 2,9) g5 (z,m, c(t,y))e ¥ dzdy =0 in L*(—no,m0),  (3.21)
-m Jr

where g7 (z,7,¢) = cgi (v/¢/22,1) and g5(z,7,¢) = §cg3(1/¢/22,m).

We will show that the decomposition (3.1) with (3.4) and (3.21) is well defined
as long as vs remains small in the exponentially weighted space X.

Now let us introduce the subspaces of L?(R) in order to analyse modulation
parameters c¢(¢,y) and z(¢,y). For an ng > 0, let Y and Z be closed subspaces of
L?(R) defined by

Y=F12  Z={feL*R)|suppf C [-no,nol}.

Let Y7 = .7:777121 and Z; = {f SV | Hf”zl = ||f||Loo < OO}
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REMARK 3.4. We have
| fllgs <mollfllzz for any s >0and f €Y, (3.22)
since fjs 0 outside of [—7g,10]. We have || f[|z~ < [/ f]|z2 for any f e Y.
Let P; be a projection defined by P f = f;ll[_nomu]fyf, where 1;_p, ».1(n) =
1 for n € [=no,m0] and 1(_y,40)(n) = 0 for n & [—no,mo]. Then [[P1flly, <
(27)~ V2| f|| 1 (R) for any f € L'(R). In particular, for any f,g € Y,

1P (f9)llyy < 2m) 2 fgllee < 2m) "2 fllv llglly- (3.23)

Next, we introduce functionals to prove the existence of the representation (3.1),
(3.4) that satisfies the orthogonality condition (3.21). For ¢ € X, v,¢é € Y and
L>0,let c(y) =2+ ¢(y) and

M
Fylu, ¢, LI(n) = 1{—pymo1(n) lim / {(z,y) + p(z) = e (x —7(v))
M JR

M—oco | _

+ wc(y),L(x - V(y))}g]t; (.’1? - ,Y(y)v m, c(y))e_iyn dz dy
The mapping F = (Fy, F5) maps X x Y x Y x R into Z x Z.
LEMMA 3.5 (Mizumachi [24, lemma 5.1]). Let a € (0,2), @ € X, ¢,y € Y and

L > 0. Then there exists a 6 > 0 such that if ||¢]|y + |||y <6, then Fylu,¢,v,L] € Z
fork=1,2.

LEMMA 3.6 (Mizumachi [24, lemma 5.2]). Let « € (0,2). There exist positive con-
stants dg, 01 and Lo such that if ||t||x < o and L > Ly, then there exists a unique
(¢,7) with ¢ = 2+ ¢ satisfying
lelly + llvlly < o1, (3.24)
Fila,é~, L) = Fali,é,,L] = 0. (3.25)
Moreover, the mapping {i € X | ||ul|x < do} 3 @+ (¢,) =: ®(a) is CL.
REMARK 3.7. Let u be a solution of (1.1) satisfying u(0, z,y) = ¢(z) +vo(x,y) and
let ©; be a solution of (3.3). Suppose that vy € H'/?(R?). Since # € C([0,T); X) by
lemma 3.1, and ||9(0)||x is small, we see from lemma 3.6 that there exists a T' > 0

such that
(v2,6,%) € C([0,T]; X xY xY).

Moreover, replacing w in [24, remark 5.3] by @ = u — ¥, and using lemma 3.1, we
can see that there exists a T' > 0 such that

(&(t), (1)) = D(3(t)) € C([0,T]; Y x Y)NCH(0,T);Y xY),
where (¢, z,y) = u(t,z + 4t,y) — p(z). Moreover, we have v, € C([0,T]; X) and
(9(0),¢(0),2(0)) = (0,0,0).

REMARK 3.8. Let u, 01, ¢ and & be as in remark 3.7 and let u,, and 91, be as in
lemma 3.3. By lemmas 3.1 and 3.3,

ﬁn(t,l’,y) = Un(t,l’ + 4t7y) - f}17n(t7$ + 4t7y) - SO(I) € C([O7 OO)7X)a
Tim [[5,(8) - (8)x = 0.
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and it follows from lemma 3.6 that there exists a T > 0 such that
(En(t), En(t)) := D(0n(t)) € C([0,T);Y x Y)NCH(0,T);Y x Y),
lim SUPT](HEn(t) —e®)lly +l12n) —2()|y) = 0.
0,

n—oo t€[

Following the argument of [24, remark 5.3], we also have

lim sup (||0:¢,(t) — 0:C(t)|ly + |0:Tn () — 0 Z(t)]|y) = 0.

n=00 t[0,T]

We use a continuation principle that ensures the existence of (3.1) as long as
[lva(®)||x and ||¢(¢)||y remain small.

PROPOSITION 3.9. Let a € (0,1), let 69 and L be the same as in lemma 3.6, and
let u(t) and v1(t) be as in lemma 3.1. Then there exists a constant §3 > 0 such that
if (3.1), (3.4) and (3.21) hold fort € [0,T), and va(t, z,y), é(t,y) :=c(t,y) —2 and
Z(t,y) := x(t,y) — 4t satisfy

(6,2) € C([0,T);Y xY)NCH(0,T);Y x Y), (3.26)
sup vz (t)[[x < 50 sup [|le(t)[ly < 62, sup [|lZ(t)[ly <oo, (3.27)
te(0,T) t€[0,T) tel0,T)

then either T' = oo or T' is not the mazimal time of the decomposition (3.1) satis-
fying (3.21), (3.26) and (3.27).

Proof. Since u(t,z,y) — p(x —4t) — 01 (¢, z,y) € C([0,00); X) by lemma 3.1, we can

prove proposition 3.9 in the same way as [24, proposition 5.5]. O

4. Modulation equations

In this section we will derive a system of partial differential equations (PDEs) that
describe the motion of the modulation parameters c¢(t,y) and z(t,y). Substituting
U1 (t,x,y) = v1(t, z,y) with z = 2 — x(t,y) into (1.1), we have

6,5’()1 — 2682111 + 83’01 + 382_1851)1 = 8Z(N171 =+ Nl,g) + N173, (41)

where Ny = =30, Nio = {z, — 2c — 3(xy)2}vl and Ny 3 = 60y (x,v1) — 3xyyv1.
Substituting the ansatz (3.1) into (1.1), we have

6tv:£cv+€+8z(N1+N2)+N3, (42)

where ,CC’U = *8z(83 — 2c+ 6@0)’0 - 38;18?3, { = 61 + 62, Zk = gkl + gkg + gkg
(k=1,2), Pe(2) = e,r(2 + 3t) and

011 = (24 — 2¢ — 3(2y)?)pl. — (¢t — 6cyTy) Oetpe,

612 = 3xyy@cu
li3 = 3cyy/ Ocpe(z1) dzy +3(cy)2/ 2. (21) dz1,

by = (Ct - chxy)ac’l/;c - (‘Tt —4 - 3(1'1/)2)777};7
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lay = (02 = 0:)the — 30.(U2) + 60. (pctbe) — 3yytle,
s = =y, [ 0clz)dn =306, [ 020(ar) dm
Ny = =302, i )

Ny = {&; — 2¢ — 3(z,)*}v + 69,0,
N3 = 6240yv + 3y, v = 60y (x,v) — 3zyyv.

Here we use the fact that ¢, is a solution of
! — 2cp. 4 302 = 0. (4.3)

We slightly change the definition of ¢ from that in [24] in order to apply the virial
identity to [g. ¥e(2)vi(t, 2, y) dz dy.
Subtracting (4.1) from (4.2), we have

Oy = Lovag + L+ 0;(No1 + Nao + Nog) + Nos, (4.4)
where
Na1 = —3(2u1ve + v3), Noo = {xy — 2¢ — 3(x)? Yz + 6bevs,
N 3 = 60y (x,v2) — 3Ty, v2, Noy = 6(¢e — @c)vr.
Let

M, .(T) = SUg(HE(t)HY + [l (O)ly) + eyl 20,757y + 12yyll 220,757y

)

My(T) = sup_[lor(8)]L2 + 1€ @w1) 2| z20.m:w 1))
t€[0,T)

M{(T) = sup |51 (t)]|zs,

t€[0,T)
Mz(T) = sup [fa(t)]lx +1€(v2) "Il 20,1 5),
\t\
M, (T) = sup |lv(t)]|L2,
t€[0,T]
where [|v]lw ) = [|(e7I*1/2 + e~ =3+ L)y || 12 ga), L is a large positive constant

and

az%%varay>::fzé(Zfzgwufnn)-

By lemma 3.1, we have vy(t) € X and

afwwaw:—/ oalt, 21, ) dz € X

if x(t,-) € L*(R).

Now we will derive modulation equations for ¢(t,y) and z(t,y) from the orthog-
onality condition (3.21) assuming the smallness of M, ,(T"), M;(T) and My(T).
It follows from [31] and lemma 3.2 of [17] that ©1(t),5(t) € C(R;L*(R?)) and
0, 10,01,0;10,0 € L L ([T, T]xR,) for any T > 0. Moreover, lemma 3.1 implies
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that 9(t) € C([0,00); X) and 9;'9,0 € L?(0,T; X). If M., (T) and M(T) are suf-
ficiently small, then we see from remark 3.7 and proposition 3.9 that the decompo-
sition (3.1) satisfying (3.21) and (3.26) exists for ¢ € [0, T]. Since Y C [ 5, H*(R),
we have

UQ(t7 2, y) - ’D(t’ z+ j(ta y)7 y)
= SO(Z + j(tvy)) = Pe(t,y) (Z) + wc(t,y)(z) € L2(R2) N Xv (45)

and we easily see that vy (t) € C([0,T]; X N L?(R?)). Moreover, since

/R {0z 1 2(4)) — Per(2) + Doy (2)} dz = 0

for any y € R by (3.2), and its integrand decays exponentially as z — o0, we have

(0710,v2)(t, 2,y) € L*(0,T; X) N L L*([-T,T] x R,).
Approximating g;(z,n) by Cj(R)-functions in L?(R;e™2** dz) and using proposi-
tion 3.9 and remark 3.7, we can justify that the mapping

t— / va(t, z,y) g5 (2, m, c(t, y))e_iy” dzdy € Z
RQ

is C! for t € [0,T] if we have (3.26) and (3.27). Differentiating (3.21) with respect
to t and substituting (4.4) into the resulting equation, we have, in L?(—no, o),

d o Y R S
T va(t, z,y) g5 (z,m, c(t, y))e V" dz dy
]RQ

6

- / (GG m el y)e dzdy + 3 T () =0, (4.6)
R2 A
j=1

where

11t = [ valt, 2L G20 2 00t 1o d
R

I = - /2 N19.g;(2,m, c(t,y))e V" dz dy,
R
I} = /2 No3gi(z,m,c(t,y))e ¥ dzdy
R
o R N o e ) S
R

Hi = /2 va(t, z,y) (et — 6eywy) (L, ¥)0egi (2,1, c(t,y))e_iy" dzdy,
R

- — / Ny 287 (2, et y))e ¥ dz dy,
RQ

Ilg - — / N2,48zg]:(za 1, C(ta y))efiyn dz dy
R2
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The modulation PDEs of ¢(t,y) and x(t,y) can be obtained by computing the
inverse Fourier transform of (4.6) in 7. The leading term of

/ 09k oo, et g0))e @) dz dy, dyy
27T R2

is
Gilt,y) = / 06950, et y)) de. 47)
R
Since

G7(2,0,¢) = ge(z) and  g5(z,0,¢) = (3¢)¥/2 / Deer

we can compute G1 and G4 explicitly.

LEMMA 4.1 (Mizumachi [24, lemma 6.1]). Let pu3 = 1/2—72/12 and ps = 7%/32 —
3/16. Then

3
G1 = 162y, (3¢ e)*/? = 2(cy — Geyy)(5c )2+ 6eyy — C(Cy)2v
Ga = =2z — 2¢ = 3(2,)*)(50)% + 61 (50> = 3 (e — 6ey, ) (5¢) '/
+ Hicyy +H2(Cy)2(% )

We remark that (G, G) are the dominant parts of the modulation equations for
c and z. Now we will write the remainder part of

[ s ae nazay
R2

in the same way as [24]. For ¢. = ¢, ¢.., Oc. and
a, 13mgoc / Olve(z1)dzr (m = 1),

let S}gc] and S?[q.] be operators defined by

SHal 60 = 5o [ [ S 2o az
Sl ((60) = 2 [ [ Sn)et ol e " s,
where
i (z,m,¢) = G C)%g’t(’z’ 0.9, 0qc(2) = 7%(22 — gz('z),
ia(2m.0) = gis(2.m,2)0q.(2) + Sl ZIn G2 (o)

c—2
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Note that S} € B(Y) and S}, is independent of ¢(t,y) whereas [|SE||gy,vi) S ll€lly:
see [24, claims B.1 and B.2]. Using S} (j,k = 1,2), we have

1 Mo .
C1(g5(zm, c(t,y) — g5i(2,0,¢(t, y)))e " dzdy dn

= = Y RSP — 20 - 3(x,)?) — Sildepc(er — Beya,))

j=1,2
— 92(Ry + RY). (4.8)

Rllc = 3511 [pe](@yy) — 3Sk [0 lavsﬁv]( y)s
R = 35¢[pe](wyy) — 35107 devel(ey) =3 D S0 020el(c]):

27'(' —n0 R2

We rewrite the linear term R} as

R% & Cyy & —Sll [3213&%] Sll [‘PC]
1] =50 ; So=3 119—1 1 :
R2 {Eyy _SQ [82 66906] 52 [906]
Next, we deal with

o / g5 (2., c(t,y1))e ¥ dz dy; dn.
iy R2

Let S3[p] and S¢[p] be operators defined by
SEPI(F)(t,y) 277/ Jp(z+3t+ L)g gi (z,m)el =" dy, dz d,

Sklpl(f / fy1 (t,y1)p(z + 3t + L)
X mei(y_yl)” dyy dz dn,

where gi5(2,m,¢) = (c —2) "1 (g; (2,1, ¢) — g;(2,7n)). By the definition of Ve,

/ €195 (z,m,c(t, y))e V" dzdy dn
R2

= (SR + Sel))(v/2/eler — Beyay))
= 2V2(SP] + Sl D (Ve = V2) (2 — 4 = 3(2,)%).  (4.9)

om

The operator norms of Si[w], SZ[W] (j = 3,4, k = 1,2) decay exponentially as
t — oo because gf(z,7n) and g;(z,n, c) are exponentially localized as z — —oco and
¥ € C§°(R); see (A3) and (A4) in appendix A.

Next, we decompose

(2m)~ / (Laz + L23)gi (2, m, c(t, y))e ¥ dzdy dn
Rz
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into a linear part and a nonlinear part with respect to ¢ and . The linear part can

be written as

o / lo1in(t, 2 yl)gk(z n)e ily—y)n dy, dzdn =: ax(t, Dy)¢, (4.10)
Yis R2

where
gQ,lin(tv Z, y) = 5(t7 y)az{ag -1 + 690(’2)}1/](2 + 3t + L)

— 3cyy(t,y) /OO ¥(z1 + 3t + L)dzy,
n) = [ J0:02 1+ 60wt + 3+ Dt s

+3n2/R(/ 1/1(21+3t+L)dzl>g;;(z,77)dz]1[_nom](n)7
(4.11)

and the nonlinear part is

R} (t,y) / / loo + Lo3)g;i(2,m, c(t, y1))e V=¥ dz dy, dn

~ 5 /62 hngk(z n)e (y=y1)n dz dy; dn. (4.12)

Next, we deal with I, (j = 1,...,6) in (4.6). Let
11y = =3 | vt 2yt ) el e dd,
Hi2 =6 /11&2 va(t, 2, y)xy (2, y)Me*iy’7 dzdy
so that Hi = Hil + 1771122 For k=1 and 2, let

1 70 i
Ry(t,y) = oy / {11} (t, ) + 112(¢,n) 4+ 113, (t, ) }el¥" dn,
s (4.13)

1 0 :
RZ (tv y) = % / II%2 (t7 ’7)6 v d77

—To

Let S and SP be operators defined by

Sp(f)(ty) 277/ /]Rz va(t, z,y1) f (y1)0egi (2,1, c(t, 1))@ dz dy, dn,

Sp(f)(t,y) = o /RQ a(t, 2,31) f (¥1)0:95 (2, m, et y1))e V¥ dz dy, dn,

and

3 7o o
Rz = - / , wc(t,yl),L(Z + 3t)1}2 (tv Z, yl)azg;: (Z7 m, C(tv yl))e (y=v)n dyl dz d77

™
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Then
1[—710,710](77)11%@»77) = \/ﬁfy(s,?(ct — 6cyxy)), } (4.14)
Lo ol (ML (8,7) = V21 F, { S} (a0 — 2¢ — 3(2,)?) }
Let RV = (RY, R¥")T and
1 [ .
Ry (ty) = o / 118 (¢, m)e'¥" dn  for k=1 and 2. (4.15)

—no

Using (4.7)—(4.15), we can rewrite (4.6) as

G ~ ~ ~ ~ ~ -6
P1 (G;) — (8;(51 + SQ) —S3— 854 — 55) (wt itQC _C‘qé?; )2>
Yy
+ A (t) (;) —0}R'+ R'+0,R*+ R" =0, (4.16)

where R = (R}, R)T for j =1,...,6,v; and

o _S{[adoc {QD/C] - o SSW] 0
Sj‘(—sé[ac% Sile ;1) forj=12 3‘(5§[¢1 0>’
g4:(s%[ G(VZe— 1)) + Sl (V/2Te) —2<S§[w']+5%[w'1><<¢?c—2>>)

SH)(v/2]e — 1)) + SA0l(v2/e) —2SH] + SE(VEe - 2)))

5 (S? S¢ ~ « fa(t,D,) 0
S=(o s) A0=(G00 o
Rl—R3+R4+R6+S‘4<206>, R? =R’ - 9,R%

To translate the nonlinear terms 6(c/2)/%c,z, and 16x,,{(c/2)%/? — 1} in G into
a divergence form, we will make use of the following change of variables. Let

b(t,) = P {V2c(t,)*? — 4}, C1 = 1Pi{c(t,-)* — 4} Py, (4.17)

5 0 0 2 0 6 16
asfoa) mea) 2e(aw)
We remark that b~ ¢ = ¢ — 2 if ¢ is close to 2 (see [24, claim D.6]). By (4.17), we
have b, = Pi(c/2)'/?¢;, b, = Py(c/2)/?c, and it follows from lemma 4.1 that

A(g) =-mrcon (M) e () e, s
where R7 = (R], R})T and
R = {4V2¢%? — 16 — 12b}x,, — 6(2b, — (2¢)/2¢,)x, — 3¢ (c,)?,
RI = 6{(lc)3/2 — 1}y, + 3(10)1/20y$y — 3(bzy)y + ,LLQ%(Cy)2 (4.19)
+5( =4I = P ().
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1/2
. t,- ~ = Cx 0
CQZPI{(C(2 )) —1}P17 Co= 02 0>7

S;=8;(I+Cy)™t for1<j<5

Let

and
B3 =B, +51 +8§(§1 —l—gg) —5’3 —S4—S5. (420)

Note that I + Cs is invertible as long as é(t, ) remains small in Y and that Bs is a

bounded operator on Y X Y depending on é and v. Substituting (4.18) into (4.16),
we have

6(b
mh (0 0)
= {(B2 — 8250)92 + A (t)} (2) +PR" + R' + R® + 0,(R* + R*) + R™,

where R3 = R? + R'', R* = R® + R'0 and

R® = 60,(S1 + S) ( I+ CQ)(%?’) - (bx”)y> :

R=-6Y § ( (I +Ca)(cyay) — (bxy)y) ,

- 0
3<j<5

10— (928, — By) (by S Cy) R =A@ <5gb> .

We have the following.

PROPOSITION 4.2. There exists a 83 > 0 such that if M. ,(T)+Moa(T)+no+e~ L <

03 for a T >0, then
b\ B\ = i
(56) = A(t) (5[;) + ;:11\/ , (4.21)

where By = By + 6331 - 53 = Bg|5:0)v2:0,
-1 25 \a2 1 0 0
Al = B (B2 - 935002 + B A0 + (5 ).
1_ p G(b‘%y)y 2 _ Af2a 2b
N= B (Q(Eng(~ B) NN,
A2 1 (5 (R] 51, B3 2% —15 (0
= B;' (P YRR, N =BE (),

N? =B310,(R* + R'),  N*'=(By' —Bi")(B2 — 8;5)9, (;) ’
Y
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Moreover, if v2(0) =0,
b(0,-) =0, z(0,-) = 0. (4.22)

Proof. Proposition 3.9 implies (3.1) persists on [0,77] if 03 is sufficiently small.
Moreover, claims 4.3-4.5 below imply that Bs, By and I+Cy, are invertible if ||&(2) ||y,
lo(t)|lx, no and e~*L are sufficiently small. Thus, we have (4.21). Since v,(0) = 0,
we have (4.22) from lemma 3.6. This completes the proof of proposition 4.2. O

CLAIM 4.3. There exist positive constants 6 and C such that if M. ,(T) < 6, then,
for s €10,T) and k = 1,2,

sup [|Ck ()l vy + ICkll 0,780y < CMea(T), (4.23)
t€[0,T]
sup [[Ck(®) || pv,vy) < CMe(T), (4.24)
t€[0,T]

(I +Cr) " lsery + I+ Co) " Mlam) < C.
Claim 4.3 follows from [24, claim B.6] and the definition of M, ,(T).
CLAIM 4.4. There exist positive constants C and § such that if n3 +e~*L < 4, then
1B By + 1B Bvi) < C-

CLAIM 4.5. There exist positive constants 6 and C such that if M. ,(T) +Ma(T) +
ng +e L < 6, then, fort € [0,T),

| Bs — Ballpy) + [1Bs — Ballpvi) < C(Meo(T) +Ma(T)),
I1B5 I 5vy + 1B5 vy < €.
The proof of claims 4.4 and 4.5 is exactly the same as the proof of claims 6.2
and 6.3 in [24].
5. A priort estimates for the local speed and the local phase shift

In this section we will estimate M, ,(T") assuming the smallness of M, ,(T"), M;(T")
(i =1,2), no and e~ L.

LEMMA 5.1. There ezist positive constants 64 and C' such that if M, ,(T)+M; (T)+
My (T) + 1o + e~ L < 44, then

Mo (T) < C(llvoll 2 @2y +Ma(T) + Ma(T)?). (5-1)

Before we start to prove lemma 5.1, we estimate the upper bounds of ¢; and
zy — 2¢ — 3(my)2

LEMMA 5.2. Let 03 be as in proposition 4.2. Suppose that M. ,(T) + My (T) +
Mo (T) + 19 + e L < 63 for a T > 0. Then

||CtHLOO(O,T;y)mm(o,T;Y) + [|os — 2¢ — 3(xy)2”L°°(O,T;L2(R))mL2(O,T;L2(R))
<10 Mo (T)? + Mo (T) + My (T) + My(T)2.

~
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To begin with, we will estimate the nonlinear terms of (4.21).

CLAIM 5.3. Let M. 5(T'), My (T), Ma(T), 1o and L be as in lemma 5.2. Then

sup 62y [ly + 11(6%y)y | 22 (0,7v) S Mew(T)?, (5.2)
telo,
sup [N (0)[ly + IN**(|10,70v) S Meo(T)?, (5.3)
t€[0,T
sup [N (@O)lly + [N 2017y S Meo(T)? +Mu(T)? + Ma(T)?,  (5.4)

t€[0,T)

S[lé}}] HNS(t)HY + HN3||L2(O,T;Y) S Mc,z(T)2 + Mc,m(T)M2(T)> (5-5)
telo,

ol IV @)y + [Nl 220,757) € Mew(T)? +Meo(T)MA(T),  (5.6)
te|o,

sup [N (0)[ly + [Nl L2 0.70v) S M (T). (5.7)
t€[0,T)

Proof of claim 5.5. Equation (5.2) follows from [24, claim D.6] and the fact that
Y C H'(R). Equations (5.3)—(5.5) follow from claims 4.5, B.1, B.2, B.4-B.6, (A 3)
and (A4).

Next, we will estimate N'*. Let 5" = 9755454455 and 5" = 85(5'1—51)+5’3—§3.
Then B; ' — B;' = By (5§ + 8")B; " and

sup |91 Bv,vy) S Mew(T) + Ma(T) (5.8)
te[0,T]

by (A2), (A6) and (A7), and

sup |18l pvva) S (15 + e~ )Mo (T) (5.9)
t€[0,T)

by (A1), (A6) and claim 4.3. Combining (5.8), (5.9) with claims 4.4 and 4.5, we have
(5.6). We can prove (5.7) in the same way as (B 14) of claim B.7 in appendix B. O

Proof of lemma 5.2. Claims 5.3 and B.3, (4.21) and [24, (D.12)] imply that

||CtHLOO(O,T;Y)HL2(O,T;Y) + [|os — 2¢ — 3151(17.1;)2||L°°(0,T;Y)HL2(07T;Y)
S gy lly + llzyylly + 1AL @, )y + 10y lly + > [N ]ly

2<i<5
< Meo(T) + My (T) + Ma(T)>.
Since Fy{(I — Pl)(xz)}(t, n) =0 for n € [—no, o, we have
I = B Plee < 5 10y S 0 loyliv oy, (5.10)

whence ||(I — Pl)(xy)Q||Loo(07T;L2)nL2(O’T;L2) < 77(;1/2Mc,,3(T)2. Thus, we complete
the proof. O

To prove lemma 5.1, we need the following.
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CLAM 5.4. There exist positive constants m, 0 and C' such that if no € (0,m] and
Mo (T) < 8, then [0y, B4] =0,

1[0y, B fllz2(0,15v1) < C(Me(T) + Ma(T)) ot 1F@®lly,
tel0

10y, B fllLr0.15v1) < C(Mea(T) + Mo (T)Ifl| L2(0,75v)-
The proof is given in appendix A.

Proof of lemma 5.1. Let us translate (4.21) into a system of b and z,. Let
A(t) = diag(1,0,)A(t) diag(1,0, "),  Bs = By + 9251,
Ay = diag(1,8,) {351(32 — 0250)0; + (g 8) } diag(1,d,) ",

Ay (t,Dy) = diag(1,0,)(B, " — By )(32 — 8§§O)diag(8§,8y)
+ dlag(Lay)Bi’, Al( )’

where 9" = F, "' (in) ' F,. Then A(t) = Ao(Dy) + Ai(t, D). Note that A(t) =
At )dlag(l 9, 1). Multiplying (4.21) by diag(1,d

(4.21) into
O ( ) <acby) —l—Zdlag 1, 0y)N?, (5.11)
-0, xy(o ) =0.

;) from the left, we can transform

Let Ag(n) be the Fourier transform of the operator Ag. Then

(3 8) o (F2)+(5 3
= A.(n) + (O(n4) 0(773)) ’ 1)

where

2 2

_( 8iry _ M3 i
A*(n)_<in(2+u3n2) —?72> and - p3 = * *

OO\’—‘

1
2 T1T2 w7y

Next, we will diagonalize A.(n), a lower-order part of Ay(n). Let

=16+ (8us — 1)n2,  AE(n) = =20 £ inw(n),

() = % (n +i(n) n i(n)) '

Then I1..(n) "t A.(n)IL.(n) = diag(A(n), Ay (n)). We remark that if u3 is replaced
by %, then w(n) = 4 and e!4+(Pv) is a composition of the wave and heat kernels. In
our setting,

w(n) — 4] S 7. (5.13)
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By the change of variables

= (). (250)-memn (40)

we have

5
Oib = {2001 + 0,w(Dy)os + Ax(Dy) + As(t, Dy) b + 1171 (Dy) Y diag(1,9,)N”,

= (5.14)
where
o3 = (é 2) . As(n) = IL(n) " (Ao(n) — Au(n) L. (n),
As(t,n) = IT.(n) " Ay (t, 1) L. (n).
For n € [~n0, n0],
mo- (7 2) |+ mw -1 )sm e

Hence, II,.(D,) and I1;!(D,) are bounded operators on Y for sufficiently small 7.
By (5.15) and Plancherel’s theorem,

‘(g&%>‘<?.i>wuo

By (5.12) and (5.15),

S 118yb(E, )y - (5.16)
Y

(5.17)
Since ||A1(t, Dy)||pyy S e~ *CHE) for t > 0 by claim B.3,

1 As(t, Dy)llBov) S e BHL) for ¢ > 0.

(5.18)
To obtain the energy estimate for b; and by, we translate the nonlinear term as

5
;71 (D,) > diag(L,0,)N" = N+ 9,(N° + N”') — 0, K (t, y) (5.19)
=1

such that Nj is quadratic in b; and be, that lim_,o [[K(Z,-)|ly = 0 and that
sup [N (O)[ly + IN" (Ol L1 o,7;v)
t€[0,T)

< (e ol 4 M. o(T))M, »(T) + M (T)? 4+ My (T)?, (5.20)
sup [N (@)lly + IVl 20,7;v)
t€[0,T)

,S Ml (T) + Mc,m (T) (Mc,m (T) + MQ (T))
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To begin with, we will translate the dominant part of II71(D,) diag(1, 9,)N?' in
terms of b; and by. Let

o 6(bx,) R ~ 0

(462 — 4byby — 202 .
N =P ! 2, N2 =N - NY.
! <2b§ + Abyby — 4b2

Then ~ .
;71 (Dy)diag(1,0, )N = 0, (N° + N + N?).
By [24, (D.16)] and the Sobolev inequality ||f||2LOO(R) <2/ fllee@w) L1 22 (m)»

o IV @)lly + N ]2 0,70y S Meo(T)°. (5.21)
te|o,

It follows from (5.15) and (5.16) that [|N2(t, )|y < ||b(t, )y ||oyb(t, )|y and that
sup [N (t,)lly + N[l L2 o,7v) S Mo (D). (5.22)
te[0,T)
Next, we will decompose diag(1, d,)N? into a sum of an L' (0, T;Y) function and
a y-derivative of L(0,7T;Y) as follows:
diag(1,9,)N? = diag(1, 9, )N** + 9,N*?,
Sup INZHly + N L o,7v) € Mew (T)? + Mu(T)? + Ma(T)?,

te[0,T (5.23)
sup |IN22|| + Nl L2 0,10v) S Moo (T).
t€[0,7)
By (4.20),
By'=Br' - B;1<51 +O2 Y 8- > Sj)Bgl. (5.24)
3=12 3<j<h

Let Fy = (39). Since
diag(1,9,)B; By = 19,B>,  diag(1,9,)B'Ci = 39,C1, (5.25)
we have diag(1, 9, )N?* = 9, N?! 4 diag(1, 9,)N?*2, where

/\/21’1_{;(192—01 ") + diag(,, 0; ZB '8;By }< )

Jj=1,2
N2b2 - — Z Bl_lnggl <R7) .
3<j<5 2
y (B5), (A6) and (A7),

sup [IN?!ly + [N L2 0,mv) S Mea(T)?,
te[0,T)

s INZ2lly + V2|1 0,7v) S (M (T) + M (T))Me,o(T)?,
te|o,
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and it follows from claim 5.3 and the above that
N21 . N2a +N2b2 and N22 — N2b1

satisfy (5.23).
Let R ~ R ~
N.?)l — [Bs_l,ﬁy](R2 +R4), N’32 — B?’_l(RQ +R4)

Then N3 = N3 + 9,32 and we have

| INE @)y, + IV L1 0,mv) S Meya (T) (Mo (T) + Ma(T))?,
telo,

sup IV @)y + [N 200,757) S Mo (T) (Meo (T) + Ma(T))
te|o,

(5.26)

in exactly the same way as the proof of (5.5). To prove the estimate for N3, we
use claim 5.4.
Secondly, we estimate A*. Using (4.20), we write N* as

Nt = 341{51 + )RS -8 > (S - Sj)}B31(a§§0 — By) (ZZZ> :
j=1,2 3<5<5
Using the fact that
B' =B =B 'SB + 0B S By, diag(1,0,) By 'Cr = 30,01,
we have

diag(1, 9, )N* = diag(N** + 9,N*?) + 9,N*3,

S - o (b
Nt = {3115334161 +B7 D (8- Sj)}le(Bz — 9,5%) ( W) >

3<G<5 vy
N® = {B;layS*lB;lC] + B> 9,8 - Sj)Bgl}Bgl(ajéo — B») (izz) ,
j=1,2
N = 38,8, @350~ Ba) ().
vy
Note that [By,d,] = 0 and [Sp, d,] = 0. By claim 4.3, we have
155 = Sjll By S lellee=l1Sjllpeyy  for 1 <5 < 5. (5.27)

By [24, claim B.1], we have ||§0||B(y) < 1. Using claims 4.4 and 4.5, (A6)—(AT),
(5.27) and the above, we have

ol INEOlly + IV 22 0,757) S Mea(T)(Meo (T) + Ma(T)). (5.28)
tel0,

By claim 4.4, (A1), (A2) and (5.27),
tS[%I;](HNQ(f)HY HINEOly) + IVl 20,7y + INF L2 0,rv) S Mew(T).
€lo,
(5.29)

https://doi.org/10.1017/50308210517000166 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210517000166

Stability of line solitons 175

A crude estimate ||N5|‘L2(O’T;y) < My (T) is insufficient to obtain upper bounds
of M, ,(T"). We decompose 11$ as 1S = 11§, + 2119, — 11?3, where

I, = 6/2 V1(t, 2,Y)Pe(t,)0-95 (2,0, c(t, y))e " dzdy,
R

II(132 =6 /2 U1 (ta Z, y)@c(t,y)azgfl(za m, C(ta y))efiyn dz dyv
R

II?S =6 /2 U1 (ta Z, y)"z)c(t,y)(Z)azgqiF (Zv , C(ta y))efiyn dz dy
R
By the fact that gi(z,0,c) = 3¢, and (4.3),
1 : ;
I, = 5 /2{(33 = 2c(t,y)0:)v1(t, 2, Y)Y Pe(ry) (2)e ™" dz dy.
R

Substituting (4.1) into the above, we have

1d .
1%, + 2t s V1(t, 2,Y) Pe(ty) (2)e ¥ dz dy
3 - —i
= D) , 8z 18731]1 (t7 2y y)goc(t,y) (Z)e Y1 dz dy
R

1 —i
—3 /RQ(NLl + Ni2) @y (2)e ¥ dz dy

1 i
+§/ N1,3<pc(t,y)(z)e Y1dz dy
R2
1 —i
3 [ ot et )i (e " dxdy.
R2
Let

1 1o oo
STlael(f)(t,y) = T/ / v1(t, 2, 50) F (Y1) ety (2)€ 7Y dz dy; dn,
T J—no JR2

1 o .
k(t,y) = — / / U1 (t, 2, Y1) Pe(tyr) (2) YTV dz dy; dn. (5.30)
47T —no R2

By integration by parts, we have

1d »
1[—770,170](71){11?1(15,77) EwT /]R v1(t, 2,Y)Pe(ty) (2)e VT dz dy}

= V2rF {ST[0cpc)(cr) — STlpe] (e — 2¢ = 3(xy)*)} + 11511 (8, 7) + in11515(t, ),
(5.31)

where

3 —i
105, (t,m) = B /R2 Ul(t,Zvy)zSﬁlc(t,y)(Z)e Y1 dz dy

3 - —i
+ 9 / (az layvl)(tv 2, y)cy(ta y)accpc(t,y) (Z)e YTdz dy
R2
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3
— 5/ v1(t, 2, Y {Tyy (8 Y) Pty (2)
RZ

+ 2(cy @y ) (t,Y)Ocpery) (2) eV dz dy,
3 = —i
11?12(t7 77) = _5 (82 18yU1)(t7 2 y)()pc(t,y) (Z)e Ydz dy

+ 3/ v1(t, 2, )y (Yot (2)e 77 dz dy.
R2
Let
PR S 6 iyn
R}} = o {4 (¢, m) — T5(¢,m) ye¥ dn,
—"o
- 1 [m s e iyn
Ry = o {115 (¢, n) — indLis (2, m) pe" dn.
—"o
Then

U1 1 0 6 iyn
Ry ~or I (¢, m)e dn

—"No

= S[0cpcl(ct) = STl@L)(xe — 2¢ = 3(wy)?) — Ok + Rij + O, RY3.
Combining the above with (5.24) and (5.25), we have

diag(1, 0, )N® = diag(1, 9,)(N°! + 9,N®?) + 0,N°3,

N = By ( i + 10 ) = STl = 26— 3<xy>2>)

_ Ry} _ 5 e 0 _ k
+ [BS 1789] < 012> +Bl ! Z SJBB ' <R1211> + [ataBB 1] <O> ’

3<i<5

N®2 = B3t Rz _ B0, (S + S2) Bt Ovl ,
0 RY

N = L(B, — By Y) (RO“1> .
2

Then

diag(1, 0, )N° = diag(1,d,) {N51 + 0y N®% — 0, B;* (g) } + Oy N3,

By lemma 5.2 and claim A.1,

15710l (el Loy + ST I@e) (e — 2¢ = 3(2y)*) L 0,m5m)

S lorll 2o, mwey (letll L2 0, mp2 @y + 12 = 2¢ = 3(2y)?[| 220,702 ®)))
<My (T)(Meo(T) + My (T) + M2(T)?),
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and

sup [|S7[0cpel(c)llvy + sup [ST[@l)(zr — 2¢ = 3(2y)?) Iy,
te[0,T] t€[0,T]

S S[%PT]{Hvl(t)HL?(RZ)(||Ct||L2(o,T;L2(R)) + [lze — 2¢ = 3(xy) % | L2 (0,152 m))) }
te|0,

<My (T)(Me o (T) 4+ My (T) + My (T)?).
Combining the above with claims 4.5, 5.4, A.2, B.7, B.8, (A6) and (A7), we have

sup IV ly, + ||N'r1||L1(0 T:v3)
t€[0,T]

< (e7F 4+ M o (T) + My (T) + My(T))M, (T), (5.32)
sup (IN??lly + IN??lly) + IN*?(| 20,757y + IVl 20,1y S Ma(T). (5.33)

te[0,T]
Let
N’ =II71(D,) diag(1,0,) > N7,

2<j<5
N = N' + N? + I171(D,) diag(1, 9, ) (N?? + N*2 + N'52)
+ I (D)) (N2 4+ N 1 NP3,

K _ . 1 (kK
K = (K;) = II;'(D,)diag(1,0,)B;"! (O) ,
N = N" +{w(Dy)os3 — 4 + 8, ' A2(D,)}b.
Then, from (5.14) and (5.19), we have
9y (b + K) = 202b + 49,03b + A3(t, D,))b + N + 9, (N + N"). (5.34)

Equation (5.20) follows from (5.21)—(5.23), (5.26), (5.28), (5.29), (5.32) and (5.33).
Claims 4.5 and B.8 imply that

sup [|K (¢, )lly + [[Kl[L20myy SMW(T),  lim [[K(2, )]y = 0. (5.35)
t€[0,T] o0

By (5.13), (5.17) and (5.20),

S[up ] IN" @)y + IV 22077y S MM (T) + My (T) + Me o (T)? + Ma(T)>.
tefo,T'

(5.36)

The time global bound for ||b(t)||y does not follow directly from the energy iden-

tity of (5.34) because the L?(R)-inner product of 9,N° and b is not necessarily

integrable globally in time for a vy that is not strongly localized in space. To elim-

inate cubic nonlinear terms in the energy identity, we make use of the following
change of variables:

d= (31) =b- %(bl + Kl)(bg + K2)61 + K, e = <1) . (537)
2
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By (5.37), (5.34) can be rewritten as
Brd = 20°b + 49,03b + A3(t, D,)b + N + 8,(N° + N
— {2<6y03b, 0'1()) +Rq —|—R2}€1, (538)

where (-,-) denotes the inner product in R? and

o1 = (? é) . Ri=ob,0,(NO + N,

RQ = %at{(bl -|— Kl)(bg + KQ)} — 2<8y03b, 01b> — Rl.
Taking the L2(R)-inner product of (5.38) and d, we have

1d
S 1A 22w + 200,572 r)
2dt
= /<(9y03b74b—2b1b261>dy—2/<ay0'3b, O'1b><b,61>dy
R R
+ /(ay/\/o,w dy + R + R + Rs, (5.39)
R
where

Ry = /{2(8yd7 0y(b—d)) + 4(0,03b, K) + 0, (0,b,01b) } dy,
R

Ry = /<A3(t7 Dy)b+N' —Rsei,d) dy,
R

Ry = /{<8yN0,d —b) + <6'yj\7",d> — 2(0yo3b,01b)(d — b, e1) — Ri(e1,d)} dy.
R
Since

(0y03b,4b — 2b1bre) — 2(0,03b, 01b)(e1, b) + (9,N", b)
= 20,(o3b,b) + 0, (N, b) — 20, (b} — b3),
it follows from (5.39) that

T
sup [|d(t)]|72 +4/ 18,b(1)[15 dt < [lwoll7e + D 1R5llLr0.)- (5.40)
t€[0,T) 0 1<5<3

Here we used the fact that b(0,-) = 0 and ||d(0)|ly = O(||K(0)|y) = O(||vol|z2)-
Finally, we will estimate ||9;|11(o,7). Taking into account claim B.8 and the fact
that supp b;(t,7) C [—n0, 0], we have

sup [|b(t) = d(t)]| 2w < ts[t(l)pT](llb(t)llzy +IE@Ily)
€10,

)

<M, . (T)* + My (T) (5.41)

and, for k > 1,

105 — 0% dl 20,712y S 1Bl 2o (0,7:v) 110yl 20,757y + 1K ()| 220,77
<M, . (T)? + My (T). (5.42)
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In view of (5.35) and (5.42),

and it follows that

< Mo (T)? + Me o (T)M1(T) + My (T)?,

~

/<8yda ay(d - b)> dy
R L1(0,T)

l <8y03b, K) ||L1(O,T;Y) S M (T)M(T),

”ml HLl(O,T) 5 Mc,x(T)3 + MC,I(T)Ml (T) + Ml (T)2 (543>
Substituting (5.34) into R, we see that
IR2llva < 19ybl3 + [1Blly (1 As(t, Dy)blly + IN"[ly)
+ Ky (18yblly + 145 (t, Dy)blly + IN°lly + IV v + IV [ly).
Combining the above with (5.18), (5.20), (5.35) and (5.36), we have
IRallz0.r:v1) S Mea(T)? + Mi(T)* + (Moo (T) + M (T)Ma(T)?

and
1RalLr0,) S (67F + Moo (T))Me,o (T)? + M (T)? + (Mo (T) + M (T))Ma(T).
(5.44)
Using the Sobolev inequality, we have, for ji, j2,j3,74 = 1,2,
‘ /aybjlbjzbj3bj4 dy S N0ybl 7201 117 (0.7:7) S Mew(T)*. (5.45)
R L1(0,T)

By (5.35) and (5.45),

By (5.35) and (5.36),

] / (0,47 d) dy
R

< Meo(T)* + M., (T)?My (T). (5.46)

[ @by
R

L'(0,T)

_ ’ /<A7", 9,d) dy
L1(0,T) R

0
S ML (T) + (10 + M (T)Meo (T) + Ma(T)?}
% (Moo (T) + My (T)) (5.47)

L1(0,T)

and

By (5.35) and (5.41),

/ Rl <61, d> dy
R L1(0,T)

SAML(T) + (o + Me,o ()Mo (T) + Mo (T)* Mo (T) (Me,o(T) + M1< (T)))-
5.48

»

/<5y03b, o1b)(d — b,e1)dy
R

L1(0,T)
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It follows from (5.46)—(5.49) that

||9{3||L1(0,T) SJ (eiaL + MC,x(T))MC,z(T)Z + MC,z(T)Ml (T) + Ml (T)2

+ (Mo (T) + M1 (T))M2(T)>. (5.50)
Combining (5.40) with (5.41), (5.43), (5.44) and (5.50), we obtain (5.1). This com-
pletes the proof of lemma 5.1. O

6. The L2(R?) estimate

In this section we will estimate M, (7") assuming smallness of M, ,(T), M;(T) and
My (T).

LEMMA 6.1. Let o € (0,1) and d4 be as in lemma 5.1. Then there exists a positive
constant C' such that

My (T') < C([Jvollp2(r2) + Me,o(T) + Mi(T') + M2(T)).

To prove lemma 6.1, we will show a variant of the L? conservation law on v as
in [24, lemma 8.1].

LEMMA 6.2. Let o € (0,2) and T > 0. Suppose that vi € C([0,T]; L2(R?)), vy €
C([0,T); X NL3(R?)) and that va(t), c(t) and z(t) satisfy (3.21), (3.26) and (3.27).
Then

Q(t7 U) = Az{v(tv 2, y)2 - 2¢c(t,y),L(z + St)v(ta 2 y)} dz dy

satisfies, for t € [0,T],
t
Q(t7 ’U) = Q(Oa U) +2 / /2(£11 + 612 + 690/6(5,1,) (Z)l/)c(s,y) (Z))U(S, Z, y) dz dy ds
0 JR
t
=0 [ [ (010,005 2000, (550000 (2) ey
0Jr
t
- 6// Pes.) (2)0(8, 2, y)? dzdyds
0 JR2
t
-2 // Ewc(s7y)7L(Z + 35) dz dy ds.
0 JR2
Proof. Let
z z
£T3 = cyy(sa y) / ac‘;oc(s,y) (21) le + Cy(37 y)2 / ag(pc(s,y) (Zl> le.
If, in addition, vy € X, then
/Rz v(t, 2, y)liz dzdy = /R2(6z_layv)<t7 2,y)y(t,Y)Pe(ty) dz dy.

Thus, we can conclude lemma 6.2 from [24, lemma 8.2] by way of a limiting argu-
ment. U

Now we are in position to prove lemma 6.1.
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Proof of lemma 6.1. By remark 3.7 and proposition 3.9, we can apply lemma 6.2
for t € [0,T] if M, ,(T) and My(T') are sufficiently small.
Since we have, for j,k > 0 and z € R,

010k pe(2) S e 2, / I oc(21) dz1 < min(1,e?*?), (6.1)
it follows that

sup
t€[0,T]

/ (611 + l12)vdzdyds
]R2

S lles — 6Cy37y||L2((0,T)xR) + ||ay — 2¢ — 3(37y)2||L2((0,T)xR) + nyyHLQ((O,T)X]R))

X ([lv1llz20,mw (1)) + llv2llL2(0,1:%)) (6.2)
t
sup / / 4 (5,)Depe(ony) (02 10,0) (5, 2, ) dz dy ds
tel0, 7] | Jo JR2
S llegllz2o,my <) (102 0yl 2075w 1)) + 105 Oyv2l 20,7 %)) (6.3)

< (loallzeo,mw ) + llv2llzo,m:x))?-

(6.4)

sup // C(S y) (s,z,y)dzdyds
t€[0,T]

In view of the definition of 1,

[Pt llx S lIE]lye G, }
[Pt L2 me) = 2v2||Ve — \fHLz(R)HT/)Hm(R) S lelly-
By (6.1) and (6.5),

t
/ /1; @;(S)y)(z>wc(s,y) (Z)U<57Zay) dz dy ds
0 2

—alz|

(6.5)

sup
(0,77

S et 22 0,3 lle™ o ()| 220,712 (R2Y)

Sem sup [@0)ly (lorlzo.rwon + lozllzzorx),  (66)
te[0,T)

t
// (l11 + €12)Ve(s,)(2) dzdy ds
0 Jrz

sup
[0,7]

< sup |le” ¥ (4 +£12)”L§2H@ZN)c(t,y)HLl(O,T;X)
t€[0,T]

Semk t S[tépT]{IléHy(IICt = 6cyy[lLe + [z — 26 = 3(2y)? 22 + gy 22)}-
€lo,

(6.7)

By integration by parts, we have
/2 (b1 + 522)1;c(t,y)(z) dzdy
R

= [t 9ty (e () + 3 (21 (2)) =,
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and it follows that
t

sup
t€[0,T]

/ . (€91 +£22)wc(sy (s, 2z y)dzdyds—[/ 1/1 (5,9) )dzdy]

s=0

< 3||<Pc(t,y)( Vet (2l L2 (07501 (R2))

Se t sup &)y (6.8)
t€[0,T)

By integration by parts,
/2 (f13 + £23)1;c(t,y)(z) dzdy
R

= *3\/2 (t y cwc(t,y) {/ ac(poc(t Y) Zl c"/;c(t,y)(zl)dzl}dz dy
R

Since [ (Depc — dethe) and ||8cz/)c||L1 (r) are uniformly bounded for ¢ € [1/2,3/2],

sup / (£13 4 £23) e (s, dz dy ds| < leyll72 0,75 (6.9)
t€[0,T] R?
Combining (6.2)—(6.4) and (6.6)—(6.9) with lemmas 5.2 and 6.2, we see that, for

€ (0,17,
[Q(s,0) + 8ll¥l 721V els) = V20122 r))iZh € Mo (T) +Mu(T) + Mz (T))%. (6.10)
Since ¢(0,-) = 2 and
Q(t,v) = [[v() 122 (z2) + OUlE® Iy 0Bl 2(re)),

lemma 6.1 follows immediately from (6.10). Thus, we complete the proof. O

7. Estimates for vy
In this section we will give upper bounds of M (c0) and M (00).

LEMMA 7.1. There exist positive constants C and 05 such that if ||vol| 2 < 05, then
M (o) < Cllvoll 2.

LEMMA 7.2. There exist positive constants C and 85 such that if ||| Dy~ ?vo|| 12 +
11D 200 2 + [[|Da| =12 Dy| 20|12 < 85, then

M (00) < C(I1Dal ™ 2voll 12 + [[1Ds]*voll 2 + 1Ds ]| ~/2| Dy | 200 | 2).

7.1. Virial estimates for v,

The virial identity for L2-solutions of the KP-II equation (1.1) was shown in [8].
It ensures that vy (t) € L?([0,00); L2 (R?)). Let x4.(x) = 1+ tanhex, let &1 (t) be
a C! function and let

T = [ sl = 22(6) = a0, 9)38 6,3 oy

Then we have the following.
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LEMMA 7.3. Let ©1(t) be a solution of (1.1) satisfying 91(0) = vo € L?(R?). Then
for any c¢1 > 0 there exist positive constants €9 and 0 such that if inf; T (t) > c1,
€ € (0,e9) and ||vo|lr2 < §, then, for any xo € R,

¢
L, (t) + 1/// X/+,s(117 — 21(8) — 20)E(01) (s, x,y) dx dy ds < I, (0),
0 Jr2

where v = % min{3, ¢ }. Moreover,

tli)m I.,(t)=0 for any xg € R. (7.1)

See, for example, [26, lemma 5.3] for the proof. Lemma 7.1 follows from lemma 7.3
and the L?-conservation law of the KP-II equation.

7.2. The L3-estimate of vy

In order to estimate the L3-norm of v1, we apply the small data scattering result
for the KP-II equation from [12].

In the interest of making the present work self-contained, we introduce some
notation from [12]. Let Z be a set of finite partitions —co =ty < t; < --- < tg = o0.
We denote by VP (1 < p < 00) the set of all functions v: R — L?(R?) such that
lim;, 4 o v(t) exists and for which the norm

K 1/p
lolber ={sup 3ot = lts-1) e

{te i 0€Z =1

is finite, where v(—00) := lim;_,_ o v(¢) and v(oo) := 0. We denote by V? . the

—,rc

closed subspace of every right-continuous function v € V? satisfying lim;_, o, v(t) =
0. Let V& := e V? and | eSVP with § = —83 — 39,102

Let x € C§°(—2,2) be an even non-negative function such that x(n) = 1 for
n € [—1,1]. Let x(¢t) = x(t) — x(2t) and let Py be a projection defined by

Pru(r, &) = X(N"1€)a(r,€,n) for N =2" and n € Z.
For s < 0, we denote by Y* the closure of C(R; H'(R?))N V2 . with respect to the

norm
1/2
b= (Sl
N

We denote by Y*(0,T) the restriction of Y* to the time interval [0,7] with the
norm

[[ul

[ullyoory = f{|[ally. | @€ Y®, a(t) = u(t) for t € [0,77]}.
Proposition 3.1 and theorem 3.2 in [12] ensure that higher-order Sobolev norms

of a solution to (4.1) remain small provided that vy is small in the higher-order
Sobolev spaces. Let T' > 0 and

t
T, us)(t) = / 10.19()e )58, (ur ) (s) ds.
0

Then we have the following.
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LEMMA 7.4. Let s > 0 and uy, us € Y12 Then there exists a positive constant
C such that for any T € (0, 00),

1Dz |*Ir (w1, u2) ly—1/2 < C|[|Da*ually—1/2|[ually-1/2, (7.2)
Dy Ir (g, uz)ly—1/2 < C T IKDy) ujlly—1o- (7.3)
j=1,2

Proof. We have (7.2) in exactly the same way as in the proof of [12, theorem 3.2].
Note that (7.2) and (7.3) are the same as in [12, corollary 3.4] when s = 0. Using
the fact that 1 +n3 < (1+n%)(1+n3) for 11, n2 and 73 satisfying 91 +n2 + 13 = 0,
we can prove (7.3) in the same way as in [12, proposition 3.1 and theorem 3.2]. O

Thanks to lemma 7.4, we have the following.
PROPOSITION 7.5. There exists a positive constant 05 such that if
D2~ 2wl 22 + [[[ Dz ~/2|Dy | 2w 2 < 65,
then a solution 01 of (3.83) satisfies

1021lly—1/2 S 11Dl *v0]| 22, }

R B B (7.4)
(DY) 251l -1/ S 1Dl = w0l 2 + 1Da]| =21 Dy | 200 2.

Proof. Using the variation of constants formula, we have
o1 (t) = eSvg — 3I7(91(s), 01 (s))ds  for t € [0, 7).

By lemma 7.4 and the fact that [[e"“vo|ly—1/2(0 1y < 1D~ 20| 12,

|—1/2

1911512 (0,7 S NP2l = #vollz2 + 15115 1201

1021 ly—1/2¢0.7y S D200l 2 + 11021 I y—1/20 1y 1T lly—1/2(0. 1
KDY 201lly 1720y S 1Dl 72(Dy) 200 ]| 2 + KDy ) 201151 2 g 1)
If § is sufficiently small, it follows from the above that
151y 1720, < CulllDal ™ 2w0]| 2 + CallTl /o 0.1y
(D) *1ll31/2(0,1y < Colll Dal = 2(Dy) 205l 12 + Cal|(Dy) /204 |

D281 lly0 07y < CLlll Dl 2 w0l 2 + [1B1lly 172007 1| Dl 281l 70 0,7

2
Y_1/2(0,T)’

)

where C7 and C5 are positive constants independent of 7. Suppose that vy €
H?(R?). Then

1z (@1, 00y 120y Mr(OL0)lvo0ry, 16D 20ully /20,1
are continuous in T because 9; € C(R; H?(R?)) and

e t59,0%(t) for t € [0,T),
0 otherwise.

Ou(e™ I (01, 01)(t)) = {
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Taking the limit 7 — oo, we have (7.4) for any vo € H?(R?) satisfying the assump-
tion in proposition 7.5. For general vg, we have (7.4) by approximating v by H3(IR?)
functions. Thus, we complete the proof. O

Proposition 7.5 implies the L3-bound of v;.
Proof of lemma 7.2. By (7.4),

Sup D251 (®)llz2 S I1Ds " ?v0] 2,
t2

sup 1D~ 2[Dy 201 (O 22 < I1Da]~*(Dy)voll 2.

Using an isotropic Sobolev embedding inequality
lull s g2y S 11Dzl 20l 22y + [11D2| =12 Dy | 2] 12 (g2, (7.5)
we have
lor () llzs = 151Dl zs S NDel 201 (@) 22 + 1De] =2 Dy| /251 (1)l 2-

Combining the above with (7.4), we have lemma 7.2. We remark that (7.5) follows
by interpolating the embeddings Id: E' — L°(R?) and Id: E® — L*(R?) (see, for
example, [3] and [30, lemma 2]), where E' is a Banach space with the norm

2

t/2
ull . = H (52 ; 2) aem)

LQ(RZ).

8. Decay estimates in the exponentially weighted space

In this section we will estimate My (T") by following the argument of [24, ch. 8].

LEMMA 8.1. Let ng and « be positive constants satisfying vo < a < 2. Suppose that
M (00) is sufficiently small. Then there exist positive constants d¢ and C such that
if Mo (T) + My (T) + Ma(T) + M, (T') < ds,

M (T) < C(Me»(T) + M (T)). (8.1)
Let x € C§°(—2,2) be an even non-negative function such that x(n) = 1 for
€ [-1,1]. Let xar(n) = x(n/M) and

1 ~ i(x
Pearui= o | xar()a(€ me D dgdy,  Poar =1~ Pe.
R

To prove lemma 8.1, we will use the linear stability property of line solitons
(proposition 2.2) for the low frequency part v (f) := P¢pv2(t), and make use of a
virial-type estimate for the high frequency part vs (t) := P> av2(t).

8.1. Decay estimates for the low frequency part

LEMMA 8.2. Let ng and o be positive constants satisfying vo < a < 2. Suppose that
v2(t) is a solution of (4.4) satisfying v2(0) = 0. Then there exist positive constants
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d¢ and C such that if My (T) + Mx(T) < 0¢ and M = ng, then

| P1(0,2M )val| oo (0,7;x) + | P1L(0, 2M )v2|| L2 0,7 x)
< O{Mc o (T) + My (T) + Mo (T)(M2(T) + M, (1))} (8.2)

Proof of lemma 8.2. Let 03(t) = Pa(no,2M )va(t). Then

Oyg = LUy + Pa(no, 2M){€ + 05 (Najy + Nojo + Ny o + Nay) + Naj3}, (8.3)
2(0) = 0, '

where Nj o = {2¢(t,y) + 6(p(2) — @e(,y)(2)) v2(t, 2,y). Hereafter, we abbreviate
PQ(T]Q,QM) to PQ.
Applying proposition 2.2 to (8.3), we have

t
[02(2) ]| x 5/ e T (t — 5)73/4|e** PaNa () | L1 2z ds
0
t
+/ e Tt —5)TV2 (| Naa(s)llx + [Nz ()l x + [ N2allx) ds
0

+ / e I ([6(s) | x + [ N2,3(5) | x) ds. (84)
0

Since ||e°‘ZP2N2,1||LiL§ S vV M(||v1 ||L2 + ||U2||L2)||’U2||X (by [24, claim 91]), we have
sup [e**PaNallrirz + € PaNo |l r20,m;0112)
te[0,T '

S VM(My(T) + M, (T))Ma(T).  (8.5)

~

By the definitions,

11llx S llee = 2¢ = 3(xy)? [l 2 + llee = 6eyy [z + gyl 2z + lleyylloz + lleyll7s,
162l x S e G (||ey — 6eyayl| 2 + o — 2¢ = 3(xy)? | 22 + 1€ 2
+ lzyyllce + lleyyllze + lleyIZs),
N2l x < (lze = 2¢ = 3(2y)? (| Lo + [|El| ) [|va] x
IN3ollx S el llva@®llx,  (IN2allx S llor(®)]lw -

Hence, it follows from lemma 5.2 and the definitions of M, ,(7"), M1 (T") and Ma(T')
that

sElp ] 1]l x + €]l 20,7:) S Meo(T) + My (T) + Ma(T)?, (8.6)
te[0,T

sup |[Napgllx + [ N22llz20.1:x) S Meo(T) + My (T) + Mo(T)*)M(T),  (8.7)
t

)

S[u%](”Né,QHX + [[N2.allx) + 1Nz o[l 220,7:x) + 1 N2,all 20,7, )
telo,
S Mo (T)M(T) + My (T). (8.8)
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Since [|0y Ps||p(x) S M, we have

M([lzyl[Loe + [l2yy [l <) vzl x and

S Mo (T)My(T). (8.9)

te(0,T)
Combining (8.5)—(8.9) with (8.4), we have

300 [1a(0)x -+ 1200 07) & Mea(T) + M(T) + (M (T) + M) M (1),

As long as vo(t) satisfies the orthogonality condition (3.21), and é(¢,y) remains
small, we have

[B2(D)lx < P10, 2M)v2 (8)] x < [102(8)[|x

in exactly the same way as in the proof of lemma 9.2 in [24]. Thus, we have (8.2).
This completes the proof of lemma 8.2. O

2. Virial estimates for v,
We prove a virial-type estimate in the weighted space X in order to estimate the
high frequency part of v, for which we require the smallness of sup; > [|v1 (¢) || £3 r2)-

LEMMA 8.3. Let a € (0,2) and let va(t) be a solution to (4.4) satisfying v2(0) = 0.
Suppose that M} (c0) is sufficiently small. Then there exist positive constants g,
My and C such that if M, . (T) + M;(T) + Mo(T) + M,(T) < ¢ and M > M,
then, fort € [0,T],

t
le2 (D)% < C/O e M= (|le(s) 1% + I1P<arva ()% + loa(s) [y () ds

Proof of lemma 8.5. Let p(z) = e?**. Multiplying (4.4) by 2p(2)va(t, z,y) and inte-
grating the resulting equation by parts, we have, for ¢t € [0, T,

Git(/Rz p(Z)vz(t,ay)dedy) +/Rz P (2)(E(v2) — 4d)(t, z,y) dz dy

where

IIIl—Q/p Vua(s, z,y) dz dy ds,
R2

I, = / P (2)(Z4(t, ) 3acy(t,y)2)v2(t,z,y)2 dz dy,
R2

e — YPe + 3t
IIIg _ p/// + 6p (@A(t,y) (Z) ’Q/J (t,y),L(’Z ) )
p(z)

}UZ(t7 2, y)2 dz dy7

z

I, = 12/ P (2)(v1v3)(t, z,y) dz dy + 12/ p(2)(v1v20,v2)(t, z,y) dz dy,
R2 R2

2

I, = 12 / 0. (p(2)v2(t, 2, 1)) @ettn) (2) — Vetey.s (= + 30)or(t, 2, y) dz dy.

=
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Obviously,

1
[T, | < /p’(z)v% dzdy + % /;Lo(z)é2 dz dy,
(6%
i < (= 1) [ P unlt 20 dsd
RQ
where

M = 1+4a2+6supp/
t,e P'(2)

)

(%(t,y)(z) — Ye(ty), (2 + 3t))
p(2) ,

and

1/2
i 5 ([ P02 + D)z azd) a0,

Using claim 3.2 and the Holder inequality, we have

] [Ptz azay

SOl [ 922 (watt,20) dzdy,

Iy S floa(8)]] s / P (2)((0:v2)* + (971 0yv2)* + v3) (¢, 2,y) dz dy.
R2
By lemma 5.2,

(] 5 (Ve (T) + My (T) 4 MATP) [ 9/ Jualt, 2,0 ey

For high y-frequencies, the potential term can be absorbed into the left-hand side.
Indeed, it follows from Plancherel’s theorem and the Schwarz inequality that

@0+ (00,0 ) 1220 =y

2
S 12 n . 2
=20 [ (leiof + g ) Fos g i) deay

>2M | p'(2)os(t,2,9)* dzdy.
R2

Combining the above, we have, for ¢ € [0, T,

%/p(z)vg(t,z,y)2dzdy+Ma/p(z)vg(t,z,y)dedy
R R

< — ?dzd
5 IRzp(Z) zdy

+ Ma /R p(2)(v<)?(5, 2,y) dzdy + O(J|lvs (1) 3y () (8.11)

provided that dg is sufficiently small. Lemma 8.3 follows immediately from (8.11).
Thus, we complete the proof. O

Now we are in a position to prove lemma 8.1.
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Proof of lemma 8.1. Since x(n) = 0 for n & [—2M,2M], we have
[ P<arv2(t)|lx < [|P1(0,2M)va(t)|| x -
Combining lemmas 8.2 and 8.3 with (8.6) and the definition M (T), we have (8.1)
provided that Jg is sufficiently small. This completes the proof of lemma 8.1. [

9. Proof of theorem 1.1
Now we are now in a position to complete the proof of theorem 1.1.

Proof of theorem 1.1. Let 0, = mingg,;<e 0;/2. Thanks to the scaling invariance of
(1.1), we may assume that ¢ = 2 without loss of generality. Since ¢(0) = Z(0) =0
in Y, and v1(0) = vg, v2(0) = 0, there exists a T" > 0 such that

Mo (T) := Mo (T) + My (T) + My (T) + M, (T) < 3. (9.1)

By proposition 3.9, we can extend the decomposition (3.1) satisfying (3.4) and
(3.21) beyond ¢t = T. Let T} € (0, 00] be the maximal time such that the decom-
position (3.1) satisfying (3.4) and (3.21) exists for ¢ € [0,71] and Mo (1) < 0s.
Suppose that T7 < co. Then it follows from lemmas 5.1, 6.1, 7.1, 7.2 and 8.1 that if
11Dz 7120 | 2 + | D] ?vol| 2 + ||| Dz | =2 2| Dy |20 || 12 is sufficiently small, then

My (T

) S llvollze,
Me,o(T) < llvollzz +Ma(T) + M2 (T)* < llvoll 22 +M2(T)?,

(

M (T) S Mo (T) + My (T) < [[vollz> + Ma(T)?,

M, (T) < |lvollrz + Meo(T) + My (T) +M(T) < |vol|r2 + Ma(T),
)

and Mot (T1) < [Jvoll 2 (r2) + Mot (T1)%. If [Jvo|| 2 (r2) is sufficiently small, we have
Mtot(TI) X 6*7
which contradicts the maximality of T;. Thus, we prove that T7 = oo and
Mot (00) S llvoll 22 (r2)- (9.2)
By (3.1), (6.5) and (9.2),

lult, 2,y) — ety (@ — 2(E 1) |lL2rey < [VE) | L2@2) + [Pe(e, |2 @)
< M, (00) + M 5 (00).

Since H¥(R) C Y for any k > 0, we see that (1.4) follows immediately from
(9.2) and lemma 5.2. Moreover, we have (1.5) because ¢, z,, € L?(0,00;Y) and
pdicy, Opxyy € L(0,00;Y).

Finally, we will prove (1.6). Since ||f[z~ < £/ 210, f]3/? for any f € Y, we
have from (1.4) that

() = 2¢()[| L + lle(t) = collz= < flvollz2,

and, for any y € R,

z(t,y) = /0 2e(s,y)ds = (2¢o + O(||vo]| 2))t.
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Here we use z(0,-) = 0. Let Z1(t) = ¢ot and x9 = R. Then, by lemma 7.3,

tli;rgo [v1(t, 2+ 2(t,y), y)||L2(ac>—cot/2,y€]R) =0. (9-3)
Dividing the integral interval [0, ¢] into [0,t/2] and [t/2,t] and using (8.4)—(8.9), we
have
Jim [lox(6)]x =0
Thus, we complete the proof of theorem 1.1. O

10. Proof of theorem 1.2

If vo(x,y) is polynomially localized, then at ¢ = 0 we can decompose a perturbed
line soliton into a sum of a locally amplified line soliton and a remainder part
v, (2,y) satisfying [, v.(x,y)dz =0 for all y € R.

LEMMA 10.1. Let ¢y > 0 and s > 1 be constants. There exists a positive constant
eo such that if € == ||(x)*vol| g1 r2) < €0, then there exists c1(y) € H'(R) such that

[ at@) = e @)de = [ wiep s (10.1)
ler(r) = collzm) < ||<x>5/200||L2(1R2), } (10.2)
10yer (Ml @y S N142)* w0l 2y,
sl 22y S 142)* 200 L2 (m2),
-1 s (10.3)
107 il + [[vall 1 r2y S [1{Z)*voll 1 (m2),
where v4(z,y) = Vo(T, Y) + e () — e, () (2)-
Proof. First, we will prove that
sup /vo(x,y) dz| < H(x>s/2@0||Lz(R2) + ||<$>s/28y’l}0||L2(R2). (10.4)
yeR | JR
By the Schwarz inequality,
1/2
[ otead < { [rupradf (10.5
R R

Substituting sup, v§(z,y) < [p{(9yv0)® 4 v3}(x,y) dy into the right-hand side of
(10.5), we have (10.4).

Let
mw@@+gg4%mwMP

Then we have (10.1) and [, v.(x,y)dz = 0 for every y € R because

/R{%l(y)(ir) — $o ()} dz = 2v2(Ver(y) — v/eo)- (10.6)
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Moreover, it follows from (10.4) that

sup e (y) — ol S 11(w)* *voll 22y + (1) *Byvol| L2y
ye

By (10.1), (10.5) and (10.6),

le1(y) — coll2®) S H / vo(z,y) dx (@)%l p2(r2).-
R

Sl
L2(R)

Using Minkowski’s inequality, we have, for j > 0,

. ) aly)
102 0c1(y) — O%peollL2(r2) < H/ 102 0cpell L2 (m) de
co

L2 ()
Slle(y) - CO||L2(R)
S ||<$>S/2U0||L2(R2)7
and [|02v. || z2re) S [|02v0|p2me) + [[{(2)*/?vo || 12 (Re2)- Similarly, we have
10yl 2y < I(x)*/?0yv0ll L2 (r2),
10y 0.l 2 82) S 118500l 2(g2) + 10yer L2y S 11(2)* Dy voll p2 r2)

Since [, vy (z,y) dz =0,

07 Mo, (z,y) = A {00(21,8) + oo (@1) — Per(y(@1)} d1.

By the Schwarz inequality, we have, for +z > 0,

10z v, )| S () vo (92 + 1(2)* (Pes ) — 0eo)llzzqy) ) >/

S (@) vo (> y) L2 (@) + lea(y) — col ) () 5+
and
107 M vull 22y S @) voll 2 + ller — collL2mz)y S (@) voll L2 (re).-
Thus, we complete the proof. O
Now we are in a position to prove theorem 1.2.

Proof of theorem 1.2. To prove theorem 1.2, we modify the definitions of vy (¢, z, y),
va(t, z,y), c(t,y) and x(t,y) as follows. Let 07 be a solution of (1.1) satisfying
91(0,z,y) = v4(0,2z,y). Then it follows from lemmas 7.1 and 10.1 that M;(co) <
||<$>S/2’U0HL2(R2). By (10.3),
1D |~ 20| 2 g2y + I1Dal0sl| L2 g2y + [1Dal 72Dy [V 0u| 2 2y
S ol ey + 1107 M oul| 22 )

S Kz) *voll 5 (r2),

and M (c0) S |[{z)*vo|| g1 (r2) follows from lemma 7.2.
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Let a(t, z,y) = u(t, z,y) —01(t, z,y). Then (0, z,y) = @c, () (z). By lemma 10.1,

130, 2, y) = ¢eo (@) xS ller(:) = coll ey < 1{2)* 00l 12 ),

and lemma 3.6 and remark 3.7 imply that there exist a T' > 0 and (va(t), &(t), Z(t)) €
X xY xY satisfying (3.1), (3.4) and (3.21) for ¢ € [0, T], where é(t,y) = c(t,y) — o
and Z(t,y) = z(t,y) — 2¢ot. Clearly, we have

[v2(0) [ x L2 @) + 1EO) Iy + [2(0) Iy S (@) ?voll L2 g2,

and following the proof of lemmas 5.1, 6.1 and 8.1, we can prove that
Mo (T) S [[(2)*/*v0l| L2(r2) + Mi (T) + Mo (T)?,

ML,(T) < (@) ?voll L2 r2) + Mo (T) + My (T) + Mi(T),
My (T) < [{2)*/?vo || L2 m2) + Me,o(T) + My (T).

Thus, we can prove theorem 1.2 in exactly the same way as theorem 1.1. O
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Appendix A. Proof of claim 5.4
By claims B.1 and B.2 in [24],
I1Sillsovy + 1510y S 1, [S1,0,] =0, (A1)
1S2llBviyy S llellys  192llseyy S lélleess N[0y, SolllBviyy S lleylly.  (A2)

Following the proof of claims B.3-B.5 in [24], we can show that

1SN ()l < Cem*CHDle®pl| 2| Piflly,  [S}lp], 0,] =0, (A3)
ISPI)(E vy < Cem BB le%p|| 2|2t [ I1£ 1 2 (A4)
ISR v + ISR (A lyvi < Cllva(t,)llx I fllz2 (AD)

in exactly the same way. By (A1) and (A 3), we have [0,, Bs] = 0.
Applying (A 3), (A4) with p(z) = 8¢(z) (j = 0) and using (A 5) and claim 4.3,

we have
193] 80y + 193] vy S e @+, } o)
184l By + 15l By S ) |[ye @G
1851 22 0,7:8(vv2)) + 1951|2200, 7:B(viva)) S 102(B) |2 0.7:) - (A7)
In view of (4.20),
00, Ba) = [0,,C:1 + 3 500,851 = 3 10,.5) (A8)

Jj=12 j=3,4,5
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We will estimate each term of the right-hand side following the proof of [24,
claim 7.1]. By [24, claim B.7],

10y: Celll vy S lleylly  for k= 1,2. (A9)
Applying [24, claims B.1-B.7] to [y, 5;] = {[8y, S;]+ S;[C2, 8,]}(I+Ca) ™, we have
1[0y, Silll Bevivi) S lleylly  for 1 <j <4 (A10)

By (A5) and the fact that 9, is bounded on Y and Y3,

110y SslllBviva) < llvallx- (A1)
Combining (A 8)—(A 11), we obtain the first two estimates of claim 5.4. Thus, we
complete the proof. O

Finally, we will estimate the operator norm of S7[q.].
Cram A.1. There exist positive constants C and 0 such that if

sup |[é(t)[| L~ <9,
t€[0,T]

then

157 [ac) () (&, )i < Cllon(t, )l lle!! iy ]qcllL’-’(R>||f|\L2(R)~ (A12)

c€[2—8,2+6

Proof. Applying the Schwarz inequality to the right-hand side of

||SI7[QC](f)(t7y)HY1 =

b

Le°[—n0,m0]

/]R vt 2 9) F(Y)4ey) (z)e™ ¥ dz dy

1
2v2m
we have (A 12). O

Using lemma 5.2, we can prove the following commutator estimate in the same
way as claim 5.4.

CLAIM A.2. There exist positive constants C and ¢ such that if M. ,(T) < 0, then

110, B3|l B(r20,7:v), 1 075y < Cle™ " + M o (T) + My (T) + Ma(T)).

Appendix B. Estimates of R*
CLAM B.1. There exist positive constants § and C' such that if M, ,(T) < 6, then
IR N 2(0.mv) < CMeo(T)2.
Proof. By [24, claims B.1 and B.2],
IRE Ny < llel oo (lzyylly + llegyllv) + (L + llellz)lley [z lley 1y
Since Y € H(R), we have claim B.1. O

CrLAaM B.2. There exist positive constants 6 and C such that if M1(T) < §, then
|R3(t, )|y < Ce @GHLIM, ,(T)? fort € [0,T).
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CrLaM B.3. There exist positive constants C and Lo such that if L > Lg, then

1A Ol By + 1AL Bl Bvy) + 1AL ()] By < Ce™ G for every t > 0.

Claims B.2 and B.3 can be shown in exactly the same way as [24, claims D.2
and D.3].

CLAM B.4. Suppose that o € (0,1) and My (T') < 8. If § is sufficiently small, then
there exists a positive constant C' such that

S IRE () lvy + IRkl 0,mv2) < C(Meo(T) +Ma(T) +Ma(T))Ma(T), (B1)
te|0,

P IRE(Dllv: + IBR]|L2 0,77v1) < CMeo (T)Ma(T), (B2)

tel0,T

IRy, < Cem DML o (T)M(T). (B3)
Proof. Following the proof of claim D.5 in [24], we have

MLt )20 < Uley Oy + lleyylly + ey O o2l x
IRz, S (le™ = 2oi ()22 + [z (®)]x) o2 (8)1x
1 (8 ) 20 S gy (@)l llo2(8)]1x

I (8 )20 < oy Ol o201 x,

IR vy S N2 (B)llx 1theqep Il x
< 7a(3t+L)||E(t)

< 2 () llv2 ()] x-
Claim B.4 follows immediately from the above. O

CrAmM B.5. There exist positive constants § and C' such that if M, ,(T) < 6, then

sup ||PLR{[ly + [|1PrRT |1 0.1v) < OMeo(T)?, (B4)
te€[0,T

SEJP ||P1R2||Y+||P1R7HL2(0TY) CMcz( ) (B5)
telo,

Proof. Since || f||n~ < IFIV21f, 1% for f € Y, it follows from [24, (D.11), (D.15)]
that

~n1l/2 3/2
1(3e) 2e, —bylliz S (3% = 1|zlleylly + by — eylly S Nl ey,
and
1/2 1/2 ~
1(36)¥2 =1 = 3b|| = S 1(3e)¥2 — 1= 3|22 11(3e) 2, — by 1157 < Nl lleylly-

Combining the above with [24, (D.11), (D.13)], we have

IPLR]|ly S 1(3)%/? =1 = 3b pee |2yl 22 + |2yl 1By — (3) 2y lly + lley I
1/2 1/2 3/2 1/2

Pllzyylly ey 15212032 + lley |13 -

Hence, by the definition of M, ,(T"), we have (B 4). We can prove (B5) by using [24,
claim D.6] and (5.10) in a similar way. Thus, we complete the proof. O

S lzgyllylleylly llelly + [lzylly
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CLAIM B.6. There exist positive constants C' and § such that if M. ,(T) +Ma(T) <

6, then
sup [[R3(0)ly + 1B 20,7y € OMe(T)?, (B6)
te[0,T]
sup, IRy + 1R 10,77y € CMeo(T)(Me,o(T) + Ma(T)), B7)
telo,
sup [[R(1)[ly + [|R™ [ z2(0,7v) < CMeu(T)?, (B8)
t€[0,T]
sup IRM @)y + 1R | 210,mv) < OMeo(T) (B9)
telo,

Proof. By (3.22) and the fact that ||blly < [|¢]ly,

11+ Ca)(eyay) = (bzy)ylly < (lelly + [lzylly)leylly + [[zyylly),

whence
(T +Ca)(eyay) — () 2@y yni= vy S Mea(T)?. (B10)

Equation (B6) follows from (B10) and [24, (C.1), (C.2)]. Equation (B7) follows
from (B10), (A6) and (A 7). B
By [24, claim B.1 and (D.11)], we have ||So[/p(y) < 1 and

IRy < lleylly el (B11)

By claim B.3 and [24, (D.10)],
IR ly S e= 0| Lol v (B12)
The estimates (B8) and (B9) follow immediately from (B11) and (B12). O
CLAIM B.7. There exist positive constants C and & such that if M. ,(T) < 9, then

IR L1 0,m3v1) < OM(T) (Mo (T) + My (T)), (B13)
IR 20,13v) + [1RY3] 220, 15v) < CMU(T). (B14)

Proof. By the assumption, there exists a ¢’ € (0, 2) such that c(¢,y) € [2—¢",2+4 0]
for t € [0,7] and y € R. Since 9 has a compact support,

TS5 (8 )|z (—noine) S Nr @) llz2@2llelly  sup (- +36)0-9% (1, )|l 2wy
nE€[—n0,70],
ce2—68",2+6"]

S e D E(0) |y or (8)]| 22 e)- (B15)

By the Schwarz inequality,

311 () 2o =00y S N1 () ey + 105 Oyva (Dl o lley (8) 1y
+ lor D llw ) 2y (Dlly + l(eyzy) (D)l L2®)).  (B16)

Combining (B15) and (B 16), we have (B13).
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Next, we will prove (B 14). We decompose 19, as 119,45, + 115,55, where

3 - —i
Wn(tn) = =5 [ (0 10,0)(t.2.9)p(2)e ™ dzdy

2
=2 (07101 (£, 2,1) dz,

3 i
11515 (t,7) = _5/11@2 (0, 18yv1)(t 2,Y)E(t, )00y (2)e Y dz dy
"'3/ 01(t, 2, 9) Ty (t, Y) ety (2)e V" dz dy.
R2

By the Schwarz inequality and Plancherel’s theorem,

||IIll21( )||L2( 70,M0)
1/2
S([7 [eimeztomunanPazan) et ol
—"o

S villw ey (B17)

and
122 (8 M L (—nomo) S (Norlwiey + 182 8yorllw o) (€Dl +llzy (B)]ly). (B18)

Similarly, we have

||Ilg(t7 ')HL2(—U0,770) + HII(152(t7 ')||L2(—7]o,7]0) /S ||U1(t)||W(t) (B 19)
Since Y1 C Y, we have (B 14) from (B17)—(B19). Thus, we complete the proof. O

Finally, we will estimate k(t,y).

CLAIM B.8. There exist positive constants C and & such that if M. (T) < 9, then

sup k(L )y + [[EllL20,7v) < CM(T). (B20)
t€[0,71]
Moreover,
Jim [[(t, )y = 0. (B21)

Proof. Let d¢. = (p. — ¢)/¢ and

1
1(t,y) = / / v1(t, z,y1)p(2)e' y=v)n q, dy; dn,
I8 R2

1
2(t,y) = / / (t,y1)vi(t, 2,¥1)0@c(t,y,) (2)e W=y 4z dy; dn.
I8 R2
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By the definitions, we have k = k1 +ko. Using Plancherel’s theorem and Minkowski’s
inequality, we have

e, )y = Z%H [Foez 000 as

L2(=n0,m0)
1
<57 I 2 iy ol 2

< le™ Moy (2, ) 2@y lle® ol L2y < Nlvi(8)llw sy (B22)

If M. »(T) < 6 and ¢ is sufficiently small, then there exists ¢’ € (0,2 — a) such that
le(t,y) — 2| < &' for every ¢ € [0,7] and y € R, and

1

k2t )l = /vl(t,z,y)é(ty)f?%(t,y)(Z)e’iy" dz
2\/% K L°°(=n0,m0)
S o) llw e llét)]ly  for t € [0,T7]. (B23)

Since Y7 C Y, we see that (B 20) follows from (B 22) and (B 23). Moreover, we have
(B 21) by combining (B 22) and (B 23) with (7.1). Thus, we complete the proof. [
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