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Abstract

In this paper we analyse the limiting conditional distribution (Yaglom limit) for stochas-
tic fluid models (SFMs), a key class of models in the theory of matrix-analytic methods.
So far, only transient and stationary analyses of SFMs have been considered in the liter-
ature. The limiting conditional distribution gives useful insights into what happens when
the process has been evolving for a long time, given that its busy period has not ended
yet. We derive expressions for the Yaglom limit in terms of the singularity™s* such that
the key matrix of the SFM, W(s), is finite (exists) for all s > s* and infinite for s < s*.
We show the uniqueness of the Yaglom limit and illustrate the application of the theory
with simple examples.
Keywords: Stochastic fluid model; Markov chain; Laplace—Stieltjes transform; Yaglom
limit; limiting conditional distribution
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1. Introduction

Let {(¢()):t>0} be an irreducible, positive-recurrent, continuous-time Markov chain
(CTMC) with some finite state space S ={1, 2, ..., n} and infinitesimal generator T. Let
{(p(?), X(1)):t > 0} be a Markovian stochastic fluid model (SFM) [2, 3, 4, 7, 15, 16, 17, 43,
44], with phase variable ¢(f) € S, level variable X(f) > 0, and constant rates ¢; € R, for all
i € §. The model assumes that when ¢(f) =i and X () > 0, the rate at which the level is chang-
ing is ¢;, and when ¢(¢) =i and X(¢) = 0, the rate at which the level is changing is max{0, c¢;}.
Therefore, we refer to the CTMC {(¢(#)):f > 0} as the process that is driving (or modulating)
the SEM {(¢(?), X(1)):t > 0}.

SFMs are a key class of models in the theory of matrix-analytic methods [29, 36, 37], which
comprises methodologies for the analysis of Markov chains and Markovian-modulated models
that lead to efficient algorithms for numerical computation.
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650 N. G. BEAN ET AL

Let S ={ieS:wc;i >0}, S ={ie S:c; <0}, So ={i € S:c; =0}, and partition the genera-

tor as
T Tz Tio
T=|Ta Txn Tx|,
Toir To2 Too

according to S =851 US U Sp.
We assume that the process is stable; that is,
p=y citi <0, ()
€S
where & = [£;];cs is the stationary distribution vector of the Markov chain {(¢(?)): > 0}.

So far, the analysis of SFMs has focused on the transient and stationary behaviour. In this
paper, we are interested in the behaviour of the process conditional on absorption not having
taken place, where absorption means that the busy period of the process has ended, that is, the
process has not hit the level zero as yet. For x > 0, let 6(x) = inf{¢ > 0:X(¢) = x} be the first time

at which the process reaches level x. To this end, we define the following quantity, referred to
as the Yaglom limit.

Definition 1. Define the matrix pu(dy)™ = [,u(dy)g.‘)]i, jeS» X,y > 0, such that

uldy)y’ = lim PX(1) € dy. ¢(1) =j | 6(0) > 1. X(0) =x, ¢(0) = i), )
and the matrix p(dy)® = [1(dy)ics, jes. y > 0. such that

pidy)’ = lim PX(1) € dy., p(0) = | 6(0) > 1. X(0) = 0, p(0) = ), 3)

whenever the limit exists. We refer to /L(dy)g.‘) as the limiting conditional distribution (Yaglom
limit) of observing the process in level y and phase j, given that the process started from level
x in phase i at time zero and has been evolving without hitting level zero.

Remark 1. In general, for Markov processes there are no sufficient conditions that we can refer
to under which the Yaglom limit or quasi-stationary distribution exists. Usually, the existence
of the Yaglom limit is proved case by case. Here, we prove that it exists for our model.

We partition p(dy)®, x>0, accordingto S US USy x ST US U Sy as
(x) (x) ()

w(dy)y;  m(dyy, IL(dJ’)l()
pldy)® = | w@)s)  mldy)yy )y | @
w@d)g) @ @y
and partition its row sums accordingly, as
(x)
ﬂ(dY)1x
wdy) 1= | wdyy” | 5)
(x)
p(dy)y
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where 1 denotes a vector of ones of appropriate size, so that u(dy)(lx) = u(dy)(lxl)l + IL(dy)(lxz)l +
;L(dy)(fgl, and so on.
We partition ;L(dy)(o) according to S| x S US U Sy as

;L(dy)(o)z[ﬂ(dy)(lol) p(dy)) u(dy)(f()))], )
and let
p(dy)” = u(dy) 1. ()

This paper is the first analysis of the Yaglom limit of SFMs. We derive expressions for
the Yaglom limit, show its uniqueness, and illustrate the theory with simple examples. The
Yaglom limit concerns some Markov process X(7) and some almost surely finite absorption
time 6 (usually the first exit time from some set, such as a positive half-line), and is defined by

pldy)= lim PX()edy|0>0). ®)

It describes the state of the Markov system conditioned on surviving killing coming from 6
for a very long time. The Yaglom limit is strongly related to the so-called quasi-stationary
distribution, which satisfies

Pu(X(®) € dy|6 > 1) = nu(dy); ©))
see for example [21]. In particular, the Yaglom limit w (if it exists) is necessarily quasi-
stationary, but it may be difficult to show its uniqueness [8, Section 3]. In other words, there
might be more quasi-stationary laws, and the Yaglom limit might be one of them. It might be
the case as well that there exists a quasi-stationary distribution but that the Yaglom limit is not
well-defined.

A related class of models in the theory of matrix-analytic methods is that of quasi-birth-
and-death processes (QBDs) [36], in which the level variable is discrete. The quasi-stationary
analysis of QBDs has been provided in [10, 11, 12], along with several examples of areas of
applications, which are relevant here as well, due to the similar application potential of QBDs
and SFMs [13].

Information on quasi-stationary distributions for other Markov processes can be found in
the classical works of Seneta and Vere-Jones [45], Tweedie [46], and Jacka and Roberts [32].
The bibliographic database of Pollet [42] gives a detailed history of quasi-stationary distribu-
tions. In particular, Yaglom [48] was the first to explicitly identify quasi-stationary distributions
for the subcritical Bienaymé—Galton—Watson branching process. Some of the results on quasi-
stationary distributions concern Markov chains on the positive integers with an absorbing state
at the origin [20, 23, 25, 45, 47, 49]. Other objects of study are the extinction probabilities
for continuous-time branching processes and the Fleming—Viot processes [9, 24, 35]. A sepa-
rate topic is that of Lévy processes exiting from the positive half-line or a cone. Here the case
of the Brownian motion with drift was resolved by Martinez and San Martin [40], comple-
menting the result for random walks obtained by Iglehart [31]. The case of more general Lévy
processes was studied by [19, 33, 34, 39]. One-dimensional self-similar processes, including
the symmetric «-stable Lévy process, were subject of interest in [28].

The rest of the paper is structured as follows. In Section 2 we define the Laplace—Stieltjes
transforms (LSTs) which form the key building blocks of the analysis, and in Section 3 we out-
line the approach based on the Heaviside principle. The key results of this paper are contained
in Section 4. To illustrate the theory we construct a simple example with scalar parameters,
which we analyse throughout the paper, as we introduce the theory. In Section 5 we analyse
another example, with matrix parameters, where we provide some numerical output as well.

https://doi.org/10.1017/apr.2020.71 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2020.71

652 N. G. BEAN ET AL

2. The Laplace-Stieltjes transforms

Note that by Definition 1, for x > 0,
pldy)y’ = lim PX(1) € dy. ¢(1) =] | 6(0) > 1, X(0) =x, ¢(0) = i)

— iy DX Edy. p(0) =), 0(0) > 1| X(0) =x, (0) =)

=00 P@(0) > 1 | X(0) =x, ¢(0) =) 1o

For all x>0 and y> 0, define the matrix E(dy)®(s)= [E(dy)ﬁf)(s)],-,jeg and the vector
EW(s) = [El(.x)(s)],'eg, which record the corresponding Laplace—Stieltjes transforms (LSTs),

E(dy)gf)(S) = f h E(e™"1{X(t) € dy, (1) =, 6(0) > 1} | X(0) =x, ¢(0) = i)dL,
0
EX(s) = f - E(e*"1{0(0) > 1} | X(0) = x, ¢(0) = i)d1, (11)
0
where 1{-} denotes an indicator function. We have

W%ﬁ/ E(dy)®()L. (12)
y=0

We partition E(dy)™®(s), x > 0, according to S x S for S =S US, U S as

E@)Y) 11 E@)s)2  E@)D(s)io
E(dy)®(s) = | E@)®@ ()21 E@)P ()2 E@dy)D(s)0 |, (13)
E(@)(s)o1 E@)(s)2  E@)™(s)oo

and EY(s), x > 0, as
E®(s);
EW(s)= | E®(s), | . (14)
EW(s)o

We partition E(dy)(o)(s) according to S| x S US U Sy as

E(dy)*(s) = [E@) V)1 E@) V)12 E@)Vs)10] (15)

and let
E(dy) V(s)1 = E(dy)V(s)1. (16)

Define Cy = diag(c)jcs,, C2 = diag(|cil)ics, and let Q(s) be the key fluid generator matrix
Q(s) introduced in [16],

Qq1(s) le(s)] ’ (17)

Q= |:Q21 () Qn(
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where the block matrices are given by
Qu(n=C," (T22 — 5T — T20(Too — SI)_IToz) ,
Qu(s=C;! (Tll —sI—Tjo(Too — SI)71T01) ,

Q2(9) = Cfl (le — T10(Too — Sl)flToz) )

Q21()=C5" (Tar = T2o(Too — D" Tor ), (18)
Here, Q(s) exists for all real s such that (Tgg — sI)~! = ftioo e=SteTool gt < 0o, or for all real s
when Sp = 0.
Also, let W(s) be the key matrix for SFMs [16] such that, for all i € Sy, j € Sa,
[¥ ()] =Ee*"V1{8(0) < 00, p(6(0) = j} | (0) =i, X(0)=0) (19)

is the LST of the first return time to the original level zero, with this occurring in phase j,
given a start at level zero in phase i. Let ¥ (¢) be the corresponding density, so that ¥(s) =
ftozoo e 'y (f)dt. Clearly, W(s) > O for real s such that W(s) < 0o exists.

Define matrices

K(s) = Qq1(s) + ¥(5)Qa(s),

D(s) = Q22(s) + Q21 (5)¥(s), (20)
and note that by the assumed stability of the process, the spectra of K(s) and (—D(s)) are
separate for s > 0 by [15, 16, 17]; that is, sp(K(s)) N sp(—D(s)) = @.

We extend the result in [16, Equation (23)] from Re(s) > 0 to all real s such that ¥(s) < 0o

exists.

Lemma 1. For all real s such that W (s) < 0o exists, the matrix W(s) is a solution of the Riccati
equation,
Q12(5) + Qi1 ()X + XQ0y(s) + XQy1(5)X =0. (21)
Proof. Suppose s is real and W (s) < co. Then, by [16, Theorem 1] and [17, Algorithm 1 of
Section 3.1],

00 > W(s) = f ) eQEY(Q a(s) + W(5)Qy ()W (5))e 2V dy. (22)
y=0
Then, letting
W(s, y) = eQ1(Qyy(s) + W(5)Qay ()W(s))e 2P, (23)
we have
d
8_y‘1’(ss y):Qll(s)‘I’(ss )’)+‘I’(Ss y)Q22(S)s (24)
W(s, 0)=Q(s) + ¥ (5)Qa ()W (s), (25)
lim W(s, y) =0, (26)
y—00
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and so
> 9
QU (W(s) + W(s)Qu(s) = / = (W dy
y=0 y
=ylin;o W(s,y)— ¥(s, 0) 27)
and
0=0Q2()+ Q1 (HN¥(s) + ¥(5)Q22(s) + ¥()Qyr; ()W (s), (28)
which implies that W(s) is a solution of (21). ]

Below, we state expressions for E(dy)(o)(s) derived in [3, Theorem 3.1.1] and [14,
Theorem 2].

Lemma 2. We have

E(dy)V(s)11 = XOVC ay, (29)

E(d) O (s)12 = XKW (5)C; ' dy, (30)
T
E(dy) V()10 = [E@) Q)11 Ed)O(9)12] [T‘O} x (—(Too —sD~Hdy.  (31)
20

In the next lemma, we derive expressions for E(dy)®(s), x > 0. The formal proof of this
lemma was already given by Ahn and Ramaswami [5]. However, since the lemma is crucial to
all of the remaining analysis, we include its proof for completeness.

Lemma 3. For x > 0 we have

min{x,y}

B = [ PO dady,

z=0

E(dy)(5)22 = E(dy)(5)21C1¥(5)C5 ! + POy 1y < xldy,

Tio
E(dy)?(5)20 = [Edy)V(s)21  E(dy)M(5)22] [

] x (—(Top — sD)~Hdy,
20

E(dy)™(s)11 = W($)Edy)(s)21 + KO0 C 1y > x)dy,

E(dy)V(5)12 = W(5)E(dy)V(s)22 + KO0 (5)C5 1y > x}dy,

@ Tio .
E(d)“(s)10 = [E@»)P ()11 E(dy)?(s)12] X (—(Too — sD™ " )dy. (32)
20
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Proof. The expressions for E(dy)(x)(s)lo and E(dy)(x)(s)go follow from the argument in the
proof of Lemma 2. Furthermore, by partitioning the sample paths, since the process may visit
level y after returning to level x first, or without hitting level x at all, we have

E(dy)?(s)11 = W()E(dy)V(5)21 + E(d(y — x)V(s)111{y > x}dy,
E(dy)?(s)12 = W(5)E(dy)(5)22 + E(d(y — x) V() 121{y > x}dy, (33)

and so the expressions for E(dy)(x)(s) 11 and E(dy)(x)(s)lg follow from Lemma 2.
Next, we consider E(dy)(x)(s)n. For x > 0, define a matrix G(x, 1) = [G(x, ?);;] such that for
k,jes,

G(x, 0y =P@O0) <1, 9(0(0)) = | X(0) =x, ¢(0) = k) (34)

is the probability that, given that the process starts from level x in phase £, it first hits level zero
by time ¢, and does so in phase j. We partition G(x, ) according to S; U Sy as

(35)

0 Gk, D2
G(X, H= |:0 G(x, t)22i| '

Also, define G(x, s)= ftioo e *'dG(x, t), which we partition in an analogous manner.

The expression for E(dy)®(s)2, then follows from partitioning the sample paths. The pro-
cess can visit level y in some phase in Sy directly after a visit to level y in some phase in Sy,
or without visiting level y in some phase in S; at all, and so we take the sum of expressions
corresponding to these two possibilities, which gives

E(dy)?(s)22 = E(dy)?(5)21C1¥(5)C; ' + Gx — y, 5)C; '1{y < x}dy. (36)

The result follows since by [16], a(x —y,8)= POE—Y),
Finally, we consider E(dy)(")(s)21. Define

X(t)= inf {X(u)}. (37)
uel0,1]

Note that, given that the process starts with X(0) =x, ¢(0) =i, for the process to end with
X(1) e dy, p(t) =j, with a taboo 6(0) > t, one of the following two alternatives must hold.
The first alternative is that y > x. In this case, the following occurs:

e First, given X(0) = x, ¢(0) = i, the process must reach some infimum X(r) =z € (0, x] at
some time u € [0, 7], in some phase in Sy, with the corresponding density recorded by
the matrix Go2(x — z, u). This is followed by an instantaneous transition to some phase
k in &1 according to the rate recorded by the block matrix Q,; of the fluid generator Q,
by the physical interpretation of Q in [16]. The corresponding density of this occurring
is therefore [Go2(x — z, u)Qy lik-

e Next, starting from level z in phase k at time u, the process must remain above level z dur-
ing the time interval [u,f], ending in some level y in phase j at time ¢. The corresponding
density of this occurring is [¢(y — z, t — u)ly;.
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Consequently, the LST of this alternative is
X o0 t
/ / / e "Goo(x — 2, Qo ()P(y — 2, t — )1 1dudtdz
7z=0 Jt=0 Ju=0

X o0 o0
— / / / e "Goo(x — z, u)Qy (s)efs(tfu)(b(y —z,t —u)1dudtdz
z=0 Ju=0 Jt=u

X o o
= / (/ e "G (x —z, M)du) Q1 (s) (/ e Py —z, t)udt> dz
2=0 \Ju=0 =0
X
- / POETIQ, ()X D02z,
z=0

The second alternative is that y < x. The LST of this alternative, by an argument similar to
the above, is

y
/ PO, (5)e KO0 g
z=0

Taking the sum of the expressions corresponding to the two alternatives and right-

multiplying by Cl_1 results in the integral expression for E(dy)®(s)a1. (|
Remark 2. Consider ~
E9(s)1 = f E(dy)(s)21 =XC} (38)
y=0

where X = fy°jo X(y)dy, and

min{x,y}
X() = / POETIQy (5)eK 0tz (39)
Z

Then, by integration by parts in (39), X(y) is the solution of

D(OX0) + X(OIK(s) = - [P0y (ek0—]"" (40)

and by integrating (40), X is the solution of
D()X + XK(s) = " VVQ, (5)(—K(s) ") — (=D(s)"HQ2 (s)
+ (=D(5)""ePPYQy(5) + Qa1 (HK(9) . (41)
3. Approach
The key idea is to write each of E(dy)*¥(s) and E™(s) in the form
&) =f(") = Cls = s + o((s — s/, (42)

and then apply the Heaviside principle in order to evaluate (10). In this section, we summarise
the relevant mathematical background required for this analysis.
Consider a function f:R — R. Let f(s): = fooo e **f(x) dx for s € R be its Laplace transform.

Consider the singularities of f(s). We assume that one with the largest strictly negative real part
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is real, and we denote it by s* < 0. Notice that this yields the integrability of fooo |f(x)| dx. The

inversion formula reads
a+ioco

=5 [ Foeras (43)
271 Ja-ico
for some (and then any) a > s™*.

We now focus on a class of theorems that infer the tail behaviour of a function from its
Laplace transform, commonly referred to as Tauberian theorems. Importantly, the behaviour
of the Laplace transform around the singularity s* plays a crucial role here. The following
heuristic principle given in [1] is often relied upon. Suppose that for s*, some constants K and
C, and a non-integer g > 0,

f(s)=K — C(s — s)7 + o((s — s%)7) as s | s*. (44)

Then
e (14 0(1)  asx— oo, (45)

TO=12g

where I'( - ) is the gamma function. Below we specify conditions under which this relation can
be rigorously proven. Later in our paper we apply it in the specific case that g = 1/2; recall
that [(—1/2) = —2./7.

A formal justification of the above relation can be found in Doetsch [22, Theorem 37.1].
Following Miyazawa and Rolski [41], we consider the following specific form. For this we first
recall the concept of the 20-contour with a half-angle of opening /2 < ¢ <, as depicted in
[22, Figure 30, p. 240]; also, %, (1) is the region between the contour 27 and the line 9(z) = 0.
More precisely,

Yu(P)={zeCN(2) <0,z#£ 0, | arg(z—a)| <V}, (46)

where arg z is the principal part of the argument of the complex number z. In the follow-
ing theorem, conditions are identified such that the above principle holds; we refer to this as
Heaviside’s operational principle, or simply the Heaviside principle.

Theorem 1. (Heaviside principle) Suppose that for f:C— C and s* <0 the following three
conditions hold:

(A1) f( -) is analytic in a region G () for some 7w /2 < <m;
(A2) f(s)— 0 as |s| — oo with s € Gy (V);
(A3) for some constants K and C, and a non-integer q > 0,
f&)=K—C(s — )+ o((s — s)%), (47)
where () 3 5 — s*.

Then

xS (1 4 0(1))

TO=FCg

as x — OQ.
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_ We now discuss when the assumption (A1) is satisfied. To check that the Laplace transform
f(+) is analytic in the region ¥« (y), we can use the concept of semiexponentiality of f (see
[30, p. 314]).

Definition 2. (Semiexponentiality) f is said to be semiexponential if for some 0 < ¢ <7 /2 and
all —¢ <9 < ¢ there exists finite and strictly negative y (1), defined as the infimum of all a

such that _
&)

Relying on this concept, the following sufficient condition for (A1) applies.

< ear

for all sufficiently large r.

Proposition 1. [30, Theorem 10.9f] Suppose that f is semiexponential with y (V) fulfilling the
following conditions: (i) y = y(0) <0, (ii) y () > y(0) in a neighborhood of ¥ =0, and (iii)
y () is smooth. Then (Al) is satisfied.

Note that by Lemma 3, all assumptions of Proposition 1 are satisfied, and we can apply the
Heaviside principle given in Theorem 1 for E(dy)™(s) and E®(s).

4. Application of the Heaviside principle

By Section 2, E(dy)(x)(s) and E(")(s) are expressed in terms of Q(s) and W(s), and so we
derive the expansion around s* for each of them first.

Consider ¥(s) as defined in (19). We have ¥ (s) = ftozoo e ()dt < oo for all s >0 by
[16, 17]. Define the singularity

s* =max{s < 0:¥(s) < 0o, ¥(z) = oo for all z < s}, (48)

where the existence of s* follows from [22, Theorem 3.3, p. 15].
Consider matrices K(s) and D(s) as defined in (20), and recall that sp(K(s)) N sp(—D(s)) =
@ for all s > 0. Define

8" =max{s € [s*, 0):sp(K(s)) N sp(—D(s)) # T}, (49)

whenever the maximum exists. The definition implies that K(6*) and (—D(8*)) have a common
eigenvalue.

Lemma 4. We have s* = §*.

Proof. Consider Equation (21), and for all s for which Q(s) exists, define the following
function of X = [xjjlics, jes,:

8s(X) = Q2(5) + Q11 ()X + XQxa(s) + XQy (9)X. (50)

For X > 0, X # 0, we have
d - _ _ _
—<8:(X) = ~C; "Tio(Too — 1) Tz X — €7 (I + T10(Too — sT) 2T01) X

—XC{1 (I + T10(Too — SI)_ZToz) - XCEITlo(Too —sD) T X
<0, (51)

since (Tgo — sI) "2 = (ftioo e‘”eT‘)O’dy)2 > 0, and so g4(X) is a decreasing function of s.
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Also, define the functions g (X) = [gs(X)]uv, for u € S1, v € S», by
gV X) = Q@ + Y [Quluvio + ) xuel Qe+ Y xul Qi (9)lkexes

kGS] 5682 kESz.[GS]
(52)

each of these corresponds to an |S1| x |Sz|-dimensional smooth quadratic surface. The matrix
equation (21) is equivalent to the system of |S;| X |S>| quadratic polynomial equations
given by

g¥X)=0 forallueS;,veS,, (53)

each corresponding to the (u,v)th level curve.

Now, by Lemma 1, for all s > s*, W(s) is a solution of g4(X) =0 and so is an intersection
point of all level curves (53).

Some other solutions to gs(X) = 0 may exist. For all real s, we denote by X(s) the family of
solutions that correspond to the intersection point W(s). That is, when s > s, X(s) = ¥(s), and
if X(s) exists for s < s* in some neighbourhood of s*, then X(s) must be a continuous function
of s in this neighbourhood, by the monotonicity and continuity of g(X).

So suppose that there exist solutions X(s) to g5(X) = 0 for s < s* in some neighbourhood of
s*, and that limgqyg+ X(s) = W(s*). Then, since W(s*) > 0, there exists W > 0 with g,(W)=
0 for some s<s* with sp(Qq1(s)) Nsp(—Qys(s)) =@ (since the spectra sp(Qq;(s)) and
sp(—Qna(s)) are discrete).

Therefore, by [27, Theorem 2.3] and [17, Algorithm 1], we have W(s) < oo for such s < s*,
and this contradicts the definition of s*. Consequently, X(s) does not exist for s < s*, and so
the level curves (53) must touch (have a common tangent line) at s = s, but not at s > s*.

Define 5

Vgl . [ = @gw’”([xij])\[xé], (54)
and note that

@) « I ww
Vet . [ = gt D]
= [Qu()uilli=v} + [Qu(s)pl{i=u} + Y [Qo1 (")l x x5 1{i =}
kESz
+ ) [Qai(sM)je x X7, 1{i = u}
(681
= [K(sM)]uil{j = v} + D)) {i = u}. (55)
The tangent plane to the (u,v)th level curve (53) at W(s*)= [x;;.] is the solution to the
equation
0=y Vgl (xy, ¥ xi — x5)
i.j
=~ (KGOl = v} + D = ) ) i — )
i.j

= [K(M)]ulX = W)l + Y X — W(s)]y D)
i J

= [K(*)(X — ¥(5) + (X — W(s)D(s")] (56)

uy ’

https://doi.org/10.1017/apr.2020.71 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2020.71

660 N. G. BEAN ET AL

From linear algebra, a matrix equation of the form 0 = AX + XB has a nonzero solution if
and only if A and (—B) have a common eigenvalue (e.g. see [18]). Therefore, the equation

0=K(")(X — ¥(s") + (X — ¥(s")D(s") (57)

has a solution Z = [z;;] # ¥(s*) if and only if K(s*) and (—D(s*)) have a common eigenvalue,
in which case the tangent planes (56) to all level curves (53) at W(s*) intersect one another at
a tangent line that goes through Z and W (s™).
That is, the level curves (53) touch if and only if sp(K(s*)) N sp(—D(s*)) # &. Hence,
st =8*. O
We now extend the result for s > 0 in [16, Theorem 1] to all s > s*.

Corollary 1. For all s>s*, W(s) is the minimum nonnegative solution of the Riccati
equation (21).

Proof. Suppose s> s*. Then Qq(s) <K(s) = Qq(s) + ¥(5)Q,;(s) and Qq,(s) <D(s) =

Q22(5) + Q21 ()W (s), and so sp(Q(5)) N sp(—Qaa(s)) = 2.
Therefore, by [27, Theorem 2.3] and [17, Algorithm 1], W(s) is the minimum nonnegative

solution of (21). O

In order to illustrate the theory, we consider the following simple example, which we will
analyse as we develop the results throughout the paper.

Example 1. Let S = {1,2}, S1 = {1}, S, = {2}, c1 = 1,2 = —1, and

T T2 —a a
T= - , (58)
Ty T b —b

Qii(s) Qpa(s) —a—s a
Q)= = , (59)
Q21(s)  Q2(s) b —b—s
with a > b > 0 so that the process is stable.
Then W(s) is the minimum nonnegative solution of (21), here equivalent to
bx* —(a+b+2s)x+a=0, (60)

which has solutions provided A(s) =(a + b + 2s)2 —4ab > 0, that is, for all

se (—oo, _(“+b)2_ 2‘/%} U [_(a+b)2+ Na_b, +oo>. 61)
Since
2ab
(@+b+2s)—/A@$)>0 < s< , (62)

a+b
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it follows that W(s) exists for all s > w, and

(a+b+2s)— /A(s)

W(s)= A , (63)
K(s)=—a—s+(a+b+2;)_ A(S), (64)
D(s):—b—s+(a+b+2;)_VA(S). (65)
Therefore,
&= w <0 (66)
and
W(s*) = \/g : (67)
K(s*):—a—s*+\/gb=b;a<0, (68)
D(s*):—b—s*+b\/§:a;b>0. (69)
Note that s* = §*.
Lemma 5. For all s > s*,
Q2(8) = Qaa(s™) — Ao (s™)(s — ) + o(s — s¥), (70)
Q11(9)=Qq1(5") — A1 (s™)(s — ") + o(s — s7), (71)
Q12(5) = Qa(s™) — Ap2a(s™)(s — 5™) + o(s — 5¥), (72)
Q21 () = Qy (5%) — A1 (s")(s — 5™) + o(s — 5¥), (73)
where, for all s > s*,
d ~1 )
An() = =2 Qua(5) = C; " (1+Tao(Ton —sD Tz ) . (74)
d -1 )
A1) ==2-Qui® = C;! (14 Tio(Ton —sD~Tor ). (75)
d
A12(5) = ——Qi2(8) = Cy ' Tio(Too — sD>To2, (76)
d
Azi(s) = —$Q21(S) = C; 'T20(Too — sD)~*Tor, (77)

and  Axn(s*) =limg ¢ Aoa(s) <00,  Ajqr(s™) =limg ¢ Api(s) <oo,  Ajpa(s™) =limg ¢
A12(S) < 00, and Azl(s*) = lin’lws* A21(s) < Q.
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Proof. For all s > s*,

d
=2 (~ (T —sD7") = (Ton — 1) 2, (78)
and so by (18),
d > ' (T4 Tao(Too — sD T
— Q0 =C;" (1+Ta(Too —sD)*Toz ). (79)

which, with the notation Ay (s) = — %sz(s), implies

Qa2(s + h) = Qaa(s) — Az (s)(h) + o(h). (80)

Next, since W(s*)<oo by Lemma 4, we have (—(Too - s*I)_l) <00 and
(Too — s*I)2 < 0o, which implies that Ay (s*) < oo. Taking the limits as s s* in (80)
and substituting & = (s — s*) gives

Q22(5) = Qa(5™) — A2 (s™)(s — s™) + o(s — 5¥). (81)
The proofs for the remaining expressions are analogous. 0

For s > s*, let

d v h)— W
o) = Lw(s) = lim LETD =¥ (82)
ds h—0 h
and, for s > s*, let
U(s) = A12(s) + A11(9)W(s) + W(s)A22(s) + W(5)A21(5)¥(s), (83)
noting that U(s*) exists by Lemma 5.
Lemma 6. For s > s*, ®(s) is the unique solution of the equation
K(s)X + XD(s) = U(s). (84)

Furthermore, ®(s*) = lim, | ®(s) = —00.

Proof. By Lemma 4, for all s > s*, K(s) and (—D(s)) have no common eigenvalues, and so
by [38, Theorem 13.18], Equation (84) has a unique solution. We now show that ®(s) is the
solution of (84). Also see [16, Corollary 3]. Indeed, by taking derivatives with respect to s in
Equation (21) for ¥(s), we have

d
0= " (le(s) + Q(HW(s) + W(s)Qo(s) + \Il(s)Q21(s)\p(s))
=—A12(s) — A11()W(s) 4+ Q1 (5)(s) — W()A2(s) + D(5)Qs(s)

+@(5)Q21(5)¥(5) — W(5)A21()¥(s) + W(5)Qy (5)D(s)
= —U(s) + K(5)®(s) + ®(s)D(s). (85)

Also, ®(s) < 0, since

®(s) = %\Il(s) = % /0 ” Y (Ndt = — /0 ” te~*" Y (Hdt < 0. (86)
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When s = s*, however, by Lemma 4, K(s) and (—D(s)) have a common eigenvalue, and so
by [38, Theorem 13.18], Equation (84) does not have a unique solution.

Finally, we show that limg | ¢« ®(s) = —oo. By standard methodology [38, Section 13.3], for
s > s*, the unique solution to Equation (84) can be written in the form

adj(Z(s))

vec(®(s)) = (Z(S))71V€C(U(S)) = det(Z(s))

vec(U(s)), (87)

where vec(®(s)) and vec(U(s)) are column vectors obtained by stacking the columns (from left
to right) of the original matrices one under another,

Z(s) = I® K(s)) + (D(s) @), (88)

and the eigenvalues of Z(s) are (A; — ), where A; are eigenvalues of K(s) and 1 are eigen-
values of (—D(s)). Because det(Z(s)) is the product of the eigenvalues of Z(s), and because,
as s | s, one of the eigenvalues will approach zero since s* =&* by Lemma 4, we have
limg ¢+ det(Z(s)) =0 and so ®(s*) =1lim, ¢+ ®(s) = —o0, where the negative sign is due to
the fact that ®(s) < 0 for all s > s*.

We now state the key result of this paper. O

Theorem 2. For all s > s*,

W(s) = W(s*) — B(s*)Vs — s* + o(+/s — 5%), (89)

where 0 < B(s™) < o0 solves

B(s")Q,1 (s")B(s*) = U(s™) — Y(5%), (90)
K(s*)B(s*) + B(s*)D(s*) = 0, 91)

and
Y(5™) = lim (KG)(5) + S(5)D(s") (92)

Proof. Note that for any function A( - ) with A(s — s*) = o(s — s*) or h(s — s*) =c - (s — s¥)
for some constant ¢, we have

~ lim <wh(s - s*)) —0. 93)

sgs* s —5*

Consider h(s — s™) = (s — s™)/||W(s) — ¥(s*)||. We have

S_*

T lim || W(s) — ¥(s™)|| =0, 94
slfg}‘h(s—s*) s‘fﬁ” (s) (Cl1 o4

which implies (s — s*) = o(h(s — s*)), and

Y(s) — W)

T (s — 5%

lim
s s*

—1£0. (95)
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Therefore, there exists a continuous, positive-valued function A(-) such that (s —s*) =
o(h(s — s™)) and
s —5*

_ lin}ﬂ (wh(s _ s*)) = B(s*) 96)

for some constant matrix 0 < B(s*) < co. For such A( - ), define the function g( - ) by

(5= S5 97)
g T h(s —s%)’

clearly lim, ¢+ g(s — s*) = 0 since (s — 5¥) = o(h(s — s¥)).
Consequently, we have

. (‘I’(S)—‘I’(S*)
- (M

) ) = B(s), (98)

which implies that
W(s) = W(s*) — B(s")g(s — s™) + o(g(s — 5M)). (99)
We now solve for B(s*) and g(s — s*). By (21) and Lemma 5, since

0=Q2(s") + Qi (s)W(s™) + W(s")Qa(s™) + ¥(s™)Qay (s") W (s™), (100)

we have

0=Q2(5) + Q1 (5)W(s) + ¥(5)Q1(5) + W(5)Qa1(5)¥(s)
= (Q2(s™) — Apa(s™)(s — 5¥))
+ (Q11(5") — A1 (s")(s — 5™)) (¥(s*) — B(s™)g(s — 5¥))
+ (W(s™) — B(s)g(s — 5)) (Qaa(s™) — Ana(s¥)(s — 5¥))
+ (W(s*) — B(s")g(s — 5)) (Qai(s*) — Aai(s")(s — 5%)) (W(s*) — B(s*)g(s — 5™))
+o(s — 5*) + o(g(s — 5%)), (101)

and so

0= —(s — s HUG™) + (s — s HW™) + (s — s*IV(5™) + ols — 5*) + 0(g(s — 5¥)),

(102)
where U(s*) is as defined in (83), and
W(s™) = (Q1(s%) + ¥(s")Q2(5%)) B(s¥) + B(s™) (Qua(s™) + Qa1 (s")W(sY))
=K(s)B(s") + B(s")D(s"),
V(5™) =B(s")Qy (s")B(s™). (103)

We now use (102) to solve for B(s*) and g(s — s™). We note that V(s*) £ 0 and U(s*) #
0. Indeed, V(s*) #0, since V(s*) >0 because B(s*) >0, Q,;(s*) >0, and Q,(s*) #0.
Furthermore, U(s*) £ 0 since U(s*) > 0. Indeed, in the case Sp= &, since Ci, Cy >0
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and ¥(s*)>0, we have U(s*)= Cl_l\Il(s*) + ‘I’(S*)C2_1 >0. In the case Sy#d, we
have —(Too —s*D~! = [, e 7T0'dt > 0, and (Too — s*D 2 = (—(Too — s* D)% > 0.
Therefore Aj1(s*), Ax(s*) >0, Aj2(s*), Az1(s*) >0, and W(s*)>0, so that U(s*)=
Ap(s™) + A (s)W(S™) + W(s™)A2(s™) + W(s™)A21 (s*)W(s™) > 0.

Consequently, below we consider the two cases W(s*) # 0 and W(s*) =0, respectively
labelled Case I and Case II.

Case 1. Suppose W(s*) # 0. Then
0=—(s — sUG™) + g(s — S YW(s*) + g*(s — s)V(s*) + (s — 5¥) + 0(g(s — 5¥)).
(104)

Consider (s — s*) and g(s — s*). Either one of them dominates the other, or one is a multiple
of the other.

(1) If g(s — s™) = o(s — s™), then dividing Equation (104) by (s — s*) and taking limits as
s | s* gives 0 = U(s™), a contradiction.

(i) If (s — s*) = o(g(s — s™)), then dividing Equation (104) by g(s — s*) and taking limits as
s s* gives 0 = W(s™), a contradiction.

(i) If g(s — s*) =c - (s — s™) for some constant ¢ > 0, then without loss of generality we may
assume ¢ = 1, since B(s*)g(s — s*) = (B(s™)c)(s — s*) suggests the substitution B(s*) =
B(s*)c. We then have

W(s) = W(s*) — B(s")(s — 5) + o(s — 5¥), (105)

with B(s*) < co. However, dividing Equation (105) by (s — s*) and taking limits as s |, s*
gives, by Lemma 6,

~ W(s) — W(s*
B = — lim 2O =YD _ o (106)
s 5% s — s*

a contradiction.

That is, the assumption W(s*) # 0 leads to a contradiction.
Case II. By the above, we must have W(s*) = 0, or equivalently,
K(s")B(s*) + B(s")D(s*) = 0, 107)
and so,
0=—(s — s UG™) + g°(s — s)V(s*) + o(s — 5*) + 0(g(s — 5)). (108)

We note that g%(s — s*) = o(g(s — s*)), and consider the following.

(i) First, we show that (s — s*) = o(g(s — s™)). Indeed, if g(s — s*) = o(s — s*) or g(s — s*) =
c- (s —s*) for some ¢ # 0, then dividing Equation (108) by (s — s*) and taking limits as s |,
s* gives U(s*) =0, a contradiction. Therefore we must have (s — s*) = o(g(s — s*)). That is,
g(s — s*) dominates both g2(s — s*) and (s — s*).

Then,

o(s—s%) . ols—5%) (s—5)

m = =0, (109)
s—s* g(s — %) s—s* (s —5%) g(s —5%)
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which gives o(s — s*) = o(g(s — s*)), and so we write (108) in the form
0= —(s — s U(s™) + g°(s — s)V(s™) + 0(g(s — 5™)). (110)

Since (s — s*) = 0o(g(s — s*)), we consider two cases, o(g(s — s*)) = 0 and o(g(s — ™)) # 0,
respectively labelled (A) and (B) below.
(A) Suppose o(g(s — s*)) = 0. Then (110) reduces to

0=—(s — sHU(™) + g%(s — s)V(s¥). (111)

If (s — 5*) = 0(g*(s — 5™)), we divide (111) by g2(s — s*) and take limits as s |, s* to get V(s*) =
0, a contradiction. If g2(s — 5*) = o(s — s*), we divide (111) by (s — s*) and take limits as s | s*
to get U(s*) =0, a contradiction. So we must have (s — s*) = ¢ - g>(s — s*) for some constant
¢ > 0, and without loss of generality we may assume ¢ = 1. Then dividing (111) by (s — s*)
and taking limits as s | s* gives U(s*) = V(s*), or equivalently,

B(s")Q21 (s")B(s") = U(s"). (112)

That is, Case (A) gives g(s — s¥) = /s — s*.
(B) Suppose o(g(s — s*)) # 0. Then we write the term o(g(s — s*)) in the form

o(g(s —s) = L(s — s)Y(s") + o(L(s — 57)) (113)

for some function L( - ) # 0 such that L(s — s*) = o(g(s — s*)) and some constant Y(s*) # 0.
We then have

0=—(s — sHUG™) + g2%(s — s)V(s¥) + L(s — s)Y(s*) + o(L(s — s)). (114)

In relation to the terms (s — s*), g2(s — s*), and L(s — s*), we consider three cases, labelled
(B)(1)—(B)(@iv). We will show that Case (B)(ii) gives a contradiction and Cases (B)(iii) and
(B)(iv) give g(s — s*) = +/s — s*.

(B)(ii) Suppose one of (s — s*), g(s — s*), and L(s — s*) dominates the other two.

If (s—s*) dominates the other terms, that is, g2(s —s*)=o(s —s*) and L(s — s*) =
o(s — s%), then dividing Equation (114) by (s — s*) and taking limits as s | s* gives U(s*) = 0,
a contradiction.

If g2(s — s*) dominates the other terms, that is, (s — s*) = 0(g%(s — s*)) and L(s — s*) =
0(g%(s — 5™)), then dividing Equation (114) by g*(s — s*) and taking limits as s | s* gives
V(s*) =0, a contradiction.

If L(s — s*) dominates the other terms, that is, (s —s*) = o(L(s — s*)) and g*(s — s*) =
o(L(s — s*)), then dividing Equation (114) by L(s — s*) and taking limits as s | s* gives
Y(s*) =0, a contradiction.

That is, Case (B)(ii) gives a contradiction. Therefore at least two of (s — s), gz(s — %), and
L(s — s*) must be multiples of each other.

(B)(iii) Suppose each of (s — s*), g2(s — s*) and L(s — s*) is a multiple of the others. Then
(s—s")=c-g*(s—s")=d-L(s — s*), and without loss of generality we may assume ¢ = 1,
d =1, by an argument analogous to the one used before. Therefore, dividing Equation (114)
by (s — s*) and taking limits as s | s* gives 0 = —U(s*) + V(s*) + Y(s¥), or equivalently,

B(s)Q21 (s")B(s™) = U(s™) — Y(s%). (115)

That is, Case (B)(iii) gives g(s — ™) = +/s — s*.
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(B)(iv) Suppose exactly two of (s — s*), g(s — s*), and L(s — s*) are multiples of one
another. Then these two terms must dominate the third term, or we have a contradiction by
Part (i) of Case II above.

If (s — s*) = c - g%(s — 5*) for some ¢ > 0, then without loss of generality we may assume
¢ = 1. Also, we must have L(s — s*) = o(s — s*). Therefore, g(s — s*) = +/s — s*, and dividing
Equation (114) by (s — s*) and taking limits as s |, s* gives U(s*) = V(s*), or equivalently,

B(s)Q2 (s")B(s™) = U(s™). (116)

If L(s —s*)=c- (s —s*) for some c #0, then dividing Equation (114) by (s —s*) and
taking limits as s |, s* gives V(s*) = 0, a contradiction.

If L(s — 5*) = ¢ - g%(s — s*) for some ¢ > 0, then without loss of generality we may assume
¢ = 1. Also, we must have L(s — s*) = o(s — s*). Therefore, Equation (114) becomes

0=—(s — sHUG™) + g2(s — s)V(™) + Y(5*)) + 0o(g%(s — s%)). (117)

In this case, if g(s — s*) = o(s — s*), then dividing Equation (117) by (s — s*) and taking
limits as s | s* gives U(s*) =0, a contradiction. If (s — s*) = 0(g%(s — 5*)), then dividing
Equation (117) by g?(s — s*) and taking limits as s | s* gives U(s*) + Y(s*) =0, a contra-
diction. Therefore, we must have g%(s —s*)=c- (s — s*) for some ¢ > 0. Without loss of
generality we may assume ¢ = 1. Therefore, g(s — s*) = +/s — s*, and dividing Equation (117)
by g%(s — s*) and taking limits as s |, s* gives

B(s)Q21 (s")B(s) = U(s™) — Y(s%). (118)

That is, Case (B)(iv) gives g(s — s*) = /s — s*.
By the above arguments, we must have

g(s —5%) = /5 — 5%, (119)

and
B(s")Qy; (s")B(s*) = U(s*) — Y(5), (120)
K(s")B(s*) + B(s")D(s*) = 0, (121)

and —oo < Y(s5*) < U(s*). Here, Y(s*) = 0 whenever the term o(g(s — s*)) in (110) satisfies
o(g(s — 5*)) = o(s — s™), and Y(s*) # 0 when o(g(s — ™)) = (s — s*)Y(s*) + o(s — s™).
Finally, we show (92). By L’Hospital’s rule,

R i IC L T

and so, by taking limits as s | s* in (85),
B(s")Qy (s")B(s") + Y(s*) = U(s™)

= lim [K(s)<I>(s) 4 Q(S)D(s)]

= 1im [(Q1(5) + ¥(5)Qa1 (9)(s) + B(5)(Qa(s) + Qu (¥ (5)
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= lim [% <M) Qy,(5) (<I>(s)2«/s - s*)

s s* NS —
)\ W (s*
(<I>(s)2x/s — s*) Q21 (s) (%)

+Q11(9)P(s) + P(5)Qa2(s) + W(s)Qa1 (5)P(s) + Q(S)QZI(S)‘I’(S*)]

1 1
= EB(S*)QN (s")B(s™) + EB(S*)QZI (s")B(s™)

. Qi1(s) — Qqy(s¥) - — Q22(s) — Qna(s™)
S

+Q11 (M) P(s) + V(5)Qa2(s™)

QZ](S) Q2l(s ) 21(5) 21(5*)
+W Q1 = QDY (g5 =5 + (@) —5) ( LW LD
()( — )((s)s %)+ (®(s) s)( N ) (s)

+W(5")Q21 (s P(s) + D(5)Qq (S*)‘I’(S*):|

=B(s")Qy (s")B(s*) + 0 + liim [K(s*)<1>(s) + <I>(s)D(s*)], (123)
s 5%
which completes the proof. 0

The next result follows immediately by Theorem 1.
Corollary 2. We have
1 «
1) =B(s*)=——=1"2""(1 4 o(1)). 124
¥ (@) (S)zﬁ e (1+o(1)) (124)

Example 1. (Continued) Since limg ¢+ A(s) = A(s*) =0, we have

d d(a+b+2s)—«/A(s)
hm —W(s)=lim
sls* ds sls* ds 2b
=lim d (1 : (8s +4( +b))>
= l1m A a
s s* dS b 4b«/A(S)
= —00, (125)

as expected. Furthermore,

W(s) — W™ lim <(a +b+259)—VAG)  (a+b+25%) - «/—A(s*))
s(5%)

lim
sy(s*) s — s* 2b\/s — s* 2b\/s — s*
2/ ab
_Yve (126)
—b
which implies
W(s) = W(s*) — B(s")Vs — s* + o(+/s — 5%), (127)
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where
B(s*) = ZT\/%. (128)
Therefore, by Theorem 1,
V2 ﬁ 3 —(a+b)+2+ab
-3/2 & e eNT
V()= —— ZbJ_ exp > ] (I+o(D)). (129)
Also, A12(s*) =0, Ay1(s*) =0, A11(s*) =1, Axn(s*) =1, so
2
2+/ab
B(s*)Q21(s*)B(s*):b( ;/a_) = 2\/% = U(s"), (130)
and
K(s)B(s*) + B(s*)D(s*) = <b 4.4 b) ( NE) =0, (131)
2 2 b
. * " . b—a a-—0>
hinl (K(s*)®(s) + ®(s)D(s*)) = hinl << 5 + 3 )2<I>(s)) =0. (132)
For n > 1, define the matrices
n—1 ) -
Hy (5% =) (K(sM))' x B(s")Qy(s%) x (K(s%)" ™ (133)
i=0
and -
HG ) = 30 2L, H6Y= [ B s (134)
n=1 " y=

and define a column vector
H(") = H6HC 1+ (—(K() ' BGH + HEH¥6H ) €'

1

* *\\— 1 * * * C T10 sxy— 1
+[H(s*)  —(K(s%) " "B(s*) + H(s*)W(s")] c-! (=(Too —s"D~ )L

2 Too
(135)
Below, we derive the expressions for w(dy)©.
Theorem 3. The matrix p(dy)© is unique, and
u(dy)} = diag(H(s") ™ "H(s*, y)C; ' dy,
w(dy)\) = diag(Fi(s*))~" (eK“*”‘B(s*) +H(s", y)\Il(s*)) C; 'dy,
©0) ©) Tio |
w@ =@ w@ Q]| | T =D, (136)
20

https://doi.org/10.1017/apr.2020.71 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2020.71

670 N. G. BEAN ET AL

Remark 3. From Theorem 3 it follows that the crucial step in identifying the Yaglom limit
given above is identification of s*. Unfortunately, this must be done for each stochastic fluid
queue separately.

Proof. By Lemma 2, Lemma 5, and Theorem 2, we have

n

M =
= |

AR =K1i_>mOo Q11 (9) + ¥()Qa(5)"
n=0

K yn n
= lim 32 Q) + (¥ = BE Vs —57) Qui(5) + o5 —57)

=0 .

K yn K yn
= Klgréo 2 p} (Qi1(s™) + ¥(s)Qa (s))" — Klimw Vs —s* n; HHl,n +o(v/s — 5%)
= K6 ST H(sY, y) + o(Ws — 5%), (137)

which gives

E(d) ()11 = X dy

=E(dy)V(s%)11 — /s — s*H(s™, y)Cfldy + o(x/s — s%) (138)
and

E(dy) V()12 =eX0(5)C; ' dy
= (eK(S*)y — /s — s*H(s™, y)) (W(s™) — B(s)/s — s*)Cgldy + o(+/s — 5%)

=E@) )12 = V5 =5 (KB + Hs*, () €7 dy + o(vs = 57).
(139)

Also, noting that (Tog —sI)~! — (T — s*I)~! = (s — s*)(Too — s*I) "% + o(s — 5*), which
gives (Tgp — s = (Tgo — s"‘I)’1 + o(+/s — s*), we have

T
Edy) X (s)10=[eKCT KO(9)C; ] [TIO} (—(Too —sD™ )
20
= E@) V10— Vs =5 [H", ) (KB + HEs™, (s ) |

c'r
X [ 1_1 IO] (—(Too — s* D™ dy + o(+/s — 5). (140)
C2 Tho
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Furthermore,

E(dy) ()21 + / E(dy) (s 101
y=0

EO(s), = / " By O)n1+ / ”
_

=0 y=0

=EO(s*), — Vs — s H(s")C; 11— /s — 5 (—(K(s*))_lB(s*) + H(s*)\p(s*)) 1

—/s —s* [H(s*)  (—(K(s*)7'B(s*) + H(s*)W(s")) ]

-1
Cl T]()
x (—(Too — s* D™ H1+ o(v/5 — s%)
-1
C2 T2()
= EO(s*); — /5 — s H(s") + o(v/5 — 7). (141)

The result follows from Theorem 1 and (10), since the relevant terms cancel out. Indeed,
for i, j € Sy, by (138)—(141), Theorem 1, and (10),

0 _ PX(@) e dy, p(t) =, 0(0) > 1| X(0) =0, (0) = i)
m(dy);;” = lim ~
R P(6(0) > 1] X(0)=0, p(0)=1)

_ im0 ([HG™, YC; DA /2)~ 121 (1 4 o(1)) J
limy— oo ([H(s*);T(1/2)~ 117 1/2=1es" (1 + o(1))

_ [HG, »C; p (142)
[H(s")]; ’

which gives the result for ;L(dy)(lol). The expressions for u(dy)( and [L(dy) ) follow in a similar

manner. U

Example 1. (Continued) Finally,

e¢]

HE' ) = ) 2 H(7)

n=1 "
.y n—1 1—i

=313 (KG) X BGHQ (57 x (K(sH)"
n=1 n i=0
00 n n—1

=Y L5 —@—by2r avab
n=1 n i=0

— yel~@=5)2w [ Jap. (143)
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and
H(s*) = /OO ye(*(a*b)ﬂ)y,/z\/% dy
y=0
_ V2Jab
T @b
H() = H(s") + (—(KG) B + HEOW)
2/ab a 2 2/ab
SO

p(dy)) = diag(H(s*))~"H(s*, y)dy

(1 (i \/E R _lye<—(a7b>/2>ydy
(a—b)?/4 b)  a—b\b ’

()Y = diag@is) ™ (KB + Hs', )W) dy

-1
1 a 2 1 1 a
- - - - - (—(a—b)/2)y
((a—b)2/4 (1+ b>+a—b(b)) <b+y\/b>e -

(145)

We plot the values of ;L(dy)(ﬂ) and ;L(dy)(loz) in Figure 1.

We will now find the Yaglom limit for a strictly positive initial position of X(0) = x > 0. For
n > 1, define the matrices

(x—2)"

00 n—1
WE™ x—2)= Z ! Z D(s*) x Q21 (s*)B(s*) x D(s*)" 177,
n=1 ’ i=1

X
W.(s™) = W(s™, x — 2)dz,
z=0

min{x,y} -
Zi(s",y) = / (W(s*, x — 2)Qy (55RO~
z=0

+POIIQy (G, v - 2)) de,
o0
2= [ 26y (140
y

—0
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FIGURE 1: The values of su(dy)\} /dy and u(dy)\) /dy in Example 4 for b= 1, a = 4, 3, 2 (dotted, solid,
and dashed lines, respectively).

and define the column vectors

Z.(s*) =Z.(s")111 + Zo(s")121

7ok 7ok Tio 1 —1
+[Ze(s)11 Ze(s")12] T (—(Too —s*D ™)1,
20
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Z.(5") = Zo(s")211 + Z(s")m1

= 5 T *1y— 1
2 T || @0 —smL )

10
T2
where
Z,(s")n =Zu(sMC
Zuls 2 = (EV G )21 CLBG™) + Za(s (") + Wals) €5,

Zu(s21 = BEHEY ()1 + W ZGHCT !+ HEHCT
Z.(52 = BEMED (7 + 86 (EV 1 CBENC; ! + 2,6 B6HC; !+ WeHC3 )

+ (KB + HEH¥ () € (148)

with E®(s%)2) = fy o E(dy)®(s*)2; as considered in Remark 2, and

X
E(x)(s*)22 — E(x)(s>k)21 C \Il(s*)CEI + / eD(S*)(x_y)C;ldy
y=0

X
=EV ()21 C1 (N, - / P ey dw
w=0
=EY (2 C¥HC; ! = DG (P 1) ¢; (149)
Theorem 4. For x > 0, the matrix ;L(dy)(x) is unique, and
w(dy)Sy) = diag(Z(s*) ™ Z(s*, y)C7 ' dy,

()Y = diagZu(s™) ™ (B@) (5721 CIBENICS ! + Zus™, y)WGH)C; dy

FW x = )1y <31C; ' dy),

T
wad = [w@n) w@ns] [ “’] (~(Too =D,

T2o
w(dy)) = diag(Zy(s*)~! (B(s*)E(dy)(x)(s*)zl (M) Z(s, y)CT dy

+H(, y = 0C; 1y > xldy),
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(Y = diagZu(s )™ | (B6HE@) ()22 + W) (@) (521 € B C;
+7Z.(s*, y)W(s*)Cgldy + W™, x—yl{y < x}C;ldy))

n (eK(S*)(y*x)B(s*) +H(", y — x)‘I'(s*)) Cy 'y > x}dy ]

Tio _
pidy)y = [,L(dy)‘f? u(dy)ﬁ’f;] {T } (—(Too — s*D7).
20
The next corollary follows from Theorems 3 and 4.
Corollary 3. The Yaglom limit depends on the initial position of the fluid level X(0) = x in the

model.

Remark 4. There has been a conjecture that the Yaglom limit does not depend on the initial
position of the Markov process. However, a counterexample to this conjecture has already
been provided by Foley and McDonald [26]. Our model produces another counterexample of
the same kind.

Proof. Our proof is again based on Theorem 1 and (10). Note that

K n
. X—2Z
OO — iy ( )

K—+00 n!
n=0

(Q22(5) + Q21 ()¥(s5))"

G-
= lim

K—+00 n!
n=0

= P60 T W(s, x — 2) + 0o(Vs — 5%). (150)
By (137), (150), Lemmas 5 and 3, and Theorem 2, we have

min{x,y}
eD(S)(X*Z)Q21 (s)eK(S)(y*z)lel dzdy

(Q2205") + Qai (¥ — BEE W5 =57 +o(Vs =50

E(dy) Y (s)1 = /

z=0

min{x,y} .
= / (e"“ N e A G z)) Qs
z=0

X (eK(S*)(y*Z) — /s — s*H(s", y — Z)) Cl_ldzdy +o(vs —s5%)

= E(dy)V(s")21 — Vs = sLe(s*, ))CT dy + o(v/s — 5%), (151)
E(dy)(5)22 = E(dy)™(5)21C1¥(5)C; ' + " C5 'y < x)dy

= (E(dy)(X)(s*)21 Ci — Vs — s*Z(s*, y)dy) (‘Il(s*) —B(s")Vs — s*) C;l
+ (eD(S*)(xfy) — s —sW(s*, x — y)) C;l 1{y < x}dy + o(+/s — s%)
=E(dy)™(s") — /s — s* (E(dy)(x)(s*)zl Ci(—B(s*)C, ! + Z(s*, y)W(s")C; ' dy

+W(s*,x—y)1{y<x}C2_1dy) + o(x/s — 5%), (152)
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T
E(d) ™ (5)20 = [E@)P(s)21 E(dy)V(s)n] [T“’} (—(Tgo — s~
20

= E(dy)Y(s")20
— Vs =5 [Zu(s*,y)  E(d)P(5")21C1B(s™) + Zy(s*)W(s")dy + W(s*, x — y)1{y < x}dy]
cr't
<[ 1 1 (=T = s D7) + o(v/5 =57, (153)
C2 T20

and
o [e¢) (e.¢]
B9 = [ E@out+ [ B@Oont+ [ E@) 0
y=0 y=0 y=0
=EW (") — /s — 552y (s*) + 0(v/5 — 5%). (154)
Thus, the expressions for ;L(dy)(;l), ;L(dy)(;z), and ;L(dy)(z)g follow from arguments similar to

those in the proof of Theorem 3.
Furthermore, by (137), Lemmas 5 and 3, and Theorem 2, we have

E(dy)™(s)11 = W($)E(dy) ()21 + KO0 1y > x)dy
= (W(s*) — B(s")Vs — s)E(dy) V(5" )21 — Vs — s*Z(s*, y)C| ' dy)

+ (KO0 = FHG v = 1)) €y > xldy + o(vs = 57)
=E(dy)(s")11 — Vs — s*'(B<s*)E<dy)<x><s*)21 + W (s*)Zu(s*, y)C] ' dy

+H(s*,y—x)Cf11{y>x}dy) + o(«/s — 5%) (155)
and

E(dy)(s)12 = W($)E(dy) Y (s) + XOOTIW($)C 1y > x)dy

= (W) =BV =) (B2 = Vs =5 (E@) ()21 €1 BGOC; !
25", WGy dy + WG, 3= Ly <21C5 dy)
+ (eK“")(y*x)\I:(s*)c;‘ 1y > x}dy
— V=" (KOOIB() £ HG, y — 0¥(H) €5 dy) + o5 = 57)

= E(@) (512 = v/s =5 (BOE@) ()22 + () (@) V(21 Cr B Cy
(s, WOy + WOt x = D1y < 1€ dy ) )

— /5 —s* (eK(S*)(y*x)B(s*) +H(s*, y— x)‘I’(s*)) C2_1 1{y > x}dy + o(/s — s%).

(156)
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Thus, the expressions for ;L(dy)(lxl), u(dy)(lxz), and u(dy)(fg follow from a similar argument, with

EW(s), = / E(d) ()11 + / E(dy)(s)121 + / E(dy)®(s)101
y=0 y=0 y=0

—E9(s%) — /5 — 5 Z(s") + o(v/5 — 57). (157)

5. Example with non-scalar ¥(s)

Below we construct an example where, unlike in Example 1, key quantities are matrices,
rather than scalars. We derive expressions for this example analytically and illustrate these
results with some numerical output as well.

Example 2. Consider a system with N =2 sources based on an example analysed in [6]. Let
S={1,2,3},51={1},5={2,3},ci=1,co=c3=—1,and

_T“ 1, —Z)L‘ 2\ 0
T= . sz | 1 |l—a+n |,
- 0 2 -2
_ ~Qi+s)| 2%
Q(s) = Qi1 (s) Q12(S):| _ " ST ,
| Q21(5)  Qaa() 0 ) oty

with some parameter A > +/2 — 1 such that the process is stable. In our plots of the output
below, we will assume the value A =2.5.

Denote by [x z] = ¥(s) = ftioo e !y (f)dt the minimum nonnegative solution of (21), here
equivalent to

—(1+Ar+59) A
[00]=[2A 0] = A+ 9s)[x z] + [x z] [ ]

2 —2+59)
1
+[xz] 0 [x z], (158)
which we write as a system of equations
0=x>— (1 437+ 25)x+ 2z + 22, (159)
0=—-Q2+2x+2s — x)z+ Ax. (160)

The minimum nonnegative solution [x z] of (159)—(160) must be strictly positive, satisfy
2421+ 2s — x> 0, and occur at the intersection of the two curves

1 1
z=z(x, s)=—§x2+5(1+3)\+2s)x—x, (161)

z=22(x,8) = Ax/(2 4+ 21 + 25 — x). (162)
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FIGURE 2: Plots of (161)—(162) for s = 0 (left) and s = —2 (right), when A =2.5.

To facilitate the analysis that follows, we consider the shape of the curves in (161)—(162);
see Figure 2. It is a straightforward exercise to verify that, when s =0, we have z;(x, 0) <
—A < 22(x, 0) for all x <0, and so the two curves may only intersect at some point (x, z) with
x> 0.

Furthermore, when 2 + 2A + 2s — x > 0, we have

d22(x, §) _ AM2420+2s —x)+ Ax
ax (2421 +25—x)?

>0, (163)

and so, when s =0, the minimum nonnegative solution [x z] of (159)-(160) is in fact the
minimum real-valued solution of (159)—(160).
Also, when x > 0 and 2 + 2A + 2s — x > 0, we have

9
z1(x, 8) x>0,
as
9 —2,
2005 _ il <0, (164)

s (2420425 —x)?

and so as s | s* we have z;(x, s) | while z2(x, s) 1, until the two curves touch when s = s*, and
then move apart when s < s*. Therefore, by the argument about the continuity of ¥(s) which
was used in the proof of Lemma 4, for all s € [s*, 0], W(s) = [x z] is the minimum real-valued
solution of (159)—(160).

Instead of looking at the problem in terms of two intersecting curves z;(x, s) and z2(x, s),
we now look at it in terms of one cubic curve gg(x). Substitute (162) into (159) and multiply
by (2 +2A 4+ 2s — x) to get

0=—x+ B +51+4)x> — 2+ 221 +28)(1 + 31 + 29)x + (2 + 2A + 25)21
= gs(x), (165)

which is of the form
ax’ +bx2+cx+d=0, (166)
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gs(x)
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3
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-120

-40 -140
0

gs(x)

FIGURE 3: The plot of (165) for s =0 (top left), s = —2 (top right), and s = —1.1178 (bottom), when
Ar=2.5.

with g4(0) =d > 0 (we have d > 0 because 0 < x < 2 + 2\ + 2s, since z > 0 in (162)). (See the
plots of gs(x) in Figure 3 for the case A = 2.5.) Noting that a = —1 < 0, we conclude that when
s = s*, the solution [x z] corresponds to the local minimum,

| =b+ b2 —=3ac —b—+/b?>—3ac —b++/b? —3ac
X =min , = , (167)
3a 3a 3a
where
b* —3ac > 0. (168)
We transform the cubic equation (166) into the form
Y +py+g=0 (169)
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using the substitution

b
xX=y— 4 (170)
with
3ac — b? M, 2 @)

p= 3 =sxc, +5 Xy o (171)

for suitable cl(,l), cl(,z), ¢p, and

2b3 +27a*d — 9abc

- 27a3 =s5X cfll) st x c(qz) +5 x 0513) +¢y (172)

. 2 3
for suitable ¢, 7, ¢4, ¢q ', ¢4

Below, we choose the convention of writing p(s) to demonstrate that p is a function of s,
with similar notation applied for other quantities such as ¢, x, y, and so on. Observe that

$ = () = (5= )+ 555+ ()2 =C3 x (s — 55) + o(s — 5¥),
= () =(5—s)(s+5)=Cr x (s—5*) + o(s — 5%,

where C3 = 3(s*)? and C; = 2s*, and so by (171)—~(172),
p(s) = p(s*) = Cp x (s — s™) + o(s — 5¥), (173)
q(s) — q(s*) = Cy x (s — ") + o(s — 5¥), (174)
where the constants C,, and C are given by
G = cl(,l) + Cy x cé,z),
Co=clV+Crx P+ C3x ). (175)

Consider (169) and apply Vieta’s substitution,

y=u-— ™ (176)
where 1> solves the quadratic equation
W) 4+ qu’ — r =0. 177)
27
The two solutions are
w(s) = M (178)
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with
3
A® =20 +4x D, (179)
27
where A(s) < 0 for s > s*, and the repeated root requires
> P(sY)
A =g (s") +4 x =0. (180)
27
When s > s*, the three (real) solutions of (169) are the three cube roots
1/3
—q(s) + /A(s)
and we choose the minimum,
y(s) = min{yo(s), y1(s), y2(s)}, (182)

which corresponds to the minimum x(s) = ¥(s)1, where ¥(s); denotes the ith element of W(s).
Therefore, by (174),

—q(5) + VA®) " q(s*)

3 30k
wi(s)—u(s")= 2 >

z—%Cq X (s—s*)+%\/A(s)+0(s—s*). (183)
Now,

A(s) = A(s) — A(s)

1 4
= —(q(s) — q(s"))(q(s) + q(s")) + E(p(S) — PSP + p(s)p(s™) + p(s*)7),

2
(184)
and so by (173)—(174),
A(s)=Ca X (s — 5) + o(s — s), (185)
where the constant Ca < 0 is given by
1 * 4 20k
Ca=2Cy x2q(s")+ —=Cp x 3p7(s7). (186)
2 27
Therefore,
3 3%
o (B(s) — W) , 1 1\/CAx(s—s*)+0(s—s*)
1 — | = —=Cyv/s — ¥+ =
Sir;}( s — s5* ) si?‘( 271 57 +2 s — s*
2 A’
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and
lim <M> — lim (u(s) — u(s™) y u?(s) + u(s)u(s*) + uZ(S*))
sis* s — s* B sls* [g — ¢* uz(s) + u(s)u(s*) + uz(s*)

= lim ( HORUNCINY ! )
T oslst s — s* u2(s) + u(s)u(s*) + u(s*)
1

vCa,

- 6u2(s*)

where u(s*) # 0 by (177), since p(s*) # 0 by (168) and (171).
From the above we conclude that by (176),

lim (y(S) y(S*)) im (M(S) — u(s*) 1 (p(s) p(S*)))
s s* m s s* \/m 3” u(s)  u(s*)

— lim <M(S) —u(s™)  (p(s) — p(s™)u(s™) n p(s*)(u(s) — M(S*)))
sls* s —5* 38 — s*u(s)u(s*) 38 — s*u(s)u(s*)

N L
\/a<1+ p(s*) >

3u(s*)

=) 3u2(s%)

- 6u>(s*)

Therefore, by (170), we have

lim <‘I’(S)1 - ‘I’(S*)l) lim <X(S) —X(S*)>
sls* S — 5% sls* /S — 5%

= lim <L) —¥6D 0(1)>

s 8% s — s*
o1 p(s™)
a 6u2(s*)‘/a <1 + 3u2(S*)>
= —B(s*)]. (187)

Furthermore, by (162),

lim <‘I'(S)z - ‘I'(S*)z) — lim <Z(S) - z(S*))
sls* 8§ — 5* s s* s — s*

i ( 1 < Ax(s) B Ax(s™) ))
T\ o \ 25 2 25— x(s) 24 2% + 25" —x(s%)
20(1 4+ A+ s%)
=0T i —xept

= —B(s*)2, (188)

)1
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which gives

lim <L) _ ‘I'(s*)> = —[B(s*)1 B(s")2]=—B(s")
sis* s —s* N RO o

as expected (cf. (89)).
Now, assuming A = 2.5, we solve (180) numerically, obtaining

s~ —1.1178.
We evaluate [x z] = W(s*), using (167) to get x and then (162) to get z,
W(s*)~[1.7878 1.5016].
We obtain K(s*) and (—D(s*)) using (20):

K(s*) ~ [ — 2.0944],

2.0000 —0.8822

—0.5944  4.0016
—D(sH) ~ ,

which have common eigenvalue y & —2.0944. Also, we use (83) to obtain

U(s*) ~ [3.5756 3.0031].

Finally, we evaluate B(s*) using (187) and Y(s*) using (90):

B(s*) ~ [1.6416 2.2069],
B(s™)Qy; (s")B(s*) &~ [2.6948 3.6228],
Y(s*)~[0.8808  —0.6197].

This yields

K(s")B(s*) + B(s")D(s*) ~ 10~ x [0.7550 — 0.0888],

which is approximately zero, as expected (cf. (91)).
Finally,

o0

yn
HGs™ )=~ Hiu(s")

1

(K(sM))' x B(s*)Qy(s%) x (K(s%))

nn

Il
Me 1
=|‘<

!

3
I
-
Il
o

n n—1

(K(s")"™" (B(s*)Qu1(sM))

I
WK
S |‘<

!
n=1 i=0

= yeKEVB(5%)Qy, (s%)

~ 1.6416)78_2'0944 ><y’
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and
o
H(s") = /} B )y
= (K(s")) B(s")Qy(s%),
H() = HG™) + (—(KG™) ™ Bs*) + () 1
~3.4428, (200)
SO
(dy) = diag(H(s*))""H(s*, y)dy
~0.2905 x 1.6416ye~ 2094y
p(dy)) = diag(E(s) ™ (KUVBG) + H, )W) dy
~0.2905 x ([1.6416 2.2069] + 1.6416y[1.7878 1.5016]) 2092 gy,
(201)
where M(dY)E,Q) is the limiting conditional distribution (Yaglom limit) of observing the process

in level y and phase j, given that the process started from level zero in phase i at time zero, and
has been evolving without hitting level zero.
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