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Hydrodynamic dispersion in Hele-Shaw flows
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Single-phase flow inside a Hele-Shaw cell can exhibit inhomogeneous flow fields, for
example when actuated by electroosmosis with varying wall mobilities, leading to
internal pressure gradients. We derive a two-dimensional dispersion model for a dissolved
species in such a non-uniform flow field, utilizing a multiple-scale perturbation approach.
The resulting two-dimensional transport equation is an advection–diffusion equation
containing an effective dispersion tensor field and additional advection-correction terms.
It can be viewed as a generalization of the well-known Taylor–Aris dispersion model. The
dispersion model allows for flow fields with both stationary and oscillatory components.
For the special case of non-uniform flow induced by both pressure gradients and
electroosmosis, we derive expressions for the flow field in the long-wavelength limit.
These include arbitrary, time-dependent functions for both the driving field as well
as the wall mobilities. We discuss the general characteristics of the model using a
sinusoidally varying wall mobility, and derive analytical expressions for the dispersion
tensor. Then, in order to validate the model, we compare three-dimensional Lagrangian
particle tracing simulations with the dispersion model for several test cases, including
stationary and oscillatory shear flow as well as a recirculating flow field. For each test
case, a good agreement between the full three-dimensional simulations and the results of
the two-dimensional dispersion model is obtained. The presented model has the potential
to significantly simplify computations of mass transport in Hele-Shaw flows.

Key words: Hele-Shaw flows, dispersion

1. Introduction

Shear-enhanced dispersion of a soluble species transported by a background flow with a
specific velocity profile has been of interest since the original works by Taylor (1953, 1954)
and the subsequent analysis by Aris & Taylor (1956), referenced to today as Taylor–Aris
dispersion. Initially, a pressure-driven flow through a circular tube was considered,
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and the spreading of an initial concentration distribution over time was described by
an effective diffusion coefficient. Aris formalized the work by using the method of
statistical moments, describing the concentration distribution along the channel axis by its
cross-stream-averaged moments. The analysis revealed the well-known Pe2-dependency,
where the Péclet number is defined as Pe = Ua/D with a characteristic velocity U, a
characteristic length scale a and the molecular diffusion constant D.

This paper is concerned with the problem of hydrodynamic dispersion in Hele-Shaw
flows with variations of the wall mobility, which could be ζ potential variations for
electroosmotic flow or variations of the wall slip length for pressure-driven flow. As was
shown in a recent series of papers, inhomogeneous ζ potentials at the walls can give rise to
internal pressure gradients, leading to pressure-driven backflow. Specifically, Boyko et al.
(2015) demonstrated theoretically that, for the case of non-homogeneous ζ potentials at
the bounding plates, different height-averaged two-dimensional flow fields can be created
based on electroosmotic flow. Experimentally, this principle was implemented by varying
the ζ potential based on chemical patterning (Paratore et al. 2019b) and by employing gate
electrodes below flat (Paratore et al. 2019a; Boyko et al. 2021) or microstructured surfaces
(Dehe et al. 2020). In a recent publication, this principle was utilized to sort particles
by their respective diffusivity (Bacheva et al. 2020). The ability to shape the flow field in
both space and time enables adaptive, re-configurable microfluidic platforms with multiple
functionalities such as mixing, flow guiding and separation. Similarly, pressure-driven
Hele-Shaw flows with varying wall slip lengths exhibit flow inhomogeneities. Walls of
a microfluidic channel or Hele-Shaw cell with slip-length patterns produce specific flow
patterns where the local flow direction differs from that of the globally applied pressure
gradient (Hendy, Jasperse & Burnell 2005; Six & Kamrin 2013). The slip length can either
originate from the molecular interactions between the liquid and the solid (Lei, Rigozzi
& McKenzie 2016), or it can be an effective quantity reflecting the average effect due to a
superhydrophobic or liquid-infused surface (Ybert et al. 2007; Schönecker, Baier & Hardt
2014).

The aforementioned work focuses on the ability to influence the flow field. To widen the
application area of Hele-Shaw flows with variations of the wall mobility, a corresponding
model for species transport is needed. In order to incorporate all effects considered in
previous work, the model derived in this paper accounts for effective electroosmotic
mobilities at the walls, as well as slippage effects. The electroosmotic mobility can
vary both in space and time at both walls, and the effective slip at the walls can
exhibit a spatio-temporal dependency as well. Ultimately, we employ an averaging of the
concentration field over the cell height, thereby capturing the three-dimensional (3-D)
scenario by a 2-D model. In total, we complement the existing framework of 2-D flow
shaping in Hele-Shaw cells with an appropriate species transport model, thus enabling
the development of further applications where fluid mixtures are considered, such as in
chemistry or bio-medical engineering.

Since the original works by Taylor and Aris, a large number of studies have focused
on extending the applicability of dispersion models. The Taylor–Aris solution is restricted
to time scales large compared with the typical diffusion time, and in a seminal work,
Ananthakrishnan and coworkers (Ananthakrishnan, Gill & Barduhn 1965) presented the
regions of validity in a Péclet number–time space. This yielded results on the influence
of pulsating flow (Aris 1960; Gill, Ananthakrishnan & Nunge 1968), on extending the
applicability of the solution for short times (Gill et al. 1968; Gill, Sankarasubramanian
& Taylor 1971; Barton 1983) or on generalizations to several transport processes in
homogeneous and heterogeneous media (Brenner & Edwards 1993), among others.
Additionally, the role of secondary flow in a plane vertical to the main flow was
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discussed by Janssen (1976) in the context of a coiled tube. Especially the influence of
oscillatory flow has been of interest. Chatwin (1975) analysed the dispersion due to an
oscillating pressure gradient and showed that the mean distribution of a contaminant
satisfies a diffusion equation with an effective diffusion coefficient with a harmonic
time dependence based on twice the driving frequency. Also, he showed that, in the
limit of slow oscillations, the dispersion coefficient could be approximated with the
steady-state dispersion coefficient. For fast oscillations, the dispersion coefficient sharply
decreases with frequency. Following this work, Watson (1983) theoretically analysed the
influence of the channel geometry, frequency and Schmidt number, with exact solutions
for circular and slit channels. Also, he showed that the dispersive effects of a steady
and an oscillatory flow field are additive. Joshi et al. (1983) experimentally verified the
predicted dispersion laws using a infrared-absorption technique. Smith addressed the issue
of dispersion when the oscillation period is smaller than the diffusive time scale based on
the channel width (Smith 1982). In this case, the oscillatory flow leads to the contraction of
dissolved species during one half-cycle of the oscillation period, thus leading to a negative
effective diffusion coefficient. Since negative diffusion coefficients lead to infinite
concentration values in advection–diffusion equations, he proposed a delay-diffusion
equation instead. Alternative efforts to consider oscillating flows include adaptations of
the method of moments to account for dispersion due to superposed pulsating pressure
gradients and stationary flow, with the solution being applicable to all times after the
release of dissolved species (Mukherjee & Mazumder 1988). While the aforementioned
work focused on oscillatory pressure gradients along a channel, Bandyopadhyay &
Mazumder (1999) incorporated the additional effects of wall oscillations in a parallel-plate
channel.

In recent years, the research field was revitalized in the context of microfluidic
applications, where hydrodynamic dispersion can play a significant role. For example,
Kamholz et al. (1999) discussed that a T-mixer can exhibit different shapes of diffusive
zones, e.g. in the shape of a butterfly or a flat profile. Inhomogeneous velocities lead
to varying residence times close to the wall and thus, different extents of the diffusion
zone. The varying shapes of diffusive zones were experimentally observed by Ismagilov
et al. (2000). The influence of flow inhomogeneities in the streamwise direction on
hydrodynamic dispersion was analysed by Stone & Brenner (1999) for the specific case
of a radially extending flow between two plates. Ng (2006) included the effect of wall
reactions into a dispersion model of oscillating flow. The influence of the cross-sectional
shapes of shallow microchannels on the flow profile and thus the dispersion was analysed
by Ajdari, Bontoux & Stone (2006). For microchannels with finite length, Giona et al.
(2009) showed the existence of an advection-dominated dispersion regime. Also, apart
from the influence of the channel wall, the role of secondary flow was discussed in the
context of microfluidic applications by Jiang et al. (2004), Zhao & Bau (2007) and Adrover
(2013). While the aforementioned works were concerned with spatial inhomogeneities, the
role of time-dependent flow profiles was discussed by Vedel & Bruus (2012) and Vedel,
Hovad & Bruus (2014). Here, the authors showed that oscillations can enhance dispersion,
given that the oscillation frequency is lower than the momentum and solute diffusion time
scale over the channel cross-section.

Apart from rather generic work, hydrodynamic dispersion was also considered in
quite specific scenarios involving electroosmotic and pressure-driven flow. Datta &
Kotamarthi (1990) developed a dispersion model for capillary electrophoresis, accounting
for both pressure and electroosmotically driven flow in the limit of small ζ potentials.
Following, several studies were concerned with a combination of both driving mechanisms
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through capillaries, focusing on flow driven by large ζ potentials (Griffiths & Nilson
2000), arbitrary cross-sections (Zholkovskij, Masliyah & Czarnecki 2003; Zholkovskij
& Masliyah 2004), flow in the context of capillary zone electrophoresis (Ghosal 2003),
overlapping electric double layers (Zholkovskij et al. 2010) and slit channels (Zholkovskij,
Masliyah & Yaroshchuk 2013). Gleeson & Stone (2004) contributed by analysing the
influence of inhomogeneous, randomized ζ potentials at the wall. Also, the effect of
adsorption–desorption wall reactions was discussed by Datta & Ghosal (2008). Ng &
Zhou (2012a) analysed the effects of varying ζ potentials and wall slip, demonstrating
enhanced dispersion. Bahga, Bercovici & Santiago (2012) developed a dispersion model
in the context of electrokinetic flow in channels with varying cross-sections, including
multispecies transport and chemical reactions at equilibrium. Additionally accounting
for magnetohydrodynamic forces, Vargas et al. (2017) derived a dispersion model for a
flat plate microchannel, and Muñoz et al. (2018) accounted for pulsating electroosmotic
flow in the presence of slip. Chu et al. (2019) discussed both stationary and oscillatory
dispersion in a parallel-plate channel, focusing on the effects of oscillations that can lead
to a local negative dispersion coefficient, and the successive problems when the negative
dispersion coefficient is inserted into a macrotransport equation. The work referred to
above demonstrates that, despite over 60 years of research, open questions concerning
hydrodynamic dispersion in various contexts remain to be studied.

Most of the work above considers flow through channels with different cross-sections,
where the flow velocity is mainly along a specified direction. This is a result of pressure
gradients that are usually applied uniformly along a channel, and electroosmosis due to
an electric field applied in a specific direction. Inhomogeneous ζ potentials at the walls of
Hele-Shaw cells often lead to internal pressure gradients. A notable study on electrokinetic
flows in a shallow-channel geometry was performed by Lin, Storey & Santiago (2008),
who accounted for variations of the electric conductivity in a depth-averaged model.
The spatio-temporal evolution of the conductivity is described by a transport equation.
The velocity field is dictated by the electric field strength and the zeta potential at the
channel walls which, in turn, depends on the local values of the conductivity. As a result,
a dispersion tensor is obtained. A major difference between these studies and the present
work lies in the fact that Lin et al. (2008) considered a dispersion mechanism that is
governed by the internal dynamics of the system (the re-distribution of ions), whereas we
focus on dispersion due to imposed, inhomogeneous boundary conditions at the channel
walls.

For Hele-Shaw cells, characterized by small heights compared with lateral extents,
extensive work exists on dispersion. For example, in the context of viscous fingering of
miscible fluids in Hele-Shaw cells, a model to account for hydrodynamic dispersion was
proposed by Zimmerman & Homsy (1991), both for isotropic as well as velocity-dependent
dispersion. Implicitly, this model assumes the flow to obey the same form of the
velocity profile for a given average velocity, e.g. plane Poiseuille flow. Thus, it is
unable to account for different flow profiles, as inherent, for example, in the case
of superposed electroosmotic and pressure-driven flow of varying magnitude. Another
restriction often applied in the modelling is that the driving force of the flow in
Hele-Show cells is uniform over the cell. For example, in the experiments of Roht
et al. (2015), the effect of an oscillating flow on the dispersion of concentration
fields is discussed for the case of an external pressure gradient driving the flow.
However, to the best of our knowledge, no dispersion model for inhomogeneous flow
in Hele-Shaw cells exists, for example originating from superposed pressure-driven and
electroosmotic flow or from an inhomogeneous distribution of the slip length at the
boundaries.
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The remainder of the paper is organized as follows. In § 2, we derive a dispersion
model for a dissolved species by means of a multiple-scale perturbation approach,
resulting in a 2-D macrotransport equation. The resulting transport equation describes the
long-time evolution of the height-averaged concentration distribution in the Hele-Shaw
cell and incorporates the advective–diffusive transport effects over the cell height in
a space-dependent, non-isotropic dispersion tensor. In § 3, we formulate the governing
equations for a stationary and oscillatory flow field, which we later utilize in the
macrotransport problem. In § 4, we demonstrate the application of the dispersion model to
the case of sinusoidal variations of the wall mobility, outlining the effects of a superposed
constant wall mobility, electric field direction, as well as slip length. In § 5, we compute
concentration fields for three test cases both with a 3-D particle-tracking approach and
the 2-D model and show good agreement of both approaches. The test cases include a
stationary flow field with zero average flow (§ 5.2), an oscillatory flow field with zero
average flow (§ 5.3) and a rotary flow field (§ 5.4). Finally, in § 6 we summarize our
findings.

2. Dispersion model – multiple-scale perturbation

2.1. Introduction
In this section, we derive a transport equation for a dissolved species in a background
fluid flow, as illustrated in figure 1. We consider the flow of a Newtonian, incompressible
fluid through a domain that is bound in the z-direction by two parallel plates, located at
z = 0 and z = h. In the x and y directions, the cell’s extension is L0. In the following,
we will refer to the x and y directions as in-plane, and to the z-direction as transversal or
cross-stream, due to the fact that the flow velocities are mainly in the x and y-directions. In
§ 3, the governing equations for the flow will be discussed. For now, we describe the flow
by a 3-D flow field, with the velocity components expressed as

u(x, y, z, t) = ū(x, y, z)+ u′(x, y, z, t) (2.1a)

v(x, y, z, t) = v̄(x, y, z)+ v′(x, y, z, t) (2.1b)

w(x, y, z, t) = w̄(x, y, z)+ w′(x, y, z, t), (2.1c)

where u and v are parallel to the bounding walls, and w normal to these. Each velocity
component can be decomposed into steady-state and fluctuating parts, denoted by �(·), and
(·)′, respectively. For now, we will continue with the unspecified expressions u′, v′, w′, only
requiring that the signal is periodic with period Tosc = 1/f . The steady-state part of the
flow field can be obtained by time averaging the flow field over one period of oscillation,
as will be introduced in detail in § 2.3. In general, the oscillation can be composed of
multiple frequencies, which depend on the mechanism of fluid actuation.

The transport of a dissolved species inside such a flow field is driven by advection with
the background flow velocity, as well as by molecular diffusion due to Brownian motion of
the molecules, as shown in figure 1(b). Assuming a sufficiently low species concentration
as well as impermeable walls and no sources or sinks of concentration, e.g. due to chemical
reactions or adsorption processes, the transport is governed by the 3-D advection–diffusion
equation

∂c
∂t

+ u
∂c
∂x

+ v
∂c
∂y

+ w
∂c
∂z

= D
(
∂2c
∂x2 + ∂2c

∂y2 + ∂2c
∂z2

)
, (2.2)

where D denotes the coefficient of molecular diffusion of the species, and c the molecular
concentration. While the specific boundary conditions at the outer perimeter of the cell in
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(a) (c)

(b)

Concentration tracer
Electroosmotic

mobility μU

Slip βU

β0

–μ0

+μ0

Slip βL and

electroosmotic mobility μL

Cross-stream diffusion

In-plane advection In-plane diffusion

Height averaged

flow field 〈u〉
Height averaged

slip 〈μp〉
Height averaged electro-

osmotic mobility 〈μEOF〉

Flow cell

z y
x

E

Figure 1. Illustration of a Hele-Shaw cell geometry under electric field actuation. (a) The upper and lower
walls are separated by a spacing h, and can both exhibit non-uniform electroosmotic mobilities μ as well
as slip lengths β. The resulting flow field is non-homogeneous. (b) A dissolved species, here represented
by a single molecule, is transported by cross-stream diffusion and in-plane advection as well as diffusion.
(c) Two-dimensional representation of the system. A concentration field distribution (red) gets dispersed over
the Hele-Shaw cell. The effects of velocity inhomogeneities over the cell height are included in the dispersion
matrix D, resulting in a two-dimensional model.

x,y-directions depend on the problem under study and are not important for the derivation
of the transport model, we can impose the impermeability wall boundary condition at the
upper and lower wall as

∂c
∂z

= 0 at z = 0, h. (2.3)

While (2.2) represents the transport equation for the full problem, solving it for extended
fluid domains can be computationally very demanding, since in all three dimensions
the processes occurring on the smallest scales need to be resolved. Especially when
solving transient problems, it can become impractical to compute the time evolution of
the concentration field in a reasonable time. Therefore, we develop a reduced-order model
that captures the processes on the small scales such that only the macro scales have to be
resolved. In figure 1(c), the corresponding 2-D model of the system depicted in figure 1(a)
is represented schematically.

In order to apply the multiple-scale perturbation approach, the micro- and macroscales,
and thus the different time scales, need to be identified (Mei & Vernescu 2010). In
agreement with previous work on hydrodynamic dispersion in channels (Chu et al. 2019),
we here identify the length and time scales in a fluid domain with a typical length scale
in the x and y-directions L much larger than the channel height h. It is important to note
that the in-plane scale L is due to an inhomogeneity of the flow domain on this scale,
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not necessarily identical to the side length of the cell. This yields a small parameter

ε = h
L

� 1, (2.4)

which we will use in the perturbation analysis.
The species transport in the considered Hele-Shaw cells results in three distinct time

scales. We assume that the shortest time scale is due to the diffusion in cross-stream
direction, which is of the order

Tdif ,h = O
(

h2

D

)
= O(Tosc). (2.5)

Here, in analogy to Chu et al. (2019), the oscillation of the flow field is considered to occur
on the order of the smallest time scales, for the case that the flow field has an oscillatory
component. This assumption is supported by an order-of-magnitude comparison to recent
results on the topic of flow shaping, where channel heights of the order of 10−5 m were
used, which in conjunction with diffusion coefficients of 10−9 m2 s−1 leads to Tdif ,h =
O(10−1 s), coinciding with reported oscillatory frequencies (Paratore et al. 2019a; Dehe
et al. 2020).

The second time scale of the system can be identified as the time scale of advection
along the in-plane inhomogeneity scale L, resulting in

Tadv = O
(

L
Uc

)
= O

(
h

Wc

)
= Tdif ,h

ε
. (2.6)

Here, Uc and Wc are typical in-plane and transverse velocities, respectively. The relation
of the time scales of advection in the streamwise and transverse directions can be inferred
from an order-of-magnitude analysis of the continuity equation, as shown in Appendix B.

The third time scale is the diffusive time scale across the inhomogeneity scale L,
yielding

Tdif ,L = O
(

L2

D

)
= Tdif ,h

ε2 . (2.7)

Having identified all relevant time scales of the problem, a hierarchy of time variables can
be defined, which we will use to perform a perturbation analysis

t0 = t, t1 = εt, t2 = ε2t. (2.8a–c)

Before we proceed, we non-dimensionalize the advection–diffusion equation (2.2). The
spatial coordinates can be rescaled by the typical length scales L and h for the x and y,
and z directions, respectively, and the velocities by their characteristic velocities Uc and
Wc. The concentration can be rescaled by a typical concentration c0, and the time by the
diffusive time scale Tdif ,h, resulting in

∂ ĉ
∂ t̂

+ εPe
(
∂ ĉ
∂ x̂

+ ∂ ĉ
∂ ŷ

+ ∂ ĉ
∂ ẑ

)
= ε2

(
∂2ĉ
∂ x̂2 + ∂2ĉ

∂ ŷ2

)
+ ∂2ĉ
∂ ẑ2 , (2.9)

∂ ĉ
∂ ẑ

= 0 at ẑ = 0, 1. (2.10)

Here, the hatted variables represent non-dimensionalized quantities, and Pe represents the
Péclet number, herein defined as Pe = Uch/D. The advection–diffusion equation (2.9) is
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representative of the full problem, and in the following, we will reduce it to an effective
2-D model, governing the long-time behaviour of the full problem, following the approach
by Chu et al. (2019).

First, we utilize the time scales defined in (2.8a–c) to expand the time derivative as

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
. (2.11)

For brevity, in what follows we have dropped the hats and all variables will be
non-dimensional. The concentration field can be expanded in ε as (Fife & Nicholes 1975)

c(x, y, z, t) = c(0)(x, y, z, t0, t1, t2)+ εc(1)(x, y, z, t0, t1, t2)

+ ε2c(2)(x, y, z, t0, t1, t2)+ O(ε3). (2.12)

Inserting (2.11) and (2.12) into the governing equation (2.9) and boundary condition (2.10)
results in a set of equations of different orders in ε. We will consider them in increasing
order, to build up a macroscale transport equation. Before we derive the macrotransport
equation, it is important to note that the components c(1) and c(2) are assumed to be
fluctuating components, with vanishing average over the channel height, when averaged
over one oscillation period. The details of this rationale will be outlined and justified
during the derivation of the macrotransport equation. Additionally, in § 2.4 we will sketch
how the derivation would change if this assumption was not introduced.

2.2. Leading-order perturbation: O = (ε0)

The leading-order approximation results in

∂c(0)

∂t0
= ∂2c(0)

∂z2 , (2.13)

∂c(0)

∂z
= 0 at z = 0, 1. (2.14)

The solution to (2.13) under the boundary condition (2.14) can be expressed as a infinite
series of the form

c(0) = c(0)0 (x, y, t1, t2)+
∞∑

n=1

c(0)n (x, y, t1, t2) e−n2π2t0 cos(nπz). (2.15)

If the initial distribution c(0) depends on z, the z-dependent terms decay over a time scale
t0 due to the factor e−n2π2t0 , and are thus irrelevant for the long-term solution. Therefore,
it is legitimate to drop the dependence on t0 and utilize

c(0) = c(0)0 (x, y, t1, t2). (2.16)

The independence of c(0) from the transverse coordinate z indicates that it represents the
cross-stream average of the concentration.
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2.3. First-order perturbation: O = (ε1)

The first-order perturbation of (2.9) under the boundary condition (2.10) yields

∂c(0)

∂t1
+ ∂c(1)

∂t0
+ Pe u

∂c(0)

∂x
+ Pe v

∂c(0)

∂y
= ∂2c(1)

∂z2 , (2.17)

∂c(1)

∂z
= 0 at z = 0, 1. (2.18)

In order to derive the macroscale transport equation, let us introduce the time average over
one period of oscillation (on the short time scale) as

�(·) = 1
Tosc

∫ t0+Tosc

t0
(·) dt0, (2.19)

and the transverse average as

〈(·)〉 =
∫ 1

0
(·) dz. (2.20)

Applying now both the time and transverse average to (2.17) leads to an equation for c(0)

on time scale t1 as

∂c(0)

∂t1
+ Pe〈ū〉∂c(0)

∂x
+ Pe〈v̄〉∂c(0)

∂y
= 0, (2.21)

where the term on the right-hand side vanishes due to the time average of the boundary
condition (2.18), and the second term on the left-hand side due to the averaging over a
fluctuating component, as discussed in the preceding section. Physically, this equation
demonstrates that the development of the height-averaged concentration c(0) is driven by
the advection with the average flow velocity, in accordance with our initial assumptions in
§ 2.1.

In order to obtain c(1), we can subtract (2.21) from (2.17), insert (2.1), resulting in an
expression for c(1) as

∂c(1)

∂t0
+ Pe((ū − 〈ū〉)+ u′)

∂c(0)

∂x
+ Pe((v̄ − 〈v̄〉)+ v′)

∂c(0)

∂y
= ∂2c(1)

∂z2 . (2.22)

This equation can be interpreted as the governing equation for the cross-stream
concentration variation c(1), which is driven by velocity variations over the channel height,
relative to the time and transverse average. It is visible that two contributions drive the
system. One is due to the time-averaged velocity differences over the channel height
(ū − 〈ū〉, v̄ − 〈v̄〉), and the other one due to the oscillatory velocities (u′, v′). Due to the
linearity of the equation, c(1) is expected to consist of a stationary part and an oscillatory
part, and (2.22) suggests the form

c(1) = Pe(a(x, y, z)+ b(x, y, z, t0)) · ∇‖c(0). (2.23)

Here, we have introduced the streamwise gradient ∇‖ = (∂/∂x, ∂/∂y) to simplify notation.
Based on the assumption that c(1) is a fluctuation quantity, contributions from the general
solution of the homogeneous equation were neglected in the above ansatz.

The stationary solution a and the oscillatory solution b are governed by two separate
problems, which we can obtain by inserting (2.23) into (2.22), and separating the stationary
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problem and the oscillatory problem. The corresponding boundary conditions for a and b
are found by inserting (2.23) into the boundary condition (2.18). The problem associated
with the steady-state term then reads(

ū − 〈ū〉
v̄ − 〈v̄〉

)
= ∂2a
∂z2 , with

∂a
∂z

= 0 at z = 0, 1. (2.24)

From the structure of (2.24), we can see that the solution is not unique. If a(1) is a solution
of (2.24), then a(1) + C(x, y) satisfies the equation as well, where C(x, y) is an arbitrary
function depending on x, y only. Therefore, in order to render the solution unique, we can
impose the additional condition 〈a〉 = 0. As we have pointed out in § 2.1, c(1) is expected
to be a fluctuating quantity, and by imposing the aforementioned condition, we ensure that
the stationary component of (2.23) satisfies this condition.

In a similar manner, the unsteady problem associated with b is obtained as

∂b
∂t0

+
(

u′
v′
)

= ∂2b
∂z2 , with

∂b
∂z

= 0 at z = 0, 1. (2.25)

As we can see, this equation does not uniquely define b. If b(1) is a solution to (2.25), then
b(1) + D(x, y) is a solution as well, where D(x, y) is an arbitrary function depending on
x and y only. In order to render the solution unique, we impose the additional condition
〈b̄〉 = 0. In analogy to the additional condition for a, we ensure that c(1) is a fluctuating
component, vanishing upon time and height averaging. The solutions to both boundary
value problems (2.24) and (2.25) depend on the specific flow field and, for now, we will
keep it in the general form. We will discuss some specific solutions in § 5. For now, we
just assume that we have solved for a and b, and thus determined c(1), allowing us to move
on to the second-order perturbation.

2.4. Second-order perturbation: O = (ε2)

For the order O = (ε2), we first identify the governing equation as

∂c(0)

∂t2
+ ∂c(1)

∂t1
+ ∂c(2)

∂t0
+ Pe

(
u
∂c(1)

∂x
+ v

∂c(1)

∂y
+ w

∂c(1)

∂z

)

= ∂2c(0)

∂x2 + ∂2c(0)

∂y2 + ∂2c(2)

∂z2 , (2.26)

and the boundary conditions as

∂c(2)

∂z
= 0 at z = 0, 1. (2.27)

As we can see from (2.26), c(2) exhibits an ambiguity as well. In analogy to a and b, we
impose the additional restriction that c(2) is a fluctuation quantity, i.e. 〈c(2)〉 = 0. Thus, the
time and transverse average of the third term of (2.26) disappears.

Our choice of the additional conditions to render the solutions unique becomes more
clear in retrospect, since now c(0) represents the long-term, cross-stream average of the
concentration distribution. The components c(i) for i ≥ 1 are fluctuating components that
vanish upon transverse and time averaging (Mei, Auriault & Ng 1996; Chu et al. 2019). If
we had chosen different constraints for a, b and c(2), leading to a non-vanishing time
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and height average of c(1) or c(2), we could carry out the derivation including these
additional terms. As a result, c(0) would not represent the long-time height average, but
we would have to use the fact that 〈c̄〉 = 〈c(0)〉 + ε〈c(1)〉 + ε2〈c(2)〉 to rewrite the final
macrotransport equation. In the current derivation, we obtain the macrotransport equation
in terms of c(0), thus simplifying it significantly.

The details of the simplification of the terms in (2.26) can be looked up in Appendix A.
Inserting (A3), (A4) and (A5) into (2.26) leads to

∂c(0)

∂t2
+ Pe2

(〈
ū
∂a
∂x

〉
+
〈
v̄
∂a
∂y

〉
+
〈
w̄
∂a
∂z

〉
+
〈

u′ ∂b
∂x

〉
+
〈
v′ ∂b
∂y

〉
+
〈

w′ ∂b
∂z

〉)
· ∇‖c(0)

+ Pe2

(
〈ūa〉 · ∂∇‖c(0)

∂x
+ 〈v̄a〉 · ∂∇‖c(0)

∂y
+ 〈u′b〉 · ∇‖c(0)

∂x
+ 〈v′b〉 · ∇‖c(0)

∂y

)

= ∇2
‖c(0). (2.28)

2.5. Final macrotransport equation
The final macrotransport equation is obtained by adding (2.28) multiplied by ε2 to (2.21)
multiplied by ε and using ti = εit. This results in

∂c(0)

∂t
+ (εPe〈ū‖〉 + ε2Pe2(kstat + kosc)) · ∇‖c(0)

= ε2(∇‖ · [(I − Pe2D) · ∇‖c(0)]), (2.29)

where we have subsumed the velocity components in the x and y-directions into ū‖ =
(ū, v̄). Here, kstat and kosc denote advection-correction terms due to the stationary flow
field and the oscillatory flow field, respectively, I denotes the identity matrix and D the
dispersion tensor. The advection-correction terms are given as

kstat = −
〈
∂ ū
∂x

a
〉
−
〈
∂v̄

∂y
a
〉
+
〈
w̄
∂a
∂z

〉
(2.30)

and

kosc = −
〈
∂u′

∂x
b

〉
−
〈
∂v′

∂y
b

〉
+
〈

w′ ∂b
∂z

〉
, (2.31)

and the dispersion tensor is given as

D = Dstat + Dosc =
[〈ūax〉 〈v̄ax〉
〈ūay〉 〈v̄ay〉

]
+
[〈u′bx〉 〈v′bx〉
〈u′by〉 〈v′by〉

]
. (2.32)

Note that the subscripts x, y denote vector components of a and b.
Only the spatial coordinates x and y enter the macroscale transport equation (2.29),

and the time-averaged effects due to cross-stream transport are contained in the transport
coefficients (2.30, 2.31 and 2.32). Once the problems (2.24) and (2.25) have been solved,
all coefficients of (2.29) are determined. The different terms can be interpreted as
advection with the mean flow (second term on the left-hand side), an advection-correction
term due to the variation of the flow with z for stationary (kstat) and oscillatory flow
(kosc), molecular diffusion (first term on right-hand side) and Taylor–Aris dispersion due
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to stationary (Dstat) and oscillatory (Dosc) flow. Similarly to previously reported dispersion
models (e.g. Watson 1983), the dispersion effects due to the stationary and the oscillatory
component are additive. Also, the dispersion tensor exhibits a pre-factor −Pe2, which
we have to keep in mind when discussing the dispersion in specific flow fields in §§ 4
and 5. In addition to the derivation presented here, a similar equation can be derived
using scaling arguments, following the classical analysis of Taylor–Aris dispersion. This
alternative derivation is presented in the supplementary material (see supplementary
material available at https://doi.org/10.1017/jfm.2021.648) for the case of stationary flow.

2.6. Thermodynamic consistency of the dispersion tensor
In order to fulfil the second law of thermodynamics, the dispersion tensor I − Pe2D (2.32)
has to be positive definite. As we have discussed, a dispersion tensor can instantaneously
exhibit negative eigenvalues when the flow contracts a concentration field (Smith 1982).
The time-averaged dispersion tensor, however, has to be positive definite, in order to be
able to apply (2.29) without the occurrence of singularities in the concentration.

A positive definite tensor Aij fulfils the condition χiAijχj > 0 (in index notation, using
the Einstein summation convention), where χ represents an arbitrary vector. We have to
show that

χi(δij − Pe2(Dstat,ij + Dstat,ij))χj > 0 (2.33)

is satisfied, where the identity tensor is expressed by the Kronecker delta ij. The first term
is positive definite, as χiijχj = (χk)

2 > 0.
In order to evaluate the stationary dispersion component, we rewrite Dstat as

Dstat,ij = 〈uiaj〉 = 〈aj(ui − 〈ui〉)〉 =
〈
aj
∂2ai

∂z2

〉
, (2.34)

where we have used (2.24). Integration by parts and using the boundary condition from
(2.24) leads to 〈

aj
∂2ai

∂z2

〉
=
[
∂ai

∂z
aj

]1

z=0
−
〈
∂aj

∂z
∂ai

∂z

〉
= −

〈
∂aj

∂z
∂ai

∂z

〉
. (2.35)

Then, we can show that the stationary component is positive semi-definite,

χi(−Pe2Dstat,ij)χj = Pe2χi

〈
∂ai

∂z
∂aj

∂z

〉
χj = Pe2

〈
χi
∂ai

∂z
χj
∂aj

∂z

〉

= Pe2

〈(
∂ak

∂z
χk

)2
〉

≥ 0, (2.36)

becoming zero only if a vanishes everywhere. This case corresponds to the situation of
vanishing dispersion.

Next, we rewrite the oscillatory component as

Dosc,ij = 〈biu′
j〉 =

〈
bi

(
−∂bj

∂t0
+ ∂2bj

∂z2

)〉
= −

〈
bi
∂bj

∂t0

〉
+
〈

bi
∂2bj

∂z2

〉
, (2.37)

where we have used (2.25). Analogously to the stationary component, we can show that
the second term on the right-hand side is positive semi-definite. The first term of (2.37)
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Hydrodynamic dispersion in Hele-Shaw flows

inserted into (2.33) leads to

χi

〈
−bj

∂bj

∂t0

〉
χj = −

〈
1
2
χ2

x
∂b2

x

∂t0

〉
−
〈

1
2
χ2

y
∂b2

y

∂t0

〉
−
〈
χxχy

∂bx

∂t0
by + χxχy

∂by

∂t0
bx

〉

= −
〈

1
2
χ2

x
∂b2

x

∂t0

〉
−
〈

1
2
χ2

y
∂b2

y

∂t0

〉

−
〈
χxχy

(
1

Tosc
[bxby]t0+Tosc

t0 − ∂by

∂t0
bx + ∂by

∂t0
bx

)〉
= 0. (2.38)

Keeping in mind that b is an oscillatory function, as follows from the definition (2.25),
we see that the final expression vanishes. Collecting all contributions, it follows that the
condition (2.33) is satisfied, leading to a positive definite dispersion tensor.

3. Flow in a Hele-Shaw cell

After introducing the macrotransport equation in the preceding section, we now turn our
attention towards the structure of the flow field in order to discuss and validate the model.
The dispersion model was derived independently of the specific structure of the flow field,
thus rendering it universal within its limits of applicability. Our research, however, was
motivated by a specific class of flow fields, namely inhomogeneous Hele-Shaw flows. As
we have outlined in the introduction, the potential of shaping the flow inside a Hele-Shaw
cell by modifying the electroosmotic mobility at the wall was discussed in a series of
recent papers. For modifying the wall mobility with gate electrodes, it has been shown
to be beneficial to drive the fluid with an oscillatory signal, in order to minimize the
contributions due to native ζ potentials (Paratore et al. 2019a; Bacheva et al. 2020;
Dehe et al. 2020). Both the voltage at the gate electrodes as well as the driving field are
oscillatory, and thus a time-averaged flow can be induced. This constitutes a part of the
motivation to consider an oscillatory component of the velocity field in the following.

In order to utilize the transport equation derived in the preceding section, we require
expressions for the time-averaged flow field (ū, v̄, w̄), the z- and time-averaged flow
field (〈ū〉, 〈v̄〉, 〈w̄〉) as well as the oscillatory component of the flow field (u′, v′, w′).
For this purpose, we adapt the derivation outlined by Boyko et al. (2015) with modified
wall boundary conditions, similarly to the derivation presented by Rubin et al. (2017)
in the context of elastic deformations. In that context, different from previous work, we
explicitly decompose the resulting governing equations into a stationary and an oscillatory
component. Thereby, we enable using the resulting flow field in the macrotransport
equation (2.29). For brevity, in the following we present the main steps that differ from
the aforementioned work, with a more detailed derivation provided in the Appendix B.

We consider the same system as in § 2.1, a flow cell with constant distance h between
the bounding plates without imposing specific boundary conditions at the outer perimeter
of the flow cell. In this derivation, we rely on the assumption that the cell height h is much
larger than the thickness of the electric double layer λD, thus allowing us to incorporate
the effects of an external driving field into an effective boundary condition, the so-called
Helmholtz–Smoluchowski velocity. Therefore, the upper and lower walls are assumed to
have varying electroosmotic mobilities, resulting in a slip velocity uslip = μ(x, y, t)E(t).
The mobilities can vary both in space (e.g. due to chemical patterning) and in time (e.g.
due to changing electrode potentials).
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In order to incorporate effects of different surface materials, it is also assumed that the
surface exhibits some (effective) slip length β. This enables, for example, the incorporation
of slipping effects over hydrophobic flat surfaces, or the modelling of superhydrophobic
surfaces, exhibiting an effective, isotropic slip length. Via the Navier-slip boundary
condition β∂u‖/∂z = u‖ the slip velocity is related to the velocity gradient normal to
the surface. Also, the slip length on both surfaces can exhibit a spatial dependence, while
there is usually no time dependence. The wall boundary conditions take the form

uL,U
‖ =μL,U(x, y, t)E‖+βL,U(x, y)(nL,U · ez)

∂u‖
∂z

∣∣∣∣
z=0

, uL,U
⊥ =0, (3.1)

where we have indicated the projection to the x–y-plane by ‖ and the z-component by ⊥,
E denotes the driving electric field, nL,U the wall normal vector at the lower and upper
walls, respectively, and ez the unit vector in z-direction.

At this point, it is important to discuss some of the properties of the boundary
conditions. First, it is important to note that the mobility fields μL, μU can exhibit an
inherent dependence on the slip length. It was shown both theoretically by Squires (2008)
and experimentally (Dehe et al. 2020) that the electroosmotic velocity over a structured
superhydrophobic surface depends on the ratio of the slip length and the thickness of
the electric double layer. If applicable, this dependence needs to be incorporated into the
electroosmotic mobility field. Second, it is important to note that we consider the case that
the walls either exhibit an electroosmotic velocity μU(x, y, t)E‖ or a Navier-slip velocity,
but not both at the same time. However, for the sake of compactness of notation, we keep
both contributions in the following derivation and require μUβU = 0 and μLβL = 0, at
the upper and lower walls, respectively.

Following the derivation outlined in Appendix B, we obtain a governing equation for
the pressure field p as

1
12∇‖ · (〈μp〉∇‖p) = ∇‖ · 〈μEOF〉E‖, (3.2)

where we have introduced the effective mobilities 〈μp〉 and 〈μEOF〉 as

〈μp〉 = 1 + 4(βU + βL)+ 12βUβL

1 + βU + βL (3.3)

and

〈μEOF〉 = 1
2
μU + μL + 2(βUμL + βLμU)

1 + βU + βL . (3.4)

They represent the contributions to the average flow velocity due to the external electric
field and due to the pressure field inside the cell. The latter may be caused by an applied
pressure gradient or by inhomogeneous electroosmotic flow. It is important to keep in mind
that both effective mobilities 〈μp〉 and 〈μEOF〉 are position dependent. For the special case
that 〈μp〉 is constant throughout the domain, e.g. due to constant or vanishing slip length,
the equation reduces to a Poisson equation, similar to Boyko et al. (2015). Solving this
equation in a fluid domain leads to a solution for the pressure field, which can be used to
calculate the velocity 〈u‖〉.

In order to decompose the pressure field into stationary and oscillatory components,
we can follow the principal idea outlined in § 2 and time average the governing equations
(3.2) and (3.7) over one period of oscillation. In order to obtain the expressions for the
oscillatory component of the pressure field, we subtract the time-averaged equation (3.5)
from the full equation (3.2). Splitting up all time-dependent quantities into their stationary
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part, denoted by �(·), and their time-periodic part, (·)′, the equations for the pressure field
read

1
12∇‖ · (〈μp〉∇‖p̄) = ∇‖ · (〈μEOF〉E‖+〈μ′EOF〉E′

‖) (3.5)

and

1
12∇‖ · (〈μp〉∇‖p′) = ∇‖ · (〈μ′EOF〉E‖+〈μEOF〉E′‖+〈μ′EOF〉E′‖−〈μ′EOF〉E′

‖). (3.6)

Equation (3.5) resembles the original equation, with one additional driving term on the
right-hand side. This term is highly important, because it allows to drive time-averaged
flows by coupling two oscillatory components. Also, it is important to realize that the
temporal structure of the driving terms is of importance, especially the phase shift between
the driving field and the mobility. We will revisit this in § 5.3. The forcing term of (3.6)
exhibits a contribution due to the time-averaged portions of the electric field and mobility
interacting with the oscillatory component of the other, and a contribution due to the
product of the oscillatory terms. The first term on the right-hand side oscillates with the
time dependence of the mobility, the second term with the time dependence of the electric
field, the third term with a higher frequency and the last one is constant. In the special case
of a sinusoidal signal with frequency f for both contributions, the spectrum will consist
of frequencies f and 2f . In the general case, even higher frequencies will be generated.
Therefore, unlike previous work on similar problems (Chu et al. 2019), we do not impose
a specific form of the oscillation (e.g. Re(U expiωt)).

The governing equation for the streamfunction ψ , which is defined via u‖ =
(∂ψ/∂y,−∂ψ/∂x), follows from the derivation outlined in Appendix B, resulting in

(∇‖×〈u‖〉) · ez = −∇2
‖ψ = − 1

12 (∇‖〈μp〉 × ∇‖p) · ez − (E‖×∇‖〈μEOF〉) · ez, (3.7)

where ez denotes the unit vector in the z-direction. This equation determines the vorticity,
which is represented byω = −∇2

‖ψ . Physically, this expression demonstrates that vorticity
can be created either by pressure gradients normal to gradients in 〈μp〉 (corresponding to
varying effective slip lengths), or by gradients in the electroosmotic mobility normal to the
electric field. In the special case of constant 〈μp〉, the first term on the right-hand side of
(3.7) decouples from (3.2), thus leading to a system of two uncoupled Poisson equations.

In order to obtain governing equations for the stationary and oscillatory components of
the streamfunction, we time average equation (3.7), leading to

− ∇2
‖ ψ̄ = − 1

12(∇‖〈μp〉 × ∇‖p̄ − E‖×∇‖〈μEOF〉 − E′
‖×∇‖〈μ′EOF〉) · ez, (3.8)

where, in analogy to the pressure equation (3.5), an additional term appears on the
right-hand side, containing solely oscillatory components. Subtraction of equation (3.8)
from the full equation (3.7) yields the equation for the oscillatory component of the
streamfunction as

−∇2
‖ψ

′ = − 1
12 (∇‖〈μp〉 × ∇‖p′ − E′

‖×∇‖〈μEOF〉
− E‖×∇‖〈μ′EOF〉 − E′‖×∇‖〈μ′EOF〉 + E′

‖×∇‖〈μ′EOF〉) · ez. (3.9)

Analogous to the pressure equation (3.6), additional coupling terms due to the oscillatory
components occur, also with higher-order frequencies. With that, we have finally obtained
the governing equations of the problem ((3.5) and (3.8) for the stationary part, (3.6) and
(3.9) for the oscillatory part). Inserting the solution for the pressure field into the equation
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for the flow velocity, one obtains the solutions for the time-averaged flow field (ū, v̄, w̄), the
height- and time-averaged flow field (〈ū〉, 〈v̄〉, 〈w̄〉) as well as the oscillatory component of
the flow field (u′, v′, w′). Thus, all the necessary ingredients of the dispersion model are
available.

3.1. Form of the solution for a stationary flow field
From the derivation in Appendix B, it is clear that a stationary flow field takes the form of
a quadratic polynomial. In the following, we express the stationary dispersion tensor using
a corresponding parametrization of the velocity field,

u(x, y, z) = A1(x, y)z2 + A2(x, y)z + A3(x, y), (3.10a)

v(x, y, z) = B1(x, y)z2 + B2(x, y)z + B3(x, y). (3.10b)

Then, by solving equation (2.24), the stationary dispersion tensor follows from (2.32) as

Dstat =

⎡
⎢⎢⎣

−8A2
1

945
− A1A2

60
− A2

2
120

−8A1B1

945
− A2B1

120
− A1B2

120
− A2B2

120

−8A1B1

945
− A2B1

120
− A1B2

120
− A2B2

120
−8B2

1
945

− B1B2

60
− B2

2
120

⎤
⎥⎥⎦ ,

(3.11)

and the advection-correction term from (2.30) as

kstat =

⎡
⎢⎢⎢⎣

1
2160

(16A1 + 15A2)

(
2
∂A1

∂x
+ 3

∂A2

∂x
+ 6

∂A3

∂x
+ 2

∂B1

∂y
+ 3

∂B2

∂y
+ 6

∂B3

∂y

)
1

2160
(16B1 + 15B2)

(
2
∂A1

∂x
+ 3

∂A2

∂x
+ 6

∂A3

∂x
+ 2

∂B1

∂y
+ 3

∂B2

∂y
+ 6∂B3

∂y

)
⎤
⎥⎥⎥⎦ .

(3.12)

4. Dispersion due to spatial modulation of the wall mobility

The dispersion model presented in § 2, as well as the governing equations for the flow field
derived in § 3 are based on a long-wavelength approximation, i.e. assumptions similar
to those underlying lubrication theory. Any flow field based on lubrication theory can
be utilized to derive the respective dispersion tensor. Lubrication theory has been used
extensively in the context of electrokinetic flows, see for example the classical works of
Ajdari (1996) and Ghosal (2002), and the more recent work of Ng & Zhou (2012b), Datta
& Choudhary (2013), Ng & Chen (2013), Ghosh & Chakraborty (2015), Kumar, Datta
& Kalyanasundaram (2016) and Arcos et al. (2018). One analytically accessible case is
a Hele-Shaw cell with a sinusoidal modulation of the wall mobility and impermeable
sidewalls. This configuration allows us to solve for the dispersion tensor explicitly, and
demonstrate some of its characteristics that also apply to analytically less accessible flow
fields. A similar wall modulation has been considered by Ajdari (2001) and Ng & Zhou
(2012a). Here, we investigate sinusoidally varying wall mobilities along the x-axis, as
shown in figure 2(a). The flow field obtained in the following is based on the assumption
of thin double layers, and a closed-off domain with impermeable lateral restrictions
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(a) (b)

Figure 2. Wall-mobility modulation based on a striped pattern. (a) Illustration of a cell with impermeable
sidewalls and varying wall mobility. The unit cell utilized to calculate the flow field is indicated by a dashed
rectangle. (b) Top view of the unit cell considered to derive the flow field. The electric field forms an angle Θ
with the x-axis.

at all sides. The wall mobilities have the form

μU = μU
0 (s + cos(x)) (4.1a)

μL = μL
0(s + cos(x + φ)), (4.1b)

where μU
0 , μ

L
0 are the wave amplitudes, s is a constant offset and φ is the phase difference

between the upper and the lower walls. The electric field is given by E = (Ex,Ey)
T =

E0(cos(Θ), sin(Θ))T, where E0 is the non-dimensional amplitude. It is important to keep
in mind that the transport model was non-dimensionalized by the electric field magnitude
and a characteristic wall mobility, so typically E0 = 1.

In order to construct the flow field, we assume that the cell is sufficiently long and
sufficiently many stripes are considered, such that end effects due to the sidewalls are
insignificant. Then, we can analyse the flow inside a unit cell, as depicted in figure 2(b),
separately for each coordinate direction. In the x-direction, no net electroosmotic flow
is present. The local electroosmotic flow is balanced by a pressure-driven backflow,
equivalently expressed as 〈u〉 = 0. Then, the local pressure gradient is defined by the local
electroosmotic flow, and the flow field in the x-direction is

u(z) = 3(μL
0 + μU

0 )Exz2 − (2μU + 4μL)Exz + μLEx. (4.2)

The pressure gradient in the y-direction is independent of x, since the stripes are assumed
to be long enough (Ajdari 2001). There is a net electroosmotic flow in the y-direction
which is balanced by a pressure-driven flow, and we can compute the pressure gradient by
requiring ∫ 2π

0
〈v〉 dx = 0. (4.3)

Then, by inserting the resulting pressure gradient into the expression for the velocity field
(B5), we obtain

v(z) = 3(μU
0 − μL

0)sEyz2 + ((μU − μL)− 3(μU
0 + μL

0)s)Eyz + μLEy. (4.4)

On this basis, we can compute the dispersion tensor (3.11). The computation is
straightforward, and the result can be found in Appendix C.

In order to highlight the influence of different parameters on dispersion, we analyse
some specific situations. First, we consider the offset s. Physically, this corresponds
to a situation where a constant ζ potential superposes the modulation, e.g. due to
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Case Dxx
E2

0μ
2
0

Dxy

E2
0μ

2
0
,

Dyx

E2
0μ

2
0

Dyy

E2
0μ

2
0

φ = 0,Θ = 0 − 1
210 (s + cos(x))2 0 0

φ = π,Θ = 0 − 1
420 (7 + 2s2 + 7 cos(2x)) 0 0

φ = 0,Θ = π/2 0 0 − 1
210 s2

φ = π,Θ = π/2 0 0 − 1
420 (7 + 2s2 + 7 cos(2x))

φ = 0, s = 0 − 1
210 cos2(x) cos2(Θ) 0 0

φ = π, s = 0 − 1
30 cos2(x) cos2(Θ) − 1

30 cos2(x) cos(Θ) sin(Θ) − 1
30 cos2(x) sin2(Θ)

φ = s = 0,Θ = π
4 , − 1

420 (2 + r(−3 + 2r)) cos2(x) − 1
240 (−1 + r)2 cos2(x) − 1

240 (−1 + r)2 cos2(x)

μU
0 = rμL

0 = rμ0

Table 1. Elements of the dispersion tensor D for a sinusoidal wall-mobility pattern. Specific parameter
combinations are considered, where μU

0 = μL
0 = μ0 unless otherwise noted. The full dispersion tensor can

be found in Appendix C.

embedded electrodes. The resulting components of the dispersion tensor for the limiting
cases of an electric field in the x- and y-directions (Θ = 0,π/2) and for a mobility
modulation in-phase (φ = 0) or phase shifted by half a period (φ = π) are given in table 1.
Unless otherwise noted, the amplitudes of the upper and lower wall mobility are μ0. For
the electric field in the x-direction, the dispersion tensor only has one non-zero component,
namely Dxx. For small s, the dispersion is dominated by the local modulation, with a
doubling of the wavenumber compared with the wavenumber characterizing the mobility
modulation. The dispersion coefficient grows as s2, which means that the offset soon starts
to become the dominating influence.

For an electric field in the y-direction, the dispersion tensor also contains a contribution
proportional to s2. The electroosmotic flow is a plug flow with velocity magnitude (s +
cos(x)), which is superposed by a pressure-driven backflow. For φ = 0, the dispersion
coefficient is x-independent. For wall-mobility patterns phase shifted by π, the flow profile
is a superposition of a plane Couette flow, a plug flow due to the constant offset at the walls,
and the corresponding pressure-driven backflow. Again, a twofold increased wavenumber
(relative to the wavenumber of the wall modulation) of the dispersion coefficient is found.

The electric field direction Θ also influences the dispersion tensor. The corresponding
results are presented the results in the limit of vanishing offset s = 0. The resulting
dispersion tensor for in-phase and phase-shifted patterns is reported in table 1 and in
figure 3. When the patterns are in phase (φ = 0), only the Dxx component is non-zero.
Locally, the wall mobilities lead to an electroosmotic flow, which is balanced by a
pressure-driven backflow. The factor 1/210 corresponds to the classical Taylor–Aris
solution for a pressure-driven flow in a parallel-plate channel (see supplementary
material). The magnitude of the dispersion depends on the angle of the electric field. In
the y-direction, the flow field is a local plug flow, where the flow at position x0 is balanced
by a flow at x0 + π pointing in the opposite direction. Here, no dispersion occurs. In the
case of a phase shift φ = π, the situation changes drastically. Now, the electroosmotic
flow leads to a strong shear flow, as it points in opposite directions at the bounding walls at
z = 0, 1. The pre-factor 1/30 corresponds to the classical Taylor–Aris dispersion in shear
flow (see supplementary material). The magnitude of the dispersion coefficients depends
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×10–3(a) (b) (c) (d)×10–2 ×10–2 ×10–2
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0

0

π

π

Θ
π/20 π

Θ
π/20 π

Θ
π/20 π

Θ

2π

3π/2

π/2

0

π

2π

3π/2

π/2

0

π

2π
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π/2

0

π

xx xx xy yy

Figure 3. Non-zero components of the dispersion tensor D for a striped pattern with varying electric field
direction Θ and vanishing offset s. The components are given in units of μ2

0E2
0 and are calculated for the case

of a vanishing phase shift φ = 0 (a) and a phase shift φ = π (b–d).

on the coordinate x and the electric field direction Θ , while all components of the tensor
are non-zero. Also, the off-diagonal elements are either positive or negative, depending on
the direction of the electric field.

In order to discuss the influence of the modulation amplitudes on the dispersion, we
define the ratio r = μU

0 /μ
L
0. In the special case of an in-phase modulation (φ = 0) with

Θ = π/4 and vanishing offset s, the resulting components of the dispersion tensor are
summarized in table 1. We can see that the dispersion exhibits a minimum at r = 1, since
the electroosmotic flow then results in a plug flow profile. With increasing ratio r, the
dispersion increases, as an additional shear flow component gets admixed.

Finally, to highlight the influence of the slip length on dispersion, we set the wall
mobility at the lower wall to zero and introduce a constant slip length β0. Since the
computation of the flow field follows the same procedure as outlined above, we will omit
the mathematical details and only show the resulting dispersion tensor in figure 4 for the
case of an electric field with Θ = π/4, offset s = 0 and phase shift φ = 0. Interestingly,
the magnitude of the dispersion coefficient Dxx increases with increasing slip length. The
velocity profile in the x-direction results in a plane Couette flow due to electroosmosis,
superposed by a pressure-driven backflow. Here, the velocity at the lower wall increases
with increasing slip length. As a result, the shear and thus the dispersion increase. The
dispersion coefficient Dyy shows the opposite behaviour, with a decreasing dispersion for
increasing slip lengths. The velocity profile in the y-direction resembles a local plane
Couette flow, where every flow profile at a position x0 has a corresponding profile of
similar form but opposing direction at a position x0 + π. An increasing slip length leads to
an increasing velocity at the lower wall, and thus a smaller dispersion. The coefficient Dxy
shows a mixed behaviour, with the dispersion first increasing with β0, and then decreasing
again (e.g. close to x = π). From this simple flow field it becomes apparent that even
a constant slip length can lead to either a higher or lower dispersion, depending on the
specific nature of the flow field. More complex interactions can occur when the slip length
exhibits a modulation as well.

Before continuing with numerical computations of less analytically accessible flow
fields, it is instructive to summarize the influence of the velocity field on the dispersion
tensor. Unsurprisingly, a plug flow due to similar mobilities at the walls leads to
no dispersion, as long as no pressure-driven backflow is induced. For the case
that a pressure-driven backflow occurs, the dispersion is similar to that of a purely
pressure-driven flow in a parallel-plate channel. Upon reversal of the flow field (i.e. the
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Figure 4. Non-zero components of the dispersion tensor D for a striped pattern with varying slip length β0,
Θ = π/4, φ = 0 and s = 0. The components are given in units of μ2

0E2
0.

parameters Ai,Bi in (3.10) change sign), the dispersion tensor remains the same, as can be
seen from the fact that only quadratic terms in (3.11) exist. Dispersion increases strongly if
the mobilities at opposite walls lead to flow pointing in opposite directions. A shear flow
component can either be induced by a phase shift between the patterns on the upper and
lower walls, or by a ratio of the wall mobilities r /= 1. Also, the off-diagonal elements of
the dispersion tensor can take positive as well as negative values. The slip length can either
increase or decrease the dispersion, depending on the local flow field. In case of a purely
pressure-driven or electroosmotically driven flow field, it acts to reduce the dispersion, but
in case of superposed pressure-driven and electroosmotically driven flow fields, it can lead
to higher dispersion.

5. Comparison between 3-D and 2-D numerical computations

In this section, we will apply the derived dispersion model to several Hele-Shaw flow
fields. The first and second test cases include stationary and oscillatory flow fields.
For comparison, we compute the full 3-D solution for the concentration field with a
particle-tracking approach. Also, the equivalency of dispersion due to stationary and
oscillatory flow will become apparent. As a third test case, we compute the mass
transport in a more complex flow configuration, where we illustrate the mixing of a fluidic
lamella in a rotating flow field, reminiscent of the well-known blinking vortex principle
(Aref 1984).

5.1. Numerical methods
Among others, the dispersion model is motivated by the need to reduce the dimensionality
of the problem, so that concentration fields in Hele-Shaw flows can be computed
efficiently. Numerical simulations including all three dimensions require a sufficient
resolution to resolve the processes on the small scale (over the cell height), thus rendering
the computational problem much more expensive. In order to evaluate the accuracy of the
dispersion model, we compare concentration fields obtained with this model with fields
resulting from a particle-tracking method in a 3-D domain using Comsol Multiphysics 5.5.
For the 3-D computations, a particle approach is used rather than a continuum method,
since it is less prone to discretization errors at high Péclet numbers (numerical diffusion).
For the presented test cases, we extract the concentration distributions obtained with both
approaches and compare them to assess the validity of the dispersion model.
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5.1.1. Implementation of the particle-tracking method
We utilize the model implemented in Comsol Multiphysics 5.5, where particle trajectories
are obtained under the influence of Brownian motion and the drag force acting on a
particle (Kim 2004; Comsol Multiphysics 2019). The equation of motion is solved for
each particle, where we have chosen the particle parameters to yield a molecular diffusion
constant D = 1 × 10−10 m2 s−1, representative of a dye molecule in water. Details on
the implementation of the particle-tracking method as well as a convergence study of the
time-stepping scheme can be found in Appendix D.

In order to be able to compare the 3-D simulation results with the 2-D dispersion model,
we convert the 3-D particle distribution into a normalized concentration distribution
averaged over the cell height by defining a x–y-mesh in the computational domain
and counting the particle number in each mesh cell. In order to determine the initial
normalization factor, we extract the initial particle number in a cell from the initial particle
distribution corresponding to the known concentration from the 2-D computations. Then,
we normalize the particle count and thereby generate a normalized concentration field
which we can compare with the 2-D simulations.

Additionally, we require a background fluid velocity to model the dispersion of particles.
We supply the flow field from the corresponding 2-D model instead of recalculating
the flow field. Thereby, we ensure that possible differences between the 3-D and 2-D
simulations are purely due to the dispersion model.

5.1.2. Implementation of the 2-D dispersion model
For the 2-D dispersion model, we utilize (3.5)–(3.9) for the flow field. In addition to the
boundary conditions at the two parallel plates, we specify boundary conditions at the
perimeter of the Hele-Shaw cell, either a specific pressure or no-penetration boundary
condition (see supplementary material for details). All equations are implemented into
Comsol Multiphysics 5.5, which is based on the finite element method. Details on the
implementation such as the numerical scheme, computational mesh and convergence
performance can be found in the supplementary material.

Solving equations (3.5)–(3.9) generates a flow field solution (∇‖p̄,∇‖p′, ū‖,u′
‖), which

we use to calculate the dispersion coefficients according to (2.29) for the macrotransport
equation. Furthermore, we utilize (2.24) as the defining equation for a and (2.25) as the
defining equation for b. The solutions for a(x, y), b(x, y, t) are based on the local flow field.

After extracting the coefficients for the macrotransport equation, we compute the time
evolution of the concentration field by solving equation (2.29) for a 2-D domain. The
concentration fields are normalized by the initial concentration, and equivalent initial
conditions are used in the 3-D simulations.

5.2. Test case A: dispersion due to a stationary flow field
In order to validate the stationary part of the dispersion model, we analyse a steady-state
flow field with zero average flow velocity. We achieve that by imposing wall mobilities
with opposite signs (μU = −μL) at the upper and lower walls of the cell, without
any external pressure gradient. By imposing periodic boundary conditions, the resulting
flow field is a shear flow, as indicated in figure 5(a). It is worth pointing out that due
to the absence of a height-averaged velocity, the only remaining contributions in the
macrotransport equation (2.29) are the time derivative of the concentration field and the
effective diffusivities on the right-hand side. The dispersion coefficients are calculated
according to the governing equations described in § 2.3.
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Figure 5. Test case A: comparison of hydrodynamic dispersion inside a Hele-Shaw cell as obtained with
the 2-D dispersion model (c–e) and 3-D particle-tracking simulations ( f –h). (a) The system consists of a
Hele-Shaw cell with wall mobilities of opposite sign at the bounding walls, leading to a shear flow with
zero average flow velocity. (b) An initial concentration distribution is dispersed over time, and the resulting
concentration distributions are shown after a time span of 70.59 Tdif ,h (c–h). The direction of the electric field
is indicated at the top-right corner of each panel.

Parameter Description Value

h Cell height 1 × 10−4 m
L0 Cell edge length 1 × 104 h
Lconc Initial concentration distribution edge length 2.5 × 103 h
Lsmooth Initial concentration distribution smoothing length 2 × 102 h
|μUE‖| Wall velocity 5 × 10−4 m s−1

D Molecular diffusion coefficient 1 × 10−10 m s−1

tfinal Simulation time span 70.59 Tdif ,h
Pe = Uwallh/D Péclet number 500
Np Number of particles 30 976

Table 2. Parameter values used in the calculations of test cases A and B, as indicated in figures 5 and 6.
Additional information on the initial conditions is presented in Appendix D and the supplementary material.

The parameters chosen for the calculations are shown in table 2. We compute the
dispersion for three cases with the same magnitude of the electric field but different
directions, while maintaining the mobility at the walls and the initial concentration
distribution. This allows probing of the off-diagonal components of the dispersion tensor.
The initial concentration distribution is of square shape, where the edges were smoothed
using an error function, as described in the supplementary material.

In figure 5, the resulting concentration distributions from the 2-D dispersion model
(c–e) and the 3-D particle simulations are shown ( f –h). In the upper right corner, the
direction of the electric field is indicated. First, we would like to discuss the 3-D simulation
data, which are less smooth than the 2-D results. The concentration field is extracted on
a mesh of 60 × 60 cells, and the initial concentration inside the rectangle corresponds
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Figure 6. Test case B: comparison of dispersion inside a Hele-Shaw cell due to oscillatory flow obtained from
the 2-D dispersion model (c–e) and 3-D particle-tracking simulations ( f –h). (a) The wall mobilities are of
opposite signs and the flow is actuated by an oscillatory electric field oriented along the x-axis, leading to
a shear flow with zero time average. (b) Initial concentration field as used for the computations. (c–h) The
resulting concentration distributions are shown after a time span of 70.59 Tdif ,h. The oscillation frequency is
indicated inside each panel.

to 142 particles per cell. We have chosen not to smooth the data, in order to prevent
an artificial broadening of the mixing zones. Apart from local inhomogeneities, the
agreement between the 2-D and the 3-D calculations is evident. In the direction of the
flow, dispersion enhances mass transport. To quantify the extent of the mixing regions
and compare how well the dispersion model reproduces the 3-D simulations, we take
the case of an electric field in the x-direction as an example (figure 5c, f ). We define the
boundary of the concentration distribution as the value x0 where c(x0) = 0.1. The size of
the region for the dispersion model is denoted by x0,2D, and for the particle simulations by
x0,3D. The size of the concentration field broadened by dispersion exhibits a relative error
of (x0,2D − x0,3D)/x0,3D = 7.4 % on average inside the central region (|y| < 0.1). In the
y-direction (perpendicular to the electric field), the relative error yields 2.5 % on average.
The extent of the zones broadened by dispersion agrees well between the calculations, and
in the direction normal to the flow velocity, molecular diffusion is much weaker, leading
to a much smaller diffusive broadening. These results show that the dispersion due to a
stationary flow field is captured by the 2-D model.

5.3. Test case B: dispersion due to a oscillatory flow field
In order to validate the oscillatory part of the dispersion model, we analyse a similar case
as in the preceding section, resulting in a shear flow field with zero average flow velocity.
However, we modify the velocity by multiplying it with a factor sin(2πft), as indicated in
figure 6. As a result, the flow field becomes oscillatory, where both 〈ū〉 and ū vanish.

Before discussing the resulting concentration distribution, we would like to outline some
analogies between the dispersion due to oscillatory flow and due to stationary flow. As
evident from the macroscale transport equation, for each stationary term (denoted by some
function of the time averaged flow field u and a), a corresponding oscillatory term exists
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—〈u′b〉

Figure 7. Test case B: dependence of the dispersion coefficient on the oscillation frequency. In the limit of fast
oscillations, the dispersion coefficient tends to zero, in the limit of slow oscillations, it converges to one half of
the value obtained for a stationary flow of the same magnitude.

(denoted by some function of the oscillatory flow field u′ and b). That is, dispersion can
either be driven by a flow field that is non-uniform over z but stationary, or by a flow field
non-uniform over both z and t.

Solving the boundary value problem for b is more complex than the analogous stationary
problem for a outlined in the preceding section, since b exhibits a time dependence, but it is
straightforward and can be done numerically. In figure 7, we show the resulting dispersion
coefficient 〈u′b〉 for varying oscillation frequencies (which are non-dimensionalized by the
inverse diffusive time scale). The dispersion coefficient exhibits a behaviour previously
reported (Chatwin 1975; Vedel & Bruus 2012; Chu et al. 2019). For the case of slow
oscillations ( f −→ 0), it approaches half of the value obtained for the case of a stationary
flow with the same amplitude, as we obtained for test case A. For the case of fast
oscillations ( f  1), the dispersion coefficient approaches zero. The limit for slow
oscillations is mathematically determined by an integral over one period of oscillation
of a product of two sine functions. If the oscillatory signals exhibited a different time
dependence than a harmonic one, the ratio of the oscillatory dispersion tensor components
to the steady-state dispersion tensor components would differ from 1/2, as we discussed
in § 3. In the limit of fast oscillations, however, the limiting value remains 0, since the flow
oscillation occurs on time scales much faster than the diffusion time scale over the channel
height.

Since we have already demonstrated in test case A that the directional dependence
of the dispersion tensor on the electric field can be captured by the model, we focus
solely on the variation of the oscillatory frequencies while keeping the direction of the
electric field constant. The resulting concentration fields for three different oscillatory
frequencies ( f = 0.1, 1, 10) are depicted in figure 6, where the electric field is aligned
with the x-axis. The dispersion decreases with increasing frequency. At f = 0.1, the
dispersion is most pronounced, and for f = 10, it is of the same order of magnitude as
the molecular diffusion. Using the same relative error as in test case A, we characterize
the extent of the concentration distributions. The resulting relative error between the 3-D
and 2-D simulations is 7.6 % for f = 0.1, 3.9 % for f = 1 and 7.9 % for f = 10. Again,
there is a good agreement between the 2-D and the 3-D calculations, considering the local
inhomogeneities of the particle simulations.

Apart from that, additional conclusions can be drawn from these results. Dispersion
due to oscillations will only dominate over steady-state dispersion if the amplitude of u′ is
larger than that of the steady-state component ū and if additionally, the oscillation period is
of the order of the diffusive time scale or larger. In other cases, the steady-state dispersion
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Parameter Description Value

h Cell height 1 × 10−4 m
L Aspect ratio side length x-direction to channel height 4.2 × 104 h
W Aspect ratio side length y-direction to channel height 1.05 × 104 h
Lsmooth Initial diffusion zone size 5.5 × 102 h
Lpatch,x Size of the zeta-potential patch, x-direction 11 000 h
Lpatch,y Size of the zeta-potential patch, y-direction Lpatch,x/2
Lsmooth,x Size of the smoothing zone patch, x-direction 10 000 h
Lsmooth,y Size of the smoothing zone patch, y-direction Lsmooth,x/2
|μLE‖| Wall velocity 5 × 10−4 m s−1

D Molecular diffusion coefficient 1 × 10−10 m2 s−1

tfinal Simulation time span 917.67 Tdif ,h
Pe = Uwallh/D Péclet number 500
Np Number of particles 239 769
Nbins,x Number of bins, x-direction 200
Nbins,y Number of bins, y-direction 50

Table 3. Values of parameter utilized in test case C, as indicated in figure 8. Additional information on the
initial conditions is presented in Appendix D and the supplementary material.

will dominate. For realistic systems devoted to flow shaping, such as reported by Paratore
et al. (2019a), the channel has a height of the order of 10 μm, resulting, in combination
with the assumed diffusion constant, on a diffusive time scale of seconds. Typically, such a
system is operated at oscillatory frequencies of the order of several Hz, rendering it rather
insensitive to dispersion due to oscillations. Motivated by such examples, we will focus on
steady-state dispersion in test case C.

5.4. Test case C: inhomogeneous flow field
In this section, we would like to demonstrate the ability of the model to capture dispersion
in a complex flow pattern. As outlined in the introduction, our research is motivated
by the idea of shaping flows inside a microfluidic device without relying on fixed wall
geometries, therefore making it reconfigurable during operation. More specifically, if the
flow can be controlled both in space and time, different standard microfluidic operations
can be performed consecutively, for example mixing of species and partitioning the flow
to various outlet ports. In this test case, we analyse the effect of a complex flow pattern on
a Hele-Shaw cell, half of which (y > 0) is filled with a dissolved species. The parameters
used in this test case are summarized in table 3.

In figure 8(a,b), the wall-mobility distribution is shown: at the lower wall we have
two regions with the wall mobility μL differing from zero. The mobility distribution
is antisymmetric with respect to the y-axis. At the upper wall, the wall mobility is of
opposite sign relative to the lower wall, with a magnitude reduced by a factor of 0.75
(μU = −0.75μL). The flow is driven by an electric field in the x-direction, leading to a
rotational average flow field as indicated by the streamlines in figure 8(b). Different from
the previous test cases, here the Hele-Shaw cell has an aspect ratio of 4:1 in the x–y plane.
We define all mobilities as well as the driving electric field to be time independent, thus
the problem is governed by (3.5) and (3.8). Corresponding wall-mobility distributions can
be created using different principles, such as chemical patterning (Paratore et al. 2019b)
or actuation by electrodes (Paratore et al. 2019a; Dehe et al. 2020). The boundaries at the
perimeter of the cell are assumed to be periodic in the y-direction, with no-penetration
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Figure 8. Configuration of test case C. (a) The fluid flow is driven by a wall-mobility distribution both on the
top (μU) and bottom walls of the fluidic cell (μL), where the mobilities are of opposing signs at opposing walls,
and an electric field in the positive x-direction. The mobility at the upper plate has a magnitude of 75 % of that
on the lower plate. (b) Resulting circulating flow field, depicted by streamlines of the averaged flow velocity
〈u‖〉. (c–e) The flow field leads to a dispersion tensor, where the dispersion in x-direction is strongly enhanced
in the region of the mobility patch, while in the y-direction it is comparable to the molecular diffusion.

boundaries in the x-direction. The rationale behind choosing such a flow field stems from
the well known blinking vortex principle (Aref 1984), where the flow field consists of
two co-rotating in-plane vortices with an offset between their centres. The term blinking
refers to the fact that the two vortices are switched on and off in succession. Based on
such flows chaotic mixing can be achieved if the blinking period is chosen appropriately.
In our case, it is expected that chaotic mixing efficiently distributes the species over the
cell. However, due to computational constraints, we only analyse the initial phase of the
advection–diffusion process.

In figure 8(c–e), we depict the components of the dispersion tensor. For the dispersion
coefficient in the x-direction, it is visible that it is strongly enhanced above the non-zero
wall-mobility regions. Here, the flow has a strong shear component. Outside, molecular
diffusion is the driving mechanism. The off-axis components of the dispersion matrix are
much smaller than the molecular diffusion, thus having little influence. In the y-direction,
the flow is driven by pressure gradients created by the wall mobility, but since the average
flow velocity is smaller than the wall velocity in the shear region, the dispersion coefficient
is close to that of molecular diffusion.

We computed the time evolution of the concentration field with the particle-tracking
method in three dimensions, the dispersion model in two dimensions and additionally
without dispersion, only considering molecular diffusion. In figure 9 we show the
concentration field for three different points in time. At first glance, the concentration
fields are comparable to each other, due to the fact that the dominant transport mechanism
in this system is advection with the mean velocity. However, when comparing in detail,
certain differences become apparent. Before entering the region with strong shear flow
(and thus enhanced dispersion), the mixing regions between the regions with high and low
concentration are nearly identical. After passing this region, the extension of the mixing
zones between the yellow and blue regions is increased for the case that dispersion is
included, both visible in the 2-D and 3-D data. This difference increases with time. In
order to quantify the ability of the dispersion model to capture the growth of the mixing
zones over time, we compute the area of the mixing zones for each time step. The area
is defined as the regions depicted in figure 9, where the concentration takes the values
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Figure 9. Comparison of dispersion inside a Hele-Shaw cell as computed with 3-D particle simulations
(a,d,g, j), the 2-D dispersion model (b,e,h,k) and purely 2-D molecular diffusion (c, f,i,l). The resulting
concentration fields of the 3-D particle simulations and the dispersion model show good agreement. At early
times, the dispersion model and the molecular diffusion generate similar concentration profiles. Once the
lamella passes the regions of enhanced dispersion, the size of the mixing zones varies.

0.1 < c < 0.5. Using only those regions that exhibit a relatively small concentration, we
exclude errors due to numerical fluctuations in regions with high concentration, visible in
figure 9(d,g, j), from affecting this integral measure. For the instances shown in figure 9,
the dispersion model slightly overpredicts dispersion, leading to an increase of the mixing
regions compared with the 3-D simulations of 6.1 %, 4.4 % and 2.1 %, respectively. If
only molecular diffusion is taken into account, the mixing regions are 2.1 %, 23.6 % and
26.9 % smaller than in the 3-D simulations. In the supplementary material, we provide
an image where the spatial distribution of the mixing zones is depicted. It is also worth
noting that concentration gradients outside of the regions of enhanced dispersion and in
the y-direction are largely preserved. This is prominently visible at later times for the
gradients close to the perimeter of the cell. The main effect of advection, which dominates
the overall structure of the concentration field, is similar in all three cases. However, the
effects due to dispersion become important and are represented better by the dispersion
model compared with the model accounting only for molecular diffusivity. Similar to the
previous test cases, there is a good agreement between the results of the 2-D dispersion
model and the 3-D particle-tracking simulations

Lastly, we would like to present the concentration distribution for a flow field where
dispersion dominates the species transport. By following the concentration development
in the same flow cell as before, but applying a wall mobility at the upper wall of
μU = −0.95μL, we reduce the average flow velocity and increase the relative importance
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Figure 10. Comparison of the same model as in figure 8, but with an upper wall mobility of μU = −0.95μL.
The concentration distribution at t = 4693 Tdif ,h is shown for the dispersion model (b) and purely 2-D
molecular diffusion (c).

of dispersion compared with advection. However, we can only present the computational
results for the 2-D models, since the 3-D particle simulations were too demanding on
the existing hardware. As depicted in figure 10, the concentration distribution is strongly
influenced by dispersion, and mixing is strongly enhanced for the case of dispersion. These
results nicely illustrate why correctly accounting for hydrodynamic dispersion can be
crucial. Also, the fact that 3-D computations were too demanding to generate meaningful
results outlines the need for a reduced, yet accurate dispersion model.

6. Discussion and conclusion

In the present paper, we have studied the dispersion of a dissolved species in a Newtonian
fluid inside a non-uniform flow field in a Hele-Shaw cell in the long-time limit. In
particular, by considering the different time scales of the mass transport problem, we used
a perturbative approach with a small parameter representing the separation of time scales.
Following a multiple-scale perturbation approach, we have derived an effective dispersion
model, accounting for dispersion due to stationary and oscillatory flow in a Hele-Shaw
cell. The derived multiscale equation shows that the variations of fluid velocity over the
channel height (in the steady-state case) and over the channel height and time (for the
oscillatory case) are the driving mechanisms for dispersion. By incorporating the effects of
mass transport along the height direction into effective coefficients, the model is reduced
by one dimension compared with the full 3-D model. This is achieved by solving the
additional boundary value problems (2.24) and (2.25) for given flow fields.

In a next step, we have derived the governing equations for the inhomogeneous flow
field in a Hele-Shaw cell that is a superposition of electroosmotic flow and pressure-driven
flow, accounting for varying wall slip and effective wall mobilities at the upper and lower
boundaries. The governing equations for the stationary and the oscillatory flow fields were
obtained by height and time averaging the momentum equation. On a side note, we showed
that the resulting equations for the vorticity and pressure gradient decouple for constant
effective wall slip, and that the equations resemble the form reported by Boyko et al.
(2015). For the oscillatory problem, we allowed arbitrary time-dependent functions for the
driving field as well as for the wall mobilities. As we demonstrated in § 3, the driving
terms of the resulting oscillatory problem include products of time-dependent functions,
thus leading to higher frequencies in the flow field. We also showed that for the long-time
asymptotics of the flow field, the oscillatory problem does not need to be solved. For the
dispersion problem, however, we require information about the time-dependent behaviour.

It is important to keep the underlying assumptions of the model in mind. First, the flow
equations are only accurate as long as the in-plane length scale L over which the wall
properties change is much larger than the channel height h. In the case of changes on

925 A11-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

64
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.648


Hydrodynamic dispersion in Hele-Shaw flows

smaller scales, the wall-normal velocity component w will become significant (Chu et al.
2019). Secondly, a similar condition results for the dispersion model from the assumed
time scales, as Tdif ,h � Tadv , leading to a condition for the length scales as L  Pe h.
Effectively, this condition ensures that a concentration field can establish an equilibrium
over the channel height before the local flow field changes. If this condition is violated,
the dispersion model will not be able to accurately predict the concentration field. The
third assumption regards the time scale on which the model makes useful predictions.
The model is valid only in the long-time limit compared with the diffusive time scale,
requiring t  Tdif ,h. This also poses a restriction on the ability to switch flow fields. One
further restriction stems from the oscillation period. During the derivation of the flow
equations, we assumed that an upper limit to the oscillation frequency is posed by the
diffusive time scale. In the case of faster oscillations, the factor εStRe in (B2) may become
important. However, as we have seen for the dispersion model, oscillations much faster
than the inverse of the diffusive time scale have little influence on dispersion. The influence
on the dispersion of fast oscillations is therefore negligible. Lastly, we also neglected
any coupling of the concentration field to the flow field. Therefore, the dissolved species
cannot change the viscosity of the background fluid, the conductivity of the liquid, or any
wall properties. For real-world applications, one has to check that these conditions are
sufficiently satisfied.

In order to outline the general characteristics of the dispersion model, we have revisited
the flow field in a cell with parallel surfaces and sinusoidally varying wall mobility, with
an electrical field pointing at an angleΘ inside the cell. For specific situations, we derived
closed-form expressions for the resulting dispersion tensor, and demonstrated the influence
of the different model parameters on dispersion. Especially the role of the wall slip is
noteworthy, as it can both lead to increased and decreased dispersion, depending on the
specific nature of the flow field.

In order to validate the dispersion model, we have considered several test cases. We have
numerically implemented the full 3-D equations utilizing a particle-tracking approach,
as well as the 2-D model, using the finite element software Comsol Multiphysics 5.5.
First, we considered stationary, unidirectional shear flow with vanishing average flow
velocity. By that, we could verify the ability of the model to correctly predict the dispersion
corresponding to stationary flow.

In a next step, we considered the same set-up, but with oscillatory shear flow. We
demonstrated that the dispersion due to oscillatory flow is compatible with behaviour
reported in the literature. For the limit of slow sinusoidal excitation, the dispersion
coefficient converges to half of the numerical value for stationary flow with the same
amplitude. In the limit of fast oscillations, the dispersion coefficient converges to zero,
since the diffusive transport over the channel height can no longer respond to the velocity
differences over the channel. In this context, note that dispersion due to oscillatory
behaviour can only be the dominating effect in the case of oscillation amplitudes much
larger than the average flow velocity, as well as sufficiently slow oscillations (compared
with the diffusive time scale over the channel height).

Finally, we considered the hydrodynamic dispersion in an inhomogeneous flow field,
specifically a recirculating flow, inspired by the blinking vortex principle. We could
show that local velocity gradients enhance dispersion. Also for this test case the 2-D
dispersion model gives results well comparable to the 3-D simulations. In addition, we
have demonstrated how the concentration distribution can be affected in the case that
dispersion dominates advection with the mean flow velocity, and why modelling the
dispersion is crucial in such a case.
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To conclude, we believe that the presented model, representing a generalization of
the Taylor–Aris model to two dimensions, could find widespread applications in a
variety of scenarios where Hele-Shaw-like flow patterns are relevant. The model not only
accounts for the superposed electroosmotic and pressure-driven flows forming due to an
inhomogeneous electroosmotic mobility at the walls, but also for the inhomogeneities in
purely pressure-driven flow due to an inhomogeneous slip length at the walls. Applications
for which the model may become relevant include mixing, valving, species separation and
sorting and chemical reactions.

Supplementary material. Supplementary materials are available at https://doi.org/10.1017/jfm.2021.648.
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Appendix A. Term by term evaluation of second-order perturbation: O = (ε2)

We continue the derivation outlined in § 2.4 by a term-by-term evaluation. In order to
obtain a solution for c(2), we average equation (2.26) over time and over the channel height.
By utilizing (2.21) and (2.23), the second term on the left-hand side can be expressed as

∂c(1)

∂t1
= −Pe2(a + b) · ∇‖

(
〈ū〉 ∂
∂x

c(0) + 〈v̄〉 ∂
∂y

c(0)
)
. (A1)

Due to 〈a〉 = 〈b̄〉 = 0, the time and transverse average of this term vanishes.
Continuing the derivation with the fourth term on the left-hand side of (2.26), we insert

the solution of c(1) (2.23) and time average over one oscillation period, resulting in

Pe

(
u
∂c(1)

∂x

)
= Pe2

(
ū
∂a
∂x

· ∇‖c(0) + ūa · ∂∇‖c(0)

∂x

)

+ Pe2

(
u′ ∂b
∂x

· ∇‖c(0) + u′b · ∇‖c(0)

∂x

)
. (A2)

In a next step, transverse averaging yields

Pe

〈
u
∂c(1)

∂x

〉
= Pe2

(〈
ū
∂a
∂x

〉
· ∇‖c(0) + 〈ūa〉 · ∂∇‖c(0)

∂x

)

+ Pe2

(〈
u′ ∂b
∂x

〉
· ∇‖c(0) + 〈u′b〉 · ∇‖c(0)

∂x

)
. (A3)
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In a similar manner, the fifth term on the left-hand side results in

Pe

〈
v
∂c(1)

∂y

〉
= Pe2

(〈
v̄
∂a
∂y

〉
· ∇‖c(0) + 〈v̄a〉 · ∂∇‖c(0)

∂y

)

+ Pe2

(〈
v′ ∂b
∂y

〉
· ∇‖c(0) + 〈v′b〉 · ∇‖c(0)

∂y

)
, (A4)

and the sixth term in

Pe

〈
w
∂c(1)

∂z

〉
= Pe2

(〈
w̄
∂a
∂z

〉
· ∇‖c(0) +

〈
w′ ∂b
∂z

〉
· ∇‖c(0)

)
. (A5)

Invoking the boundary condition (2.27) shows that the third term on the right-hand side
disappears.

Appendix B. Governing equations for the flow

In order to obtain the governing equations for fluid flow, the continuity equation and the
Navier–Stokes equation are non-dimensionalized, closely following the work of (Boyko
et al. 2015) and § 2. The spatial coordinates are scaled by L in the x and y-directions and
by h in the z-direction, and the velocities by Uc and Wc, respectively. The characteristic
velocity Uc has to be chosen according to the problem under study. In the case of
electroosmotic flow, for example, this velocity scale can be obtained as the product of the
electric field scale Ec and the electroosmotic mobility scale μEOF,c. We leave the typical
velocity scale Wc as well as the pressure scale pc and the time scale tc unspecified at first.
The slip lengths βU, βL are normalized by the cell height h.

Based on the small parameter

ε = h
L

� 1, (B1)

the missing scales can be determined consistently. From an order-of-magnitude analysis
of the continuity equation, we obtain Wc = εUc, and from the in-plane momentum
equation the pressure scale follows as pc = ηUc/Lε2. The non-dimensionalized governing
equations are

0 = ∂ û
∂ x̂

+ ∂v̂

∂ ŷ
+ ∂ŵ
∂ ẑ
, (B2a)

εReSt
∂û‖
∂ t̂

+ Reε
(

û
∂

∂ x̂
+ v̂

∂

∂ ŷ
+ ŵ

∂

∂ ẑ

)
û‖=−∇‖p̂ +

(
ε2
(
∂2

∂ x̂2 + ∂2

∂ ŷ2

)
+ ∂2

∂ ẑ2

)
û‖,

(B2b)

ε3ReSt
∂ŵ
∂ t̂

+ ε3Re
(

û
∂

∂ x̂
+ v̂

∂

∂ ŷ
+ ŵ

∂

∂ ẑ

)
ŵ = −∂ p̂

∂ ẑ
+
(
ε4
(
∂2

∂ x̂2 + ∂2

∂ ŷ2

)
+ ε2 ∂

2

∂ ẑ2

)
ŵ.

(B2c)

Here, we have introduced the Reynolds number as Re = ρUch/η, representing a
measure of inertial relative to viscous forces, and the dimensionless Strouhal number as
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St = L/Uctc, which is the ratio between the advective time scale and the characteristic
time scale. In the following, we consider the viscosity-dominated regime, leading to

εRe � 1. (B3)

With regard to the Strouhal number, note that the characteristic time scale is yet undefined.
One reasonable choice would be the inverse oscillatory frequency Tosc = 1/ fc, leading to
the expression

εStRe = ρh2

ηTosc
� 1, (B4)

if we refer to typical values for oscillatory frequencies reported in the literature (Paratore
et al. 2019a; Dehe et al. 2020). This condition poses an upper limit on the oscillation
frequency. Additionally, we work under the assumption that the electric field is uniform
over the whole cell, and parallel to the bounding walls. This assumption holds for the case
of small surface conductivity compared with the bulk conductivity (Squires 2008), and a
large dielectric constant of the fluid compared with the wall material.

Again, for the further analysis, we drop the hats for readability, noting that in the
following all variables are non-dimensionalized. Taking now the leading order in ε of
(B2b) and integrating it twice with respect to z, we find an expression for the flow profile
of the form

u‖=∇‖p
z2

2
+ f z + g, (B5)

where the vector functions f and g are dependent on the in-plane position (x, y) and time
t. Accounting for the boundary conditions at the upper and the lower wall (3.1) leads to
expressions for the function f as

f = μU − μL

1 + βU + βL E‖+
−1

2 − βU

1 + βU + βL ∇‖p (B6)

and for g as

g = μLE‖+βL μU − μL

1 + βU + βL E‖+βL −1
2 − βU

1 + βU + βL ∇‖p. (B7)

Both expressions have contributions due to the external electric field and due to the
pressure field inside the cell, that may be caused by an applied pressure gradient or by
inhomogeneous electroosmotic flow. It is important to keep in mind that the pressure
gradient ∇‖p is unknown and needs to be determined in subsequent steps.

The transverse average over the flow velocity (B5) results in

〈u‖〉 = − 1
12

1 + 4(βU + βL)+ 12βUβL

1 + βU + βL ∇‖p + 1
2
μU + μL + 2(βUμL + βLμU)

1 + βU + βL E‖.

(B8)

In order to obtain information about u′
‖, we can subtract the height-averaged equation (B8)

from the full equation (B5). It is important to keep in mind that the pressure gradient ∇‖p
is unknown and needs to be determined in subsequent steps.

We derive the governing equations for the pressure field (3.2) by applying the 2-D
divergence operator to (B8) and by utilizing (B2a) as well as the no-flux boundary
condition. The governing equation for the streamfunction ψ (3.7), which is defined via
u‖ = (∂ψ/∂y,−∂ψ/∂x), can be obtained by applying the z-component of the curl operator
to (B8).
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Appendix C. Dispersion tensor due to a striped mobility pattern

The components of the dispersion tensor for the striped mobility pattern presented in § 4
follow from (3.11) as

Dxx = − 1
210

E2
0 cos2(Θ)((μL

0)
2(1 + 2s2)− 3s2μL

0μ
U
0 + (μU

0 )
2(1 + 2s2)

+ sμU
0 (−3μL

0 + 4μU
0 ) cos(x)+ μU

0 )
2 cos(2x)

+ μL
0((4sμL

0 − 3sμU
0 − 3μL

0 cos(x)) cos(x + φ)+ μL
0 cos(2(x + φ)))), (C1)

Dxy = Dyx = − 1
1680

E2
0 cos(Θ)(24s2μL

0μ
U
0 + (7 + 16s2)((μL

0)
2 + (μU

0 )
2)

+ 2sμU
0 (−13μL

0 + 15μU
0 ) cos(x)+ 7(μU

0 )
2 cos(2x)

+ μL
0((30sμL

0 − 26sμU
0 − 28μU

0 cos(x)) cos(x + φ)+ 7μL
0 cos(2(x + φ)))), (C2)

and

Dyy = − 1
1680

E2
0 sin2(Θ)((7 − 16s2)(μL

0)
2 − 24s2μL

0μ
U
0 + (7 + 16s2)(μU

0 )
2

+ 28sμU
0 (−μL

0 + μU
0 ) cos(x)+ 7(μU

0 )
2 cos(2x)

7μL
0(−4(s(−μL

0 + μU
0 )+ μU

0 cos(x)) cos(x + φ)+ μL
0 cos(2(x + φ)))). (C3)

Appendix D. Additional information related to the 3-D particle simulations

In this section, we provide additional information regarding the implementation of the
particle simulations in Comsol Multiphysics 5.5. Settings specific to Comsol are indicated
by italic fonts. We make an effort to describe the underlying numerical principles in terms
of well-known concepts of the finite element method, for specific settings, however, a
detailed description can be found in the Comsol Multiphysics reference guide (Comsol
Multiphysics 2019).

We utilize the model implemented in Comsol Multiphysics 5.5, where particle
trajectories are obtained under the influence of Brownian motion and the drag force acting
on a particle (Kim 2004; Comsol Multiphysics 2019). For each particle, the equation of
motion is

d
dt
(mpup) = F d + F b = 1

τp
mp(u − up)+ α

√
6πkBμTdp

Δt
, (D1)

where mp is the particle mass, up the particle velocity, F d and F b the expressions for
the drag force and Brownian force, respectively, u the surrounding fluid’s velocity, τp
the particle’s response time defined below, kB the Boltzmann constant, μ the dynamic
viscosity of the surrounding fluid, T the absolute temperature and dp the particle diameter.
The expression α is a vector containing normally distributed random numbers with zero
mean and unit standard deviation. The random numbers at different time steps Δt are
independent (Comsol Multiphysics 2019). The response time of a particle is

τp = ρpd2
p

18μ
, (D2)
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Parameter Description Value

ρp Particle density 1 × 103 kg m−3

dp Particle diameter 4.29 × 10−9 m
D Molecular diffusion coefficient 1 × 10−10 m2 s−1

μ Dynamic viscosity of water 1 × 10−3 Pa s
T Temperature in the fluid 293.15 K
kB Boltzmann constant 1.38 × 10−23 m2 kg s2 K−1

Table 4. Parameter values used in the particle-tracking simulations.

where ρp is the mass density of the particle material. The resulting molecular diffusion
constant is

D = kBT
3πμdp

. (D3)

Table 4 shows the choice of parameters used in the particle-tracking simulations. These
parameters yield a diffusion coefficient of D = 1 × 10−10 m2 s−1, representative for a dye
molecule in water. The computed response time of the particle is τp = 1.02 ps, which
means that for all practical purposes the particle velocity is identical to the velocity of the
surrounding fluid.

The initial particle distribution is generated by releasing particles from a uniformly
spaced grid and equilibrating the particle ensemble over the channel height for times much
longer than the diffusive time scale Tdif ,h. Thereby, we ensure that the initial release from
the grid does not produce artefacts and also prevent sharp concentration gradients, which
can lead to numerical problems in the 2-D model.

We have used the Newtonian formulation for the particles, as shown in (D1). In that
context, a bouncing condition at the domain walls was used, given by

v = vc − 2(n · vc)n, (D4)

where n denotes the wall normal and vc the particle velocity when hitting the wall. Since
the time-step size is small compared with the diffusive time scale, wall interactions only
occur at a small fraction of the time steps.
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