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In an attempt to combat the pain and damage generated by rheumatoid arthritis
(RA), new drugs are being developed to target molecular aspects of the disease
process. Recently, a major development has been the use of biologicals
(antibodies and soluble receptors) that neutralise the activity of tumour necrosis
factor ααααα (TNF-ααααα) and interleukin 1 (IL-1), both of which are involved in disease
progression. An increase in our understanding of cell and molecular biology
has resulted in the identification and investigation of potential new targets,
and also the refinement and improvement of current therapeutic modalities.
This review describes therapies that are approved, in clinical trials or under
pre-clinical investigation at the laboratory level, particularly focusing on
cytokines, although other therapeutic targets of interest are mentioned.
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Rheumatoid arthritis
Advances in molecular biology have led to the
development of new therapeutics for
autoimmune diseases. Rheumatoid arthritis (RA)
is one of the commonest autoimmune diseases,
affecting 0.5%–1.0% of the adult population of the
western world; it has an incidence of about 25 new
patients per l00,000 population per annum
(Ref .  1). This chronic, systemic inflammatory
disease is both debilitating and difficult to
manage and leads to a reduced quality of life,
irreversible tissue damage, disability and a
shortened life expectancy. RA is characterised
by polyarticular synovitis, with a prominent
immunological, inflammatory and mesenchymal
tissue reaction in the synovium, causing pain,
swelling and stiffness. The small peripheral joints,
such as those in the fingers or wrist, and feet
are often the first to be affected by the disease,
and the distribution of affected joints is often
symmetrical. However, the disease may affect any
synovial joint. Patients who have uncontrolled
synovitis may develop erosions along the joint
surface (reviewed by Ref. 2).

At the cellular level, RA is characterised by a
markedly increased cellularity of the synovial
membrane. The infiltration of cells such as
macrophages and T cells is prominent, as is the
proliferation and expansion of fibroblasts within
the synovium. Activation of endothelial cells
and neovascularisation is also prominent. Other
less abundantly found cell types include B cells
and dendritic cells. In contrast to the synovial
membrane, the RA synovial fluid is enriched with
neutrophils, but macrophages, T cells and
dendritic cells are also present. Many of these
cells have an activated phenotype, express high
levels of human leukocyte antigen (HLA) class II
and adhesion molecules, and produce most of the
cytokines and chemokines that are known
(reviewed by Ref. 3). This process culminates in
irreversible damage to cartilage, bone and tendon.

The cause of RA has not yet been identified.
Environmental factors such as mechanical stress
and cigarette smoking have been shown to have
a role in disease susceptibility (Refs 4, 5). Despite
suggestions that it might be triggered by viral or
bacterial infections, no specific pathogen has been
implicated. The treatment of RA has centred on
the use of disease-modifying anti-rheumatic drugs
(DMARDs). The oldest DMARD is injectable gold,
which has been used to treat RA patients since
the 1920s, and targets many sites in the immune

system (Ref. 6). Current best practice includes the
use of methotrexate (MTX) (Ref. 7), which was
introduced in the 1950s and has since been shown
in many trials to inhibit the progression of erosive
disease. The precise mechanism of action of MTX
is unknown, although many effects are reported,
including the inhibition of DNA synthesis and cell
replication (Ref. 8). Recent research suggests that
T cells are the main target of MTX (Ref. 9). During
the 1990s, specifically targeted biological therapies
began to use tumour necrosis factor α (TNF-α)
and interleukin 1 (IL-1) as molecular targets for
therapy (Fig. 1).

In this review, we describe a range of molecular
targets that are currently under investigation for
the treatment of RA. The main biological and
molecular therapeutic strategies that are being
used within the field are discussed, particularly
the targeting of cytokines, enzymes and molecules
that are involved in cell signalling. Cox-2
inhibitors (cyclo-oxygenase-2 inhibitors) are not
discussed as their use has been brought into
question recently by the US Food and Drug
Administration (FDA) (Ref. 10), after Merck
withdrew rofecoxib (Vioxx) from the market. The
concerns that were raised related to the safety of
these inhibitors, as they increase the risk of heart
attack and stroke (Refs 11, 12). The full range of
targets is too extensive to cover in detail in this
review; some of the more promising therapies that
are under development at pre-clinical or clinical
trials are discussed.

Molecular targets in RA
Cytokines
Advances in the understanding of the role of
cytokines in disease have led to new developments
in the treatment of inflammatory diseases.
Cytokine activities were first identified during
the 1960s (Ref. 13), when it was realised that
these small, secreted proteins play a significant
role in modulating the immune system and
specifically inflammation. Although cytokines
appear to have pleiotropic activities that make
classification difficult, they are generally either
pro-inflammatory (e.g. TNF-α and IL-1) or anti-
inflammatory [e.g. IL-10 and transforming growth
factor β (TGF-β)] in their actions. Cytokines are
produced de novo and generally act at low
concentrations over small distances for a short
time, stimulating changes in the expression of
membrane proteins, proliferation of synoviocytes
and secretion of effector molecules. The
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Figure 1. Mechanism of action of biological
inhibitors. (a) Antibodies are used to inhibit the
action of cytokines by binding to them so that they
unable to interact with, and activate, the relevant
receptor. (b) Soluble receptors act in a similar way
to antibodies, by competing with the cell-surface
receptors for the cytokine. (c) The enzymatic
cleavage of tumour necrosis factor α (TNF-α) from
the cell surface requires TNF-α-converting enzyme
(TACE), and the cleavage of interleukin-1 β (IL-1β)
to produce its active form requires interleukin-1β-
converting enzyme (ICE). Cytokines can be inhibited
by interfering with their processing, preventing them
from being secreted and available for activating
receptors. (d) Receptor antagonists bind to the
receptor and do not induce the transmission of a
signal, thereby blocking cytokines from reaching their
target.

involvement of TNF-α, IL-1, IL-6, IL-8, IL-12, IL-
15 and IL-18 in RA has been studied extensively
(Fig. 2).

Tumour necrosis factor α (Τα (Τα (Τα (Τα (ΤNF-α)α)α)α)α)
TNF-α  is predominantly produced by
macrophages but also by other immune cells
including lymphocytes, natural killer cells and
mast cells (Refs 14, 15). It activates macrophages,

endothelial cells, synovial fibroblasts, chondrocytes
and osteophytes, stimulating cell proliferation,
matrix metalloproteinases (MMPs) and adhesion
molecule expression, as well as the release of other
cytokines and prostaglandins. TNF-α is found at
high concentrations in rheumatoid synovial fluid
and synovial tissue and is known to aggravate the
damage that is associated with RA (Ref. 16).

A major event in the development of anti-TNF-
α as a therapy was the seminal finding by Brennan
et al. (Ref. 17) that the neutralisation of TNF-α
with antibodies in cultured rheumatoid synovial
cells suppressed the expression of other cytokines
(e.g. IL-1). This finding was supported by studies
with animal models of RA that demonstrated a
central role for TNF-α  in synovitis and joint
destruction: mice that were transgenic for TNF-α
or had dysregulated TNF-α production developed
arthritis (Refs 18, 19). Two soluble forms of the
TNF receptor (TNFR; namely p55 and p75)
naturally occur in synovial fluid and can inhibit
the action of TNF-α by competing with the cell-
surface receptors (Ref. 20). The treatment of mouse
models of arthritis with anti-TNF-α antibodies or
with soluble TNFR abrogated or lessened the
effects of the disease (Refs 19, 21, 22). Based on
these observations, anti-TNF-α antibodies and
soluble receptors were taken into clinical trials.

Three anti-TNF-α antibody-based therapies
are currently being marketed. In 1999, the US FDA
granted Centocor (Malvern, PA, USA) approval
to use a combination of MTX and a chimaeric
monoclonal antibody that binds with high affinity
to human TNF-α (Refs 23, 24) to treat RA patients
who have responded inadequately to MTX alone.
This antibody has shown significant efficacy in
trials involving RA patients, and it is now
marketed as Remicade  (infliximab) (Ref. 25).
Another biological modifier of TNF-α  that
has been brought to the market is Enbrel
(etanercept), which in contrast to infliximab binds
both TNF-α  and tumour necrosis factor β
(TNF-β). It is a recombinant form of the p75 TNFR
and is fused with the Fc region of human IgG1
(immunoglobulin G1) to form a dimer (Ref. 26).
Recently, a third agent, a completely human anti-
TNF monoclonal antibody called Humira
(adalimumab), has entered the market (Ref. 27).
As a human antibody, it has the benefit of having
a potentially lower immunogenicity combined
with a greater therapeutic potential. Infliximab
treatment can lead to autoantibodies being
generated to double-stranded DNA (both IgM and

Mechanism of action of biological
inhibitors
Expert Reviews in Molecular Medicine
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Figure 2. Extracellular molecular targets in rheumatoid arthritis (RA). Therapeutic treatments that are
currently available or under investigation for the treatment of RA are shown in red. TMI-1 prevents TNF-α
being processed at the cell surface and released as an active soluble form. The largest group of inhibitors are
the cytokine inhibitors that act on TNF-α (infliximab, etanercept, adalimumab, CDP 870, PEG sTNF-R1,
ISIS 104838), IL-1 (anakinra), IL-6 (MRA), IL-8 (ABX-IL8), IL-12 (ABT-874), IL-15 (HuMax-IL-15) and IL-18
(IL-18bp). The mode of action of such inhibitors includes: as soluble antibodies, as soluble receptors or by
direct binding (and blocking) of the receptor. These agents prevent both the stimulation of receptors and the
intercellular interactions that these factors induce. Doxycycline and Trocade target the inhibition of MMP-
mediated destruction of cartilage and bone. Rituximab depletes the B-cell population, helping to prevent the
production of autoantibodies and rheumatoid factors. CTLA4-Ig prevents the receptor interaction between
antigen-presenting cells and T cells leading to T-cell stimulation. Abbreviations: CTLA-4, cytotoxic T-
lymphocyte-associated antigen 4; IL, interleukin; MMP, matrix metalloproteinase; Th, T helper; TNF-α,
tumour necrosis factor α.

IgG class), nucleosome and nuclear antigens
(Refs 28, 29). It is used in conjunction with MTX
in an attempt to reduce its immunological side
effects because MTX has been shown to suppress
autoantibodies in lupus erythematosus (Ref. 30),
although no such suppressive effect was shown
in a recent study of the MTX suppression of
autoantibody formation in patients treated with
infliximab (Ref. 31). Combined use with MTX
potentiates the effectiveness of this and other
biologicals, and is the major approach to using
these agents.

Other TNF therapies are currently
undergoing clinical trials. Celltech has generated
a polyethylene glycosylated (PEGylated)
humanised antibody fragment that binds with
high affinity to TNF-α (CDP 870) (Ref. 32). Initial
results from phase III trials have suggested a
promising response in RA, with a significant
20% reduction in the American College of
Rheumatology score (ACR20) at week 1, which
was maintained for the duration of the 24-week
study (http://www.medicalnewstoday.com/
medicalnews.php?newsid=13761). Compared

Extracellular molecular targets in rheumatoid arthritis (RA)
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with the current anti-TNF-α therapies, the major
advantage of this product is its lower cost of
production because synthesis is in a bacterial
system. Amgen has developed a PEGylated
soluble TNFR type I (PEG sTNF-R1) that has
shown efficacy in animal models and is now in
Phase II trials (Ref. 33). PEG sTNF-R1 was
taken into clinical trial after its efficacy was
demonstrated in animal models of RA (Refs 34,
35). ISIS Pharmaceuticals is producing ISIS 104838,
an antisense oligonucleotide that reduces the
production of TNF-α (Ref. 36). Initial data from
Phase II trials have shown a low toxicity, and
further trials to determine dose and treatment
duration are planned. ISIS 104838 has the potential
advantage of fewer side effects and lower
production costs, compared with protein-based
therapies (see further reading box). However,
the efficacy of the systemic use of antisense
oligonucleotides is still unclear.

An alternative approach to blocking TNF
function has been to prevent the processing of the
molecule. TNF-α is synthesised as a membrane-
bound protein that is released by enzyme cleavage
with TNF-α -converting enzyme (TACE), a
member of the MMP superfamily. An inhibitor of
TACE, called TMI-1, has been developed (Ref. 37).
In experiments on human monocytes, whole
blood and human synovial tissue explants from
RA patients, TMI-1 inhibited TNF-α secretion (Ref.
37). It has also been shown to be effective at
reducing clinical scores in the collagen-induced
arthritic mouse (Ref. 37). However, it is unclear
what the effect of leaving TNF-α bound to the cell
surface will be if this form of the cytokine is still
active. Moreover, studies with broad-spectrum
MMP inhibitors that block TNF-α release proved
ineffective in studies in RA synovial joint cultures
(Ref. 38).

Interleukin 1 (IL-1)
IL-1 is a potent inducer of MMPs, eicosanoids,
inducible nitric oxide synthase (iNOS) and
receptor activator of nuclear factor κB (NF-κB)
ligand (RANKL), among many other factors,
making it a key pro-inflammatory mediator (the
role of IL-1 in RA is reviewed by Ref. 39). It is
produced by macrophages and its production is
regulated by TNF-α in RA synovium (Refs 17, 40)
and, at the local level, IL-1 is a more potent inducer
of MMPs than TNF-α. The therapeutic action of
TNF biologicals can be attributed to the combined
action of decreasing TNF-α but also the resulting

decrease of other cytokines such as IL-1 (Ref. 17).
Therefore, IL-1 is also a potential therapeutic
target in RA.

IL-1 was the first cytokine to be identified in
the synovial fluid of RA patients (Ref. 41) as
contributing to the progression of inflammation
and joint damage associated with RA. In the
mid-1980s, a naturally occurring inhibitor was
identified, namely IL-1 receptor antagonist (IL-1RA)
(Ref. 42). IL-1RA specifically blocks the effects of
IL-1 without affecting TNF-α by binding the cell-
surface receptor IL-1R1 and preventing activation
by interleukin-1 β (IL-1β). IL-1RA is also present
in RA synovial fluid (Refs 43, 44) but it appears
that, in the disease state, there is an imbalance
between IL-1 and IL-1RA. In an attempt to redress
this imbalance, a recombinant non-glycosylated
form of IL-1RA (Ref. 45) was tested in clinical trials
(Refs 46, 47). It proved effective and was marketed
as Kineret  (anakinra) in 2001. Approval was
given for treating the symptoms and joint
destruction associated with RA. However, post-
marketing surveillance has shown it to be much
less effective than anti-TNF-α biologicals. The
reason for this is unclear: it may be that IL-1 is
not a potent target in RA or that the agent itself
has poor pharmacology. It has a short half-life of
4–6 hours and is slower acting than the TNF
biologicals (Ref. 47). Patients can undergo months
of daily injections before any reduction in clinical
disease activity is observed.

To address the poor efficacy of IL-1RA, a new
approach to inhibiting cytokines is being used for
IL-1. A high-affinity blocker termed IL-1 TRAP,
an engineered protein comprising the Fc region
of IgG1 linked to two signalling chains of the
IL-1R, allows binding of IL-1 with high affinity.
IL-1 induction of IL-6 was measured in vivo in
mice injected with human IL-1β followed either
by IL-1 TRAP or IL-1RA. IL-1 TRAP was far more
effective at inhibiting IL-6 release (effectively
neutralising the action of IL-1) compared with
IL-1RA (Ref. 48), making it a good candidate for
clinical trials. Regeneron Pharmaceuticals has
since confirmed favourable clinical activity and
safety/tolerability in a Phase II clinical trial
involving RA patients and is planning to start a
Phase IIb trial in the near future. This type of
technology offers interesting new therapies for
other cytokines involved in RA that have not been
effectively targeted yet. Celltech has developed
CDP 484, a PEGylated antibody fragment against
IL-1β. A Phase I trial was scheduled in 2003 but
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no results have been published (see further
reading box).

Caspase I [interleukin-1 beta converting
enzyme (ICE)] is another possible target aimed at
decreasing the amount of IL-1 in RA, as it cleaves
the precursor form of IL-1β, changing it to the
mature active form. Vertex and Aventis developed
a caspase 1 inhibitor, called Pralnacasan (HMR
3480/VX-740) (Ref. 49), but discontinued its Phase
IIb trial after adverse toxicology results were
received from a long-term animal study, although
shorter trials are still being carried out.

Two soluble forms of the IL-1R have been
found in synovial fluid that bind IL-1β, competing
with the cell-surface receptors for IL-1 (Ref. 50).
The approach of using soluble receptors to
decrease the availability of a cytokine has been
used for TNF and has proved beneficial in RA,
but has not yet been developed as an approach
for reducing IL-1 levels.

Interleukin 6 (IL-6)
IL-6 is another cytokine that is found in
abundance in both the serum and synovial fluid
of patients with RA (Refs 51, 52, 53). IL-6 is
produced by macrophages, monocytes, T
lymphocytes, endothelial cells and synovial
fibroblasts. The overproduction of IL-6 in RA
might result in the production of autoantibodies
owing to the differentiation of B cells and
activation of autoreactive T cells (Ref. 54). IL-6
also activates osteoclasts, resulting in bone
reabsorption (Ref. 55), upregulates intercellular
cell adhesion molecule 1 (ICAM-1) expression
(Ref. 56) and is involved in the recruitment of
immunocompetent cells into inflammatory tissue,
among other effects. The importance of IL-6 in
arthritis can also be seen from in vivo experiments
in which IL-6-/- mice were backcrossed with mice
that were susceptible to antigen-induced arthritis.
The IL-6-/- knockout mice only developed mild
arthritis, whereas the wildtype mice developed
severe arthritis (Ref. 57).

Roche in collaboration with Osaka
University has developed a humanised anti-
human IL-6R monoclonal antibody (MRA)
(Ref. 58). It was developed from the initial
mouse anti-IL-6R monoclonal antibody (PM-1),
which caused patients to generate antibodies
to mouse immunoglobulins. An initial pilot study
suggested that MRA was a safe and effective
treatment for RA (Ref. 59). Tests were therefore
continued to the level of Phase II trials, and again

the results were positive: a clear dose–response
relat ionship and good tolerance of  the
antibody were demonstrated (Ref. 60). MRA
has entered into a Phase III trial in Japan, and
similar trials are planned for Europe and the
USA.

Neutralisation of the receptor may have added
benefits in the case of the IL-6 system. The IL-6R
can exist in a soluble form that is capable of
binding to its ligand. This complex can then
interact with the second chain of the IL-6R
complex, gp130, and signal, therefore activating
cells that may not normally have the entire
complex fully expressed.

Interleukin 8 (IL-8)
IL-8 has been found at increased levels in RA
(Ref. 61), and is a potential therapeutic target in
inflammatory diseases. Synovial fibroblasts,
macrophages, endothelial cells and chondrocytes
can all produce IL-8. An antibody to IL-8 has been
shown to reduce joint swelling significantly in
rabbits with monosodium-urate-crystal-induced
arthritis (Ref. 62). Abgenix has completed a
double-blind Phase IIa trial in RA patients
using a human monoclonal antibody targeting
IL-8 (ABX-IL8). However, the efficacy was
disappointing and there are no further plans
for clinical development (see further reading
box). Phase IIa and IIb trials with ABX-IL8
were also performed in patients with moderate
to severe psoriasis and chronic obstructive
pulmonary disease (COPD), respectively, but
these trials also proved unsuccessful (see
h t t p : / / w w w. b i o p o r t f o l i o . c o m / n e w s /
btech_051502_1.htm).

Interleukin 12 (L-12)
IL-12 is a potential target in RA as it has been
found in elevated levels in the synovial fluid of
RA patients (Ref. 63). It is mainly produced by
macrophages and dendritic cells. Experiments
using an anti-IL-12 antibody have shown
promising results in arthritis mouse models. In
one study, an IL-12 antibody prevented the
development of collagen-induced arthritis (CIA)
in interferon γ (IFN-γ) receptor knockout mice
(Ref. 64). IL-12 antibody has also been reported
to act in synergy with anti-TNF-α antibodies to
inhibit the progression of CIA in mice, producing
a greater effect than anti-TNF-α  alone (Ref. 65).
IL-12 p40 has been shown to be shared with IL-12
and IL-23 (Ref. 66); thus, it is not clear whether
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these results in animal models were due to
blockade of the action of either IL-12 or IL-23.

Collaboration between Cambridge Antibody
Technology and Abbott has produced a human
anti-IL-12 monoclonal antibody called ABT-874
(formerly J695), which has proved to have some
potential for treating Crohn’s disease and multiple
sclerosis. A multi-centre, dose-randomised,
double-blind, placebo-controlled study of ABT-
874 is currently in progress to test its potential for
treating RA (see further reading box).

Interleukin 15 (IL-15)
IL-15 has been detected in RA joint synovium
(Ref. 67). It is produced by monocytes and a
variety of other cells. IL-15 activates T cells and
promotes the release of more IL-15 and stimulates
macrophages in a cell-contact-dependent manner
to release TNF-α. Pre-clinical data have suggested
that a soluble fragment of IL-15Rα  may be
useful as a therapeutic; when this fragment was
administered to DBA/1 mice, it profoundly
suppressed the development of CIA (Ref. 68). A
human monoclonal antibody against IL-15
(HuMax-IL-15) has been tested in a Phase II trial
for RA by Genmab and Amgen. The antibody was
found to be safe (with no dose-limiting toxicity)
and well tolerated by the patients. The results
showed HuMax-IL-15 to be more beneficial than
a placebo in patients who had previously failed
to respond to treatment with DMARDs (Ref. 69).

Interleukin 18 (IL-18)
IL-18 was originally identified as an IFNγ-
inducing factor (Ref. 70). It is mainly produced
by macrophages and is closely related to IL-1α,
and IL-1β. IL-18 is capable of enhancing the
production of IL-1 and TNF, and works in synergy
with IL-12 and IL-15, which are both present in
the synovium, to increase the production of other
cytokines (Ref. 71). Elevated levels of IL-18 have
been observed in RA synovial fluid (Ref. 72). A
naturally occurring inhibitor to IL-18 is IL-18-
binding protein (IL-18bp), a molecule that binds
IL-18 in the fluid phase and prevents it from
binding to cells. It is similar to the naturally
occurring receptor but, instead of being bound to
the cell surface, it is a secreted protein (Ref. 73).

Pre-clinical data have suggested that the
development of IL-18bp might produce a
beneficial therapy for RA. In the murine CIA
model, mice infected with an adenovirus
expressing the murine gene encoding IL-18bp

isoform c showed less severe inflammation or
bone erosions in their joints than mice not
expressing IL-18bp (Ref. 74). The pharmaceutical
company Serono has put an IL-18bp (Tadekinig-
α) into a Phase IIa trial for RA, the results of which
are awaited.

Matrix metalloproteinase (MMP) inhibitors
The MMPs are a family of 25 zinc- and calcium-
dependent proteinases that are involved in the
degradation of the extracellular matrix (Ref. 75).
MMPs degrade bone and cartilage in the RA joint,
although which members of the MMP family are
responsible is not known. Tissue inhibitors of
metalloproteinases (TIMPs) occur naturally and
regulate the activities of MMPs. A balance
between MMPs and TIMPs is essential for the
normal turnover of extracellular matrix
components (Ref. 76). Low-molecular-weight
molecules that bind to zinc or other parts of the
catalytic site of MMPs have been pursued as
inhibitors. So far, clinical trials of these inhibitors
have been cut short owing to complications.
The broad-range MMP inhibitors batimastat
(MB94), marinastat (BB 2516) and CG 270323A
are used to treat cancer patients but have all
been ruled out as treatments for RA, because trials
with marinastat revealed a drug-related toxicity
causing upper-body musculoskeletal pain
and stiffness of the joints that spread in a
time-dependent manner but was reversible on
withdrawal of the drug (Ref. 77).

Trocade (Ro 32-3555), an oral MMP-1 inhibitor
developed by Roche, appeared to be a strong
candidate for testing in clinical trials after it was
shown to be a potent inhibitor of cartilage
resorption in vitro and in vivo, acting as a
collagenase inhibitor (Ref. 78). However, despite
Trocade being well tolerated by patients (Ref. 79),
trials were discontinued after one year because
its efficacy was limited (Ref. 80). This raised
questions as to whether the drug had reached the
joint or whether the wrong MMP was being
targeted.

Currently, the class of antibiotics known as
tetracyclines are the only form of treatment in
clinical use against MMPs, and the tetracycline
doxycycline has been shown to inhibit the activity
of some MMPs (Ref. 81). Although antibiotics
seem to have a beneficial effect for the treatment
of RA (Ref. 82), the tetracyclines can induce lupus
(Ref. 83). Thus, although targeting MMPs could
theoretically be beneficial in RA, it is clear that a
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new approach to inhibiting these proteases needs
to be developed.

Nuclear factor κκκκκB (NF-κκκκκB)
NF-κB proteins are a family of transcription
factors that play an important role in several
physiological processes including cell survival,
proliferation and activation. The NF-κB family
comprises five members, relA (p65), relB, c-Rel,
p105/p50 and p100/p52, all of which share
the Rel homology domain that allows their
dimerisation and translocation to the nucleus.
NF-kB dimers are bound to inhibitors of NF-κB
(IκB) proteins, which retain NF-κB in the cytosol.
In the so-called canonical or classical activation
pathway, inflammatory mediators such as TNF
and IL-1, activate IκB kinase 2 (IKK2) within the
multisubunit IKK complex, which in turn
phosphorylates IκB inducing its ubiquitination
and degradation by the proteasome, releasing
NF-κB to translocate to the nucleus (Ref. 84). An
alternative or non-canonical pathway of NF-κB
activation, under the control of NF-κB-inducing
kinase (NIK) and IKK1, has also been described.
In response to stimuli such as lymphotoxin beta
and CD40L, NIK has been shown to activate IKK1,
leading to inducible processing of p100 with
preferential nuclear translocation of p52-RelB
dimers (Ref. 85).

Once activated, NF-κB is a transcription
factor that regulates many inflammatory
mediators, including cytokines, chemokines,
adhesion and co-stimulatory molecules, major
histocompatibility complex (MHC) class I and II
antigen-presenting molecules, enzymes and anti-
apoptotic proteins (Ref. 86). In RA, NF-κB appears
to be activated and localised in the nucleus of both
macrophage- and fibroblast-like synoviocytes
from both early and later stage patients (Refs 87,
88, 89). NF-κB can promote joint destruction by
inducing osteoclast maturation and increased
bone-resorbing activity (Ref. 90), and by inhibiting
chondrocyte differentiation and the repair of
damaged cartilage tissue (Refs 91, 92).

The inhibition of NF-κB through the
overexpression of IκBα in RA synovial membrane
cultures downregulates the expression of pro-
inflammatory cytokines such as TNF-α , IL-1β,
IL-6 and IL-8 (Refs 93, 94, 95) without major effects
on the expression of anti-inflammatory mediators
such as IL-1RA, IL-10 and IL-11 (Ref. 94). NF-κB
inhibition also results in the downregulation
of MMP 1 and MMP 3 without affecting the

beneficial expression of TIMP 1, the natural
inhibitor of MMPs. In animal models of arthritis,
NF-κB inhibition has a beneficial effect (Refs 96,
97, 98, 99), further supporting NF-κB as a potential
therapeutic target in RA.

One strategy to block NF-κB activation
involves targeting the 26S subunit of the
proteasome, thus inhibiting IκBα degradation,
NF-κB nuclear translocation, as well as
preventing inducible p100 NF-κB processing
(Fig. 3). Interestingly, one such proteasome
inhibitor, bortezomib (Velcade; Millennium), had
a fast-track clinical development and has
recently been approved by the FDA for the
treatment of multiple myeloma and is under
development for various other haematological
malignancies. Nonetheless, it is not clear whether
the therapeutic effects of bortezomib are due to
the inhibition of IκBα degradation (and NF-κB
activation) or to the inhibition of other targets.
Moreover, in chronic inflammatory diseases
such as RA, the side effects of bortezomib may
not be acceptable for longer term treatment. Thus,
the most promising approach to block NF-κB
specifically appears to be through the targeting
of IKK2, which phosphorylates IκBα, allowing it
to be degraded. Although in RA synovial
membrane cultures, the inhibition of IKK2 only
marginally affects TNF-α  production, it has
profound inhibitory effects on the expression of
most other cytokines [e.g. vascular endothelial
growth factor (VEGF), IL-1β, IL-6, IL-8] and
MMPs, and also inhibits the activation of the
endothelium (Ref. 100). IKK2 inhibitors that are
currently under development have been recently
reviewed elsewhere (Ref. 101).

Mitogen-activated protein kinases
(MAPKs)
The MAPKs are a group of related kinase proteins
that require dual phosphorylation of tyrosine and
serine/threonine (Ref. 102). The three major ones
are p38, p42/44 (ERK) and p46/54 (JNK), which
are activated by a kinase cascade. Activated p38,
p42/44 and p54 MAPKs are all present in synovial
tissue from RA patients (Refs 103, 104). p42/44
MAPK activation is localised around the
synovial microvessels, p54 MAPK activation is
found around and within the mononuclear cell
infiltrates, and p38 MAPK activation is mostly
seen in the synovial lining layer and in synovial
endothelial cells (Ref. 104). The importance of p38
MAPK in inflammation was demonstrated by the
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Figure 3. Intracellular molecular targets in rheumatoid arthritis (RA). Both the interleukin 1/18 (IL-1/IL-18)
family and the Toll-like receptor family can activate a pathway involving MyD88 (myeloid differentiation primary
response gene 88), Mal (MyD88-adapter-like), IRAK (IL-1R-associated kinase) and Traf6 (TNF receptor-
associated factor 6) that activates the IκB kinase (IKK) complex and then nuclear factor κB (NF-κB). The
activation of NF-κB in RA by this pathway can potentially be inhibited at two points, each marked with a red
asterisk: kinase inhibitors can be used to inhibit IKKβ or proteasome inhibitors (bortezomib) can be used to
block the degradation of IκB and the subsequent activation of NF-κB. Btk (Bruton tyrosine kinase) has also
proved to be a potential target in RA and is known to activate p38. Inhibitors of Btk are under development.
TNF-R (tumour necrosis factor receptor), IL-1/IL-18 receptors and Toll-like receptors can all activate p38 MAPK
(mitogen-activated protein kinase) through a cascade of kinases leading to transcriptional regulation of
inflammatory factors. Inhibitors of p38 MAPK are under investigation at both the laboratory level and at the
clinical level. Abbreviation: P, phosphorylation.

discovery that the inhibition of this enzyme had
a profound effect on TNF-α  production in
lipopolysaccharide (LPS)-stimulated macrophages
(Refs 105, 106, 107). The other MAPKs do not
appear to have such a central role in TNF-α
production, although a role has been reported.
In human monocytes/macrophages, p54 MAPK
(JNK) has been proposed to control TNF-α
production at the translational level (Ref. 108),
whereas p42/44 MAPK (ERK) affects TNF-α
production at the transcriptional level (Refs 107,
109). The expression of other inflammatory

cytokines such as IL-1, IL-6 and IL-8 is also
regulated by MAPKs (Refs 105, 106, 110).

In mouse and/or rat models of arthritis, p38
MAPK inhibitors such as SB 203580 (Ref. 111), SB
220025 (Ref. 112), SB 242235 (Ref. 113), RWJ 67657
(Ref. 114) or RPR200765A (Ref. 115), some of which
are also orally effective, reduce the incidence of
arthritis and ameliorate established disease. By
contrast, the p54 MAPK inhibitor SP600125
prevents radiological joint destruction but only
modestly decreases paw swelling in mouse
arthritis (Ref. 116).

Intracellular molecular targets in rheumatoid arthritis (RA)
Expert Reviews in Molecular Medicine © 2005 Cambridge University Press
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To our knowledge, there are no inhibitors of
ERK or JNK in clinical trials. The situation
with p38 MAPK inhibitors is quite different.
Because the chemical inhibition of p38 MAPK
demonstrated the importance of this enzyme to
TNF-α synthesis (Ref. 117), the p38 MAPK has
been seen as a key target for the treatment of RA
(Fig. 3). However, despite a decade passing since
these original findings, no inhibitor of p38 MAPK
has moved beyond Phase II trials. So far, toxicity
has been a problem but seems to be related to the
chemistry of the inhibitors rather than to their
mode of action.

Phosphodiesterase (PDE) inhibitors
The PDE-4 enzyme inactivates cAMP and is
expressed in inflammatory cells such as
monocytes and dendritic cells. Inhibitors of
PDE-4 are useful in controlling inflammation
because they bring about a sustained elevated
level of cAMP that leads to activation of protein
kinase A (PKA) and subsequent inhibition of
transcription factors like NF-κB that transcribe
inflammatory genes (e.g. TNF-α).

The main areas of investigation for PDE-4
inhibitors have been in the treatment of COPD
and asthma (Refs 118, 119). PDE-4 inhibitors have
proved to have a therapeutic benefit in animal
models; one inhibitor, rolipram (manufactured by
AG Scientific), has proved beneficial in a mouse
model of asthma, where the mice were sensitised
and then re-exposed to ovalbumin (Ref. 120).
Rolipram has also been tested in a rat arthritis
model where it was observed to have anti-
inflammatory actions in suppressing TNF-α and
inhibition of cellular infiltration, as well as
suppressing bone and cartilage destruction
(Ref. 121). Rolipram has also been tested in a
clinical trial but was found to have dose-
limiting side effects of nausea and emesis
(vomiting). Another inhibitor, Ariflo (cilomilast)
manufactured by GlaxoSmithKline, has also been
tested in clinical trials and was given FDA
approval for the treatment of COPD.

Daxas  (roflumilast), which is being
developed by Altana Pharma, is one of a new
generation of PDE-4 inhibitors that are better
tolerated and therefore show more potential for
clinical approval. Multinational Phase III clinical
studies around Europe involving patients who
have asthma and COPD have shown positive
results (Refs 122, 123). Celgene is also developing
a group of PDE-4 inhibitors, the SelCIDs

(selective cytokine inhibitory drugs), which
incorporate the phthalimide fragment of
thalidomide. The PDE-4 inhibitors under
investigation by Celgene have the advantage of
lower emetic effects compared with inhibitors
that are currently in trials (see further reading
box). The most potent of these inhibitors, CDC-
998, was well tolerated at the doses administered
in a Phase I clinical trial. There are now plans for
a multiple dosing drug trial, although the focus
does not appear to be on RA at present.

Cytotoxic T-lymphocyte-associated
antigen 4 (CTLA4)
Class II MHC molecules present antigens to
CD4+ T cells that activate them, and have been
associated with susceptibility to RA (Ref. 124).
Activated T cells have also been shown to be
present in the RA synovium (Ref. 125). Full
activation of T cells requires the activation of CD28
as well as the engagement of the T-cell receptor
with an MHC–peptide complex on an antigen-
presenting cell.

CTLA4 is transiently expressed on the cell
surface of T cells and can bind CD80 and CD86
on antigen-presenting cells as well as CD28 on
T cells, but interacts with a higher avidity to CD80
and CD86 than to CD28. CTLA4 blockade of CD28
engagement inhibits the activation of T cells
(Ref. 126) and has been suggested to be a useful
therapy in RA. Human CTLA4 fused to the
constant region of IgG1, to increase its half-life,
has been used in clinical trials involving RA
patients. Initial results indicated that Abatacept
(CTLA4-Ig) (along with MTX) is a promising
therapy for RA, because the trial patients
experienced a significant improvement in their
symptoms (Ref. 127). A Phase III clinical trial
involving RA patients has shown positive results,
suggesting that CTLA4-Ig may be useful in the
treatment of patients who do not respond well to
conventional treatments (see further reading box).

Interleukin 10 (IL-10)
IL-10 produced by monocytes, macrophages, B
cells and T cells acts in vitro to decrease the
production of pro-inflammatory cytokines and
can increase the production of IL-1RA (Refs 128,
129). Utilising IL-10 is a potential therapeutic
strategy in RA. Ongoing studies at King’s College
London are investigating the delivery of a gene
encoding IL-10 via a nasal spray (see further
reading box) as therapeutic treatment.
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B cells
Mature B cells contribute to autoimmunity by
their ability to produce cytokines, present
antigens and secrete autoantibodies (Ref.
130).  Autoantibodies such as anti-cyclic
citrullinated peptide antibodies have become a
useful diagnostic tool for RA (Ref. 131). The
interest in B cells as a major factor in the
pathogenesis of RA has been generated by the
success with anti-CD20 antibody in clinical
trials. CD20 is a cell-surface marker of B cells
that is absent on plasma cells. Targeting CD20
with a chimaeric monoclonal antibody, called
Rituxan (rituximab/MabThera), causes B cells to
undergo apoptosis and cell lysis via a cytotoxic
mechanism that involves the Fc immunoglobulin
fragment and complement activation (Ref. 132).
Rituximab was licensed for the treatment of
B-cell non-Hodgkin’s lymphoma in 1997 (Ref.
133). It has been well tolerated by RA patients
in clinical trials when given either on its own
or in combination with glucocorticoids, MTX or
cyclophospamide. The greatest benefit is achieved
when rituximab is used in combination with
MTX, including in those patients who previously
were non-responsive to MTX. In a Phase IIb
trial, B-cell depletion was evident for 6 months
after two initial infusions of rituximab (Refs
134, 135).

Given the potential success of B-cell-targeted
therapy, another B-cell-related target is Bruton’s
tyrosine kinase (Btk). It is a member of the Tec
family and plays an important role in the
signalling mechanisms that differentiate pre-B
cells into mature B cells (Ref. 136). This was first
discovered in X-linked agammaglobulinaemia
(XLA) patients who lack Btk (Ref. 137). The
targeting of this kinase may be an alternative
means of desensitising B-cell signalling, and thus
providing a therapeutic effect in autoimmune
diseases including RA (Ref. 138). More recently,
Btk has been shown to be a key element in the
signalling pathways induced in macrophages by
LPS stimulation of Toll-like receptor (TLR) 4
leading to production of TNF-α, a key cytokine
in RA pathogenesis (Ref. 139). TLRs have been
suggested to play a role in RA but the evidence
for this is still circumstantial (Ref. 140). Btk also
appears to be a proximal regulator of p38
MAPK (Fig. 3) and, because Btk has a much more
restricted biological distribution than p38
MAPK, it might represent a more attractive target
to inhibit.

Clinical implications
The targeting of any molecule that is integral to
the adaptive immune response will always pose
a risk of immunosuppression and infections
leading to adverse effects. The number of
biological treatments available for RA has
increased considerably in recent years, and
many new products are either in pre-clinical
development or undergoing clinical trials
(Table 1). Although these treatments have
brought hope of new ways to target signalling
pathways in human disease, there have been some
drawbacks. TNF-α and IL-1 have been the main
clinical targets, but these proteins are also major
pro-inflammatory cytokines in the role against
infection. Inhibiting their effects can therefore
increase the risk of infection.

A small number of patients who were treated
with anti-TNF-α therapies have experienced a
lupus-like syndrome, demyelination syndrome
and serious infections including bacterial
sepsis and reactivation of latent Mycobacterium
tuberculosis (reviewed by Ref. 141). The incidence
of tuberculosis (TB) in anti-TNF-α-treated patients
is approximately 1 in 1000 patient exposures,
which in most cases appeared to be due to a
reactivation of latent TB (Ref. 142). TNF-α is
known to play an important role in host defence
against TB in a TNF-α knockout mouse model
(Ref. 143). The increased infection risk with the
anti-TNF-α therapy infliximab may be due to the
reduced IFNγ production that has been observed
with this treatment (Ref. 144). INFγ activates
phagocytosis and resulted in the killing of
intracellular bacteria. Treatment with these anti-
TNF-α therapies has also been associated with the
production of anti-dsDNA antibodies (Refs 145,
146), but the incidence of lupus in these patients
remains rare (Refs 147, 148). Demyelination
syndrome has been reported in a few patients but
like lupus this occurs very rarely (Ref. 149). There
have also been suggestions that TNF blockade can
lead to an increased risk of lymphomas (Ref. 150)
but at present the evidence is not conclusive.
Minor, non-serious, injection-site reactions
are common with the anti-TNF-α  etanercept
treatment, and hypersensitivity to infliximab has
been seen in some patients along with the
production of antibodies to the drug itself.

With the IL-1RA inhibitor anakinra, the risk of
impairment of host defence mechanisms is
relatively reduced in comparison with the risks
for the TNF biologicals. This may be because IL-1
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Table 1. Summary of rheumatoid arthritis therapeutics in development

Name Type / Target Manufacturer Clinical stage Refs

Remicade® (infliximab) Monoclonal antibody / TNF-α Centocor Inc. FDA approved 25

Enbrel® (etanercept) Receptor / TNF-α Immunex/Wyeth FDA approved 26

Humira® (adalimumab) Monoclonal  antibody /TNF-α Abbott FDA approved 27

CDP 870 Monoclonal antibody /TNF-α Celltech Phase III 32

PEGylated soluble Receptor / TNF-α Amgen Phase II 33
TNFR type I

ISIS 104838 Antisense oligonucleotide ISIS Pre-clinical 36
 / TNF-α

TMI-1 Small molecule / TACE Wyeth Pre-clinical 37

Kineret® (anakinra) Protein / IL-1 Amgen FDA approved 46, 47

IL-1 TRAP Receptor / IL-1 Regeneron Phase IIb 48

CDP 484 PEGylated antibody Celltech Phase I Further
fragment / IL-1β reading box

Pralnacasan Small molecule / Caspase I Vertex/Aventis Discontinued 49
/ IL-1 after Phase IIb

MRA Monoclonal antibody / IL-6 Chugai/Roche Phase III 60, 152

ABX-IL8 Monoclonal antibody / IL-8 Abgenix Discontinued Further
after Phase IIa reading box

ABT-874 Monoclonal antibody / IL-12 CAT/Abbott Phase II Further
(Phase I/II) reading box

HuMax-IL-15 Monoclonal antibody / IL-15 Genmab/Amgen Phase II 69

IL-18bp (Tadekinig-α) Protein / IL-18 Serono Phase IIa Further
reading box

Trocade (Ro 32-3555) Small molecule / MMP-1 Roche Discontinued 79
after Phase I

IKK2 inhibitors Small molecule / IKK2 Various Pre-clinical Reviewed
companies in Ref. 101

p38 MAPK inhibitors Small molecule / p38 MAPK Various Some in Phase 111, 112,
companies I/II; many 113, 114,

discontinued 115

Abatacept Fusion protein / CTLA4 Repligen Phase III 127
(CTLA4-Ig) Corporation

Rituxan Monoclonal antibody / CD20 Genentech Phase III Further
(Rituximab/MabThera) reading box

Abbreviations: CTLA4, cytotoxic T-lymphocyte-associated antigen 4; IKK2, IκΒ kinase 2; IL, interleukin;
MAPK, mitogen-activated protein kinase;  MMP-1, matrix metalloproteinase 1; TACE, TNF-α-converting enzyme;
TNF-α, tumour necrosis factor α.
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works downstream of TNF and has less effect on
immunocompetent cells, but injection-site
reactions are seen in some patients. No serious
opportunistic infections have been reported in RA
patients on long-term anakinra treatment
(Ref. 151). Another limiting factor of the new
biological therapies is that some patients do not
show a significant benefit when treated with them.

Concluding remarks
The advances made during the past decade have
provided more-effective treatments for RA but
improvements are still needed. The development
of a more efficacious oral DMARD would be
beneficial to avoid injection-site reactions and
would be preferred by patients as an easier form
of drug administration. As our understanding of
signalling pathways in inflammatory cells that are
involved in the pathogenesis of RA increases,
other more-specific therapeutic targets should
come to light that will potentially give beneficial
effects to a greater number of patients.
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Further reading, resources and contacts

CDP 484 – the Nektar Therapeutics website provides information on CDP 484 and the company’s
collaboration with Celltech.

http://www.nektar.com/content/pr_1034957161

ISIS 104838 – a report of the Phase II trial of ISIS 104838 in RA is available on the ISIS Pharmaceuticals
website.

http://phx.corporate-ir.net/phoenix.zhtml?c=94554&p=irol-newsArticle&ID=565722&highlight=

ABX-IL8 – the Abgenix and BioSpace websites both give the latest news on ABX-IL8.

http://www.abgenix.com/productdevelopment/?view=DevelopmentStrategy

http://www.biospace.com/ccis/news_story.cfm?StoryID=8750119&full=1

ABT-874 – the University of California, San Diego (UCSD) Center for Innovative Therapy provides
information on clinical trials of ABT-874.

http://cit.ucsd.edu/level2/clintri/sumclintrials.htm

Tadekinig-ααααα – the Serono website provides the latest news on Tadekinig-α (IL-18bp).

http://www.serono.com/products/areas.jsp?major=1&minor=4

CDC-998 – the BioSpace website and a meeting report from Advances in Anti-Arthritic Agents both give
information on CDC-998:

http://links.biospace.com/news_story.cfm?StoryID=4813304&full=1

Norman, P. (11 July 2002) Advances in Anti-Arthritic Agents – SMi’s Third Annual Conference,
IDrugs 5, pp. 530–538 (http://www.biomedcentral.com/content/pdf/cd-457688.pdf)

IL-10 – the King’s College London website describes a potential IL-10 therapy for RA.

http://www.kcl.ac.uk/phpnews/wmview.php?ArtID=660

CTLA4-Ig – the Biotechnology Healthcare website gives an initial report of Phase III clinical trials.

http://www.biotechnologyhealthcare.com/Daily/DailyDetail.cfm?chosen=406

Rituximab – the Genentech website provides information about Rituximab.

http://www.gene.com/gene/pipeline/status/immunology/rituxan/
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Figures
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