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Free surface flows generated by a moving distribution of pressure are considered. The

fluid consists of two superposed layers in a two-dimensional channel. The upper layer is

inviscid and the lower layer, which is introduced as a damping mechanism, is modelled by

the mathematically convenient lubrication equations. Numerical and analytical solutions are

presented. Special attention is given to solutions for which there is a train of waves on

each side of the distribution of pressure. It is shown that, depending on the values of the

parameters, the short waves can appear on either side of the distribution of pressure.

1 Introduction

There is a vast literature on potential free surface flows where the fluid is assumed to

be bounded below by a rigid horizontal bottom. Although this is usually a very good

assumption, there are practical situations in which it is not justified. For example the

bottom of a channel might be covered by a layer of mud or grease. Here we investigate an

idealised problem where the rigid bottom is replaced by a layer with a damping mechanism.

Our aim is to model damping while keeping the mathematics simple. Therefore, we do

not use the Navier Stokes equations in the lower layer. Instead, we use a mathematical

device which might not be physically realisable, but which allows the reformulation of the

problem as a nonlinear integro-differential equation. We shall refer to the lower layer as

the ‘dissipative layer’. The calculations presented generalise the work of Vanden-Broeck

& Miloh [9] by including the effect of the surface tension T at the interface between the

dissipative layer and the potential flow. As we shall see, the properties of the flows with

a dissipative layer differ from those with a rigid bottom.

Our configuration consists of two superposed layers of fluid in a channel (see Figure 1).

The lower layer is dissipative. The upper layer is inviscid and bounded above by a free

surface. Both fluids are incompressible and the flow in the upper layer is irrotational.

The flow is generated by a disturbance moving at a constant velocity C to the left. The

disturbance can be an insect, a ship or a submerged object. The qualitative properties of

the solutions presented here are independent of the particular form of the disturbance.

Here we assume that the disturbance is a distribution of pressure with a compact support.

We assume that the flow is two-dimensional, and we take a frame of reference moving

with the pressure distribution. There are then both steady and unsteady solutions [4].

Here we restrict our attention to steady solutions.
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Figure 1. Sketch of the flow and coordinates.

The corresponding problem with a rigid horizontal bottom (i.e. the configuration of

Figure 1 where the thickness of the dissipative layer is zero) was considered by Rayleigh

[6] (see also Lamb [2]), who assumed that the magnitude of the pressure distribution is

small. The equations are then linearised and the problem solved by Fourier transforms.

The properties of the linear solution can be understood by looking at the most general

form of the solution in the far field (i.e. as x → ±∞). If the most general form is a flat

free surface, then the solution of the linear problem is unique. On the other hand, if the

most general form is a train of periodic waves, then the solution of the linear problem

is not unique. It is then necessary to supply a radiation condition to fix uniquely the

linear solution. One way to impose the radiation condition is to solve a problem with an

artificial viscosity (the Rayleigh viscosity), and then take the limit as the artificial viscosity

approaches zero [6, 2]. Another way is to use Ruvinsky et al.’s [7] approach to model a

viscous flow, and then take the limit as the viscosity approaches zero [5]. As we shall see,

a third way is to solve the problem with a dissipative lower layer, and then take the limit

as its thickness approaches zero.

We solve the flow configuration of Figure 1 numerically. Our solutions are nonlinear, and

no assumptions are made on the magnitude of the distribution of pressure. However, we

approximate the flow in the lower layer by using the lubrication equations, instead of the

Navier Stokes equations, even when the thickness of the lower layer is not small. Therefore,

the lubrication approximation should be viewed in this paper as a convenient mathematical

device to simulate dissipation. This device enables us to formulate the problem as an

inviscid flow with appropriate boundary conditions, which is then reformulated as a

boundary integral equation. This equation is discretized, and the resultant algebraic

equations are solved by Newton’s method. The numerical procedure is similar to that

used by many investigators to study purely inviscid free surface flows (see, for example,

Vanden-Broeck & Tuck [10], Forbes & Schwartz [1] and Vanden-Broeck & Dias [8]). It

reduces to the scheme used by Vanden-Broeck & Miloh [9] when T = 0.

The formulation and the numerical procedure are summarised in §2. The reader is

referred to Vanden-Broeck & Miloh [9] for further details. The results are presented in

§ 3.

2 Mathematical formulation

We consider a flow with two layers bounded below by a horizontal bottom and above

by a free surface (see Figure 1). The lower layer is an incompressible and ‘dissipative’
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fluid of density ρ1. The upper layer is an incompressible and inviscid fluid of density ρ2.

A pressure distribution moving to the left at a constant velocity C is acting on the free

surface. We take a frame of reference moving with the pressure distribution and we seek

steady solutions.

We define cartesian coordinates with the x-axis along the level of the free surface far

upstream and the y-axis directed vertically upwards. Gravity is acting along the negative

y-axis. We describe the shape of the free surface by y = ηF (x) and the shape of the

interface between the two layers by y = ηI (x). The functions ηF (x) and ηI (x) have to be

found as part of the solution.

As x→ ±∞, the lower and upper layers are characterized by constant thickness h1 and

h2 and a constant velocity C . The flow in the upper layer is irrotational. In the lower layer,

we use the lubrication equations instead of the Navier Stokes equations. Thus, we write

ux + vy = 0

0 = − 1

ρ1
px + νuyy

0 = − 1

ρ1
py − g. (1)

Here u and v are the x and y components of the velocity, and ν is the viscosity. We

emphasize that we use the lubrication equations (1), even when the lower layer is not thin.

This mathematical device enables us to solve the problem by a boundary integral equation

method. We refer to ν as the viscosity for convenience, although we are not solving the

full Navier Stokes equations and the lower layer might be too thick for the lubrication

approximation to apply. In the upper layer the flow is irrotational. Therefore, the complex

velocity u− C − iv is an analytic function of z = x+ iy in the strip ηI (x) < y < ηF (x).

The equations are to be solved subject to the boundary conditions

(i) u = C, v = 0 on y = −h1 − h2,

(ii) uy = 0 on y = η−I (x),

(iii) p(x, η−I (x)) = p(x, η+
I (x)) + T ηIxx

(1+η2
Ix)3/2

(iv) v = uηIx on y = η±I (x),

(v) v = uηFx on y = ηF (x),

(vi) (u2+v2)
2

+ gηF (x) + PA(x)
ρ2

= C2

2
on y = ηF (x)

(vii) u→ C, v → 0 as |x| → ∞.

Here T is the surface tension and η−I and η+
I denote the lower and upper sides of the inter-

face ηI . The conditions (ii), (iii), (iv) on the interface y = ηI (x) represent respectively conti-

nuity of tangential stress, the pressure jump due to surface tension and the kinematic condi-

tions. The conditions (v) and (vi) on the free surface y = ηF (x) are the kinematic condition

and the dynamic boundary condition. The function PA(x) in (vi) is the prescribed distribu-

tion of pressure. We assume that PA(x) has compact support, i.e. that PA(x) vanish outside

some finite interval. The condition (vii) requires that the waves decay in the far field.

The problem can then reformulated as a system of integro differential equations by

following the derivation of sections 2 and 3 of Vanden-Broeck & Miloh [9]. Using
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dimensionless variables with C as the unit velocity and h2 as the unit length, we obtain

the following system:

π[uF (x)− 1] =

−
∫ +∞

−∞
[uF (s)− 1 + vF (s)η′F (s)][ηF (x)− ηF (s)] + [(uF (s)− 1)η′F (s)− vF (s)](s− x)

(s− x)2 + (ηF (s)− ηF (x))2
ds

+

∫ +∞

−∞
[u+
I (s)− 1 + v+

I (s)η′I (s)][ηF (x)− ηI (s)] + [(u+
I (s)− 1)η′I (s)− v+

I (s)](s− x)

(s− x)2 + (ηI (s)− ηF (x))2
ds (2)

π[u+
I (x)− 1] =

−
∫ +∞

−∞
[uF (s)− 1 + vF (s)η′F (s)][ηI (x)− ηF (s)] + [(uF (s)− 1)η′F (s)− vF (s)](s− x)

(s− x)2 + (ηF (s)− ηI (x))2
ds

+

∫ +∞

−∞
[u+
I (s)− 1 + v+

I (s)η′I (s)][ηI (x)− ηI (s)] + [(u+
I (s)− 1)η′I (s)− v+

I (s)](s− x)

(s− x)2 + (ηI (s)− ηI (x))2
ds (3)

δ − 1

F2
η′I (x) +

3

R

ηI (x) + 1

(ηI (x) + β + 1)3
+ δ(uux + vvx) + κ

d

dx

ηIxx

(1 + η2
Ix)

3/2
= 0, (4)

v+
I (x) = u+

I (x)η′I (x), (5)

u2
F (x) + v2

F (x) +
2

F2
ηF (x) + 2PA(x) = 1. (6)

The parameters in (2)–(6) are the Froude number

F =
C

(gh2)1/2
, (7)

the Reynolds number

R =
Ch2

ν
, (8)

the depth ratio

β =
h1

h2
, (9)

the capillary number

κ =
T

ρC2h2
, (10)

and the density ratio

δ =
ρ1

ρ2
. (11)

Equations (2) and (3) follow from applying Cauchy integral formula to the analytic

function u− iv− 1 with a contour consisting of y = ηF (x), y = ηI (x) and two vertical lines

at |x| = ∞. Relations (4)–(6) follow from (i)–(vii). For given values of F , R, β, κ and δ,

(2)–(6) define a system of integro-differential equations for the four unknown functions

uF (x), η′F (x), u+
I (x) and η′I (x). This system is solved numerically by using the scheme

described in section 4 of Vanden-Broeck & Miloh [9]. The main difference is that the

second derivative of ηI needs to be evaluated (see (4)). This is done by central differences.

In all the calculations we chose

PA(x) = 0, for |x| > b
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and

PA(x) =
ε

2
exp

25b2

x2 − 25b2
for |x| < b. (12)

Here ε and b are two constants which define the strength and the length of the pressure

distribution. We note here a typographical error in Vanden-Broeck & Miloh [9]. Formula

(3.13) of Vanden-Broeck & Miloh [9] should be replaced by formula (12) of this paper.

3 Discussion of results

The numerical results show that for 0 < R < ∞, the waves (if present) are of decaying

amplitude as x → ±∞. For R = 0 and R = ∞, the waves (if any) are of constant

amplitude as x → ±∞. This constant amplitude is usually small when ε is small. These

two facts suggest that some useful insight into the problem can be gained by linearising

the equations around a flat free surface (i.e. a uniform stream) and seeking wavelike

solutions. This will lead to useful expressions for the asymptotic behaviours of the flow

as x→ ±∞.

Therefore, we write u = 1 + u∗, v = v∗, ηF = ηF
∗, ηI = −1 + ηI

∗, where the variables

with ∗ denote small perturbations.

For simplicity of the formulas and presentation, we assume in the remaining part of

the paper δ = 1. Retaining only the terms linear in u∗, v∗, ηI ∗ and ηF
∗ yields after some

algebra

3

Rβ3
v∗ + u∗xx + κv∗xxx = 0 y = −1, (13)

u∗x +
1

F2
v∗ = 0 y = 0. (14)

Since the flow is irrotational in the upper layer, we can define a potential function φ∗
such that

u∗ = φ∗x, v∗ = φ∗y. (15)

We seek wavelike solutions of the form

φ∗ = eikx[Aeky + Be−ky]. (16)

Here A, B and k are constants. When the constant k is real, the wave is of constant

amplitude and can occur both for x > 0 and x < 0. When k is complex, we write

k = kr + iki and refer to kr as the wavenumber and ki as the rate of decay. Since we

require bounded solutions and

eikx = e−kixeikrx, (17)

(16) implies that waves with ki > 0 occur for x > 0 and waves with ki < 0 occur for x < 0.

To evaluate k, we substitute (15) and (16) into (13) and (14), and obtain the following

linear system for A and B:[ 3

Rβ3
e−k − ik2e−k − κik3e−k

]
A+

[
− 3

Rβ3
ek − ik2ek + κik3ek

]
B = 0 (18)

[
−k +

1

F2

]
A−

[
k +

1

F2

]
B = 0 (19)
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Equations (18) and (19) have a nontrivial solution for A and B, if the determinant of the

coefficients vanishes. Therefore, we require

e−k
[
− 3

Rβ3
(k +

1

F2
) + ik3 +

ik2

F2
+ κi(k4 +

k3

F2
)
]
−ek

[ 3

Rβ3
(k − 1

F2
)

+ik3 − ik2

F2
+ κi(−k4 +

k3

F2
)
]
= 0 (20)

We note that (20) reduces to

F2 =
tanhk

k
(21)

for R = 0 and to

F2 =
1− κktanhk

ktanhk − κk2
(22)

for R = ∞. The problem with R = ∞ is completely inviscid and corresponds to a lower

layer in which the pressure is hydrostatic. When R = 0, the surface of the dissipative layer

is flat and the classical configuration with a rigid bottom is recovered.

We now use the results (20)–(22) to discuss the results obtained by the numerical scheme

outlined in § 2. Typical profiles of the free surface and of the surface of the dissipative

layer are shown in Figures 2 and 3. For 0 < R < ∞, there are in general trains of waves

both in front and at the back of the distribution of pressure. These trains are more

visible on the surface of the dissipative layer than on the free surface and are of decaying

amplitude as |x| → ∞ (see Figures 2 and 3). We denote by kfront and kback the values of k

associated with these two train of waves. Here ‘front’ and ‘back’ refer to the regions x < 0

and x > 0 of Figure 1. Since the waves are of decaying amplitudes, the values of kfront

and kback can be evaluated from the linear theory (i.e. from (20)). For the flow of Figure

2, we set F = 0.89, κ = 0.4, R = 60, β = 0.25 and solve (20) for k by Newton’s method.

This yields two roots k = 2.94− 0.78i and k = 1.07 + 0.42i. Requiring the waves to decay

at infinity (i.e. using (17)), we obtain kfront = 2.94− 0.78i and kback = 1.07 + 0.42i. Next we

consider the flow of Figure 3. We set F = 0.55, κ = 0.4, R = 60 and β = 0.25 and obtain

in the same way kfront = 2.99− 0.73i and kback = 3.30 + 0.03i.

We note that that kfrontr > kbackr in Figure 2 whereas kfrontr < kbackr in Figure 3. In other

words, the waves of shorter wavelength are at the front of the distribution of pressure in

Figure 2 and at the back in Figure 3.

To understand better this difference between the solutions of Figure 2 and 3, we consider

the limiting case R = ∞. Then we can no longer determine which train of waves will

appear in front or at the back of the distribution of pressure from the sign of ki since

ki = 0 when R = ∞. The solution of of the linearised version of the flow of Figure 1 is then

non-unique. However the physically relevant solution can be recovered by imposing an

extra ‘radiation condition’. This condition requires that no wave energy is being generated

at ‘infinity’ [3]. Since the energy travels with the group velocity, this condition implies that

waves for which the group velocity is larger than the phase velocity are at the front of

the disturbance and those for which the group velocity is smaller than the phase velocity

are at the back of the disturbance. Here the phase velocity is U and the group velocity is
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Figure 2. Free surface profile (a) and profile of the surface of the dissipative layer (b) for

F = 0.89, b = 0.5, δ = 1, β = 0.25, ε = 0.5, κ = 0.4 and R = 60.

defined as

Cg =
dΩ

dK
(23)

where Ω = KC is the angular frequency and K the wavenumber. Using our dimensionless

variables and (7), we rewrite (23) as

cg = 1 +
k

F

dF

dk
(24)
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Figure 3. Same as Figure 2 with F = 0.55.

where cg is the dimensionless group velocity. The dimensionless phase velocity is 1. It

follows that

cg > 1 when
dF

dk
> 0 (25)

and

cg < 1 when
dF

dk
< 0. (26)

Waves satisfying (25) appear at the front of the disturbance and those satisfying (26) at

the back.
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Figure 4. Values of F predicted by (22) as a function of k for κ = 0.4 and 1 < k < 2.4.

Figure 5. Same as Figure 4 for 2.6 < k < 4.2.

Values of F2 for κ = 0.4 and two different ranges of values of k are shown in Figures

4 and 5. From Figure 4, we see that there are two values k1 = 2.36 and k2 = 1.76 of k

corresponding to the value F = 0.89 of Figure 2. Then k1 satisfies (25) and k2 satisfies (26).

This explains why the waves of shorter wavelength are at the front of the distribution

of pressure in Figure 2. We note that since Figure 2 corresponds to R = 60 instead of

R = ∞, k1 = 2.36 is not equal to kfrontr = 2.94 and k2 = 1.76 is not equal to kbackr = 1.07.

However, the differences between these values decrease as R increases.

From Figure 5, we see that there are two values k1 = 3.26 and k2 = 2.72 corresponding

to the value F = 0.55 of Figure 3. But now k1 satisfies (26) and k2 satisfies (25). Therefore,

the waves of shorter wavelength are now on the back.
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The presence of a minimum in the dispersion relation (see Figure 4) is familiar in the

classical theory of gravity capillary waves mentioned in the introduction. The presence of

a maximum is more unusual and leads to the unexpected effect that the waves of short

wavelength are at the back of the disturbance.

Our comparison between the analytical results (20) and the nonlinear numerical results

in Figures 2 and 3 was restricted to ε small and to R large. The limit R → 0 is also

interesting. For R = 0 the surface of the dissipative layer is flat and the effect of surface

tension vanishes. The problem reduces then to the one considered by Vanden-Broeck &

Miloh [9]. There is then only one train of waves at the back of the distribution of pressure.

The results of [9] shows the inclusion of a dissipative layer (i.e. solving the problem with

R small) fixes uniquely the solution. In other words, a dissipative layer is an alternative

to the Rayleigh viscosity discussed in the introduction.

Finally, let us mention that the effect of increasing ε was studied in [9] for the particular

case T = 0.

4 Conclusions

We have used a boundary integral equation method to calculate the free surface flow due

to a moving distribution of pressure when the bottom is covered by a dissipative layer

(modelled by the lubrication equations). The solutions were found to depend upon six

parameters F , κ, R, δ, β, b and ε. We have calculated solutions with trains of waves on

the free surface and demonstrated that the short train of waves does not always occur in

front of the distribution of pressure. This numerical finding was clarified by examining

analytically the asymptotic behaviour of the flow in the far field.
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