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ABSTRACT

Let U;(g) be a quantum affine algebra with an indeterminate ¢, and let €5 be the
category of finite-dimensional integrable Ué(g)—modules. We write ‘52? for the monoidal
subcategory of ¢ introduced by Hernandez and Leclerc. In this paper, we associate a
simply laced finite-type root system to each quantum affine algebra Ué(g) in a natural
way and show that the block decompositions of € and ‘?a”g are parameterized by the
lattices associated with the root system. We first define a certain abelian group W
(respectively W) arising from simple modules of € (respectively ‘KE?) by using the
invariant A®° introduced in previous work by the authors. The groups W and W,
have subsets A and A determined by the fundamental representations in ¢y and ‘59? )
respectively. We prove that the pair (R ®z Wy, Ap) is an irreducible simply laced root
system of finite type and that the pair (R ®z W, A) is isomorphic to the direct sum of
infinite copies of (R ®z Wy, Ag) as a root system.
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1. Introduction

Let ¢ be an indeterminate and let Ué (g) be a quantum affine algebra. The category & of finite-
dimensional integrable Ué (g)-modules has a rich structure. For example, the category %y is not
semi-simple and has a rigid monoidal category structure. Because of its rich structure, it has
been studied actively in various research areas of mathematics and physics (see [AK97, CP94,
FR99, Kas02, Nak01] for examples).

The category 65 has been studied from the viewpoint of cluster algebras. Suppose that g is
of simply laced affine ADE type. In [HL10], Hernandez and Leclerc defined the full subcategory
Cfg of ¢4 such that all simple subquotients of its objects are obtained via simple subquotients of
tensor products of certain fundamental representations. They then introduced certain monoidal
subcategories 6y (¢ € Z~) and studied their Grothendieck rings using cluster algebras. As any
simple module in % can be obtained from a tensor product of suitable parameter shifts of simple
modules in ‘590, the category ‘Kg has an essential position in 6. Note that an algorithm for com-
puting g-characters of Kirillov—Reshetikhin modules for any untwisted quantum affine algebras
was described in [HL16], by studying the cluster algebra structure of the Grothendieck ring of the
subcategory ¢ of ng . On the other hand, Hernandez and Leclerc introduced another abelian

monoidal subcategory CKQQ which categorifies the coordinate ring C[N] of the unipotent group
associated with the finite-dimensional simple Lie algebra gg inside g [HL15]. For each Dynkin
quiver @, they defined an abelian subcategory ‘KQQ of ng which contains some fundamental repre-
sentations parameterized by the coordinates of vertices of the Auslander—Reiten quiver of ), and
proved that %Q is stable under taking tensor products and that its complexified Grothendieck
ring C ®z K (%Q ) is isomorphic to the coordinate ring C[N]. Moreover, under this isomorphism,
the set of isomorphism classes of simple modules in CKQQ corresponds to the upper global basis
of C[N].

The notion of the categories Cfg and ‘KQQ has been extended to all untwisted and twisted
quantum affine algebras [KKKO16, KO19, OS19a, OS19b]. Let o(g) := Iy x k*/ ~, where the
equivalence relation is given by (i,z) ~ (j,y) if and only if V(w;), ~ V(w;),. The set o(g) has
a quiver structure determined by the pole of R-matrices between tensor products of fundamen-
tal representations V' (w;), ((i,z) € o(g)). Let o¢(g) be a connected component of o(g). Then
the category ‘Kg is defined to be the smallest full subcategory of € that has the following
properties:

(a) Gy contains V(w;), for all (i,z) € oo(g);
(b) (fgo is stable by taking subquotients, extensions and tensor products.

The subcategory CKQQ was introduced in [KKKO16] for twisted affine type A® and D®)| in
[KO19] for untwisted affine types BM) and €M), and in [0S19a, OS19b] for exceptional affine
type. For a Dynkin quiver @ of a certain type with additional data, a finite subset og(g) of oo(g)
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was determined. Then the category %Q is defined to be the smallest full subcategory of ‘KS for
which the following hold:

(a) CKQQ contains 1 and V (w;), for all (i,z) € og(g);
(b) (fg is stable by taking subquotients, extensions and tensor products

(see §§2.3 and 2.4 for more details).
We can summarize the results of this paper as follows:

(i) we associate a simply laced root system to each quantum affine algebra U;(g) in a natural
way;

(ii) we give the block decomposition of € parameterized by a lattice W associated with the
root system.

Let Ué(g) be a quantum affine algebra of arbitrary type. We first consider certain subgroups
W and Wy of the abelian group Hom(o(g),Z) arising from simple modules of ¢ and Cfgo,
respectively (see (4.2)). The subgroups W and W, have subsets A and A determined by the
fundamental representations in ¢y and Cfg , respectively. Let £:=R ®z W and & =R ®7z Wy.
Let ggsn be the simply laced finite-type Lie algebra corresponding to the affine type of g in
table (4.5). When g is of untwisted affine type ADE, gg, coincides with gg. We prove that
the pair (&£, Ag) is the irreducible root system of the Lie algebra ggs, and the pair (£,A) is
isomorphic to the direct sum of infinite copies of (£, Ag) as a root system (see Theorem 4.6
and Corollary 4.7). Interestingly enough, the quantum affine algebra Ué(g) and its Langlands
dual Ué(L g), whose Cartan matrix is the transpose of that of g, yield the same simply laced
root system. This coincidence can also be viewed in terms of the mysterious duality between
Ul(g) and its Langlands dual U}(“g) (see [FH11a, FH11b, FRI8]). We conjecture that the cat-
egories of representations of two quantum affine algebras are equivalent if and only if their
associated root systems are the same. From this viewpoint, the simply laced finite-type root
system plays the role of an invariant for the representation categories of quantum affine alge-
bras. For each simply laced finite-type root system, the corresponding untwisted quantum affine
algebra, the one of twisted type (if it exists) and its Langland dual have the same categorical
structure.

We then show that there exist direct decompositions of 6 and ‘59? parameterized by ele-
ments of W and W, respectively (Theorem 5.10), and we prove that each direct summand of
the decompositions is a block (Theorem 5.14). This approach covers all untwisted and twisted
quantum affine algebras in a uniform way and provides a transparent explanation of how the
blocks of ‘52? exist from the perspective of the root system (&, Ag) and the category %Q .

When g is of untwisted type, the block decomposition was studied in [CM05, EM03, JM11].
Etingof and Moura [EMO03] found the block decomposition of € whose blocks are parameterized
by the elliptic central characters under the condition |g| < 1. Later, Chari and Moura [CMO05]
gave a different description of the block decomposition of % by using the quotient group &,/2,
of the (-weight lattice &, by the {-root lattice 2,. In the case of the quantum affine algebra
Ue(g) at roots of unity, its block decomposition was studied in [JM11]. For affine Kac-Moody
algebras, the block decomposition of the category of finite-dimensional modules was studied
in [CM04, Senl0]. Note that the block decomposition for affine Kac-Moody algebras does not
explain blocks for quantum affine algebras U;(g). We remark that in the untwisted-type case,
the quotient group /<2, given in [CMO05] (and also the result of [EMO03]) provides another
group presentation of W (see Remark 5.16).

The main tools used to prove our results are the new invariants A, A and b for a pair of
modules in €y introduced in [KKOP20]. For non-zero modules M and N in €y such that R}\‘/RE‘QZ
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is rationally renormalizable, the integers A(M, N), A>° (M, N) and d(M, N) are defined by using
the renormalizing coefficient cpr n(2) (see §3 for details). These invariants are quantum affine
algebra analogues of the invariants (with the same notation) for pairs of graded modules over
quiver Hecke algebras arising from the grading of R-matrices. The new invariants play similar
roles in the representation theory of quantum affine algebras to those for quiver Hecke algebras.

Let us explain our results more precisely. Let Ué (g) be a quantum affine algebra of arbitrary
type. For M € %y such that the universal R-matrix R}\l/}l’i‘v/(wi)z is rationally renormalizable for
any i € Iy, we define E(M) € Hom(o(g), Z) by

E(M)(i,a) == A®(M,V(@i)a) for (i,a) € o(g)
and investigate its properties (Lemma 4.1). For (i,a) € o(g), we set
Si,o := E(V(wi)a) € Hom(o(g), Z)
and
W:={E(M) | M is simple in €3}, A:={si.]|(i,a) €o(g)} CW,
Wy :={E(M) | M is simple in ‘53}, Ag:={siq | (i,a) € oo(g)} T Wh.

Then W and W, are abelian subgroups of Hom(o(g),Z). Moreover, we see in Lemma 4.2
that there exists a unique symmetric bilinear form (—,—) on W such that (E(M),E(N)) =
—A®(M,N) for any simple modules M, N € %; it induces a symmetric bilinear form on &.
Then we prove that the pair (£y, Ag) is an irreducible root system of the simply laced finite type
given in (4.5) (Theorem 4.6) and that the pair (£, A) is isomorphic to the direct sum of infinite
copies of (£y,Ag) as a root system (Corollary 4.7). Furthermore, the bilinear form (—,—) is
invariant under the Weyl group action. Theorem 4.6 is proved in § 6 via a case-by-case approach,
using the explicit descriptions of og(g) for %EQ given in §2.4 and the denominator formulas in
Appendix A.

We then consider the block decompositions of 6 and ‘590. For a € W, let €y be the full
subcategory of %, consisting of objects X such that E(S) = o for any simple subquotient S
of X. We show that there exist the direct decompositions

C= P Coo and € = P %o
acEW aceWy

by proving that Extlljé(g)(M, N)=0for M € €go and N € €3 with a # 3 (Theorem 5.10). We
set P := @(i,a)ea(g) Ze(; q) and Py := ®(i,a)€00(g) Ze(; q), where e(; ) is a symbol. Then we define
a group homomorphism p: P — W by p(e(; q)) = si.a and set po := plp,: Po — Wp. It turns out
that the kernel ker py coincides with the subgroup Qg of Py generated by elements of the form
> k1 €(ig,an) (ks ax) € 00(g)) such that the trivial module 1 appears in V (i1)a, ® -+ @ V(im)ay,
as a simple subquotient (Lemma 5.13). We then prove that €, is a block for any a € W
(Theorem 5.14), which implies that the above decompositions are block decompositions of %
and Cﬁg .

This paper is organized as follows. In §2, we give the necessary background on quantum
affine algebras, R-matrices, and the categories ¢y and %Q. In § 3, we review the new invariants
introduced in [KKOP20]. In §4, we investigate properties of W, A and s; , and state the main
theorem for the root systems (&, Ag) and (£, A). In §5, we prove the block decompositions of
¢y and %go . Section 6 is devoted to a case-by-case proof of Theorem 4.6.
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2. Preliminaries
CONVENTION.

(i) For a statement P, 6(P) is 1 or 0 according to whether P is true or not.
(ii) For an element a in a field k and f(z) € k(z), we denote by zero,—,f(z) the order of zero
of f(z) at z = a.

2.1 Quantum affine algebras
The quintuple (A, P,II,PY 1Y) is called an affine Cartan datum if it consists of the following
components:

(i) an affine Cartan matriz A = (a;j)i jer with a finite index set I;
(ii) a free abelian group P of rank || + 1, called the weight lattice;
(iii) aset Il = {o; € P | i € I}, whose elements are called simple roots;
(iv) the group PV := Homgz(P, Z), called the coweight lattice;

(v) aset IV = {h; | i € [} C PV, whose elements are simple coroots;

and if it satisfies the following properties:

(a) <hi,04j> = Q; for any 4,7 € I;

(b) for any i € I, there exists A; € P such that (hj, A;) = (i = j) for any j € I;
¢) IT is linearly independent.

Let g be the affine Kac-Moody algebra associated with (A, P, II,PV IIV). We set Q:=
@Dic; Za; C P, which is called the root lattice, and QT : =3, ; Z>pa; C Q. For =3, bjoy; €
QT, we write || = >",c; bi. We denote by 6 € Q the imaginary root and by ¢ € Q" the central
element. Note that the positive imaginary root A" is equal to Z-od and the center of g is
generated by ¢. We write P :=P/(P N Q0d), which is called the classical weight lattice, and take
p € P (respectively p¥ € PV) such that (h;, p) = 1 (respectively (p¥, ;) = 1) for any i € I. There
exists a Q-valued non-degenerate symmetric bilinear form (, ) on P satisfying

2(a, M)
(ai, o)
for any i € I and X\ € P. We write W := (s; | i € I) C Aut(P) for the Weyl group of A, where
$i(A) := X = (h;, \)a; for A € P. We will use the standard convention in [Kac90] of choosing
0 € I except for type A;i), in which case we take the longest simple root to be «q, and for types
Bél), A:(f) and E,gl) (k=6,7,8), in which cases we take the following Dynkin diagrams.

(hi, \) = and (¢, \) = (5, \)

Agi) 1 0<=o0 o o Bél) :

o o—=0<—0 AgQ); O<&—==0——=0
n p—1 n-2 1 0 0o 2 1 0 2 1
Q0
(1) i (1) 72
Eg 2 E;7 i
o . l oo o o o 0——0—0 (2.1)
1 3 4 5 6 0 1 3 4 5 6 7
o
2
1)
E( . t
g -
o ° ° o006
1 3 4 5 6 7 8 0

Note that Bél) and A:(f) in (2.1) are denoted by Cél) and D:())Q), respectively, in [Kac90].
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Let go be the subalgebra of g generated by the Chevalley generators e;, f; and h; for
i€ lp:=1\{0}, and let Wy be the subgroup of W generated by s; for i € Iy. Note that go
is a finite-dimensional simple Lie algebra and W, contains the longest element wy.

Let g be an indeterminate and k the algebraic closure of the subfield C(g) in the algebraically
closed field k :=J, _, C((¢"/™)). For m,n € Zxy and i € I, we define ¢; = ¢(*»*)/2 and

m>0

B O

g P nli [m—nliln)!

—

Let d be the smallest positive integer such that d((«;, «;)/2) € Z for all i € I.

DEFINITION 2.1. The quantum affine algebra U,(g) associated with an affine Cartan datum
(A,P,II,PY, TIV) is the associative algebra over k with 1 generated by e;, f; (i € I) and ¢" (h €
d~'PV) which satisfies the following relations:
) ¢ =1 and ¢"¢" = "tV for bW € d-'PV;
(ii) qeig™ = ¢\hide; and thiq*h = q*<h’ai>fi for h € dilPV and i € I;
iii) eif; — fies = 0ij (K — K_ )/(QZ —q; "), where K; = 4; 'a

) Lao? (ke T el = T (DR T A = 0 for i £ 5

here el(-k) = ¥ /[K];! andfk) fk/[ Ji!.

Let us denote by Ug(g) the k-subalgebra of U,(g) generated by e;, f; and Kii1 (i € I). The
coproduct A of Uy(g) is given by

(iv

A =d"0d", Ale) =K ' +10e, Alf)=fiol+Kaf,
and the bar involution~of Uy (g) is defined as

1/m 1/m

q _>q_ ) €; — €4, fZHfz, Kz'l—>Ki_1.

Let ¢y be the category of finite-dimensional integrable Ué(g)—modules, i.e. finite-dimensional
modules M with a weight decomposition

M= @ My where My ={ue M | Ku= ql(hi’/wu}.
AEP

Note that the trivial module 1 is contained in 4 and the tensor product ® gives a monoidal
category structure on 4. It is known that the Grothendieck ring K (%) is a commutative ring
[FR99]. A simple module L in €y contains a non-zero vector u € L of weight A € P such that
(i) (hi, A) = 0 for all i € Iy and (ii) all the weights of L are contained in A — 7, Z>ocl(;),
where cl: P — P is the canonical projection. Such a A is unique, and u is unique up to a
constant multiple. We call A the dominant extremal weight of L and u a dominant extremal weight
vector of L.
Let PY :={X € Py | {¢,\) = 0}. For each i € Iy we set

w; = ng(Co,Ci)_ICI(CoA‘ — CiA()) € PO 1s

where the central element c is equal to Zle 7 Cih;. Note that PCl = @ie I Zw;. For any i € Iy,
there exists a unique simple module V (w;) in €, satisfying certain good conditions (see [Kas02,
§5.2]), which is called the ith fundamental representation. Note that the dominant extremal
weight of V(w;) is w;.

For simple modules M and N in %, we say that M and N commute or M commutes with
Nif M® N ~N®M. We say that M and N strongly commute or M strongly commutes with
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N if M ® N is simple. Note that M ® N is simple if and only if N ® M is simple, since K (%)
is a commutative ring. It is clear that if simple modules M and N strongly commute, then they
commute. We say that a simple module M is real if M strongly commutes with itself.

For an integrable Ué(g)-module M, we denote by M, the affinization of M and by
zym: M, — M, the Ué(g)—module automorphism of weight 6. Note that M, ~ k[z*'] @ M for
an indeterminate z as a k-vector space. For x € k*, we define

My =M, /(zp — )M,

We call = a spectral parameter. The functor T, defined by T, (M) = M, is an endofunctor of €
that commutes with tensor products (see [Kas02, §4.2] for details).

It is known that a fundamental representation is a good module, which is a simple Ué(g)—
module with good properties including a bar involution, a crystal basis with simple crystal
graph, and a global basis (see [Kas02] for the precise definition). We say that a U, (g)-module M
is quasi-good if

M~V,

for some good module V' and ¢ € k*. Note that any quasi-good module is a simple Ué (g)-module.
Moreover the tensor product M®* := M ®---® M for a quasi-good module M and k € L1 is
—_———

k times
again quasi-good.

For a U} (g)-module M, we denote by M = {u | u € M} the U}(g)-module defined by z@ := Tu
for z € Uy(g). Then we have

My~ (M); and M®@N~N®M forany M,N € €, and a € k*.

Note that V(w;) is bar-invariant, i.e. V(w;) ~ V(w;) (see [AKI7, Appendix A]).
Let m; be a positive integer such that
Wr; N (7Ti + Z(S) =1; + Zm;0,

where 7; is an element of P such that cl(m;) = w;. Note that m; = (v, @;)/2 in the case where
g is the dual of an untwisted affine algebra, and m; = 1 otherwise. Then for z,y € k* we have
(see [AK97, §1.3])

V(wi)s ~ V(w;), if and only if 2™ = y™. (2.2)

We set
o(g) i=To x k*/ ~, (2.3)
where the equivalence relation is given by
(i,2) ~ (j,y) <= V(wi)e = V(wj)y < i=jand 2™ =y". (2.4)

We denote by [(i,a)] the equivalence class of (i,a) in o(g). When confusion is unlikely to arise,
we simply write (i,a) for the equivalence class [(7, a)].

The monoidal category %y is rigid. For M € 6, we denote by *M and M™ the right and left
duals of M, respectively. We set

pri= (D)%) and pi= (p*)? = gHler). (2.5)
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The integer (pV,d) is called the Cozeter number, and {(c, p) is called the dual Coxeter number
(see [Kac90, Ch. 6]). For the reader’s convenience we list p* for all types in the following table.

Typeofg || AL BY o DY A AR DY),
nz21) | n=22) | n=23) | n=24) | (n=21) | (n>2) (n>3)
p* (_q)n+1 q2n—1 qn+1 q2n—2 _q2n+1 _q2n (_1)n+1q2n (2 6)
Typeofg | E” EM B F Gy E DY
P e ¢ ¢ ¢ ¢ —g"? &

Then for any M € % we have
M™ >~ Mg - and "M ~ Mj,
and for 7 € Iy and = € k* we have
(V(wi)m)* ~ V(w@i+)(p+)-1, and *(V(wi)z) = V(@i )pras (2.7)
where i* € [y is defined by a;+ = —wg ; (see [AK97, Appendix A]). Note that the involution

i — ¢* is the identity for all types except A,, D, and FEg, which are given as follows:
(a) (type An) i* =n+1—1i;
. n—(1—¢€) ifnisoddandi=n—¢ (¢=0,1),
(v) (type Dy 77 ="~ . =00
i otherwise;
(c) (type Eg) the map i — i* is determined by

6 ifi=1,
F=Li ifi=24,
5 ifi=3,

where the Dynkin diagram of type Eg is given in (A.3) in Appendix A.

2.2 R-matrices

We recall the notion of R-matrices on U, (g)-modules and their coefficients (see [Dri86], as well
as [AK97, Appendices A and B] and [Kas02, § 8], for details). Choose a basis { P, },, of U (g) and
a basis {Qy}, of U, (g) that are dual to each other with respect to a suitable coupling between
U/ (g) and U, (g). For U;(g)-modules M and N, we define

R}\l}“}{;(u @ v) 1= g(VHWwt©) ZPVU ®Quu forue M andv e N,

so that RN, gives a Ué(g)-linear homomorphism M ® N — N ® M, called the wuniversal
R-matriz, provided that the infinite sum has a meaning. As Rﬁ%z converges in the z-adic
topology for M, N € €, we have a morphism of k((z)) ® U, (g)-modules

RPN, k((2) ® (M®N.) —k((z)) & (N:®M).

k[z+1] k[z+1]

Note that Ry;'y, is an isomorphism.

Let M and N be non-zero modules in %;. The universal R-matrix R}\I}[lij‘(,z is rationally

renormalizable if there exists f(z) € k((z))* such that

FERIN. (M®N.) C N, M.
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In this case, we can choose cpr,n(2) € k((2))* such that for any « € k*, the specialization of

RPN, = eun(Z)RYN.: M@ N, — N, ® M at z =z,

ren
Ry n,

_iM®N, > N,® M,

does not vanish. Note that R)7"y and cm,N(2) are unique up to a multiple of k[zF1]" =
|l,cz k2" We call cpr, n(2) the renormalizing coefficient. We denote by r,, . the specialization

at z =1,
Ty N = ?\eleJz 1T M®N—N®M, (2.8)

and call it the R-matriz. The R-matrix | S

R}\‘}[ﬁ]‘\’,z is rationally renormalizable. By the definition

is well-defined up to a constant multiple whenever
, Ty  Dever vanishes.
Suppose that M and N are simple Ué (g)-modules in 6. Let u and v be dominant extremal

weight vectors of M and N, respectively. Then there exists ay v (2) € k[[2]]* such that

R}\?IXIZ (u®v;) = apmn(2)(v: @u).

Thus we have a unique k(z) ® U, (g)-module isomorphism

norm ,__ —1 puniv

AN, = an N (2) T RN, K(2)®y 1, (M®N:)

from k(z) ®yp.+1) (M @ N;) to k(2) @p.+17 (NV; ® M), which satisfies
M, (U V) = v, ®u.

We call ayy, ~N(z) the universal coefficient of M and N, and call RIMOY}VH the normalized R-matriz.
Let dyn(2) € k[z] be a monic polynomial of the smallest degree such that the image of
du, N (2) Rig'N. (M @ N) is contained in N, ® M; we call it the denominator of Ryp'y . Then we

have
Ry, = dun() RN : M® N, — N, ® M up to a multiple of k[z*!]"
Thus
ren _ —1 umv _ dM,N(Z)
Ry'n, = apm N (z) dyn(z )R and cpyn(z) = ———=
aM,N(z)

up to a multiple of k[zi . In particular, R“m" is rationally renormalizable whenever M and
N are simple.

The denominator formulas between fundamental representations are summarized for all types
in Appendix A.

The next theorem follows from the results of [AK97, Chal0, Kas02, KKKO15]. In the
theorem, (ii) follows essentially from [KKKO15, Corollary 3.16] together with properties of
R-matrices (see also [KKOP20, Proposition 3.16 and Corollary 3.17]), and (i), (iii) and (iv) were
conjectured in [AK97, §2] and proved in [AK97, §4] for affine types A and C, in [Kas02, §9]
for general cases in terms of good modules, and in [Chal0, §§4 and 6] using the braid group
actions.

THEOREM 2.2 [AK97, Chal0, Kas02, KKKO15].

(i) For good modules M and N, the zeros of dy, v (2) belong to C[[¢"/™]]¢"/™ for some m € Z .
(ii) For simple modules M and N such that one of them is real, M, and N, strongly commute
with each other if and only if dyr,n(2)dn,am(1/%) does not vanish at z = y/x.
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(iii) Let My be a good module with a dominant extremal vector uy, of weight A, and let ay, € k*
for k =1,...,t. Assume that a;/a; is not a zero of dys; v, (z) for any 1 <i < j <t. Then
the following statements hold.

(a) (M1)g, @ -+ ® (My)q, Is generated by u; ® -+ - @ uy.

(b) The head of (Mj)q, ® -+ ® (My)g, is simple.

(¢) Any non-zero submodule of (My)a, ® -+ & (Mi),, contains the vector u; ® -+ ® uj.

(d) The socle of (My)a, ® -+ ® (M), is simple.

(e) Letr: (Mi)a,®- - ®(Mt)a, = (Mi)a, ® -+ @ (M1)a, be the specialization ofry, . =
[hicicr Ty, @0 2k = ; see (2.8). Then the image of r is simple and coincides with
the head of (Mi)q, ® -+ ® (My),, and also with the socle of (My)a, @ -+ ® (M1)a, -

(iv) For any simple integrable U,(g)-module M, there exists a finite sequence in o (g) (see (2.3))
such that M has 22:1 w;, as a dominant extremal weight and is isomorphic to a simple
subquotient of V(w;, )a, @ - -+ V (w;,)a,. Moreover, such a sequence ((i1,a1), ..., (it,ar)) is
unique up to a permutation.

We call Y, (ix, ax) € 7979 the affine highest weight of M.

2.3 Hernandez—Leclerc categories
Recall o(g) in (2.3). For (i,z) and (j,y) € o(g), we put d arrows from (i,z) to (j,y), where d
is the order of the zeros of dy (w,) v (w,)(2V (w;)/ 2V (w:)) 8 2V (w;)/ 2V (w;) = Y/@- Then o(g) has a
quiver structure. Note that (i,z) and (j,y) are linked in o(g) if and only if the tensor product
V(wi)e ® V(wj)y is reducible [AK97, Corollary 2.4]. The denominator formulas are explicitly
given in Appendix A.

We choose a connected component o((g) of o(g). Since a connected component of o(g) is
unique up to a spectral parameter shift, oo (g) is uniquely determined up to a quiver isomorphism.
We set

¢s=q"/? and ¢ =q¢'/>. (2.9)

The distance d(u,v) between two vertices u and v in a finite Dynkin diagram is the length of the
path connecting them. For example, d(1,4) = 2 in a Dynkin diagram of type Dy, and d(1,3) = 2
in a Dynkin diagram of type Fy. We denote by do(7,j) the distance between ¢ and j in the
Dynkin diagram of go. For the rest of this paper, we make the following choices of o((g) (see
table (2.6) for the range of n):

oo(X) = {(i, (—q)") € Iy x K | p=, d.(1,9)} (X = AD, DV EM(k =6,7,8)),

1,¢"), (Lwg"), (1,w?q"), (2,—¢""") | r =20} (W*+w+1=0),
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where a =5 b means that a = b mod 2 (see [HL10, § 3.7, [KKKO16, §4.1], [KO19, § 6] and [OS19a,
§6]). Note that in [OS19a, §6] the category CKQQ and og(g) were dealt with only in exceptional

cases, but it is easy to obtain oy(g) using og(g). We use the notation Bgl) and Agf) instead of

C’él) and D§2), respectively. Here we use the standard convention for Dynkin diagrams in [Kac90,
Ch. 4] except for AP Agz), Bél) and E,(Cl) (k=6,7,8), which are given in (2.1).

2n

We define %g to be the smallest full subcategory of 6y for which the following hold:

(a) €y contains V (w;), for all (i,z) € oo(g);
(b) ‘Kg is stable by taking subquotients, extensions and tensor products.

For symmetric affine types, this category was introduced in [HL10]. Note that every simple
module in %y is isomorphic to a tensor product of certain spectral parameter shifts of some
simple modules in 6} (see [HL10, §3.7]).

2.4 The categories ‘Kf

In this subsection, we recall very briefly a certain subcategory ‘KQQ of %y categorifying the
coordinate ring C[N] of the maximal unipotent group N associated with a certain simple Lie
algebra.

This subcategory %QQ was introduced in [HL15] for simply laced affine type ADE, in
[KKKO16] for twisted affine types A®) and D®), in [KO19, OS19b] for untwisted affine
types B1 and C™, and in [0S19a] for exceptional affine type. The quantum affine Schur-Weyl
duality functor between the finite-dimensional module category of a quiver Hecke algebra and
Cff was also constructed in [KKK15] for untwisted affine types A1) and DM in [KKKO16] for
twisted affine types A® and D®) in [KO19] for untwisted affine types B and C'"), in [0S19a]
for exceptional affine type, and in [Fuj20] for simply laced affine type ADE in a geometric manner.

We shall describe og(g) and ‘55’2 by using Q-data [FO21]. A @Q-datum generalizes a Dynkin
quiver with a height function, which provides a uniform way of describing the Hernandez—Leclerc
category ‘ia”gQ. Our brief explanation follows [FO21, §3] (see also [FHOO21, §4] and [KKOP21,
§6]). Let g be an affine Kac-Moody algebra and let gg,, be the simply laced finite-type Lie algebra
corresponding to the affine type of g in table (4.5). Let Ig, be the index set of gg, and let Dgy
be the Dynkin diagram for ggy,.

We first assume that g is of untwisted type. We define an Dynkin diagram automorphism g of
D4y, as follows. For g = AS), fo) or E,(Cl) type (k =6,7,8) we set ¢ := id, and for the remaining
types o is defined as follows (see [FO21, §3.1]).

BM-type: (Dﬁn P 00— o—o—o o(k) =2n — k‘) — Dgp, : 00— 0=>0,
k ifk<n-—1,
1) _° .
C,(l -type:| Dgn: o——0 o nook)=¢n+1 ifk=n, = D¢, : O——0— 0<=o,
PR n if k=n+1

6, 0 L,
Fil)—type: (Dﬁn o 0—oO0 Q(?’) = 57 9(5) = 37 ) = DF4 : (1)70:>0707
5
4, o 2

O
1 3 4 6 2 3 4
o(4) =4, 0(2) =
(1) . . o Jo(1) =3, 03) =4, o(4) =1, ,
-type: | Dgy, : De, .
o e ( g 20\03’{9(2):2 — Dot 9=
4
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Let Iy ={1,2,...,n} be the index set of go. Note that Ig, = Iy when g = A%l),Dr(Ll),E,(cl)
(k=16,7,8). Let ord(p ) be the order of p. For i € I,, we denote by orb(i) the orbit of ¢ under
the action p and set d; := |orb(7)|. We identify the set of orbits of I, with Iy by mapping orb(7) +—

min{orb(i)} for g # Fé ) and mapping orb(1) — 1, orb(3) + 2, orb(4) + 3 and orb(2) — 4 for
g= F4( ). We write 7 Ian — 1o for the projection via this identification.

DEFINITION 2.3 [FO21, Definition 3.5]. A function &: Ig, — Z is called a height function on
(Dfin, 0) if the following two conditions are satisfied.

(i) For any 4, j € Ig, such that d(i,j) =1 and d; = d;, we have |§; — &;| = d;.
(ii) For any 4,j € I, such that d(i,j) =1 and 1 =d; <d; = ord(p), there exists a unique
element j° € orb(j) such that |§; — o] =1 and £y (joy = §jo — 2k for any 0 < k < ord(p).

Here d(i,7) denotes the distance between ¢ and j in the Dynkin diagram Dg,. We call the triple
Q@ = (Dfin, 0,€) a Q-datum for g.

For a Q-datum @ = (Dgy, 0, ) associated to g, let
Ig:={(i,p) €lgn X Z | p— & € 2d; Z}.

The generalized o-Cozeter element 7 € Wgy X Aut(Dgy) associated with @ is defined in [FO21,
Definition 3.33] and can be understood as a generalization of a Coxeter element. Here Wy, is
the Weyl group of ggy,.

For i € Iy, we denote by o(i) the corresponding orbit of Ig,. For each i € Iy, we denote by i°
the unique vertex in the orbit o(7) satisfying & = max{¢; | j € o(7)}. In this paper, we assume
further that the height function & satisfies

ok (i0) = &io — 2k for each i € Ip and 0 < k < d;. (2.10)
Let {i1,42,...,in} be a total order of Iy satisfying &;o > s = -+ > &g Then we have
TQ = 8i98ig - Sig 0 € Wep X Aut(Dgy)

(see [FO21, §3.6] and also [FHOO21, Proposition 4.4] for more details).
Let AZS be the set of positive roots of gg,, and let ® := Aa X Z. For each i € I, we define

72 = (178N € A,

where A; is the ith fundamental weight of gg,. It is shown in [HL15, §2.2] and [FOZ21,
Theorem 3.35] that there exists a unique bijection g : IQ — & defined inductively as follows:

(i) wQ( 52)—(% ,0);

(ii) if ¥q(i,p) = (B, m), then define:
(2) Yqi,p+2d;) = (75%(8),m) if 73%(8) € AY;
(b) Yqli,p+2d;) = (—r3%(B),m£1) i ﬁd (B) € A,

et =1, X C lgn X Z. en one can describe
Let Ig :=1q' (AL x {0}) C Iy x Z. Th describ

Io = {(i,p) € Ig | &~ — ord()h¥<p < &},

where hY is the dual Coxeter number of gy (see [FO21, Theorem 3.35] and also [FHOOZ21,
Proposition 4.15]). We define

oq(g) == {C(i,p) | (i,p) € I},
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where we set ¢, = g'/ord(@) and
(D), (~44,)") it g =4, o, DY, By 63,
C(ip) = { (i), (=) (q,)") it g= B,
(w(@), (1) (g ) i g = Fy"
(see [FO21, §5.4]). We define
¢q: A~ 0q(s) (2.11)

by ¢q(B) == (o ¢Ezl(ﬁ, 0) for g € Aa The map ¢q is bijective.
For the rest of this paper, we make the following choices of Q)-data:

e for simply laced ADE type, ord(p) = 1 and the height function ¢ is defined in Appendix A.1;

(1) 2n—3 2n-5 1 0 -1 1 2n-7 2n-5
e for g =By’ ord(g) =2 and Q = 01‘>02*> ““““ e nr\-l—l n+oé ““““ T
—n—19 nt1
(1) o -1 —nﬁl —n+1
o forg=Cy’,ord(p) =2and @ = o—s0—> ... —sb—s0 :
1 2 n-1 n
=292
1 0 =2 -3 -4 =2
. forngi%ord(g)zQansz o . RS
=393
o forg=G,’, ord(p) =3 and Q = o=—o—0°.

Here an underlined integer stands for the value of & at each vertex i € Dg, and an arrow ¢ — j
means that § > &; and d(7, j) = 1 in the Dynkin diagram Dg,. Note that our choice of @) satisfies
(2.10). Then 7¢ is given as follows:

e for simply laced ADE type, 7¢ is the same as 7 in Appendix A.1;

for g= B7(ll)7 C’I(Il)a TQ = 8182 Sn0;

for g = F4(1), TQ = $15253540;

for g = Gél), TQ = $2510-

In this case the set og(g) is contained in op(g) in §2.3 and can be written explicitly as follows
(where a <2 b means that a < b and a = b mod 2):

oQ(AD) :={(i, (—)F) € oo(AM) | i —2n+1 <o b <o —i + 1},
oo(BM) := {(i, (=1)"*¢"), (n,¢") € 0o(BY) | i < n,—2n — 2+ 3 <o k <o 2n — 2i — 1,
—2n+2 < kK <0},

0Q(CY) == {(i, (~qs)") € 00(CV) | ~do(1,1) — 21 <2 k <2 —do(1, )},

0o(DDV) = {(i, (~0)*) € oo(DD) | ~do(1,7) — 2n + 4 <o k <2 —do(1,1)},

0Q(Bg") = {(i.(—)") € 00(B") | do(1,i) — 14 <o k <o —do(1,0) + 202},
oQ(BY)) = {(i. (~)*) € 0o(E) | ~do(1,7) — 16 + 252 <2 k <z —do(L,7) + 202},

180

https://doi.org/10.1112/S0010437X21007739 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007739

SIMPLY LACED ROOT SYSTEMS ARISING FROM QUANTUM AFFINE ALGEBRAS
oo(ELM) = {(i,(—q)F) € 00(EN) | —do(1,7) — 28 + 26,5 <o k <o —do(1,1) + 20:2},

oq(Fy) = {(z’, (=1)ig") € oo(FV) | doli,3) — 10 + 73 <

kgdo(i,3)—2+5i2’3},
00(G) == {(i, (~q))") € 00(GS)) | —do(2,4) — 10 <2 k <o —do(2,4)},

where do (i, j) denotes the distance between ¢ and j in the Dynkin diagram of go.
We now assume that g is of twisted type. Then one can define

(A = {00, (=0)")* | (i, (~0)*) € 0(AF)} (N =20 —10r 2n),
0o(DY))) = {(i,(~0)")" | (i, (—)*) € oD},

() = {(i, (=0)")* | (i, (—)") € o(EM)},

( {(i, (M) | (i, (~)*) € oD},

where for (i,a) € J()(gg\l,)) we set

(i,a if g=A ,z<L(N+1)/2J or g=E", i=1,
(N+1—i,(-1)a) ifg=AY, i>[(NV+1)/2],
(i, v—1""""a) if g = ﬁlp <n—1,
(n, (~1)'a) ifg=D\),, e {nn+1},
(i,a)*={ (2,a) if g=E", i =3,
(2, —a) if g=E", i =5,
(1, —a) if g=E", i=6,
(3,v/—1a) if g=E", i =4,
(4, vV—Ta) if g=E", i=2
and
i)t = (2,a) if § = 2,
’ (1, ((52'71 + 5i73w + 52'74(;)2)(1) if ¢ #£ 2

(see [KKKO16, Proposition 4.3] and [OS19a, Proposition 6.5] for details of x and t). The bijection
bq: Aa ~-0g(g) is defined by composing the bijection for untwisted type with the maps %
and 7.

Comparing the above descriptions of og(g) with the descriptions of og(g) given in § 2.3, one
can easily show that

oo(8) = | | o0(@)™,
kez (2.12)

oole)* Noo(a)™ =0 for kK € Z with k £ K,

where JQ(g)*k = {(@**, (p*)*a) | (i,a) € og(g)} with i** =i if k is even and i*F = i* if k is odd
(see [FO21, Proposition 5.9]). Note that p* is given in (2.5).
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Let ‘KQQ be the smallest full subcategory of %”go with the following properties:

(a) %QQ contains 1 and V(w;), for all (i,z) € og(g);
b) €% is stable by taking subquotients, extensions and tensor products.
g

It was shown in [HL15, Theorem 6.1], [KKKO16, Corollary 5.6], [KO19, Corollary 6.6] and
[OS19a, §6] that the Grothendieck ring K (‘KQQ ) of the monoidal category CKQQ is isomorphic to
the coordinate ring C[NN] of the maximal unipotent group N associated with gg,. The set AZS
has a convex order <q arising from Q.

Let 5 € AC'S and write (i,a) = ¢ (). Then set

Vo(B) =V (wi)a € ‘KQQ.

Under the categorification, the modules V() correspond to the dual PBW vectors of C[N| with
respect to the convex order < on ACS.

The proposition below follows from [KKK15, §4.3], [KKKO16, Proposition 4.9 and
Theorem 5.1], [KO19, §4.3] and [OS19a, §6].

PROPOSITION 2.4 [KKK15, KKKO16, KO19, OS19a]. For a minimal pair (a,3) of a positive
root v € Aj, Vo(v) is isomorphic to the head of V() @ V(). Here, (v, B) is called a minimal
pair of v if @« <g 3, v = a + [ and there exists no pair (&', ) such that v =o' + ' and a <q
o <q B < b

3. New invariants for pairs of modules

In this section, we recall several properties of the new invariants arising from R-matrices
introduced in [KKOP20].
We set
0 0 (_1)nﬁn(n 1)/2

p(z) == g}(l —p’z) = nz%l—[kl(l_)

where p is given in (2.5). We consider the subgroup G of k((z))* given by
X
G = {czm H p(az)m cek®, meZ, }

o Na € Z vanishes except for finitely many a
ac

2" € k[[2]] € k[[]],

Note that if Rum" is rationally renormalizable for M, N € %y, then the renormalizing coefficient
emnN(2) belongs to G (see [KKOP20, Proposition 3.2]). In particular, for simple modules M and
N in %, the universal coefficient ajs,n(z) belongs to G.

For a subset S of Z, let p° := {p* | k € S}. We define the group homomorphisms

Deg: G—7Z and Deg™:G— Z

Deg(f Z Mo — Z Ne and Deg™ Zna

acp <o a€p’>0 a€p?
for f(2) = c2™ [ cix @(az)’ € G.
LEmMA 3.1 [KKOP20, Lemma 3.4]. Let f(z) € G
(i) If f(2) € k(2)*, then we have f(z) € G,
Deg™(f(2)) =0 and Deg(f(z)) =2zero,—1f(z).

by
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(ii) If g(2), h(z) € G satisfy g(z)/h(z) € k[zF!], then Deg(h(z)) < Deg(g(z)).
(iii) We have that Deg™ f(z) = —Deg(f(p"z)) = Deg(f(p~"2)) for n > 0.
(iv) If Deg™(f(cz)) =0 for any c € k*, then f(z) € k(z)*.

The following invariants for a pair of modules M and N in % such that R}\‘/RE‘(,Z is rationally
renormalizable were introduced in [KKOP20] by using the homomorphisms Deg and Deg®™.

DEFINITION 3.2. For non-zero modules M and N in % such that R}\l}[’ij‘\’,z is rationally
renormalizable, we define the integers A(M, N) and A*°(M, N) by

A(M,N) :=Deg(cpn(2)),
A (M, N) :=Deg™(crpr,n(2)).
We have A(M,N) = A®°(M, N) mod 2.

PropoSITION 3.3 [KKOP20, Lemma 3.7]. For any simple modules M,N € €3 and x € k*,
we have

AM,N) = A(M,,N,) and A®(M,N) = A®(M,,N,).

PROPOSITION 3.4 [KKOP20, Lemmas 3.7 and 3.8 and Corollary 3.23]. Let M and N be simple
modules in €y. Then the following hold:

(i) A>(M,N) = —Deg™(am,n(2));

(i) A (M, N) = A=(N, M);
(iii) A®(M,N) = —A%(M*,N) = —A®(M,*N);
(iv) in particular, A®°(M,N) = A®°(M*,N*) = A*°(*M,*N).
ProposITION 3.5 [KKOP20, Lemma 3.7 and Proposition 3.18]. Let M and N be simple
modules in €y. Then the following hold:

(i) A(M,N) =AN*,M) = A(N,"M);

(ii) in particular,

A(M,N)=AM*N*) = A("M,*N).

PROPOSITION 3.6 [KKOP20, Proposition 3.9]. Let M and N be modules in %y, and let M’

univ

and N’ be non-zero subquotients of M and N, respectively. Assume that RM, N, s rationally

renormalizable. Then R}\l}l,iﬁv, is rationally renormalizable, and we have
AM' Ny < AM,N) and A>®(M’',N')= A>®(M,N).

ProPOSITION 3.7 [KKOP20, Proposition 3.11]. Let M, N and L be non-zero modules in %y,
and let S be a non-zero subquotient of M @ N.

(i) Assume that R}\ljlizz and R]“Vng’z are rationally renormalizable. Then RgnLi‘; is rationally
renormalizable, and we have

A(S,L) < A(M,L) + A(N,L) and A®(S,L)=A>(M, L)+ A®(N, L).

(ii) Assume that REI,IJi\L and REH}VVZ are rationally renormalizable. Then Rznjq‘; is rationally
renormalizable, and we have

A(L,S) < AL, M)+ A(L,N) and A>(L,S)=A®(L, M)+ A®(L, N).

COROLLARY 3.8 [KKOP20, Corollary 3.12]. Let M and N be simple modules in 6. Suppose
that M (respectively N ) is isomorphic to a subquotient of V(wj, )a; @ V(w@iy)ay @ -+ @ V(@i )ay
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(respectively V(wj, )b, @ V(wjy)py @ -+ @ V(wj,)p, ). Then we have
AOO(M7 N) = Z Am(v(wiu)alﬂ V(w],u)bp,)
1<v <k, 1<p<l
For simple modules M and N in €y, we define d(M, N) by

b(M,N):=1(A(M,N)+ A(M*,N)).
PROPOSITION 3.9 [KKOP20, Proposition 3.16 and Corollary 3.19]. Let M and N be simple
modules in €y. Then the following hold:

(i) (M, N) = zero,—; (dM7N(Z)dN7M(Z_1)),'

(i) o(M,N) = 2(A(M,N)+A(N, M));
(iii) in particular, d(M, N) =d(N, M).

COROLLARY 3.10 [KKOP20, Corollaries 3.17 and 3.20]. Let M and N be simple modules

in 6.
(i) Suppose that one of M and N is real. Then M and N strongly commute if and only if
?o(M,N) =0.

(ii) In particular, if M is real, then A(M, M) = 0.
PropoSITION 3.11 [KKOP20, Proposition 3.22]. For simple modules M and N in €, we have
AM,N) =) (=1 0<0o(M, 78N,
keZ
A®(M,N) =Y (=1)*»(M, Z*N),

keZ
where 2% N is defined as

(- (N* ) ) ifk <O,

—
@kN — (—k) times
k times

4. Root systems associated with %

Let Hom(o(g),Z) be the set of Z-valued functions on o(g). It is obvious that Hom(o(g), Z)

forms a torsion-free abelian group under addition. Let M € % be a module such that R}\lzi“}(m)z
is rationally renormalizable for any ¢ € Iy. Then we define E(M) € Hom(o(g),Z) by

E(M)(i,a) := A (M,V(w;)q) for (i,a) € o(g), (4.1)
which is well-defined by (2.4).
LEMMA 4.1. Let M and N be simple modules in €.

(i) We have E(M) = —E(M*) = —E(*M).
(ii) Let {My}1<k<r be a sequence of simple modules. Then for any non-zero subquotient S of
M ®---® M,, we have

E(S) =Y E(My).
k=1

(iii) E(M) = E(N) if and only if arsy(w,)(2)/an,v(w,)(2) € k(2)* for any i € Iy.
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Proof. Assertions (i) and (ii) easily follow from Propositions 3.4 and 3.7.
Let us show (iii). For (i,a) € o(g), the condition A (M,V (w;)e) = A®(N,V(w;)a) is
equivalent to

Deg™(ap,y (w;)(a2)) = Deg™ (an v (w;)(a2))-

Since Deg™: G — Z is a group homomorphism, it is equivalent to

arviw(az

Deg™ <MV(Z)()> =0 for any a € k*.

GN,V(wi)@Z)

Then (iii) follows from Lemma 3.1(iv). O
For (i,a) € o(g), we set
Sia = E(V(w:)) € Hom(o(g), )

and

W:={E(M) | M is simple in €3}, A:={siq|(i,a) €o(g)} CW,
Wo :={E(M) | M is simple in ng}, Ao :={sia | (i,a) € oo(g)} C Wo. (4.2)

It is obvious that Wy C W and Ay C A.

LEMMA 4.2.

(i) We have W =3 »yeo(g) LSia and Wo =3
lar, Wy is a finitely generated free Z-module.
(ii) There exists a unique symmetric bilinear form (—,—) on W such that

(E(M),E(N)) = —A™(M, N)

i,a)€ao(g) ZSLa = Z(i,a)eﬂQ(g) Zsl',a. In particu—

for any simple modules M, N € €.

Proof. Assertion (i) follows from Theorem 2.2(iv), Lemma 4.1 and (2.12).
Let us show (ii). By Corollary 3.8, it reduces to the existence of a bilinear form (—, —) on W
such that

(S@a, Sj7b) = —A™® (V(wi)a, V(wj)b).

Therefore it is enough to show that for a sequence {(iy,ar)}r=1,., in o(g) such that
> hei Sigar = 0, we have Y1 A% (V(w@i, )ay, V(w;)s) =0 for any (j,b) € o(g). Let us take
a simple subquotient M of V(w;,)q, ® -+ ® V(w;, )q,. Then we have E(M) = >} _; Siy.ar = 0.
Hence we obtain

ZAOO (V(wik)alw V(wj)b) = AOO(M? V(wj>b) = _E(M)(jv b) = 0. 0
k=1

LEMMA 4.3. Fori € Iy and a € k™, we have
o(V(w;), 2%V (wy)) = 6(k = 1) for k € Z. (4.3)
In particular,
(SiarSia) = —AT(V(@i), V(wi)) = 2.
Proof. The statement A*(V (w;), V (w;)) = —2 follows from (4.3) and Proposition 3.11.
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Let us show (4.3). Let hY be the dual Coxeter number of g, and write

dij(2) = dv () v (w,)(?) fori,jel.

The denominator formula for d; ;(2) is given in Appendix A. Using this formula, one can easily
check that if €' (Je] = 1) is a zero of d; ;(z), then ¢ should be between 1 and h". Combining this
with Proposition 3.9, we obtain

2(V (), V(@) (pryr) = z€ro.=1 (dij(p*)*2)dji((p*)"271)) =0 unless k = +1.
Now we shall show that o(V (w;), 2V (w;)) = 1.

Case of simply laced affine ADE type. In this case, the dual Coxeter number is equal to the
Coxeter number. Then from the denominator formula in Appendix A it follows that

2V (w;), 25V (@) = G40 (R -1).
Since ¢ j(k) = ¢ji+(hY — k) for 1 <k <hY —1 (see [Fuj22, Lemma 3.7]) and ¢ ;(1) =1 by
Proposition A.1, we have
2(V(wi), 75V () = &,4(1) = 1.
Other case. 1In this case, we know that ¢* = ¢ for any i € Iy. Thus we have
o(V (i), 751V (wi) = b(V (wi), V(@) ).

Using (2.6) and the denominator formula in Appendix A, one can compute directly that

oV (1), V(wi)p) = 1. 0
For t € k*, (i,a) € o(g) and f € Hom(o(g),Z), we define
7(i,a) == (i,ta) and (7f)(3,a) := f(i,t 'a). (4.4)
LEMMA 4.4.
(i) For (i,a) € o(g), we have s; o = —Si apr = —Six g(p+)—1-

(ii) Fort € k* and (i,a) € o(g), we have 74(S; ) = Sita-

Proof. Assertion (i) follows from (2.7) and Lemma 4.1.
(ii) For (j,b) € o(g), we have

(7e(51,0)) (4:8) = (5i,a) (7,17 '0) = A= (V(@i)a, V(w)e-1) = A (V(@i)ta, V(1)
= (sita)(J, b),
where the third equality follows from Proposition 3.3. Thus, we have the desired assertion. [
For t e k*, A C o(g) and F C Hom(o(g),Z), we set
Ay ={n(a) |a€ A} and Fi:={n(f)|feF}.

We write kg for the stabilizer subgroup of oy(g) with respect to the action of k* on o(g) through
Ty, 1.€.

ko := {t € k™[(00(9)): = o0(9)}-
PrOPOSITION 4.5. The following hold:

(1) o(9) = Uscrr /i, (90(9)) .5
(i) A= Uaekx/ko (Ao)a;
(iii) for k, k" € k* such that k/k" € ko, we have (Wo)k, Wo)w) = 0.
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Proof. Assertion (i) follows from the fact that any connected component of o(g) is a translation

of oo(g)-

(iii) It is enough to show that for (i,a) € (0o(g))r and (j,b) € (00(g))r we have (s;q,5;5) = 0.
By the definition of o¢(g), V(wi)e and 2™V (w;), strongly commute for any m, which tells us
that

A*(V(@i)a, V(w;)s) =0

by Corollary 3.10 and Proposition 3.11.
(ii) It is enough to show that

Ag N (Ag)g = 0 forke kX/ko.

For (i,a) € oo(g) and (j,b) € 0o(g),, we have (s;q,Siq) =2 by Lemma 4.3 and (s;q,sjp) =0
by (iii). Thus we conclude that s; o # S;p. O

We set
E=R®zW and & :=R®zW,.

Then the pairing (—, —) gives a symmetric bilinear form on €. Theorem 4.6 below is the main
theorem of this section; its proof is postponed until §6.

THEOREM 4.6.

(i) The pair (&), Ay) is an irreducible simply laced root system of type shown in the following

table.
Type of g AD B e | DY AR AR DY)
nz1) | (n>22) | (n23) | (n24) | (n=21)| (n>2) | (n2>3)
Type of (£, Ao) A, Azn—1 | Dnt1 D, Azn | A2n—1 | Dnpr (4.5)
Type of g BV B B{M Y GsY E DY
Type of (€, Ao) FEs Er Es Es Da Es Ds
(ii) The bilinear form (—,—)|w, is positive definite. Moreover, it is Weyl group invariant,
ie. sqo(Ag) C Ag for any o € Ag. Here s, € End(&) is the reflection defined by sq(\) =
A — (o, N)a.

The next corollary follows from Proposition 4.5 and Theorem 4.6.

COROLLARY 4.7.
(ii) As a root system, ((Eo)k, (Ao)g) is isomorphic to (&y, Ag) for k € k* /kg, and
(€A)= [ (€ (Bo)g).
kek* /ko

Proof. We know already that W =", /ko (Wo)k- Since (Wy)r and (Wy)xs are orthogonal if
k/k" ¢ ko, the non-degeneracy of (—, —)|¢ implies that W = @y.ciex /i, Wo)k-
Assertion (ii) easily follows from (i) and Theorem 4.6. O

The following corollary is an immediate consequence of Theorem 4.6.
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COROLLARY 4.8. The following hold:

(i) (M A) € 2Z~q for any X € Wy \ {0};
(i) Ag={AeWy | (A A) =2}

Hence the root system (£p, Ag) is completely determined by the pair (Wo, (—, —)|w,)-

5. Block decomposition of ¢
In this section, we give a block decomposition of 6 parameterized by W.
5.1 Blocks

We recall the notion of blocks. Let C be an abelian category such that any object of C has finite
length.

DEFINITION 5.1. A block B of C is a full abelian subcategory with the following properties:

(i) there is a decomposition C = B & C’ for some full abelian subcategory C’,
(ii) there is no non-trivial decomposition B =B @& B” with full abelian subcategories B’
and B".

The following lemma is obvious.

LEMMA 5.2. Let B be a full subcategory of C satisfying condition (i) in Definition 5.1. Then B
has the following properties:

(i) B is stable by taking subquotients and extensions;
(ii) for simple objects S, S’ € C such that Ext}(S,S") # 0, if one of them belongs to B then so
does the other.

LEMMA 5.3. Let X, X’ € C. Suppose that Ext}(S,S’) = 0 for any simple subquotients S and S’
of X and X', respectively. Then we have Ext}(X, X’) = 0.

Proof. Let £ and ¢ be the lengths of X and X', respectively. We use induction on £ + ¢'. If X
and X’ are simple, then the claimed result is clear by the assumption.

Suppose that X’ is not simple. Then there exists an exact sequence 0 — M — X' — N — 0
with a simple M. It in turn gives the exact sequence

Ext (X, M) — Extb (X, X') — Extb(X, N).

By the induction hypothesis we have Ext}(X, M) = Ext}(X,N) =0, which tells us that
Exts (X, X') = 0.
The case where X is not simple can be proved in the same manner. ]

LEMMA 5.4. Let ¢ be the set of isomorphism classes of simple objects of C, and let ¢ = | |, 4 ¢a
be a partition of ¢. We assume that

for a,a’ € A such that a # o' and a simple object S (respectively S’) belonging
to ¢, (respectively ¢, ), one has Ext}(S,S") = 0.

For a € A, let C, be the full subcategory of C consisting of objects X such that any simple
subquotient of X belongs to ¢,. Then C = @, 4 Ca-

Proof. It is enough to show that any object X of C has a decomposition X ~ @, 4 X, with
X4 € Cqy. In order to prove this, we shall argue by induction on the length of X. We may assume
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that X is non-zero. Let us take a subobject Y of X such that X/Y is simple. Then the induction
hypothesis implies that Y = @, 4 Yo with Y, € C,.
Take ap € A such that X/Y belongs to ¢,,. Then define Z € C by the exact sequence

0> Pve—-X—2Z-0 (5.1)
a#ag
Since we have an exact sequence 0 — Yy, — Z — X/Y — 0, Z belongs to Cq,. Then
Lemma 5.3 tells us that Ext!(Z, @D zao Yo) = 0. Hence the exact sequence (5.1) splits, i.e.
X ~Z 3D, 14, Yo O
Let = be the equivalence relation on the set of isomorphism classes of simple objects of C
generated by the relation &' defined as follows: for simple objects S, S’ € C,

[S] = [S'] if and only if  Ext}(S,S’) # 0.

THEOREM 5.5. Let A be the set of ~-equivalence classes. For a € A, let C, be the full subcategory
of C consisting of objects X such that any simple subquotient of X belongs to a. Then C, is a
block, and the category C has a decomposition C = @, 4 Ca- Moreover, any block of C is equal
to C, for some a.

Proof. Lemma 5.4 implies the decomposition

c=PC..

a€A

Moreover, since a is a m-equivalence class, there is no non-trivial decomposition of C, for any
a € A. O

The next corollary follows directly from Theorem 5.5.

COROLLARY 5.6. Let X be an indecomposable object of C. Then X belongs to some block. In
particular, all the simple subquotients of X belong to the same block.

5.2 Direct decomposition of %
In this subsection, we shall prove that ¢ has a decomposition parameterized by elements of W.

LEMMA 5.7. For modules M, N € €, there exists an isomorphism
U: k[2*'] @ Homyy () (N, 1) © Homyy () (1, M) <= Homyy, g (N, M) (5.2)

defined by V(a(2)® f®g)=a(z)(go f) for a(z) €k[z™l], fe Homy, (5(N,1) and g€
HOIIIU(/I(Q)(]_,M).

Proof. Note that k[z*1] ® Homyyy () (1, M) == Homyyy (g)(1, M). There is a quotient N’ of N
which is a direct sum of copies of 1 and Hom(N’,1) =% Hom(N, 1). Since (5.2) for N’ is obviously
an isomorphism, ¥ is injective.

To prove that W is surjective, we shall decompose a given non-zero f: N — M, into
N — 196 — M, for some ¢ € Z~g. Here 19 is the direct sum of ¢ copies of the trivial mod-
ule 1. Without loss of generality, we may assume that f is injective. We set wt(V) := {\ € Pq
| Na # 0}.

If wt(N) = {0}, then N should be isomorphic to 1% for some ¢ € Z~g, which is the desired
result.

Now suppose that wt(N) # {0}. We choose a non-zero weight A € wt(N).
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Note that the U, (g)-module structure on M, extends to a U,(g)-module structure and we
have a weight decomposition M. = P,,cp(M:),. Then

f(N)) C @ (M),
pEP, cl(pu)=A

where cl: P — P is the classical projection. There exist w € W and a non-zero integer n such
that w(u) = u+nd for any pu € c17*(\). We now consider the braid group action T, defined
by w on an integral module (see [Lus90, Sai94]). Then the k-linear automorphism T, sends
(M.), to (M,)wu. The space f(Ny) is invariant under the automorphism 7, but any non-
zero finite-dimensional subspace of @,,cp (=2 (M=), cannot be invariant under T,,. This is a
contradiction. O

PROPOSITION 5.8. For modules M,N € ¢y and a simple module L € ¢, we have the
isomorphisms

k[z:tl] ® HomUé(g)(M, N) - Homk[zﬂ]®Ué(g) (M XL, N® Lz)-
Proof. By Lemma 5.7, we obtain that
Homy[, 11507 (g) (M ® Lz, N ® L) ~ Homp, g (N" @ M,(L® L"))
~ k[ ® Homy, () (N* ® M, 1) ® Homyy (4 (1, L ® L¥)
~ k[z*'] ® Homy (g (M, N). O
LEMMA 5.9. Let M and N be simple modules in €. If

em,n(2)
en,L(2)

¢ k(z) for some simple module L € 6,

then we have
1 —
Proof. Let L € €4 be a simple module such that cpr,r.(2)/cn 0(2) ¢ k().
We shall prove that any exact sequence
0—-N—-X—->M-—0

splits. We set L, :=k((2)) ®x[z+1] Lz, where L. is the affinization of L. Then the following
diagram commutes.

00— N®L, — X®L —> M®L, — 0
mey [ mm o mm |
00— L,9N — L, 9X —L,oM —= 0
We set
_cM’L(z)

f(z):= iz ¢ k(z) and R:= CM,L(Z)R;I?E/ZZ X®L,—L,®X.

It follows from
CMVL(Z)RX;%Z(M ®L,)CL,®M and cN7L(z)RX[ni£’Z(N ®@L,)CL,®N
that

RX®L)CL,®X+L,9N and R(N®L.)C f(z)(L,®N).
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Therefore R induces the k[z*'] ® U} (g)-linear homomorphism
X®L, K(2)®@L.® X +1L.9N
R:M®L: = Nsz T k(2) ®(Lz)§X +®f(z;(z)2 L.aN’
We set P:=k((2))/(k(z) + f(2)k(z)). Since
k(2)®L, X +L,®N N L.@N
kK(z)®L.® X + f(2)k(z) ®L.®N k()@ L. ®N + f(2)k(2) ® L. ® N
~ P @[] L ® N,

we have the homomorphism of k[z*1] ® Uy(g)-modules
R:M®L, — P ®gpz+1) L, ® N.

Let us show that R vanishes.
Assume that R # 0. Then

HOmk[Zil] ® U!(g) (M X Lz’ P ®k[zi1} L,® N) ~ P ®k[zi1] Homk[zﬂ] ®Ué(g)(M X Lz; L,® N)
implies that Homy,+1 ®Ué(g)(M ®L,, L, ® N) #0.
Since k(z) @y[,+1](M ® L) and k(2) @p.+1)(L. ® N) are simple k(z) ® U, (g)-modules, they
are isomorphic. Since k(2) ®y[.+1(L: @ N) and k(2) @y,+1)(N ® L) are isomorphic, we conclude

that k(z) ®@kp.+1)(M ® L,) ~ k(2) @[;+1](N ® L;). On the other hand, Proposition 5.8 implies
that

k(z) ® HomUé(g)(M, N) = Homk(z)@)Ué(g)(k(Z) Q1 M ® L, k(z) Q%1 V ® L,).

Hence HomUé(g)(M, N) #0, and we obtain that M and N are isomorphic, which is a
contradiction. Therefore R = 0, which means that

Rk(z)®(X®L.)) Ck(z) ® L, ® X + f(2)k(z) ® L. ® N.
Let us consider the composition
P: K:=R(k(2)®(X®L))N(k(z) ® LX) => k(2) @ L, ® X - k(2) ® L, ® M.
We have
Rk(z)®(X®L,))NL:®N =R(k(z) ®(N®L,)) = f(2)k(2) ® L. ® N.
Hence ker(®) = K N (k(z) ® L. ® N) = (f(2)k(z) ® L. ® N) N (k(z) ® L. ® N) vanishes, which

means that ® is a monomorphism.

Since k(2) ® L, ® M and k(z) ® L, ® N are simple k() ® U (g)-modules, k(2) ® L. ® X has
length 2. Similarly, R(k(z) ®(X ® L.)) also has length 2. On the other hand, k(z) ® L. ® X +
f(2)k(2) ® L, ® N has length no more than 3, which implies that K does not vanish. Hence ®
is an isomorphism. Thus we conclude that the homomorphism

Hom(k(z)® L, @ M, k(2)® L, ® X) — Hom(k(z) ® L, ® M, k(z)® L, ® M)
= k(z) e L.oMm
is surjective. Then Proposition 5.8 implies that this homomorphism is isomorphic to
k(z) @ Hom(M, X) — k(z) ® Hom(M, M).
Thus we conclude that Hom(M, X)) — Hom(M, M) is surjective, that is,
00— N—X—M-—70
splits. O
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For o € W, let € o be the full subcategory of ¢, consisting of objects X such that E(S) = «
for any simple subquotient S of X.

THEOREM 5.10. There exist the decompositions
Co= P Cho and €)= P %o
aeW aEWy

Proof. Let o, f € W with a # (. For simple modules M € 6,3, and N € €3, Lemma 4.1(iii)

says that any(w,)(2)/an,v(w,)(2) & k(z) for some i€ Iy. Hence Lemma 5.9 implies that

Ext%]/( %) (M,N) = 0. The desired result then follows from Lemma 5.4. O
q

5.3 The block ¢y o
Recall the automorphism 74 on o(g) defined in (4.4). For (i,a) € o(g) we write
V(iya) :=V(wi)a-
Note that V(ria) = V() for a € o(g) and t € k*. For a € o(g), we define o* € o(g) by
V(a™) ~V(a)".
Thus we have

o™ =7151(a) for a € o(g).

LEMMA 5.11. Let ay,...,ax € o(g) for k € Z~g. Then all the simple subquotients of V(a1) ®
V(ag) ® -+ ® V(ay) are contained in the same block of 6.

Proof. There exists a permutation o € & such that the tensor product V(ay(1)) ® V(as(2))
R ® V(aa(k)) has a simple head by Theorem 2.2, and hence it is indecomposable. Thus, all
the simple subquotients of V(ay(1)) ® V(ag(2)) ® -+ ® V(as1)) are contained in the same block
by Corollary 5.6. Since any simple subquotient of V(a1) ® V(ag) ® -+ ® V(ay) is isomorphic
to some simple subquotient of V(ag (1)) ® V() ® -+ ® V(agr)), we obtain the desired
result. O

We set

and

Pri= Y Zspea C P,

a€go(g)
where e, is a symbol. Define a group homomorphism
p:P =W, eiq) — Sia
and set
po :==Dplpy: Po - Wo.
By Proposition 4.5, we have

P= B (P (5.3)

kek* /ko

Let Qg be the subgroup of Py generated by elements of the form > ;" | eq, (ax € 09(g)) such
that the trivial module 1 appears in V(a1) @ V(a2) ® -+ - ® V(ay,) as a simple subquotient. We
then have po(Qp) = 0.
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We set

Q= @ (Qo)k- (5.4)

kek* /ko

Recall ¢g: Ag > 00(g) in (2.11). Let IIg C AE be the set of simple roots of the positive

root system Azg and Qg the corresponding root lattice. Hence we have Il C Ag C Qo.
In the proof of the following lemma, we do not use Theorem 4.6.

LEMMA 5.12. For « € o¢(g), denote by &, € Py/Qoy the image of e, under the projection
Po — Po/Qo.

(i) The map Ag S a 8y,(a) € Po/Qo extends to an additive map g : Qg — Po/Qo-

(i) We have that vy, is surjective, i.e.

Po/Qo = Z L&y, ()

ﬁEHQ

w/
(iii) Let ¢g: Qg — Wo be the composition Qg AN Po/Qo — Woy. Then

vq(B) = E(Vo(9))-

(iv) We have that ¢ is surjective, i.e. Wy = Zaequ(HQ) Zpo(eq)-
Proof. (i) The map Ilg 3 o+ &4, () € Po/Qo extends to a linear map ¢y: Qg — Po/Qo. It is
enough to show that e, ) = wb(’y) for any v € Aa Let us show this by induction on the length

of 7. If v is not a simple root, take a minimal pair (3, ") of v (see Proposition 2.4). Since Vi(7)
appears as a composition factor of Vg (3) ® V(') by Proposition 2.4, we have

€o0(1) = oq(8) T Coq(s) = YQ(B) + ¥ (8) = Yo (7)-
Assertion (ii) follows from (i), and (iii) follows from (ii) and a surjective map Py/ Qo — Wy. O

In the proof of the following lemma, we use the fact that the rank of W) is at least the rank
of ACS (stated in Theorem 4.6, whose proof is postponed to § 6; see (6.3)).

LEMMA 5.13. We have the isomorphisms
Po/Qo =W,y and P/QHW.

Proof. The second isomorphism easily follows from the first isomorphism together with (5.3) and
(5.4). So we need only show that Py/Qp — W is an isomorphism.

Let r be the rank of Aa By (6.3), the rank of W) is at least r. Let us consider a surjective
homomorphism

Po/Qo — Wo. (5.5)
By Lemma 5.12, Py/Qy is generated by r elements. Hence (5.5) is an isomorphism. O
For A =YF e, € Pt we set
V) :=[V(e) @ V() @@ V() € K(C).

Note that for A, u € PT, if 1 appears in V(A) and V(p), then 1 also appears in V(A\) @ V(u).
Hence any element of Q can be written as A — p with A, x € PT such that 1 appears in both
V(A) and V(p).

THEOREM 5.14. For any a € W, the subcategory €.« is a block of 6.
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Proof. Let o € W, and let S and S" be simple modules in €y ,. We shall show that S and S’
belong to the same block.
Thanks to Theorem 2.2(iv), there exist A\, \' € P such that S appears in V()\) and S’

appears in V()'). By Lemma 5.13, we have A — X' € kerp = Q. Then there exist u, ' € P that
satisfy the following:

e A-N=u—p ]

e 1 appears in V(u) and V().

Thus the following hold:

(8) At =N+ ps i VO +p) = VX + )

(b) S appears in V/(A) @ V(u) = V(A + p);

(¢) S appears in VIN)@ V(i) =V (N +1).

This tells us that S and S’ belong to the same block by Lemma 5.11. O

Combining Theorem 5.10 with Theorem 5.14, we have the following block decomposition.

COROLLARY 5.15. There exist the block decompositions

Co=ED €y and € = P %,p.
BeW BEWY
Remark 5.16. Lemma 5.13 gives a group presentation of W which parameterizes the block decom-
position of 3. When g is of untwisted type, the block decomposition of € was given in [CMO05]
and [EMO3]. Considering [CMO05] and [EMO03] in our setting, their results give another group
presentation of W. Let us explain more precisely what this means in our setting.
Suppose that g is of untwisted type. We define

PS = @ Ze(i’a),

(i,a)€0(g),i€S

where
{1} if g is of type AS), C’y(ll) or Eél),
S =4 {n} if g is of type BY or DV (n odd),

{n—1,n} if gis of type DY (n even),

and S is {2}, {4}, {7} or {8} if g is of type Ggl), 4(1), Egl) or Eél), respectively.
One can show that p(Ps) = W. Thus we have the surjective homomorphism
ps =plpg: Ps — W.
Then the results in [CMO05, Proposition 4.1 and Appendix A] and [EMO03, Lemma 4.6 and § 6]
explain that the kernel ker(pg) is generated by the subset G described as follows:
a) if g is of type AD | then G = {2 k=0€aqer) |t €KX
if g is of type B,(ll), then G = {e(, 1) + €(ntq2n—1) |t € K™}
if g is of type C,gl), then G = {e(l,t) + e(1,4gn+1) |t € k*};
if g is of type D and n is odd, then G = {ent + €, 12 + €y 1g2n—2 + €, p2n | L € K };
if g is of type Dg) and n is even, then G ={en_11) + €n—112) t ntg2n—2) T
€(n,tq2n)) (n—16) T E(n—1tq2n=2); €(nt) T En,tq2n—2) | T € K*};
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. . 1

(f) if g is of type E((j ), then G = {e(4) + €(1,14%) T €(1,tq16) €(1,0) T €(1,t42) T €(Ltq?) T €(1,¢¢'2) +
€(1,t¢4) + €(1,t¢16) | t e kx};
. . 1

(g) if g is of type E$ ), then G = {e(”) T €(7,t418)s €(7,t) T €(7,tq2) T €(7,tq12) T €(7,tq14) T €(7,1q24) T+
€(7,t¢26) | t e kx};

(h) if g is of type Eél), then G = {e(g1) + €(8,1430)s €8,t) T €(8,4¢20) T €(8,4¢%0)s €(8,t) T €(8,4q12) T
€(8,tq24) T €(8,t¢36) T €(8,1¢48) |t € k*};

(i) if g is of type F4(1), then G = {6(4,@ T €(4,tg9)> €(4,t) T €(4,t46) T €(4,t¢12) |t € k*};

(j) if g is of type G;l), then G' = {e@) + €(2,44%) €(2.0) + eot(—q)®) T e(?,t(—qt)m) |t € k*}.

We remark that there are typos in the descriptions for types Eg and Fy in [CMO5,
Appendix A].

6. Proof of Theorem 4.6
6.1 Strategy of the proof

We now start to prove Theorem 4.6. We shall use the same notation as in §§2.3 and 2.4. Recall
the explicit descriptions for oo(g) and og(g). Let Il = {a;}icr,, be the set of simple roots of
Aa, and let Qg be the root lattice of ggs,. Hence
g C A C Qq-
Then, by Lemma 5.12, we have
Wo = Z ZS¢Q(%), (6.1)

i€lgn
where ¢ Azg == 0(g) is the bijection given in (2.11).
Let Mg := (mgj)i,jEIﬁn be the square matrix given by

Q ._
m; ;= (S¢Q(az‘)’s¢Q(&j))'

Thanks to Lemma 4.3, we know that
m?z =2 for any i € Ig,.
To prove Theorem 4.6, it suffices to show that Mg is the Cartan matrix of the finite simple Lie
algebra ggy, i.e.
(Spo(cw) s Spo(ay)) = (@is ). (6.2)
Indeed, (6.2) implies the following lemma, and Theorem 4.6 is its immediate consequence.

LEMMA 6.1. Assume (6.2). Then the map Ag > B E(Vo(B)) € Ag C Wy extends uniquely to
an additive isomorphism

¢Q : QQ =S W.
Moreover, it preserves the inner products of Qg and W.

Proof. Since the Cartan matrix is a symmetric positive-definite matrix, {S¢Q (i) yiclg, 18 linearly
independent. Hence we obtain that

the rank of W, is at least the rank r of gg,. (6.3)

On the other hand, Lemma 5.12 implies that ¢g: Qg — W) is surjective. Hence v is an iso-
morphism. Moreover, (6.2) shows that )¢ preserves the inner products of Qg and Wy. The other
assertions then easily follow. O
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6.2 Calculation of the inner products
In this subsection, we give a type-by-type proof of (6.2).
LEMMA 6.2. Suppose that g is of affine ADE type. Let i,j € Ij.
(i) Fort € Z, we have
d(V(@i), V(@) (—q) = 6(2 < [t] < h) éiy([t] = 1),

where h is the Coxeter number of g and ¢ j(k) is the integer defined in (A.1) in
Appendix A.
(ii) If0 <t < 2h, then we have

AOO(V(ZDZ), V(’Wj)(_q)t) = 6i,j(t — 1) - 5i,j(t + 1)
and AOO(V(ZUZ), V(w])) = _25i,j~

Proof. (i) For i,j € I, we write d; j(2) := dy(,),v(w,;)(#). Combining Proposition 3.9 with the
denominator formula

given in (A.2), we compute
OV (w@i), V() (—qp) =062 <t < h) & (t—1)+6(2< —t<h)é(—t—1)
=02 <t < h)éi(lt] = 1),
(i) For a € Z, let [a] :=[];_ (1 — (—¢)*p"2). Combining the equation (A.13) in [AK97] with
the denominator formula (A.2), we have
I ([h+ k4 1+ )% E([h — k — 1 + )% )
([k 4+ 1+ t]%i R ([2h — k — 1 + t]%.3(K))

aij((—q)'z) =

1<k<h—1

7 B R i (U o RN i)
([k 41+ t)%i R ([2h — k — 1 + t]G5 (k)

1<k<h—1

1
- 1<kgh1 (b +1+ & @ ([2h — k — 1+ 1]5®)
for any t € Z, up to a constant multiple. For the second equality, we used
Gij(h+k)=—¢ij(h—k)=—¢pi(k) for1<k<h-—1,
which comes from [Fuj22, Lemma 3.7 (4) and (5)]. Hence we have

AX(V (@), V(@) (—q)t) = —Deg™(aij((—q)'2))

= > (G (E)(0(k+1+t=0mod2h)+6(2h—k—1+t=0 mod 2h)))
1<k<2h—1

=¢Gj(2h—t—1)+¢é;(t—1)
= —Gij(t+1)+¢(t—1)
for 1 <t <2h—1.1f t =0, then we have
A*(V(wi), V(w;))) = 2¢:,(2h — 1) = =2¢;;(1) = =264 5,
as desired. O
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Type AS). If n = 1, then it is obvious that Mg is a Cartan matrix, so we may assume that n > 2.
Recall the explicit description of og(g) for type A Note that the Dynkin quiver corresponding
to og(g) is given in (A.3). In this case, h =n + 1 and

polai) = (1,(—q)* %) € ag(g) fori€lIg, ={1,...,n}

by [KKK15, Lemma 3.2.3]. For example, if it is of type Afll), then elements (i, (—q)*) of o¢(g)
with the values of qbél can be drawn as follows.

ik =6 -5 —4 -3 —2 -1 0
1| oo (0010) (0100) (1000)
2 (0011) (0110) (1100)
3 (0111) (1110)
4 (1111)

Here (ay,as9,as,a4) := Zi:l apoy € Azg is placed at the position ¢g(a1,as,as,as), and the
underlined ones are simple roots. Using the formula given in Appendix A.l, one can compute
that 5171(2]{3) =0 and
G112k +1) = (Tkal,wl) = (g1, 1) =00 for 0 <k <n.
Lemma 6.2 implies that
AOO(V(wl),V(wl)(_q)zk) = 5k,1 forkeZ with1 <k<n-—1.
Therefore, for ¢ > j we have

mgj = —A®(V(w1), V(w1)(_q)2<i—j>) = —0i—j1,

which tells us that Mg is a Cartan matrix of type A,.

Type B,(ll). Recall the explicit description of og(g) for type B7(11) (n > 2), which can be obtained

from [KO19]. Note that the Dynkin diagram of Bél) is given in (2.1). In this case ggy, is of type
Agp—1, and for ¢ € Ig, = {1,...,2n — 1} we have

(1’ (_1)n+1q§n+lf4i) if 1 <i<n— 1,
(n,q2"*2) if i = n,
¢Q(a1) = —2n+3 o -
(n,q ) ifi=n+1,
(1, (1) Hg 4=y ifn 42 <i < 2n — 1.
For example, if it is of type Bél), then elements of og(g) with the values of qﬁél can be drawn
as follows.
Nk -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
1 (00111) (11110) (01000) (00001)  (10000) . (—1)i+3gk
2 (00110) (01110) (01111) (11111) (11000)
3| (00100) (00010) (01100) (00011) (11100) gk

Here we set (ai,as2,as,aq,as) := 22:1 apoy, € A&S, and the underlined ones are simple roots.
Combining Propositions 3.11 and 3.9 with the denominator formula given in Appendix A, we
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compute that d(Vg(ai), 2"Vg(a;)) = 0 for i # j and k # 0 and that
AF(V (1), V(wn)gre) = 2(V(w1), V(@1)4)
=02 fork=1,2,...,2n —4,
AT (V (@), V(@) (—1yn+ige) =d(V(@n), V(@1)(—1)n+14t)
=0dont1 fort=2n—-12n+1,...,6n—71,
A*(V(wn), V(@n)g) = 1.
Therefore, for i > j we obtain

Q

Mg = —0i—j1,

which tells us that Mg is a Cartan matrix of type Ag,_1.

Type C’T(Ll). Recall the explicit description of og(g) for type 01(11) (n > 3), which can be obtained
from [KO19]. In this case ggy, is of type Dy11, and for 1 < ¢ < n+ 1 we have

(17 (_QS)2_27;) if 1 g l g n,
P (i) = N DI
(n, (—gs) ) ifi=n+1.
For example, if it is of type Cil), then elements of og(g) with the values of qbél can be drawn
as follows.

Nk —11 —10 -9 -8 =7 —6 =5 —4 -3 -2 -1 0

1
! <1110>
) 1
0110

)
Con) o) ) ()

1
4 <oooo>
Here we set ( arazasa ) = 22:1 apQy € AC'S, and the underlined ones are simple roots. Combining
Propositions 3.11 and 3.9 with the denominator formula given in Appendix A, we compute that
2(Vo(ai), 2*Vg(ay)) = 0 for i # j and k # 0 and that

AZ(V(@1), V(@1) (g r) = 2(V(@1), V(@1) (g, )r)
=0 fork=2,4,...,2n -2
AF(V(@n), V(@1)(—g,)1) = 2(V(@n), V(@1)(~q,))
=0iny3 fort=mn+1,n+3,...,3n—1

)

Therefore, for ¢ > j we have

@ _ -1 if(i<nmandi—j=1)or (i,j) =(n+1,n—1),
I 0 otherwise,

which says that Mg is a Cartan matrix of type Dp41.

Type Dfll). Recall the explicit description of og(g) for type DS) (n > 4). Note that the Dynkin
quiver corresponding to o(g)g is given in (A.3). In this case h =2n —2, and for 1 <i <n we
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have

(1, %) fi<n-2,
dg(a;) =< (n—1,(—q)™3*%) if (i =n —1 and n is even) or (i = n and n is odd),

(n, (—q)~37+6) if (i =n and n is even) or (i =n — 1 and n is odd)

by [KKK15, Lemma 3.2.3]. For example, if it is of type Dél), then elements (i, (—q)¥) of o¢(g)
with the values of d)él can be drawn as follows.

Here we set ( a azzg a 4) = 22:1 axoy € Aa, and the underlined ones are simple roots. Using the

formula given in Appendix A.1, one can compute that for 1 < k < h,

61,1(k) = 5k,1 + 5k72n—37 6n,l(kj) = énflyl(k) = 6k,n—1,
enn(k) =En_1pn—1(k) = (k=1 mod 4),
Cnn—1(k) = ép—1n(k) = d(k = 3 mod 4).

Combining this with Lemma 6.2, we compute that

A= (V (w1), V(wl)(_q)k) =02 for2<k<h—4,
A=V (), V(wl)(_q)k) =0kp forn<k<3

n — 6,

Therefore, for ¢ > j we have

Ly

o J-1 if(i<n—Tlandi—j=1)or (i,j)=(n,n~—2),
0 otherwise,

which says that Mg is a Cartan matrix of type D,.

Type Aéi) Recall the explicit description of og(g) for type Agi) (n > 1), which can be obtained
from [KKKO16]. In this case ggy is of type Ag,, and for 1 < i < 2n we have

oqlai) = (1, (—q)*™).
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For example, if it is of type Af) , then elements of og(g) with the values of d)él can be drawn as

follows.
i\k —6 -5 —4 -3 —2 —1 0
1] (0001) (0010) (0100) (1000)
2 (0011) (0110) (1100)
2 (0111) (1110)
1 (1111)

Here (a1,as,a3,a4) = Zi:l apoy € Ag, and the underlined ones are simple roots. It fol-
lows from Propositions 3.11 and 3.9 and the denominator formula in Appendix A that
2(Vo(ai), 2%V(ay)) = 0 for i # j and k # 0 and that
AZ(V(@1), V(@) (—gr) =2V (@1), V(@1)(g)r)
=02 fork=2,4,...,4n 2.

Therefore, for ¢ > j we have

m = —A®(V(@1), V(@1)_g26-5) = —0i—j1,

which tells us that Mg is a Cartan matrix of type Asgy,.

Type Agi)_l. Recall the explicit description of og(g) for type A;i)_l (n > 2), which can be

obtained from [KKKO16]. In this case ggy is of type Ag,—1, and for 1 < i < 2n — 1 we have
do(ai) = (1, (—q)*™%).

For example, if it is of type A?) , then elements of og(g) with the values of ¢Z21 can be drawn as

follows.
i\k -8 -7 —6 -5 —4 -3 -2 -1 0
1| (00001) (00010) (00100) (01000) (10000) : (—q)
(00011) (00110) (01100) (11000)
(00011) (01110) (11100)
2 (01111) (11110) —(—q)*
1 (11111)

Here (a1, a2, a3, a4, as) := 22:1 apoy, € Aa and the underlined ones are simple roots. Note that
V(wn)a = V(wn)—q. It follows from Propositions 3.11 and 3.9 and the denominator formula in

Appendix A that d(Vg(i), 2%V (a;)) = 0 for i # j and k # 0 and that
AOO(V(wl), V(wl)(,q)k) = b(V(wl), V(wl)(,q)k)
=02 fork=2,4,...,4n —4.
Thus we obtain

mgj = A" (V(w1), V(@1)(_g26-») = —bi—j1, fori>j,

which implies that Mg is a Cartan matrix of type Aa,_1.
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Type fo_&l. Recall the explicit description of og(g) for type Déﬁl (n > 3), which can be
obtained from [KKKO16]. In this case gg, is of type Dy,41, and for 1 <i < n+ 1 we have

(L (V=D)"(=g)2Y) ifi<n—1,
(n, (1) (—q)~3"*3) ifi=n,n+ 1.

Po(ai) = {

For example, if it is of type DéZ), then elements of og(g) with the values of gbél can be drawn

as follows.
ik -9 s 7 6 -5 1 -3 —2 -1 0
1 (u1) (o00) (o) (ow) - o
: (o) (1) (o) () V-0
: (oon) (o) (1) (i) ~a)

as

Here we set ( arazas a4) = ZZZI apoy, € Ag, and the underlined ones are simple roots. Note that
V(wi)q =~ V(wi)—q for i <n. It follows from Propositions 3.11 and 3.9 and the denominator
formula in Appendix A that d(Vg(c;), 2*Vg(ay)) = 0 for i # j and k # 0 and that

APV (1), V(@) (—qpr) =2V (@1), V(w1) ()
=02 for k=2,4,...,2n -4,
APV (@n), V(@) 4 =1 gpe) = 2V (@), V(@) 1= (—g)r)
=0kny1 fork=n+1,n+3,...,3n -3,
A*(V(@n), V(wn)-1) = 0,
which give the values of mgj. Thus, one can check that the matrix Mg is a Cartan matrix of

type Dpy1-

Type Eél). Recall the explicit description of og(g) for type Eél). The Dynkin quiver corre-

sponding to o(g) is given in (A.3). In this case, h = 12 and elements (i, (—q)F) of og(g) with
the values of gzﬁél can be drawn as follows.

i\k _—-14 —13 —12 —11 —10 -9 -8 -7 -6 ) —4 -3 -2 -1 0
000 000 000 011 001 100
1 \oo 010 100 111 000 000
3 000 000 011 112 111 011 101
011 110 211 221 210 100 000
4 000 011 112 122 112 111
111 221 321 321 210 100
9 010 001 111 011 101 (()1(])
111 110 211 110 100 000
5 001 111 011 112 111
111 221 210 211 110
6 101 010 001 111
111 110 100 111
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Here we set (Zigizz) = Z?:l a;q € AE, and the underlined ones are simple roots. Using the

formula given in Appendix A.1, one can compute that for 1 < k < h,
c1,1(k) =0k1 +0k7, C12(k) =04 + Ops.
By Lemma 6.2, we compute

AOO(V(wl), V(W1)(7q)k) = 5k,2 + 5k,8 for k =2,4,8,10,12, 14,
AOO(V<?D1), V(WQ)(_q)k) = (5k,9 for k = —1, 1,9, 11, 13,

which give the values of mgj. Therefore, one can check that the matrix Mg is a Cartan matrix
of type Es.

Type Eél). Recall the explicit description of og(g) for type Eél). The Dynkin quiver corre-

sponding to o(g) is given in (A.3). In this case, h = 18 and elements (i, (—=q)k) of og(g) with
the values of gb(_gl can be drawn as follows.

i\k =21  -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -1 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
1 1011 0101 0011 1112 0111 1011 0101 0010 1000
111 110 100 111 110 100 000 000 000
3 0011 1112 0112 1123 1223 1122 1112 0111 1010
111 221 210 211 221 210 100 000 000
4 0001 0112 1123 1224 1234 2234 1223 1122 1111
111 221 321 321 321 321 210 100 000
5 0101 0011 1112 0112 1122 1112 0111 1011 0100
111 110 211 110 211 110 100 000 000
- 0000 0001 0112 1123 1223 1123 1223 1122 1111
° 111 110 211 221 321 210 221 110 100
6 0000 0000 0001 0112 1122 1112 0112 1122 1111
011 110 100 111 221 210 100 111 110
. 0000 0000 0000 (0001 0111 1011 0101 0011 1111
001 010 100 000 111 110 100 000 111

Here we set (Q;ZZZZ?) = 21‘7:1 aia; € AY, and the underlined ones are simple roots. Using the

formula given in Appendix A.l, one can compute that for 1 < k < h,

¢1,1(k) = 0k1 + 07 + 011 + Oka7,  Cr2(k) = Ok a + Ops + Ok,10 + Ok 14,
¢r1(k) = 0k6 + 0k12, Cr2(k) =05+ 0ko+ 0k13, Cr7(k) =0k + k9 + O 17

By Lemma 6.2, we compute

(V(@1), V(@) (g2) =1, A®(V(w1), V(@) () = A°(V(@2), V(@1)(_g) = 0,
AOO(V(W7), V(wl)(_q)k) = (5]9713 for k = 13, 15, 17, 19, 21,
A (V(wr), V(wQ)(_q)k) =014 for k= 14,16, 18,20,
AOO(V(W7), V(W7)(_q)k) = 5k,2 fOI" /{ = 2,4, 6,

which give the values of szj' Therefore, one can check that the matrix Mg is a Cartan matrix
of type Er.

Type Eél). Recall the explicit description of og(g) for type Eél). The Dynkin quiver corre-

sponding to o(g)y is given in (A.3). In this case, h = 30 and elements (i, (—q)F) of og(g) with
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the values of qbél can be drawn as follows.

i\k—34 —33 —32 —31 —30 —29 —28 —27 —26 —25 —24 —23 —22 —21 —20 —19 —18 —17 —16 —15 —14 —13 —12 —11 10 -9 -8 -7 —6 -5 -4 -3 -2 -1 0

10° 01 00 11 01 11 11 01 11 11 01 10 01 00 10
11 01 11 12 12 22 12 12 22 12 11 11 01 10 00
11 11 11 21 11 22 21 11 21 11 11 10 00 00 00
11 10, 00 11 10, 11 10, 00, 11 10 00 00 00 00, 00
00 11 01 11 12 12 22 12 12 22 12 11 11 01 10
. 11 12 12 23 24 34 34 24 34 34 23 22 12 11 10
3 11 22 22 32 32 33 43 32 32 32 22 21 10 00 00
11 21 10 11 21 21 21 10, 11 21 10 00 00 00 00,
00 01 11 12 12 23 23 23 23 23 23 22 12 11 11
01 12 23 24 35 46 46 46 46 46 45 34 23 22 11
4 11 22 33 43 43 54 54 54 53 43 43 32 21 10 00
11 21 21 21 21 32 31 21 21 21 21 10, 00 00 00
01 00 11 01 11 12 11 12 11 12 11 11 01 10 01
01 11 12 12 23 23 23 23 23 23 22 12 11 11 00
2 11 11 22 21 22 32 32 32 21 22 21 11 10 00 00
11 10, 11 10 11 21 10, 11 10, 11 10 00 00 00, 00
00 00 (U 11 12 12 22 13 22 23 12 22 12 11 11
- 00 01 12 23 24 34 35 35 45 35 34 34 23 22 11
2 11 11 22 32 33 43 43 43 43 43 32 32 21 11 10
11 10, 11 21 21 21 21 21 21 21 10 11 10 00, 00,

00 00 00 00 01 11 11 01 11 12 11 11 01 11 11
00 00 00 01 12 22 12 12 23 23 22 12 12 22 11
7 00 01 11 10 11 22 22 21 21 22 22 21 10 11 11
11 10, 00, 00, 11 21 10, 00, 11 21 10, 00, 00, 11 10,
00 00 00 00 00 01 10 01 00 11 01 10° 01 00 11
00 00 00 00 01 11 11 01 11 12 11 11 01 11 11
8| | oo 00 01 10 00 11 11 11 10 11 11 11 10 00 11
01 10, 00 00 00, 11 10 00 00 11 10, 00, 00 00 11

ai1a2

Here we set (gggg) = Z§:1 a;o; € Aa, and the underlined ones are simple roots. Using the
arasg
formula given in Appendix A.1, one can compute that for 1 < k < h,

Gra(k) =6(k =1,7,11,13,17,19, 23, 29),

—

Gro(k) = 6(k = 4,8,10,12, 14, 16,18, 20, 22, 26),
s1(k) = 0(k =7,13,17,23),

Zso(k) = 6(k = 6,10,14,16,20,24),

ss(k) = 0(k = 1,11,19,29).

By Lemma 6.2, we compute
(@1)(—q2) =1, A®(V(w1), V(w2)(—g) = A (V(w2), V(®1)(—q) =0,
(wl)(_q)k) 6k ,24 for k = 24, 26, 28, 30, 32, 34,

(@2)(—qk) = Ok25 for k = 25,27,29,31, 33,

(08)(—gk) = Oz for k=2,4,6,8,

which give the values of ml%. Therefore, one can check that the matrix Mg is a Cartan matrix
of type Es.

Type F4(1). Recall the explicit description of og(g) for type F il), which can be obtained from
[OS19a]. In this case gy, is of type Es, and elements of og(g) with the values of qﬁc_?l can be
drawn as follows.

ik —19  —18 —17  -16 -15 -14 -13 -12 -1l -1 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
L 000
111
y 000
110
. (000
31 100
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Here we set (Zig?gg) = Z?:1 a;q € ACS, and the underlined ones are simple roots. It fol-
lows from Propositions 3.11 and 3.9 and the denominator formula in Appendix A that
2(Vo(ai), 2¥Vg(a;)) =0 for i # j and k # 0 and that

AOO(V(wl), V(wl)q§) = D(V(Wl), V(wl)q§) = 5k,4 for k = 2,4,
AOO(V(?Dg), V(’wl)q?) D(V(w;;), V(wl)qg) = 5k,15 for k = 15, 17, 19,
A (V (), V(1) _g) = 2V (), V(1) _gp)

D

Sp1a for k=—2,0,2,12,14,16,
A®(V(w3), V(wa) _gr) =02V (w3), V(wa)_g¢) =1 for k= 3,17,
A®(V(wa), V(wa)g1a) = d(V(w@s), V(wa)ga) = 0,

which give the values of mgj. Thus, one can check that the matrix Mg is a Cartan matrix of
type L.

Type Ggl). Recall the explicit description of og(g) for type G;l), which can be obtained from
[OS19a]. In this case gg, is of type Dy, and elements of og(g) with the values of gbél can be
drawn as follows.

ik -1 -1 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

) W) G )

Here we set (a1 azus) = Zi:l aroy € AZS, and the underlined ones are simple roots. It fol-
lows from Propositions 3.11 and 3.9 and the denominator formula in Appendix A that
2(Vo(ai), 2%Vg(ay)) = 0 for i # j and k # 0 and that

AOO(V(wl), V(WQ)(_qt)k) = b(V(TDl), V(WQ)(_qt)k) = 5k,11 for k = 3, 9, 11,
AOO(V(WQ), V(WQ)(_qt)k) = D(V(WQ), V(WQ)(_qt)k) = 5k,2 + 5k:,8 for k = 2, 6, 8,

which give the values of mgj. Thus, one can check that the matrix Mg is a Cartan matrix of
type Dy.

Type EéQ). Recall the explicit description of og(g) for type E(z)7 which can be obtained from
[OS19a]. In this case ga, is of type Es, and elements of og(g) with the values of qﬁél can be
drawn as follows.

i\k —14 —13 —12 —11 —10 -9 -8 -7 —6 -5 —4 -3 -2 -1 0

204

https://doi.org/10.1112/S0010437X21007739 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007739

SIMPLY LACED ROOT SYSTEMS ARISING FROM QUANTUM AFFINE ALGEBRAS
Here we set (Ziiizz) = Z?:1 a;q € Azg, and the underlined ones are simple roots. Note that
V(w;)a =~ V(w;i)—q for i = 3,4. It follows from Propositions 3.11 and 3.9 and the denominator
formula in Appendix A that (Vg (), 2¥Vg(a;)) = 0 for i # j and k # 0 and that

A*(V (1), V(w1)ge) =2V (@), V(wi)gr) = Sk 2 + ks for k=2,4,8,10,12,14,

A®(V(w1), V(wa)=140) = 2(V(@1), V(wa) y=14r)
Spo for k=-1,0,1,9,11,13,

which give the values of mf?j. Thus, one can check that the matrix Mg is a Cartan matrix of
type Fs.

Type Dz(f’). Recall the explicit description of og(g) for type Dz(f’), which can be obtained from

[OS19a]. In this case gg, is of type Dy, and elements of og(g) with the values of ¢521 can be
drawn as follows.

Here we set ( alZ; as) = Zizl apoy, € Azg, and the underlined ones are simple roots. Note that

V(wa)a =~ V(wa),tq for t = 1,2. It follows from Propositions 3.11 and 3.9 and the denominator
formula in Appendix A that d(Vg (i), Z¥Vg(ay)) = 0 for i # j and k # 0 and that

1 if (k) = (0,2), (1,4), (2,4),

ATV V(m o) = {o if (¢, k) = (1,0), (2,0), (1,6), (2,6),

which give the values of mgj. Thus, one can check that the matrix Mg is a Cartan matrix of
type Dy.
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Appendix A. Denominator formulas

The denominator formulas were studied and computed in [AK97, DO94, Fuj22, KKK15, Oh15,
OS19a]. In this appendix we present the denominator formulas for all types.

Let qs,q: € kX be such that ¢ = ¢? = ¢}, and let w € k be such that w? +w +1 = 0. For
1,5 € I, we set

dij(2) 1= dv (@), v (w;) (2)-
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A.1 Simply laced affine ADE types
Suppose that the Cartan matrix C = (¢; ;)i jer, is of type A, Dy, or Ey, (k = 6,7, 8). The quantum
Cartan matrix C(z) = (¢;,j(2))s,jer, is defined by

cij(z):=06(i=7)(z+2"") +6(i # j)ciy.
We denote by C(z) = (¢ j(2))ijer, the inverse of C(z), and write
Gij(2) =Y &;(k)2" fori,jel. (A1)
k€Z20

Then the following beautiful formula is given in [Fuj22, Theorem 2.10]:
h—1
dig(2) = [ (2 = (—q)+1)es®), (A.2)
k=1
where h is the Coxeter number. Note that the dual Coxeter number is equal to the Coxeter
number in this case.

Let gog be a simple Lie algebra of type ADE with index set Iy, and let QQ be a Dynkin quiver
of g. Let £: Ip — Z be a height function such that {; =& — 1 for 7 — j in ). Choose a total
order > on I such that i > j for § > &; and write Iy = {i1 > ip > -+ > i, }. Weset 7:=s;, -5,
which is a Coxeter element. For i € Iy we set v; :=}_;cp(;) @, where B(i) is the subset of Iy
consisting of all elements j such that there is a path from j to ¢ in Q). Then we have the following.

ProprosITION A.1 [HL15, Proposition 2.1]. Fori,j € I and k € Z~q, we have
i (T(k%r&j*l)/?(%.)’ wj) ifk+& —& — 1 is even,
Ci’j(k‘ = .
0 otherwise.

In this paper, we make the following choice of Dynkin quivers:

Tn
An Ol ﬁ2 n_1 no7 D?’L e} o
1 2 n—2 n—1
A3

E6 o) o) o) o) , E7 [e) o) o) o) 07 ( )

1 3 4 5 6 1 3 4 5 6 7

12

Eg: o o) o) o)

1 3 4 5 6 7 8

In this case we have the following data, which allow us to compute ¢; j(k) explicitly.

(a) (Type A,) T =5182--8,, & =1—iand v = Z;’:l Q.
(b) (Type Dy) T = 5152+ Sp—15, and

i
g o if i <mn,
J=1

o Ji-i <o, B

" l-n+2 ifi=n—1,n, R o
Zaj-i-an if i =n.
j=1
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(¢) (Type Ep,, n=6,7,8) T = 5182...5,,&1 =0,§a=—1and & =2 — kfor k = 3,4,...,n,and
Nn=oa1, =0y, = +azand =3 apfort=4,...,n
Indeed, in the figures of §6.2, the root ~; is the rightmost one in the row labeled by 4,

and 7 corresponds to horizontal translation by —2. Hence one can read such values of ¢; (k)
easily from the figures.

A.2 Other classical affine types
The denominator formulas for other classical affine types can be found in [AK97, Appendix C.4]

for type Cfll) and in [Oh15, Appendix] for types szl), D? . and A(Q) (N =2n,2n—1).

n+1
(i) Type B,(ll) (n>2):
(a) dpy(z) = Hlsm?(kl ( (—q)l*— l|+2s)(z + (- )2n7k7l71+23) for 1 <kl <n—1;
(b) dkn( ) = H (2 = (m1)nthg2n=2h=144s) for 1 <k <n—1;
() dnn(2) =IT1 (2 — (a5)"7?).
(ii) Type C( ) (n>2): .
(a) di(z) = H;mri(k,l,n k,n— l)( — (—gy)FlI+2e) H?:Hi(k’l)(z— (—qs)2n+2-hml28) g 1
k,l<n.
(i) Type AL, (n > 2)
(a) dyi(z) = H?Hi(k l)( _ (_q)\k—l|+25)(2+ (_q)Zn—k—l+2s) for 1< k,1<n
(iv) Type Aéi) (n>1):
(8) dr(z) = T (2 = (—g)F-1H422) (2 — (—q)2mH1=5-1420) for 1 <kl <
(v) Type D), (n > 3):
(a) dia(2) =TT (22 — (—g)F1429) (22 — (—g?)2nF142) for 1 < kI < — 1
(b) dkn( ):Hf 1(2 + (- q2)” k+25) for1<k<n—1;
(€) dnn(z) =TToey (24 ( q2)$)f0rk—l—n

N

A.3 Other exceptional affine types
The denominator formulas for exceptional affine type can be found in [OS19a, §§4 and 7].

(i) Type GS:

(
(a) dii(z) = (z—q)(z—a})(z — ¢/")(z — ¢/?);
(b) dia(z) = (z+¢])(z+q!');
(c) do2(z) = (z— ) (z — a})(z — ¢i?).
(ii) Type F4(1)'
(a) di1(z) = (z — gz — @) (z — 2*)(z — ¢2®);
(b) di2(z) = (z+ %) (z+d})(z +Q§0)(Z+qs )(z + @) (2 + ¢i%);
(c) dis(z) = (z—ql)(z —q])(z — ¢}*)(z — ¢2°);
(d) dia(z) = (z+ ) (= + qs4),
(e) daa(z) = (2 —q5)(z — ¢8)(z — ¢3)*(z — 4i°)%(z — ¢:°)* (2 — 4*)*(2 — ¢2%) (2 — ¢2®);
(f) da3(z) = (Z+QE’)(Z+qZ)(Z+qs)(Z+qs )2(2+Q§3)(2+Q§5)(Z+qs”);
(8) doa(2) = (2 —q)(z — 3 (z — ¢5*) (2 — qs %);
(h) d33(z) = (z = @)z — ) (z — ¢§)(z — ¢i°) (= — 43*)*(z — 43°) (2 — ¢®);
(i) dsa(z) = (z+ @)z + D) (z + ¢} )(Z+q )z + ¢t
(j) daa(z) = (z— @)z — ) (z — ¢i*)(z — ¢3¥).
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3).

(a) di1(2) = (2 — ¢*)(z — ¢°) (2 —wq") (z — W2¢h);
(b) dia(z) = (2° + ¢°)(z* + ¢'°);

(€) dap(2) = (2° = ¢°)(2° — ¢'%)*(2" — ¢'%).
(iv) Type EéQ):
(a) di1(2) = (2 = ¢)(z +¢°)(z = ¢®) (2 + ¢'?);
(b) di2(2) = (2 +¢°) (2 = ) (2 = ¢")(z + 4") (2 + ¢") (2 — ¢");
(€) dia(z) = (2° + ¢®)(2* + ¢'*) (2% + ¢'°)(z* + ¢*);
(d) dia(z) = (% +¢') (2% + ¢'®);
(€) dop(2) = (2 = ¢*)(z = ¢") (2 = ¢°) (2 = ¢*)*(z — ¢'*) (2 + ¢") (= + ¢°)*(2 + ¢°)
(z+¢') (2 +¢");
(f) d273(2) — (22 + q6>(2’2 + q10>2(22 + q14)2(z2 + q18)2(22 + q22)7
(8) dza(z) = (22 +0°)(z° + ¢'?)(2* + ¢'%) (2% + ¢*°);
(h) ds3(2) = (2° = ¢")(2* = ¢°)?(2* = ¢"*)° (2% = ¢"°)° (2% — ¢*°)* (2% — ¢*);
(i) dsa(z) = (22 = ¢°)(2* = ¢'0)(2* = ¢")*(2* = ¢"°)?(2* — ¢*);
(3) daa(z) = (2* = g")(z* = ¢")(z* = ¢")(z* — ¢**)
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