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Abstract

Let U ′
q(g) be a quantum affine algebra with an indeterminate q, and let Cg be the

category of finite-dimensional integrable U ′
q(g)-modules. We write C 0

g for the monoidal
subcategory of Cg introduced by Hernandez and Leclerc. In this paper, we associate a
simply laced finite-type root system to each quantum affine algebra U ′

q(g) in a natural
way and show that the block decompositions of Cg and C 0

g are parameterized by the
lattices associated with the root system. We first define a certain abelian group W
(respectively W0) arising from simple modules of Cg (respectively C 0

g ) by using the
invariant Λ∞ introduced in previous work by the authors. The groups W and W0

have subsets Δ and Δ0 determined by the fundamental representations in Cg and C 0
g ,

respectively. We prove that the pair (R ⊗Z W0,Δ0) is an irreducible simply laced root
system of finite type and that the pair (R ⊗Z W,Δ) is isomorphic to the direct sum of
infinite copies of (R ⊗Z W0,Δ0) as a root system.
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1. Introduction

Let q be an indeterminate and let U ′
q(g) be a quantum affine algebra. The category Cg of finite-

dimensional integrable U ′
q(g)-modules has a rich structure. For example, the category Cg is not

semi-simple and has a rigid monoidal category structure. Because of its rich structure, it has
been studied actively in various research areas of mathematics and physics (see [AK97, CP94,
FR99, Kas02, Nak01] for examples).

The category Cg has been studied from the viewpoint of cluster algebras. Suppose that g is
of simply laced affine ADE type. In [HL10], Hernandez and Leclerc defined the full subcategory
C 0

g of Cg such that all simple subquotients of its objects are obtained via simple subquotients of
tensor products of certain fundamental representations. They then introduced certain monoidal
subcategories C� (� ∈ Z>0) and studied their Grothendieck rings using cluster algebras. As any
simple module in Cg can be obtained from a tensor product of suitable parameter shifts of simple
modules in C 0

g , the category C 0
g has an essential position in Cg. Note that an algorithm for com-

puting q-characters of Kirillov–Reshetikhin modules for any untwisted quantum affine algebras
was described in [HL16], by studying the cluster algebra structure of the Grothendieck ring of the
subcategory C−

g of C 0
g . On the other hand, Hernandez and Leclerc introduced another abelian

monoidal subcategory CQ
g which categorifies the coordinate ring C[N ] of the unipotent group

associated with the finite-dimensional simple Lie algebra g0 inside g [HL15]. For each Dynkin
quiver Q, they defined an abelian subcategory CQ

g of C 0
g which contains some fundamental repre-

sentations parameterized by the coordinates of vertices of the Auslander–Reiten quiver of Q, and
proved that CQ

g is stable under taking tensor products and that its complexified Grothendieck
ring C ⊗Z K(CQ

g ) is isomorphic to the coordinate ring C[N ]. Moreover, under this isomorphism,
the set of isomorphism classes of simple modules in CQ

g corresponds to the upper global basis
of C[N ].

The notion of the categories C 0
g and CQ

g has been extended to all untwisted and twisted
quantum affine algebras [KKKO16, KO19, OS19a, OS19b]. Let σ(g) := I0 × k×/ ∼, where the
equivalence relation is given by (i, x) ∼ (j, y) if and only if V (�i)x � V (�j)y. The set σ(g) has
a quiver structure determined by the pole of R-matrices between tensor products of fundamen-
tal representations V (�i)x ((i, x) ∈ σ(g)). Let σ0(g) be a connected component of σ(g). Then
the category C 0

g is defined to be the smallest full subcategory of Cg that has the following
properties:

(a) C 0
g contains V (�i)x for all (i, x) ∈ σ0(g);

(b) C 0
g is stable by taking subquotients, extensions and tensor products.

The subcategory CQ
g was introduced in [KKKO16] for twisted affine type A(2) and D(2), in

[KO19] for untwisted affine types B(1) and C(1), and in [OS19a, OS19b] for exceptional affine
type. For a Dynkin quiver Q of a certain type with additional data, a finite subset σQ(g) of σ0(g)
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was determined. Then the category CQ
g is defined to be the smallest full subcategory of C 0

g for
which the following hold:

(a) CQ
g contains 1 and V (�i)x for all (i, x) ∈ σQ(g);

(b) CQ
g is stable by taking subquotients, extensions and tensor products

(see §§ 2.3 and 2.4 for more details).
We can summarize the results of this paper as follows:

(i) we associate a simply laced root system to each quantum affine algebra U ′
q(g) in a natural

way;
(ii) we give the block decomposition of Cg parameterized by a lattice W associated with the

root system.

Let U ′
q(g) be a quantum affine algebra of arbitrary type. We first consider certain subgroups

W and W0 of the abelian group Hom(σ(g), Z) arising from simple modules of Cg and C 0
g ,

respectively (see (4.2)). The subgroups W and W0 have subsets Δ and Δ0 determined by the
fundamental representations in Cg and C 0

g , respectively. Let E := R ⊗Z W and E0 := R ⊗Z W0.
Let gfin be the simply laced finite-type Lie algebra corresponding to the affine type of g in
table (4.5). When g is of untwisted affine type ADE, gfin coincides with g0. We prove that
the pair (E0,Δ0) is the irreducible root system of the Lie algebra gfin and the pair (E ,Δ) is
isomorphic to the direct sum of infinite copies of (E0,Δ0) as a root system (see Theorem 4.6
and Corollary 4.7). Interestingly enough, the quantum affine algebra U ′

q(g) and its Langlands
dual U ′

q(
Lg), whose Cartan matrix is the transpose of that of g, yield the same simply laced

root system. This coincidence can also be viewed in terms of the mysterious duality between
U ′
q(g) and its Langlands dual U ′

q(
Lg) (see [FH11a, FH11b, FR98]). We conjecture that the cat-

egories of representations of two quantum affine algebras are equivalent if and only if their
associated root systems are the same. From this viewpoint, the simply laced finite-type root
system plays the role of an invariant for the representation categories of quantum affine alge-
bras. For each simply laced finite-type root system, the corresponding untwisted quantum affine
algebra, the one of twisted type (if it exists) and its Langland dual have the same categorical
structure.

We then show that there exist direct decompositions of Cg and C 0
g parameterized by ele-

ments of W and W0, respectively (Theorem 5.10), and we prove that each direct summand of
the decompositions is a block (Theorem 5.14). This approach covers all untwisted and twisted
quantum affine algebras in a uniform way and provides a transparent explanation of how the
blocks of C 0

g exist from the perspective of the root system (E0,Δ0) and the category CQ
g .

When g is of untwisted type, the block decomposition was studied in [CM05, EM03, JM11].
Etingof and Moura [EM03] found the block decomposition of Cg whose blocks are parameterized
by the elliptic central characters under the condition |q| < 1. Later, Chari and Moura [CM05]
gave a different description of the block decomposition of Cg by using the quotient group Pq/Qq

of the �-weight lattice Pq by the �-root lattice Qq. In the case of the quantum affine algebra
Uξ(g) at roots of unity, its block decomposition was studied in [JM11]. For affine Kac–Moody
algebras, the block decomposition of the category of finite-dimensional modules was studied
in [CM04, Sen10]. Note that the block decomposition for affine Kac–Moody algebras does not
explain blocks for quantum affine algebras U ′

q(g). We remark that in the untwisted-type case,
the quotient group Pq/Qq given in [CM05] (and also the result of [EM03]) provides another
group presentation of W (see Remark 5.16).

The main tools used to prove our results are the new invariants Λ, Λ∞ and d for a pair of
modules in Cg introduced in [KKOP20]. For non-zero modules M and N in Cg such that Runiv

M,Nz
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is rationally renormalizable, the integers Λ(M,N), Λ∞(M,N) and d(M,N) are defined by using
the renormalizing coefficient cM,N (z) (see § 3 for details). These invariants are quantum affine
algebra analogues of the invariants (with the same notation) for pairs of graded modules over
quiver Hecke algebras arising from the grading of R-matrices. The new invariants play similar
roles in the representation theory of quantum affine algebras to those for quiver Hecke algebras.

Let us explain our results more precisely. Let U ′
q(g) be a quantum affine algebra of arbitrary

type. For M ∈ Cg such that the universal R-matrix Runiv
M,V (�i)z

is rationally renormalizable for
any i ∈ I0, we define E(M) ∈ Hom(σ(g), Z) by

E(M)(i, a) := Λ∞(M,V (�i)a) for (i, a) ∈ σ(g)

and investigate its properties (Lemma 4.1). For (i, a) ∈ σ(g), we set

si,a := E(V (�i)a) ∈ Hom(σ(g), Z)

and

W := {E(M) |M is simple in Cg}, Δ := {si,a | (i, a) ∈ σ(g)} ⊂ W,

W0 := {E(M) |M is simple in C 0
g }, Δ0 := {si,a | (i, a) ∈ σ0(g)} ⊂ W0.

Then W and W0 are abelian subgroups of Hom(σ(g), Z). Moreover, we see in Lemma 4.2
that there exists a unique symmetric bilinear form (−,−) on W such that (E(M),E(N)) =
−Λ∞(M,N) for any simple modules M,N ∈ Cg; it induces a symmetric bilinear form on E .
Then we prove that the pair (E0,Δ0) is an irreducible root system of the simply laced finite type
given in (4.5) (Theorem 4.6) and that the pair (E ,Δ) is isomorphic to the direct sum of infinite
copies of (E0,Δ0) as a root system (Corollary 4.7). Furthermore, the bilinear form (−,−) is
invariant under the Weyl group action. Theorem 4.6 is proved in § 6 via a case-by-case approach,
using the explicit descriptions of σQ(g) for CQ

g given in § 2.4 and the denominator formulas in
Appendix A.

We then consider the block decompositions of Cg and C 0
g . For α ∈ W, let Cg,α be the full

subcategory of Cg consisting of objects X such that E(S) = α for any simple subquotient S
of X. We show that there exist the direct decompositions

Cg =
⊕
α∈W

Cg,α and C 0
g =

⊕
α∈W0

Cg,α

by proving that Ext1U ′
q(g)(M,N) = 0 for M ∈ Cg,α and N ∈ Cg,β with α �= β (Theorem 5.10). We

set P :=
⊕

(i,a)∈σ(g) Ze(i,a) and P0 :=
⊕

(i,a)∈σ0(g) Ze(i,a), where e(i,a) is a symbol. Then we define
a group homomorphism p : P � W by p(e(i,a)) = si,a and set p0 := p|P0 : P0 � W0. It turns out
that the kernel ker p0 coincides with the subgroup Q0 of P0 generated by elements of the form∑m

k=1 e(ik,ak) ((ik, ak) ∈ σ0(g)) such that the trivial module 1 appears in V (i1)a1 ⊗ · · · ⊗ V (im)am

as a simple subquotient (Lemma 5.13). We then prove that Cg,α is a block for any α ∈ W
(Theorem 5.14), which implies that the above decompositions are block decompositions of Cg

and C 0
g .

This paper is organized as follows. In § 2, we give the necessary background on quantum
affine algebras, R-matrices, and the categories Cg and CQ

g . In § 3, we review the new invariants
introduced in [KKOP20]. In § 4, we investigate properties of W, Δ and si,a and state the main
theorem for the root systems (E0,Δ0) and (E ,Δ). In § 5, we prove the block decompositions of
Cg and C 0

g . Section 6 is devoted to a case-by-case proof of Theorem 4.6.
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2. Preliminaries

Convention.

(i) For a statement P , δ(P ) is 1 or 0 according to whether P is true or not.
(ii) For an element a in a field k and f(z) ∈ k(z), we denote by zeroz=af(z) the order of zero

of f(z) at z = a.

2.1 Quantum affine algebras
The quintuple (A,P,Π,P∨,Π∨) is called an affine Cartan datum if it consists of the following
components:

(i) an affine Cartan matrix A = (aij)i,j∈I with a finite index set I;
(ii) a free abelian group P of rank |I| + 1, called the weight lattice;
(iii) a set Π = {αi ∈ P | i ∈ I}, whose elements are called simple roots;
(iv) the group P∨ := HomZ(P, Z), called the coweight lattice;
(v) a set Π∨ = {hi | i ∈ I} ⊂ P∨, whose elements are simple coroots;

and if it satisfies the following properties:

(a) 〈hi, αj〉 = ai,j for any i, j ∈ I;
(b) for any i ∈ I, there exists Λi ∈ P such that 〈hj ,Λi〉 = δ(i = j) for any j ∈ I;
(c) Π is linearly independent.

Let g be the affine Kac–Moody algebra associated with (A,P,Π,P∨,Π∨). We set Q :=⊕
i∈I Zαi ⊂ P, which is called the root lattice, and Q+ :=

∑
i∈I Z�0αi ⊂ Q. For β =

∑
i∈I biαi ∈

Q+, we write |β| =
∑

i∈I bi. We denote by δ ∈ Q the imaginary root and by c ∈ Q∨ the central
element. Note that the positive imaginary root Δim

+ is equal to Z>0 δ and the center of g is
generated by c. We write Pcl := P/(P ∩ Qδ), which is called the classical weight lattice, and take
ρ ∈ P (respectively ρ∨ ∈ P∨) such that 〈hi, ρ〉 = 1 (respectively 〈ρ∨, αi〉 = 1) for any i ∈ I. There
exists a Q-valued non-degenerate symmetric bilinear form ( , ) on P satisfying

〈hi, λ〉 =
2(αi, λ)
(αi, αi)

and 〈c, λ〉 = (δ, λ)

for any i ∈ I and λ ∈ P. We write W := 〈si | i ∈ I〉 ⊂ Aut(P) for the Weyl group of A, where
si(λ) := λ− 〈hi, λ〉αi for λ ∈ P. We will use the standard convention in [Kac90] of choosing
0 ∈ I except for type A(2)

2n , in which case we take the longest simple root to be α0, and for types
B

(1)
2 , A(2)

3 and E(1)
k (k = 6, 7, 8), in which cases we take the following Dynkin diagrams.

A
(2)
2n : ◦��

n
◦
n−1

◦
n−2

· · · ◦
1

◦
0

�� B
(1)
2 : ◦

0

��◦��
2

◦
1

�� A
(2)
3 : ◦��

0
◦
2

�� ◦��
1

E
(1)
6 :

◦ 0

◦ 2

◦
1

◦
3

◦
4

◦
5

◦
6

E
(1)
7 :

◦ 2

◦
0

◦
1

◦
3

◦
4

◦
5

◦
6

◦
7

E
(1)
8 :

◦ 2

◦
1

◦
3

◦
4

◦
5

◦
6

◦
7

◦
8

◦
0

(2.1)

Note that B(1)
2 and A(2)

3 in (2.1) are denoted by C(1)
2 and D(2)

3 , respectively, in [Kac90].
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Let g0 be the subalgebra of g generated by the Chevalley generators ei, fi and hi for
i ∈ I0 := I \ {0}, and let W0 be the subgroup of W generated by si for i ∈ I0. Note that g0

is a finite-dimensional simple Lie algebra and W0 contains the longest element w0.
Let q be an indeterminate and k the algebraic closure of the subfield C(q) in the algebraically

closed field k̂ :=
⋃
m>0 C((q1/m)). For m,n ∈ Z�0 and i ∈ I, we define qi = q(αi,αi)/2 and

[n]i =
qni − q−ni
qi − q−1

i

, [n]i! =
n∏
k=1

[k]i,
[m
n

]
i
=

[m]i!
[m− n]i![n]i!

.

Let d be the smallest positive integer such that d((αi, αi)/2) ∈ Z for all i ∈ I.

Definition 2.1. The quantum affine algebra Uq(g) associated with an affine Cartan datum
(A,P,Π,P∨,Π∨) is the associative algebra over k with 1 generated by ei, fi (i ∈ I) and qh (h ∈
d−1P∨) which satisfies the following relations:

(i) q0 = 1 and qhqh
′
= qh+h

′
for h, h′ ∈ d−1P∨;

(ii) qheiq
−h = q〈h,αi〉ei and qhfiq−h = q−〈h,αi〉fi for h ∈ d−1P∨ and i ∈ I;

(iii) eifj − fjei = δij((Ki −K−1
i )/(qi − q−1

i )), where Ki = qhi
i ;

(iv)
∑1−aij

k=0 (−1)ke(1−aij−k)
i eje

(k)
i =

∑1−aij

k=0 (−1)kf (1−aij−k)
i fjf

(k)
i = 0 for i �= j;

here e(k)i = eki /[k]i! and f (k)
i = fki /[k]i!.

Let us denote by U ′
q(g) the k-subalgebra of Uq(g) generated by ei, fi and K±1

i (i ∈ I). The
coproduct Δ of U ′

q(g) is given by

Δ(qh) = qh⊗ qh, Δ(ei) = ei⊗K−1
i + 1⊗ ei, Δ(fi) = fi⊗ 1 +Ki⊗ fi,

and the bar involution¯of U ′
q(g) is defined as

q1/m → q−1/m, ei → ei, fi → fi, Ki → K−1
i .

Let Cg be the category of finite-dimensional integrable U ′
q(g)-modules, i.e. finite-dimensional

modules M with a weight decomposition

M =
⊕
λ∈Pcl

Mλ where Mλ = {u ∈M | Kiu = q
〈hi,λ〉
i u}.

Note that the trivial module 1 is contained in Cg and the tensor product ⊗ gives a monoidal
category structure on Cg. It is known that the Grothendieck ring K(Cg) is a commutative ring
[FR99]. A simple module L in Cg contains a non-zero vector u ∈ L of weight λ ∈ Pcl such that
(i) 〈hi, λ〉 � 0 for all i ∈ I0 and (ii) all the weights of L are contained in λ−∑i∈I0 Z�0 cl(αi),
where cl : P → Pcl is the canonical projection. Such a λ is unique, and u is unique up to a
constant multiple. We call λ the dominant extremal weight of L and u a dominant extremal weight
vector of L.

Let P0
cl := {λ ∈ Pcl | 〈c, λ〉 = 0}. For each i ∈ I0 we set

�i := gcd(c0, ci)−1cl(c0Λi − ciΛ0) ∈ P0
cl ,

where the central element c is equal to
∑

i∈I cihi. Note that P0
cl =

⊕
i∈I0 Z�i. For any i ∈ I0,

there exists a unique simple module V (�i) in Cg satisfying certain good conditions (see [Kas02,
§ 5.2]), which is called the ith fundamental representation. Note that the dominant extremal
weight of V (�i) is �i.

For simple modules M and N in Cg, we say that M and N commute or M commutes with
N if M ⊗N � N ⊗M . We say that M and N strongly commute or M strongly commutes with
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N if M ⊗N is simple. Note that M ⊗N is simple if and only if N ⊗M is simple, since K(Cg)
is a commutative ring. It is clear that if simple modules M and N strongly commute, then they
commute. We say that a simple module M is real if M strongly commutes with itself.

For an integrable U ′
q(g)-module M , we denote by Mz the affinization of M and by

zM : Mz →Mz the U ′
q(g)-module automorphism of weight δ. Note that Mz � k[z±1] ⊗k M for

an indeterminate z as a k-vector space. For x ∈ k×, we define

Mx :=Mz/(zM − x)Mz.

We call x a spectral parameter. The functor Tx defined by Tx(M) = Mx is an endofunctor of Cg

that commutes with tensor products (see [Kas02, § 4.2] for details).
It is known that a fundamental representation is a good module, which is a simple U ′

q(g)-
module with good properties including a bar involution, a crystal basis with simple crystal
graph, and a global basis (see [Kas02] for the precise definition). We say that a U ′

q(g)-module M
is quasi-good if

M � Vc

for some good module V and c ∈ k×. Note that any quasi-good module is a simple U ′
q(g)-module.

Moreover the tensor product M⊗k :=M ⊗ · · ·⊗M︸ ︷︷ ︸
k times

for a quasi-good module M and k ∈ Z�1 is

again quasi-good.
For a U ′

q(g)-moduleM , we denote by M̄ = {ū | u ∈M} the U ′
q(g)-module defined by xū := x̄u

for x ∈ U ′
q(g). Then we have

Ma � (M̄) ā and M ⊗N � N̄ ⊗ M̄ for any M,N ∈ Cg and a ∈ k×.

Note that V (�i) is bar-invariant , i.e. V (�i) � V (�i) (see [AK97, Appendix A]).
Let mi be a positive integer such that

Wπi ∩
(
πi + Zδ

)
= πi + Zmiδ,

where πi is an element of P such that cl(πi) = �i. Note that mi = (αi, αi)/2 in the case where
g is the dual of an untwisted affine algebra, and mi = 1 otherwise. Then for x, y ∈ k× we have
(see [AK97, § 1.3])

V (�i)x � V (�i)y if and only if xmi = ymi . (2.2)

We set

σ(g) := I0 × k×/ ∼, (2.3)

where the equivalence relation is given by

(i, x) ∼ (j, y) ⇐⇒ V (�i)x � V (�j)y ⇐⇒ i = j and xmi = ymj . (2.4)

We denote by [(i, a)] the equivalence class of (i, a) in σ(g). When confusion is unlikely to arise,
we simply write (i, a) for the equivalence class [(i, a)].

The monoidal category Cg is rigid. For M ∈ Cg, we denote by ∗M and M∗ the right and left
duals of M , respectively. We set

p∗ := (−1)〈ρ
∨,δ〉q〈c,ρ〉 and p̃ := (p∗)2 = q2〈c,ρ〉. (2.5)
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The integer 〈ρ∨, δ〉 is called the Coxeter number , and 〈c, ρ〉 is called the dual Coxeter number
(see [Kac90, Ch. 6]). For the reader’s convenience we list p∗ for all types in the following table.

Type of g A
(1)
n B

(1)
n C

(1)
n D

(1)
n A

(2)
2n A

(2)
2n−1 D

(2)
n+1

(n � 1) (n � 2) (n � 3) (n � 4) (n � 1) (n � 2) (n � 3)

p∗ (−q)n+1 q2n−1 qn+1 q2n−2 −q2n+1 −q2n (−1)n+1q2n

Type of g E
(1)
6 E

(1)
7 E

(1)
8 F

(1)
4 G

(1)
2 E

(2)
6 D

(3)
4

p∗ q12 q18 q30 q9 q4 −q12 q6

(2.6)

Then for any M ∈ Cg we have

M∗∗ �M(p̃)−1 and ∗∗M �Mp̃,

and for i ∈ I0 and x ∈ k× we have(
V (�i)x

)∗ � V (�i∗)(p∗)−1x and ∗(V (�i)x
) � V (�i∗)p∗x, (2.7)

where i∗ ∈ I0 is defined by αi∗ = −w0 αi (see [AK97, Appendix A]). Note that the involution
i → i∗ is the identity for all types except An, Dn and E6, which are given as follows:

(a) (type An) i∗ = n+ 1 − i;

(b) (type Dn) i∗ =

{
n− (1 − ε) if n is odd and i = n− ε (ε = 0, 1),
i otherwise;

(c) (type E6) the map i → i∗ is determined by

i∗ =

⎧⎪⎨
⎪⎩

6 if i = 1,
i if i = 2, 4,
5 if i = 3,

where the Dynkin diagram of type E6 is given in (A.3) in Appendix A.

2.2 R-matrices
We recall the notion of R-matrices on U ′

q(g)-modules and their coefficients (see [Dri86], as well
as [AK97, Appendices A and B] and [Kas02, § 8], for details). Choose a basis {Pν}ν of U+

q (g) and
a basis {Qν}ν of U−

q (g) that are dual to each other with respect to a suitable coupling between
U+
q (g) and U−

q (g). For U ′
q(g)-modules M and N , we define

Runiv
M,N (u⊗ v) := q(wt(u),wt(v))

∑
ν

Pνv ⊗Qνu for u ∈M and v ∈ N ,

so that Runiv
M,N gives a U ′

q(g)-linear homomorphism M ⊗N → N ⊗M , called the universal
R-matrix, provided that the infinite sum has a meaning. As Runiv

M,Nz
converges in the z-adic

topology for M,N ∈ Cg, we have a morphism of k((z))⊗U ′
q(g)-modules

Runiv
M,Nz

: k((z)) ⊗
k[z±1]

(M ⊗Nz) −−→ k((z)) ⊗
k[z±1]

(Nz ⊗M).

Note that Runiv
M,Nz

is an isomorphism.
Let M and N be non-zero modules in Cg. The universal R-matrix Runiv

M,Nz
is rationally

renormalizable if there exists f(z) ∈ k((z))× such that

f(z)Runiv
M,Nz

(
M ⊗Nz

) ⊂ Nz ⊗M.
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In this case, we can choose cM,N (z) ∈ k((z))× such that for any x ∈ k×, the specialization of
Rren
M,Nz

:= cM,N (z)Runiv
M,Nz

: M ⊗Nz → Nz ⊗M at z = x,

Rren
M,Nz

∣∣
z=x

: M ⊗Nx → Nx ⊗M,

does not vanish. Note that Rren
M,Nz

and cM,N (z) are unique up to a multiple of k[z±1]× =⊔
n∈Z

k×zn. We call cM,N (z) the renormalizing coefficient. We denote by r
M,N

the specialization
at z = 1,

r
M,N

:=Rren
M,Nz

|z=1 : M ⊗N → N ⊗M, (2.8)

and call it the R-matrix. The R-matrix rM,N is well-defined up to a constant multiple whenever
Runiv
M,Nz

is rationally renormalizable. By the definition, r
M,N

never vanishes.
Suppose that M and N are simple U ′

q(g)-modules in Cg. Let u and v be dominant extremal
weight vectors of M and N , respectively. Then there exists aM,N (z) ∈ k[[z]]× such that

Runiv
M,Nz

(u⊗ vz) = aM,N (z)(vz ⊗u).

Thus we have a unique k(z)⊗U ′
q(g)-module isomorphism

Rnorm
M,Nz

:= aM,N (z)−1Runiv
M,Nz

∣∣
k(z)⊗k[z±1](M⊗Nz)

from k(z) ⊗k[z±1] (M ⊗Nz) to k(z) ⊗k[z±1] (Nz ⊗M), which satisfies

Rnorm
M,Nz

(u⊗ vz) = vz ⊗ u.

We call aM,N (z) the universal coefficient of M and N , and call Rnorm
M,Nz

the normalized R-matrix.
Let dM,N (z) ∈ k[z] be a monic polynomial of the smallest degree such that the image of

dM,N (z)Rnorm
M,Nz

(M ⊗Nz) is contained in Nz ⊗M ; we call it the denominator of Rnorm
M,Nz

. Then we
have

Rren
M,Nz

= dM,N (z)Rnorm
M,Nz

: M ⊗Nz −−→ Nz ⊗M up to a multiple of k[z±1]×.

Thus

Rren
M,Nz

= aM,N (z)−1dM,N (z)Runiv
M,Nz

and cM,N (z) =
dM,N (z)
aM,N (z)

up to a multiple of k[z±1]×. In particular, Runiv
M,Nz

is rationally renormalizable whenever M and
N are simple.

The denominator formulas between fundamental representations are summarized for all types
in Appendix A.

The next theorem follows from the results of [AK97, Cha10, Kas02, KKKO15]. In the
theorem, (ii) follows essentially from [KKKO15, Corollary 3.16] together with properties of
R-matrices (see also [KKOP20, Proposition 3.16 and Corollary 3.17]), and (i), (iii) and (iv) were
conjectured in [AK97, § 2] and proved in [AK97, § 4] for affine types A and C, in [Kas02, § 9]
for general cases in terms of good modules, and in [Cha10, §§ 4 and 6] using the braid group
actions.

Theorem 2.2 [AK97, Cha10, Kas02, KKKO15].

(i) For good modulesM andN , the zeros of dM,N (z) belong to C[[q1/m]]q1/m for somem ∈ Z>0.
(ii) For simple modules M and N such that one of them is real, Mx and Ny strongly commute

with each other if and only if dM,N (z)dN,M (1/z) does not vanish at z = y/x.
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(iii) Let Mk be a good module with a dominant extremal vector uk of weight λk, and let ak ∈ k×

for k = 1, . . . , t. Assume that aj/ai is not a zero of dMi,Mj (z) for any 1 � i < j � t. Then
the following statements hold.
(a) (M1)a1 ⊗ · · · ⊗ (Mt)at is generated by u1 ⊗ · · · ⊗ ut.
(b) The head of (M1)a1 ⊗ · · · ⊗ (Mt)at is simple.
(c) Any non-zero submodule of (Mt)at ⊗ · · · ⊗ (M1)a1 contains the vector ut ⊗ · · · ⊗ u1.
(d) The socle of (Mt)at ⊗ · · · ⊗ (M1)a1 is simple.
(e) Let r: (M1)a1⊗· · ·⊗(Mt)at →(Mt)at ⊗ · · · ⊗ (M1)a1 be the specialization of r

M1,...,Mt
:=∏

1�j<k�t rMj ,Mk
at zk = ak; see (2.8). Then the image of r is simple and coincides with

the head of (M1)a1 ⊗ · · · ⊗ (Mt)at and also with the socle of (Mt)at ⊗ · · · ⊗ (M1)a1 .
(iv) For any simple integrable U ′

q(g)-module M , there exists a finite sequence in σ(g) (see (2.3))
such that M has

∑t
k=1�ik as a dominant extremal weight and is isomorphic to a simple

subquotient of V (�i1)a1 ⊗ · · ·V (�it)at . Moreover, such a sequence
(
(i1, a1), . . . , (it, at)

)
is

unique up to a permutation.
We call

∑t
k=1(ik, ak) ∈ Z⊕σ(g) the affine highest weight of M .

2.3 Hernandez–Leclerc categories
Recall σ(g) in (2.3). For (i, x) and (j, y) ∈ σ(g), we put d arrows from (i, x) to (j, y), where d
is the order of the zeros of dV (�i),V (�j)(zV (�j)/zV (�i)) at zV (�j)/zV (�i) = y/x. Then σ(g) has a
quiver structure. Note that (i, x) and (j, y) are linked in σ(g) if and only if the tensor product
V (�i)x ⊗ V (�j)y is reducible [AK97, Corollary 2.4]. The denominator formulas are explicitly
given in Appendix A.

We choose a connected component σ0(g) of σ(g). Since a connected component of σ(g) is
unique up to a spectral parameter shift, σ0(g) is uniquely determined up to a quiver isomorphism.
We set

qs = q1/2 and qt = q1/3. (2.9)

The distance d(u, v) between two vertices u and v in a finite Dynkin diagram is the length of the
path connecting them. For example, d(1, 4) = 2 in a Dynkin diagram of type D4, and d(1, 3) = 2
in a Dynkin diagram of type F4. We denote by d◦(i, j) the distance between i and j in the
Dynkin diagram of g0. For the rest of this paper, we make the following choices of σ0(g) (see
table (2.6) for the range of n):

σ0(X) := {(i, (−q)p) ∈ I0 × k× | p ≡2 d◦(1, i)} (X = A(1)
n , D(1)

n , E
(1)
k (k = 6, 7, 8)),

σ0(B(1)
n ) := {(i, (−1)n+iqsq

m), (n, qm) | 1 � i � n− 1, m ∈ Z},
σ0(C(1)

n ) := {(i, (−qs)p) ∈ I0 × k× | p ≡2 d◦(1, i)},
σ0(F

(1)
4 ) := {(i, (−1)iq2p−δi,3

s ) ∈ I0 × k× | p ∈ Z},
σ0(G

(1)
2 ) := {(i, (−qt)p) ∈ I0 × k× | p ≡2 d◦(2, i)},

σ0(A
(2)
2n ) := {(i, (−q)p) ∈ I0 × k× | p ∈ Z},

σ0(A
(2)
2n−1) := {(i,±(−q)p), (n, (−q)r) | 1 � i < n, p ≡2 i+ 1, r ≡2 n+ 1},

σ0(D
(2)
n+1) := {(i, (√−1

n+1−i
)(−q)p), (n,±(−q)r) | 1 � i < n, p ≡2 i+ 1, r ≡2 n+ 1},

σ0(E
(2)
6 ) := {(i,±qr), (i′,

√−1(−q)r′
) | i ∈ {1, 2}, i′ ∈ {3, 4}, r ≡2 i+ 1, r′ ≡2 i

′ + 1},
σ0(D

(3)
4 ) := {(1, qr), (1, ωqr), (1, ω2qr), (2,−qr+1) | r ≡2 0} (ω2 + ω + 1 = 0),
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where a ≡2 bmeans that a ≡ b mod 2 (see [HL10, § 3.7], [KKKO16, § 4.1], [KO19, § 6] and [OS19a,
§ 6]). Note that in [OS19a, § 6] the category CQ

g and σQ(g) were dealt with only in exceptional
cases, but it is easy to obtain σ0(g) using σQ(g). We use the notation B

(1)
2 and A

(2)
3 instead of

C
(1)
2 and D(2)

3 , respectively. Here we use the standard convention for Dynkin diagrams in [Kac90,
Ch. 4] except for A(2)

2n , A(2)
3 , B(1)

2 and E(1)
k (k = 6, 7, 8), which are given in (2.1).

We define C 0
g to be the smallest full subcategory of Cg for which the following hold:

(a) C 0
g contains V (�i)x for all (i, x) ∈ σ0(g);

(b) C 0
g is stable by taking subquotients, extensions and tensor products.

For symmetric affine types, this category was introduced in [HL10]. Note that every simple
module in Cg is isomorphic to a tensor product of certain spectral parameter shifts of some
simple modules in C 0

g (see [HL10, § 3.7]).

2.4 The categories C Q
g

In this subsection, we recall very briefly a certain subcategory CQ
g of Cg categorifying the

coordinate ring C[N ] of the maximal unipotent group N associated with a certain simple Lie
algebra.

This subcategory CQ
g was introduced in [HL15] for simply laced affine type ADE, in

[KKKO16] for twisted affine types A(2) and D(2), in [KO19, OS19b] for untwisted affine
types B(1) and C(1), and in [OS19a] for exceptional affine type. The quantum affine Schur–Weyl
duality functor between the finite-dimensional module category of a quiver Hecke algebra and
CQ

g was also constructed in [KKK15] for untwisted affine types A(1) and D(1), in [KKKO16] for
twisted affine types A(2) and D(2), in [KO19] for untwisted affine types B(1) and C(1), in [OS19a]
for exceptional affine type, and in [Fuj20] for simply laced affine type ADE in a geometric manner.

We shall describe σQ(g) and CQ
g by using Q-data [FO21]. A Q-datum generalizes a Dynkin

quiver with a height function, which provides a uniform way of describing the Hernandez–Leclerc
category CQ

g . Our brief explanation follows [FO21, § 3] (see also [FHOO21, § 4] and [KKOP21,
§ 6]). Let g be an affine Kac–Moody algebra and let gfin be the simply laced finite-type Lie algebra
corresponding to the affine type of g in table (4.5). Let Ifin be the index set of gfin and let Dfin

be the Dynkin diagram for gfin.
We first assume that g is of untwisted type. We define an Dynkin diagram automorphism  of

Dfin as follows. For g = A
(1)
n , D

(1)
n or E(1)

k type (k = 6, 7, 8) we set  := id, and for the remaining
types  is defined as follows (see [FO21, § 3.1]).

B(1)
n -type:

(
Dfin : ◦

1
◦
2

◦
2n−2
◦

2n−1
◦ , (k) = 2n− k

)
=⇒ DBn

: ◦
1

◦
2

◦
n−1

◦��
n
,

C(1)
n -type:

(
Dfin :

◦
n����◦

1
◦
2

◦
n−1 ◦

n+1

���� , (k)=

⎧⎪⎨
⎪⎩
k if k � n− 1,
n+ 1 if k = n,

n if k = n+ 1

)
=⇒ DCn

: ◦
1

◦
2

◦
n−1

◦
n

�� ,

F
(1)
4 -type:

(
Dfin :

◦2

◦
1

◦
3

◦
4

◦
5

◦
6

,

⎧⎪⎨
⎪⎩
(1) = 6, (6) = 1,
(3) = 5, (5) = 3,
(4) = 4, (2) = 2

)
=⇒ DF4 : ◦

1
◦
2

◦��
3

◦
4
,

G
(1)
2 -type:

(
Dfin :

◦
3����◦

1
◦

2 ◦
4

����
,

{
(1) = 3, (3) = 4, (4) = 1,
(2) = 2

)
=⇒ DG2 : ◦

1
◦��
2
.
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Let I0 = {1, 2, . . . , n} be the index set of g0. Note that Ifin = I0 when g = A
(1)
n , D

(1)
n , E

(1)
k

(k = 6, 7, 8). Let ord() be the order of . For i ∈ Ifin, we denote by orb(i) the orbit of i under
the action  and set di := |orb(i)|. We identify the set of orbits of Ifin with I0 by mapping orb(i) →
min{orb(i)} for g �= F

(1)
4 and mapping orb(1) → 1, orb(3) → 2, orb(4) → 3 and orb(2) → 4 for

g = F
(1)
4 . We write π : Ifin → I0 for the projection via this identification.

Definition 2.3 [FO21, Definition 3.5]. A function ξ : Ifin → Z is called a height function on
(Dfin, ) if the following two conditions are satisfied.

(i) For any i, j ∈ Ifin such that d(i, j) = 1 and di = dj , we have |ξi − ξj | = di.
(ii) For any i, j ∈ Ifin such that d(i, j) = 1 and 1 = di < dj = ord(), there exists a unique

element j◦ ∈ orb(j) such that |ξi − ξj◦ | = 1 and ξ�k(j◦) = ξj◦ − 2k for any 0 � k < ord().

Here d(i, j) denotes the distance between i and j in the Dynkin diagram Dfin. We call the triple
Q = (Dfin, , ξ) a Q-datum for g.

For a Q-datum Q = (Dfin, , ξ) associated to g, let

ÎQ := {(i, p) ∈ Ifin × Z | p− ξi ∈ 2diZ}.
The generalized -Coxeter element τQ ∈ Wfin � Aut(Dfin) associated with Q is defined in [FO21,
Definition 3.33] and can be understood as a generalization of a Coxeter element. Here Wfin is
the Weyl group of gfin.

For i ∈ I0, we denote by o(i) the corresponding orbit of Ifin. For each i ∈ I0, we denote by i◦

the unique vertex in the orbit o(i) satisfying ξi◦ = max{ξj | j ∈ o(i)}. In this paper, we assume
further that the height function ξ satisfies

ξ�k(i◦) = ξi◦ − 2k for each i ∈ I0 and 0 � k < di. (2.10)

Let {i1, i2, . . . , in} be a total order of I0 satisfying ξi◦1 � ξi◦2 � · · · � ξi◦n . Then we have

τQ = si◦1si◦2 · · · si◦n ∈ Wfin � Aut(Dfin)

(see [FO21, § 3.6] and also [FHOO21, Proposition 4.4] for more details).
Let Δ+

Q be the set of positive roots of gfin, and let Φ̂ := Δ+
Q × Z. For each i ∈ Ifin we define

γQi := (1 − τdi
Q )Λi ∈ Δ+

Q,

where Λi is the ith fundamental weight of gfin. It is shown in [HL15, § 2.2] and [FO21,
Theorem 3.35] that there exists a unique bijection ψQ : ÎQ → Φ̂ defined inductively as follows:

(i) ψQ(i, ξi) = (γQi , 0);
(ii) if ψQ(i, p) = (β,m), then define:

(a) ψQ(i, p± 2di) = (τ∓di
Q (β),m) if τ∓di

Q (β) ∈ Δ+
Q;

(b) ψQ(i, p± 2di) = (−τ∓di
Q (β),m± 1) if τ∓di

Q (β) ∈ −Δ+
Q.

Let IQ := ψ−1
Q (Δ+

Q × {0}) ⊂ Ifin × Z. Then one can describe

IQ = {(i, p) ∈ ÎQ | ξi∗ − ord()h∨<p � ξi},
where h∨ is the dual Coxeter number of g0 (see [FO21, Theorem 3.35] and also [FHOO21,
Proposition 4.15]). We define

σQ(g) := {ζ(i, p) | (i, p) ∈ IQ},
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where we set q
sh

:= q1/ord(�) and

ζ(i, p) :=

⎧⎪⎪⎨
⎪⎪⎩

(π(i), (−q
sh

)p) if g = A
(1)
n , C

(1)
n , D

(1)
n , E

(1)
6,7,8, G

(1)
2 ,

(π(i), (−1)i+n(q
sh

)p) if g = B
(1)
n ,

(π(i), (−1)π(i)(q
sh

)p) if g = F
(1)
4

(see [FO21, § 5.4]). We define

φQ : Δ+
Q

∼−−→σQ(g) (2.11)

by φQ(β) := ζ ◦ ψ−1
Q (β, 0) for β ∈ Δ+

Q. The map φQ is bijective.
For the rest of this paper, we make the following choices of Q-data:

• for simply laced ADE type, ord() = 1 and the height function ξ is defined in Appendix A.1;

• for g = B
(1)
n , ord() = 2 and Q = ◦

2n−3

1

��◦
2n−5

2

�� ◦1
n−1

��◦0
n

��◦
−1

n+1
◦1

n+2

�� ◦��
2n−7

2n−2
◦

2n−5

2n−1
;

• for g = C
(1)
n , ord() = 2 and Q =

◦��−n−1 n+1

◦0
1

��◦
−1

2

�� ��◦
−n+2

n−1

��◦
−n+1

n
;

• for g = F
(1)
4 , ord() = 2 and Q =

◦−2 2

��◦0
1

��◦
−2

3

��◦
−3

4

��◦
−4

5
◦
−2

6

�� ;

• for g = G
(1)
2 , ord() = 3 and Q =

◦��−3 3

◦��
−1

1
◦0
2

��◦
−5

4
.

Here an underlined integer stands for the value of ξi at each vertex i ∈ Dfin and an arrow i→ j
means that ξi > ξj and d(i, j) = 1 in the Dynkin diagram Dfin. Note that our choice of Q satisfies
(2.10). Then τQ is given as follows:

• for simply laced ADE type, τQ is the same as τ in Appendix A.1;
• for g = B

(1)
n , C

(1)
n , τQ = s1s2 · · · sn;

• for g = F
(1)
4 , τQ = s1s2s3s4;

• for g = G
(1)
2 , τQ = s2s1.

In this case the set σQ(g) is contained in σ0(g) in § 2.3 and can be written explicitly as follows
(where a �2 b means that a � b and a ≡ b mod 2):

σQ(A(1)
n ) := {(i, (−q)k) ∈ σ0(A(1)

n ) | i− 2n+ 1 �2 k �2 −i+ 1},
σQ(B(1)

n ) := {(i, (−1)n+iqks ), (n, q
k′) ∈ σ0(B(1)

n ) | i < n,−2n− 2i+ 3 �2 k �2 2n− 2i− 1,

−2n+ 2 � k′ � 0},
σQ(C(1)

n ) := {(i, (−qs)k) ∈ σ0(C(1)
n ) | −d◦(1, i) − 2n �2 k �2 −d◦(1, i)},

σQ(D(1)
n ) := {(i, (−q)k) ∈ σ0(D(1)

n ) | −d◦(1, i) − 2n+ 4 �2 k �2 −d◦(1, i)},
σQ(E(1)

6 ) := {(i, (−q)k) ∈ σ0(E
(1)
6 ) | d◦(1, i) − 14 �2 k �2 −d◦(1, i) + 2δi,2},

σQ(E(1)
7 ) := {(i, (−q)k) ∈ σ0(E

(1)
7 ) | −d◦(1, i) − 16 + 2δi,2 �2 k �2 −d◦(1, i) + 2δi,2},
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σQ(E(1)
8 ) := {(i, (−q)k) ∈ σ0(E

(1)
8 ) | −d◦(1, i) − 28 + 2δi,2 �2 k �2 −d◦(1, i) + 2δi,2},

σQ(F (1)
4 ) :=

{
(i, (−1)iqk) ∈ σ0(F

(1)
4 )

∣∣∣∣ d◦(i, 3) − 10 +
δi,3
2

� k � d◦(i, 3) − 2 +
δi,3
2

}
,

σQ(G(1)
2 ) := {(i, (−qt)k) ∈ σ0(G

(1)
2 ) | −d◦(2, i) − 10 �2 k �2 −d◦(2, i)},

where d◦(i, j) denotes the distance between i and j in the Dynkin diagram of g0.
We now assume that g is of twisted type. Then one can define

σQ(A(2)
N ) := {(i, (−q)k)� | (i, (−q)k) ∈ σQ(A(1)

N )} (N = 2n− 1 or 2n),

σQ(D(2)
n+1) := {(i, (−q)k)� | (i, (−q)k) ∈ σQ(D(1)

n+1)},
σQ(E(2)

6 ) := {(i, (−q)k)� | (i, (−q)k) ∈ σQ(E(1)
6 )},

σQ(D(3)
4 ) := {(i, (−q)k)† | (i, (−q)k) ∈ σQ(D(1)

4 )},

where for (i, a) ∈ σ0(g
(1)
N ) we set

(i, a)�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i, a) if g = A
(1)
N , i � �(N + 1)/2� or g = E

(1)
6 , i = 1,

(N + 1 − i, (−1)Na) if g = A
(1)
N , i > �(N + 1)/2�,

(i,
√−1n+1−i

a) if g = D
(1)
n+1, i � n− 1,

(n, (−1)ia) if g = D
(1)
n+1, i ∈ {n, n+ 1},

(2, a) if g = E
(1)
6 , i = 3,

(2,−a) if g = E
(1)
6 , i = 5,

(1,−a) if g = E
(1)
6 , i = 6,

(3,
√−1a) if g = E

(1)
6 , i = 4,

(4,
√−1a) if g = E

(1)
6 , i = 2

and

(i, a)† =

{
(2, a) if i = 2,
(1, (δi,1 + δi,3ω + δi,4ω

2)a) if i �= 2

(see [KKKO16, Proposition 4.3] and [OS19a, Proposition 6.5] for details of � and †). The bijection
φQ : Δ+

Q
∼−−→σQ(g) is defined by composing the bijection for untwisted type with the maps �

and †.
Comparing the above descriptions of σQ(g) with the descriptions of σ0(g) given in § 2.3, one

can easily show that

σ0(g) =
⊔
k∈Z

σQ(g)∗k,

σQ(g)∗k ∩ σQ(g)∗k
′
= ∅ for k, k′ ∈ Z with k �= k′,

(2.12)

where σQ(g)∗k := {(i∗k, (p∗)ka) | (i, a) ∈ σQ(g)} with i∗k = i if k is even and i∗k = i∗ if k is odd
(see [FO21, Proposition 5.9]). Note that p∗ is given in (2.5).

181

https://doi.org/10.1112/S0010437X21007739 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007739


M. Kashiwara et al.

Let CQ
g be the smallest full subcategory of C 0

g with the following properties:

(a) CQ
g contains 1 and V (�i)x for all (i, x) ∈ σQ(g);

(b) CQ
g is stable by taking subquotients, extensions and tensor products.

It was shown in [HL15, Theorem 6.1], [KKKO16, Corollary 5.6], [KO19, Corollary 6.6] and
[OS19a, § 6] that the Grothendieck ring K(CQ

g ) of the monoidal category CQ
g is isomorphic to

the coordinate ring C[N ] of the maximal unipotent group N associated with gfin. The set Δ+
Q

has a convex order ≺Q arising from Q.
Let β ∈ Δ+

Q and write (i, a) = φQ(β). Then set

VQ(β) := V (�i)a ∈ CQ
g .

Under the categorification, the modules VQ(β) correspond to the dual PBW vectors of C[N ] with
respect to the convex order ≺Q on Δ+

Q.
The proposition below follows from [KKK15, § 4.3], [KKKO16, Proposition 4.9 and

Theorem 5.1], [KO19, § 4.3] and [OS19a, § 6].

Proposition 2.4 [KKK15, KKKO16, KO19, OS19a]. For a minimal pair (α, β) of a positive
root γ ∈ Δ+

Q, VQ(γ) is isomorphic to the head of VQ(α) ⊗ VQ(β). Here, (α, β) is called a minimal
pair of γ if α ≺Q β, γ = α+ β and there exists no pair (α′, β′) such that γ = α′ + β′ and α ≺Q

α′ ≺Q β
′ ≺Q β.

3. New invariants for pairs of modules

In this section, we recall several properties of the new invariants arising from R-matrices
introduced in [KKOP20].

We set

ϕ(z) :=
∞∏
s=0

(1 − p̃sz) =
∞∑
n=0

(−1)np̃n(n−1)/2∏n
k=1(1 − p̃k)

zn ∈ k[[z]] ⊂ k̂[[z]],

where p̃ is given in (2.5). We consider the subgroup G of k((z))× given by

G :=
{
czm

∏
a∈k×

ϕ(az)ηa

∣∣∣∣ c ∈ k×, m ∈ Z,
ηa ∈ Z vanishes except for finitely many a

}
.

Note that if Runiv
M,Nz

is rationally renormalizable for M,N ∈ Cg, then the renormalizing coefficient
cM,N (z) belongs to G (see [KKOP20, Proposition 3.2]). In particular, for simple modules M and
N in Cg, the universal coefficient aM,N (z) belongs to G.

For a subset S of Z, let p̃S := {p̃k | k ∈ S}. We define the group homomorphisms

Deg : G → Z and Deg∞ : G → Z

by

Deg(f(z)) =
∑

a∈p̃ Z�0

ηa −
∑

a∈p̃ Z>0

ηa and Deg∞(f(z)) =
∑
a∈p̃ Z

ηa

for f(z) = czm
∏
a∈k× ϕ(az)ηa ∈ G.

Lemma 3.1 [KKOP20, Lemma 3.4]. Let f(z) ∈ G.

(i) If f(z) ∈ k(z)×, then we have f(z) ∈ G,

Deg∞(f(z)) = 0 and Deg(f(z)) = 2 zeroz=1f(z).
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(ii) If g(z), h(z) ∈ G satisfy g(z)/h(z) ∈ k[z±1], then Deg(h(z)) � Deg(g(z)).
(iii) We have that Deg∞f(z) = −Deg

(
f(p̃nz)

)
= Deg

(
f(p̃−nz)

)
for n� 0.

(iv) If Deg∞
(
f(cz)

)
= 0 for any c ∈ k×, then f(z) ∈ k(z)×.

The following invariants for a pair of modules M and N in Cg such that Runiv
M,Nz

is rationally
renormalizable were introduced in [KKOP20] by using the homomorphisms Deg and Deg∞.

Definition 3.2. For non-zero modules M and N in Cg such that Runiv
M,Nz

is rationally
renormalizable, we define the integers Λ(M,N) and Λ∞(M,N) by

Λ(M,N) := Deg(cM,N (z)),

Λ∞(M,N) := Deg∞(cM,N (z)).

We have Λ(M,N) ≡ Λ∞(M,N) mod 2.

Proposition 3.3 [KKOP20, Lemma 3.7]. For any simple modules M,N ∈ Cg and x ∈ k×,
we have

Λ(M,N) = Λ(Mx, Nx) and Λ∞(M,N) = Λ∞(Mx, Nx).

Proposition 3.4 [KKOP20, Lemmas 3.7 and 3.8 and Corollary 3.23]. Let M and N be simple
modules in Cg. Then the following hold:

(i) Λ∞(M,N) = −Deg∞(aM,N (z));
(ii) Λ∞(M,N) = Λ∞(N,M);
(iii) Λ∞(M,N) = −Λ∞(M∗, N) = −Λ∞(M, ∗N);
(iv) in particular, Λ∞(M,N) = Λ∞(M∗, N∗) = Λ∞(∗M, ∗N).

Proposition 3.5 [KKOP20, Lemma 3.7 and Proposition 3.18]. Let M and N be simple
modules in Cg. Then the following hold:

(i) Λ(M,N) = Λ(N∗,M) = Λ(N, ∗M);
(ii) in particular,

Λ(M,N) = Λ(M∗, N∗) = Λ(∗M, ∗N).

Proposition 3.6 [KKOP20, Proposition 3.9]. Let M and N be modules in Cg, and let M ′

and N ′ be non-zero subquotients of M and N , respectively. Assume that Runiv
M,Nz

is rationally

renormalizable. Then Runiv
M ′,N ′

z
is rationally renormalizable, and we have

Λ(M ′, N ′) � Λ(M,N) and Λ∞(M ′, N ′) = Λ∞(M,N).

Proposition 3.7 [KKOP20, Proposition 3.11]. Let M , N and L be non-zero modules in Cg,
and let S be a non-zero subquotient of M ⊗N .

(i) Assume that Runiv
M,Lz

and Runiv
N,Lz

are rationally renormalizable. Then Runiv
S,Lz

is rationally
renormalizable, and we have

Λ(S,L) � Λ(M,L) + Λ(N,L) and Λ∞(S,L) = Λ∞(M,L) + Λ∞(N,L).

(ii) Assume that Runiv
L,Mz

and Runiv
L,Nz

are rationally renormalizable. Then Runiv
L,Sz

is rationally
renormalizable, and we have

Λ(L, S) � Λ(L,M) + Λ(L,N) and Λ∞(L, S) = Λ∞(L,M) + Λ∞(L,N).

Corollary 3.8 [KKOP20, Corollary 3.12]. Let M and N be simple modules in Cg. Suppose
that M (respectively N) is isomorphic to a subquotient of V (�i1)a1 ⊗ V (�i2)a2 ⊗ · · · ⊗ V (�ik)ak
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(respectively V (�j1)b1 ⊗ V (�j2)b2 ⊗ · · · ⊗ V (�jl)bl). Then we have

Λ∞(M,N) =
∑

1�ν�k,1�μ�l
Λ∞(V (�iν )aν , V (�jμ)bμ).

For simple modules M and N in Cg, we define d(M,N) by

d(M,N) := 1
2

(
Λ(M,N) + Λ(M∗, N)

)
.

Proposition 3.9 [KKOP20, Proposition 3.16 and Corollary 3.19]. Let M and N be simple
modules in Cg. Then the following hold:

(i) d(M,N) = zeroz=1

(
dM,N (z)dN,M (z−1)

)
;

(ii) d(M,N) = 1
2

(
Λ(M,N) + Λ(N,M)

)
;

(iii) in particular, d(M,N) = d(N,M).

Corollary 3.10 [KKOP20, Corollaries 3.17 and 3.20]. Let M and N be simple modules
in Cg.

(i) Suppose that one of M and N is real. Then M and N strongly commute if and only if
d(M,N) = 0.

(ii) In particular, if M is real, then Λ(M,M) = 0.

Proposition 3.11 [KKOP20, Proposition 3.22]. For simple modules M and N in Cg, we have

Λ(M,N) =
∑
k∈Z

(−1)k+δ(k<0) d(M,DkN),

Λ∞(M,N) =
∑
k∈Z

(−1)k d(M,DkN),

where DkN is defined as

DkN :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(· · · (N∗ )∗ · · · )∗︸ ︷︷ ︸
(−k) times

if k < 0,

∗(· · · (︸ ︷︷ ︸
k times

∗N) · · · ) if k � 0.

4. Root systems associated with Cg

Let Hom(σ(g), Z) be the set of Z-valued functions on σ(g). It is obvious that Hom(σ(g), Z)
forms a torsion-free abelian group under addition. Let M ∈ Cg be a module such that Runiv

M,V (�i)z

is rationally renormalizable for any i ∈ I0. Then we define E(M) ∈ Hom(σ(g), Z) by

E(M)(i, a) := Λ∞(M,V (�i)a) for (i, a) ∈ σ(g), (4.1)

which is well-defined by (2.4).

Lemma 4.1. Let M and N be simple modules in Cg.

(i) We have E(M) = −E(M∗) = −E(∗M).
(ii) Let {Mk}1�k�r be a sequence of simple modules. Then for any non-zero subquotient S of

M1 ⊗ · · ·⊗Mr, we have

E(S) =
r∑

k=1

E(Mk).

(iii) E(M) = E(N) if and only if aM,V (�i)(z)/aN,V (�i)(z) ∈ k(z)× for any i ∈ I0.
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Proof. Assertions (i) and (ii) easily follow from Propositions 3.4 and 3.7.
Let us show (iii). For (i, a) ∈ σ(g), the condition Λ∞(M,V (�i)a) = Λ∞(N,V (�i)a) is

equivalent to

Deg∞(aM,V (�i)(az)) = Deg∞(aN,V (�i)(az)).

Since Deg∞ : G → Z is a group homomorphism, it is equivalent to

Deg∞
(
aM,V (�i)(az)
aN,V (�i)(az)

)
= 0 for any a ∈ k×.

Then (iii) follows from Lemma 3.1(iv). �
For (i, a) ∈ σ(g), we set

si,a := E(V (�i)a) ∈ Hom(σ(g), Z)

and

W := {E(M) |M is simple in Cg}, Δ := {si,a | (i, a) ∈ σ(g)} ⊂ W,

W0 := {E(M) |M is simple in C 0
g }, Δ0 := {si,a | (i, a) ∈ σ0(g)} ⊂ W0. (4.2)

It is obvious that W0 ⊂ W and Δ0 ⊂ Δ.

Lemma 4.2.

(i) We have W =
∑

(i,a)∈σ(g) Zsi,a and W0 =
∑

(i,a)∈σ0(g) Zsi,a =
∑

(i,a)∈σQ(g) Zsi,a. In particu-
lar, W0 is a finitely generated free Z-module.

(ii) There exists a unique symmetric bilinear form (−,−) on W such that

(E(M),E(N)) = −Λ∞(M,N)

for any simple modules M,N ∈ Cg.

Proof. Assertion (i) follows from Theorem 2.2(iv), Lemma 4.1 and (2.12).
Let us show (ii). By Corollary 3.8, it reduces to the existence of a bilinear form (−,−) on W

such that (
si,a, sj,b

)
= −Λ∞(V (�i)a, V (�j)b

)
.

Therefore it is enough to show that for a sequence {(ik, ak)}k=1,...,r in σ(g) such that∑r
k=1 sik,ak

= 0, we have
∑r

k=1 Λ∞(V (�ik)ak
, V (�j)b

)
= 0 for any (j, b) ∈ σ(g). Let us take

a simple subquotient M of V (�i1)a1 ⊗ · · ·⊗V (�ir)ar . Then we have E(M) =
∑r

k=1 sik,ak
= 0.

Hence we obtain
r∑

k=1

Λ∞(V (�ik)ak
, V (�j)b

)
= Λ∞(M,V (�j)b) = −E(M)(j, b) = 0. �

Lemma 4.3. For i ∈ I0 and a ∈ k×, we have

d(V (�i),DkV (�i)) = δ(k = ±1) for k ∈ Z. (4.3)

In particular,

(si,a, si,a) = −Λ∞(V (�i), V (�i)) = 2.

Proof. The statement Λ∞(V (�i), V (�i)) = −2 follows from (4.3) and Proposition 3.11.
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Let us show (4.3). Let h∨ be the dual Coxeter number of g, and write

di,j(z) := dV (�i),V (�j)(z) for i, j ∈ I.

The denominator formula for di,j(z) is given in Appendix A. Using this formula, one can easily
check that if εqt (|ε| = 1) is a zero of di,i(z), then t should be between 1 and h∨. Combining this
with Proposition 3.9, we obtain

d(V (�i), V (�j)(p∗)k) = zeroz=1

(
di,j((p∗)kz)dj,i((p∗)−kz−1)

)
= 0 unless k = ±1.

Now we shall show that d(V (�i),D±1V (�i)) = 1.

Case of simply laced affine ADE type. In this case, the dual Coxeter number is equal to the
Coxeter number. Then from the denominator formula in Appendix A it follows that

d(V (�i),D±1V (�i)) = c̃i,i∗(h∨−1).

Since c̃i,j(k) = c̃j,i∗(h∨ − k) for 1 � k � h∨ − 1 (see [Fuj22, Lemma 3.7]) and c̃i,i(1) = 1 by
Proposition A.1, we have

d(V (�i),D±1V (�i)) = c̃i,i(1) = 1.

Other case. In this case, we know that i∗ = i for any i ∈ I0. Thus we have

d(V (�i),D±1V (�i)) = d(V (�i), V (�i)p∗).

Using (2.6) and the denominator formula in Appendix A, one can compute directly that

d(V (�i), V (�i)p∗) = 1. �
For t ∈ k×, (i, a) ∈ σ(g) and f ∈ Hom(σ(g), Z), we define

τt(i, a) := (i, ta) and (τtf)(i, a) := f(i, t−1a). (4.4)

Lemma 4.4.

(i) For (i, a) ∈ σ(g), we have si,a = −si∗,ap∗ = −si∗,a(p∗)−1 .
(ii) For t ∈ k× and (i, a) ∈ σ(g), we have τt(si,a) = si,ta.

Proof. Assertion (i) follows from (2.7) and Lemma 4.1.
(ii) For (j, b) ∈ σ(g), we have

(τt(si,a))(j, b) = (si,a)(j, t−1b) = Λ∞(V (�i)a, V (�j)t−1b) = Λ∞(V (�i)ta, V (�j)b)

= (si,ta)(j, b),

where the third equality follows from Proposition 3.3. Thus, we have the desired assertion. �
For t ∈ k×, A ⊂ σ(g) and F ⊂ Hom(σ(g), Z), we set

At := {τt(a) | a ∈ A} and Ft := {τt(f) | f ∈ F}.
We write k0 for the stabilizer subgroup of σ0(g) with respect to the action of k× on σ(g) through
τt, i.e.

k0 := {t ∈ k×|(σ0(g))t = σ0(g)}.
Proposition 4.5. The following hold:

(i) σ(g) =
⊔
a∈k×/k0

(
σ0(g)

)
a
;

(ii) Δ =
⊔
a∈k×/k0

(Δ0)a;
(iii) for k, k′ ∈ k× such that k/k′ �∈ k0, we have

(
(W0)k, (W0)k′

)
= 0.
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Proof. Assertion (i) follows from the fact that any connected component of σ(g) is a translation
of σ0(g).

(iii) It is enough to show that for (i, a) ∈ (σ0(g))k and (j, b) ∈ (σ0(g))k′ we have (si,a, sj,b) = 0.
By the definition of σ0(g), V (�i)a and DmV (�j)b strongly commute for any m, which tells us
that

Λ∞(V (�i)a, V (�j)b) = 0

by Corollary 3.10 and Proposition 3.11.
(ii) It is enough to show that

Δ0 ∩ (Δ0)k = ∅ for k ∈ k×/k0.

For (i, a) ∈ σ0(g) and (j, b) ∈ σ0(g)k, we have (si,a, si,a) = 2 by Lemma 4.3 and (si,a, sj,b) = 0
by (iii). Thus we conclude that si,a �= sj,b. �

We set

E := R ⊗Z W and E0 := R ⊗Z W0.

Then the pairing (−,−) gives a symmetric bilinear form on E . Theorem 4.6 below is the main
theorem of this section; its proof is postponed until § 6.

Theorem 4.6.

(i) The pair (E0,Δ0) is an irreducible simply laced root system of type shown in the following
table.

Type of g A
(1)
n B

(1)
n C

(1)
n D

(1)
n A

(2)
2n A

(2)
2n−1 D

(2)
n+1

(n � 1) (n � 2) (n � 3) (n � 4) (n � 1) (n � 2) (n � 3)

Type of (E0, Δ0) An A2n−1 Dn+1 Dn A2n A2n−1 Dn+1

Type of g E
(1)
6 E

(1)
7 E

(1)
8 F

(1)
4 G

(1)
2 E

(2)
6 D

(3)
4

Type of (E0, Δ0) E6 E7 E8 E6 D4 E6 D4

(4.5)

(ii) The bilinear form (−,−)|W0 is positive definite. Moreover, it is Weyl group invariant,
i.e. sα(Δ0) ⊂ Δ0 for any α ∈ Δ0. Here sα ∈ End(E0) is the reflection defined by sα(λ) =
λ− (α, λ)α.

The next corollary follows from Proposition 4.5 and Theorem 4.6.

Corollary 4.7.

(i) We have W =
⊕

k∈k×/k0
(W0)k.

(ii) As a root system, ((E0)k, (Δ0)k) is isomorphic to (E0,Δ0) for k ∈ k×/k0, and

(E ,Δ) =
⊔

k∈k×/k0

((E0)k, (Δ0)k).

Proof. We know already that W =
∑

k∈k×/k0
(W0)k. Since (W0)k and (W0)k′ are orthogonal if

k/k′ �∈ k0, the non-degeneracy of (−,−)|E implies that W =
⊕

k∈k×/k0
(W0)k.

Assertion (ii) easily follows from (i) and Theorem 4.6. �
The following corollary is an immediate consequence of Theorem 4.6.
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Corollary 4.8. The following hold:

(i) (λ, λ) ∈ 2Z>0 for any λ ∈ W0 \ {0};
(ii) Δ0 = {λ ∈ W0 | (λ, λ) = 2}.

Hence the root system (E0,Δ0) is completely determined by the pair (W0, (−,−)|W0).

5. Block decomposition of Cg

In this section, we give a block decomposition of Cg parameterized by W.

5.1 Blocks
We recall the notion of blocks. Let C be an abelian category such that any object of C has finite
length.

Definition 5.1. A block B of C is a full abelian subcategory with the following properties:

(i) there is a decomposition C = B ⊕ C′ for some full abelian subcategory C′,
(ii) there is no non-trivial decomposition B = B′ ⊕ B′′ with full abelian subcategories B′

and B′′.

The following lemma is obvious.

Lemma 5.2. Let B be a full subcategory of C satisfying condition (i) in Definition 5.1. Then B
has the following properties:

(i) B is stable by taking subquotients and extensions;
(ii) for simple objects S, S′ ∈ C such that Ext1C(S, S′) �� 0, if one of them belongs to B then so

does the other.

Lemma 5.3. Let X,X ′ ∈ C. Suppose that Ext1C(S, S′) = 0 for any simple subquotients S and S′

of X and X ′, respectively. Then we have Ext1C(X,X ′) = 0.

Proof. Let � and �′ be the lengths of X and X ′, respectively. We use induction on �+ �′. If X
and X ′ are simple, then the claimed result is clear by the assumption.

Suppose that X ′ is not simple. Then there exists an exact sequence 0 →M → X ′ → N → 0
with a simple M . It in turn gives the exact sequence

Ext1C(X,M) → Ext1C(X,X
′) → Ext1C(X,N).

By the induction hypothesis we have Ext1C(X,M) = Ext1C(X,N) = 0, which tells us that
Ext1C(X,X ′) = 0.

The case where X is not simple can be proved in the same manner. �
Lemma 5.4. Let c be the set of isomorphism classes of simple objects of C, and let c =

⊔
a∈A ca

be a partition of c. We assume that

for a, a′ ∈ A such that a �= a′ and a simple object S (respectively S′) belonging
to ca (respectively ca′), one has Ext1C(S, S

′) = 0.

For a ∈ A, let Ca be the full subcategory of C consisting of objects X such that any simple
subquotient of X belongs to ca. Then C =

⊕
a∈A Ca.

Proof. It is enough to show that any object X of C has a decomposition X �⊕
a∈AXa with

Xa ∈ Ca. In order to prove this, we shall argue by induction on the length of X. We may assume
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that X is non-zero. Let us take a subobject Y of X such that X/Y is simple. Then the induction
hypothesis implies that Y =

⊕
a∈A Ya with Ya ∈ Ca.

Take a0 ∈ A such that X/Y belongs to ca0 . Then define Z ∈ C by the exact sequence

0 →
⊕
a =a0

Ya → X → Z → 0. (5.1)

Since we have an exact sequence 0 → Ya0 → Z → X/Y → 0, Z belongs to Ca0 . Then
Lemma 5.3 tells us that Ext1(Z,

⊕
a =a0

Ya) = 0. Hence the exact sequence (5.1) splits, i.e.
X � Z ⊕⊕a =a0

Ya. �
Let ≈ be the equivalence relation on the set of isomorphism classes of simple objects of C

generated by the relation ≈′ defined as follows: for simple objects S, S′ ∈ C,

[S] ≈′ [S′] if and only if Ext1C(S, S
′) �= 0.

Theorem 5.5. LetA be the set of ≈-equivalence classes. For a ∈ A, let Ca be the full subcategory
of C consisting of objects X such that any simple subquotient of X belongs to a. Then Ca is a
block, and the category C has a decomposition C =

⊕
a∈A Ca. Moreover, any block of C is equal

to Ca for some a.

Proof. Lemma 5.4 implies the decomposition

C =
⊕
a∈A

Ca.

Moreover, since a is a ≈-equivalence class, there is no non-trivial decomposition of Ca for any
a ∈ A. �

The next corollary follows directly from Theorem 5.5.

Corollary 5.6. Let X be an indecomposable object of C. Then X belongs to some block. In
particular, all the simple subquotients of X belong to the same block.

5.2 Direct decomposition of Cg

In this subsection, we shall prove that Cg has a decomposition parameterized by elements of W.

Lemma 5.7. For modules M,N ∈ Cg, there exists an isomorphism

Ψ: k[z±1] ⊗ HomU ′
q(g)(N,1) ⊗ HomU ′

q(g)(1,M) ∼−→ HomU ′
q(g)(N,Mz) (5.2)

defined by Ψ(a(z) ⊗ f ⊗ g) = a(z)(g ◦ f) for a(z) ∈ k[z±1], f ∈ HomU ′
q(g)(N,1) and g ∈

HomU ′
q(g)(1,M).

Proof. Note that k[z±1] ⊗ HomU ′
q(g)(1,M) ∼−−→HomU ′

q(g)(1,Mz). There is a quotient N ′ of N
which is a direct sum of copies of 1 and Hom(N ′,1) ∼−−→Hom(N,1). Since (5.2) for N ′ is obviously
an isomorphism, Ψ is injective.

To prove that Ψ is surjective, we shall decompose a given non-zero f : N →Mz into
N → 1⊕� →Mz for some � ∈ Z>0. Here 1⊕� is the direct sum of � copies of the trivial mod-
ule 1. Without loss of generality, we may assume that f is injective. We set wt(N) := {λ ∈ Pcl

| Nλ �= 0}.
If wt(N) = {0}, then N should be isomorphic to 1⊕� for some � ∈ Z>0, which is the desired

result.
Now suppose that wt(N) �= {0}. We choose a non-zero weight λ ∈ wt(N).
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Note that the U ′
q(g)-module structure on Mz extends to a Uq(g)-module structure and we

have a weight decomposition Mz =
⊕

μ∈P(Mz)μ. Then

f(Nλ) ⊂
⊕

μ∈P, cl(μ)=λ

(Mz)μ,

where cl : P → Pcl is the classical projection. There exist w ∈ W and a non-zero integer n such
that w(μ) = μ+ nδ for any μ ∈ cl−1(λ). We now consider the braid group action Tw defined
by w on an integral module (see [Lus90, Sai94]). Then the k-linear automorphism Tw sends
(Mz)μ to (Mz)wμ. The space f(Nλ) is invariant under the automorphism Tw, but any non-
zero finite-dimensional subspace of

⊕
μ∈P, cl(μ)=λ(Mz)μ cannot be invariant under Tw. This is a

contradiction. �
Proposition 5.8. For modules M,N ∈ Cg and a simple module L ∈ Cg, we have the
isomorphisms

k[z±1] ⊗ HomU ′
q(g)(M,N) ∼−→ Homk[z±1]⊗U ′

q(g)(M ⊗ Lz, N ⊗ Lz).

Proof. By Lemma 5.7, we obtain that

Homk[z±1]⊗U ′
q(g)(M ⊗ Lz, N ⊗ Lz) � HomU ′

q(g)(N
∗ ⊗M, (L⊗ L∗)z)

� k[z±1] ⊗ HomU ′
q(g)(N

∗ ⊗M,1)⊗HomU ′
q(g)(1, L⊗ L∗)

� k[z±1] ⊗ HomU ′
q(g)(M,N). �

Lemma 5.9. Let M and N be simple modules in Cg. If

cM,L(z)
cN,L(z)

/∈ k(z) for some simple module L ∈ Cg,

then we have

Ext1U ′
q(g)(M,N) = 0.

Proof. Let L ∈ Cg be a simple module such that cM,L(z)/cN,L(z) /∈ k(z).
We shall prove that any exact sequence

0 → N → X →M → 0

splits. We set L̂z := k((z)) ⊗k[z±1] Lz, where Lz is the affinization of L. Then the following
diagram commutes.

0 �� N ⊗ L̂z

�Runiv
N,L̂z

��

�� X ⊗ L̂z

Runiv
X,L̂z

�
��

�� M ⊗ L̂z

Runiv
M,L̂z

�
��

�� 0

0 �� L̂z ⊗N �� L̂z ⊗X �� L̂z ⊗M �� 0

We set

f(z) :=
cM,L(z)
cN,L(z)

/∈ k(z) and R := cM,L(z)Runiv
X,L̂z

: X ⊗ L̂z → L̂z ⊗X.

It follows from

cM,L(z)Runiv
M,L̂z

(M ⊗ Lz) ⊂ Lz ⊗M and cN,L(z)Runiv
N,L̂z

(N ⊗ Lz) ⊂ Lz ⊗N

that
R(X ⊗ Lz) ⊂ Lz ⊗X + L̂z ⊗N and R(N ⊗ Lz) ⊂ f(z)(Lz ⊗N).
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Therefore R induces the k[z±1]⊗U ′
q(g)-linear homomorphism

R : M ⊗ Lz � X ⊗Lz
N ⊗Lz

−→ k(z) ⊗ Lz ⊗X + L̂z ⊗N

k(z) ⊗ Lz ⊗X + f(z)k(z) ⊗ Lz ⊗N
.

We set P := k((z))/(k(z) + f(z)k(z)). Since

k(z) ⊗ Lz ⊗X + L̂z ⊗N

k(z) ⊗ Lz ⊗X + f(z)k(z) ⊗ Lz ⊗N
� L̂z ⊗N

k(z) ⊗ Lz ⊗N + f(z)k(z) ⊗ Lz ⊗N

� P ⊗k[z±1] Lz ⊗N,

we have the homomorphism of k[z±1]⊗U ′
q(g)-modules

R : M ⊗ Lz −→ P ⊗k[z±1] Lz ⊗N.

Let us show that R vanishes.
Assume that R �= 0. Then

Homk[z±1]⊗U ′
q(g)(M ⊗Lz,P ⊗k[z±1] Lz ⊗N) � P ⊗k[z±1] Homk[z±1]⊗U ′

q(g)(M ⊗Lz, Lz ⊗N)

implies that Homk[z±1]⊗U ′
q(g)(M ⊗Lz, Lz ⊗N) �� 0.

Since k(z)⊗k[z±1](M ⊗Lz) and k(z)⊗k[z±1](Lz ⊗N) are simple k(z)⊗U ′
q(g)-modules, they

are isomorphic. Since k(z)⊗k[z±1](Lz ⊗N) and k(z)⊗k[z±1](N ⊗Lz) are isomorphic, we conclude
that k(z)⊗k[z±1](M ⊗Lz) � k(z)⊗k[z±1](N ⊗Lz). On the other hand, Proposition 5.8 implies
that

k(z) ⊗ HomU ′
q(g)(M,N) ∼−−→Homk(z)⊗U ′

q(g)(k(z) ⊗k[z±1] M ⊗ Lz,k(z) ⊗k[z±1] N ⊗ Lz).

Hence HomU ′
q(g)(M,N) �= 0, and we obtain that M and N are isomorphic, which is a

contradiction. Therefore R = 0, which means that

R
(
k(z)⊗(X ⊗Lz)

) ⊂ k(z) ⊗ Lz ⊗X + f(z)k(z) ⊗ Lz ⊗N.

Let us consider the composition

Φ: K :=R
(
k(z)⊗(X ⊗Lz)

) ∩ (k(z) ⊗ Lz ⊗X
)

�� �� k(z) ⊗ Lz ⊗X � k(z) ⊗ Lz ⊗M.

We have

R
(
k(z)⊗(X ⊗Lz)

) ∩ L̂z ⊗N = R
(
k(z)⊗(N ⊗Lz)

)
= f(z)k(z)⊗Lz ⊗N.

Hence ker(Φ) = K ∩ (k(z) ⊗ Lz ⊗N
)

=
(
f(z)k(z) ⊗ Lz ⊗N) ∩ (k(z) ⊗ Lz ⊗N

)
vanishes, which

means that Φ is a monomorphism.
Since k(z) ⊗ Lz ⊗M and k(z) ⊗ Lz ⊗N are simple k(z)⊗U ′

q(g)-modules, k(z) ⊗ Lz ⊗X has
length 2. Similarly, R

(
k(z)⊗(X ⊗Lz)

)
also has length 2. On the other hand, k(z) ⊗ Lz ⊗X +

f(z)k(z) ⊗ Lz ⊗N has length no more than 3, which implies that K does not vanish. Hence Φ
is an isomorphism. Thus we conclude that the homomorphism

Hom(k(z)⊗Lz ⊗M,k(z)⊗Lz ⊗X) →Hom(k(z)⊗Lz ⊗M,k(z)⊗Lz ⊗M)

= k(z) idk(z)⊗Lz ⊗M

is surjective. Then Proposition 5.8 implies that this homomorphism is isomorphic to

k(z)⊗Hom(M,X) � k(z)⊗Hom(M,M).

Thus we conclude that Hom(M,X) → Hom(M,M) is surjective, that is,

0 −−→ N −−→ X −−→M −−→ 0

splits. �
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For α ∈ W, let Cg,α be the full subcategory of Cg consisting of objects X such that E(S) = α
for any simple subquotient S of X.

Theorem 5.10. There exist the decompositions

Cg =
⊕
α∈W

Cg,α and C 0
g =

⊕
α∈W0

Cg,α.

Proof. Let α, β ∈ W with α �= β. For simple modules M ∈ Cg,α and N ∈ Cg,β , Lemma 4.1(iii)
says that aM,V (�i)(z)/aN,V (�i)(z) /∈ k(z) for some i ∈ I0. Hence Lemma 5.9 implies that
Ext1U ′

q(g)(M,N) = 0. The desired result then follows from Lemma 5.4. �

5.3 The block Cg,α

Recall the automorphism τt on σ(g) defined in (4.4). For (i, a) ∈ σ(g) we write

V (i, a) := V (�i)a.

Note that V (τtα) = V (α)t for α ∈ σ(g) and t ∈ k×. For α ∈ σ(g), we define α∗ ∈ σ(g) by

V (α∗) � V (α)∗.

Thus we have
α∗∗ = τp̃−1(α) for α ∈ σ(g).

Lemma 5.11. Let α1, . . . , αk ∈ σ(g) for k ∈ Z>0. Then all the simple subquotients of V (α1) ⊗
V (α2) ⊗ · · · ⊗ V (αk) are contained in the same block of Cg.

Proof. There exists a permutation σ ∈ Sk such that the tensor product V (ασ(1)) ⊗ V (ασ(2))
⊗ · · · ⊗ V (ασ(k)) has a simple head by Theorem 2.2, and hence it is indecomposable. Thus, all
the simple subquotients of V (ασ(1)) ⊗ V (ασ(2)) ⊗ · · · ⊗ V (ασ(k)) are contained in the same block
by Corollary 5.6. Since any simple subquotient of V (α1) ⊗ V (α2) ⊗ · · · ⊗ V (αk) is isomorphic
to some simple subquotient of V (ασ(1)) ⊗ V (ασ(2)) ⊗ · · · ⊗ V (ασ(k)), we obtain the desired
result. �

We set
P :=

⊕
α∈σ(g)

Zeα, P0 :=
⊕

α∈σ0(g)

Zeα

and
P+ :=

∑
α∈σ(g)

Z�0eα ⊂ P,

where eα is a symbol. Define a group homomorphism

p : P � W, e(i,a) → si,a,

and set
p0 := p|P0 : P0 � W0.

By Proposition 4.5, we have

P =
⊕

k∈k×/k0

(P0)k. (5.3)

Let Q0 be the subgroup of P0 generated by elements of the form
∑m

k=1 eαk
(αk ∈ σ0(g)) such

that the trivial module 1 appears in V (α1) ⊗ V (α2) ⊗ · · · ⊗ V (αm) as a simple subquotient. We
then have p0(Q0) = 0.
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We set
Q :=

⊕
k∈k×/k0

(Q0)k. (5.4)

Recall φQ : Δ+
Q

∼−−→σQ(g) in (2.11). Let ΠQ ⊂ Δ+
Q be the set of simple roots of the positive

root system Δ+
Q and QQ the corresponding root lattice. Hence we have ΠQ ⊂ Δ+

Q ⊂ QQ.
In the proof of the following lemma, we do not use Theorem 4.6.

Lemma 5.12. For α ∈ σ0(g), denote by ēα ∈ P0/Q0 the image of eα under the projection
P0 → P0/Q0.

(i) The map Δ+
Q � α → ēφQ(α) ∈ P0/Q0 extends to an additive map ψ′

Q : QQ → P0/Q0.
(ii) We have that ψ′

Q is surjective, i.e.

P0/Q0 =
∑
β∈ΠQ

ZēφQ(β).

(iii) Let ψQ : QQ → W0 be the composition QQ

ψ′
Q−−→ P0/Q0 −−→ W0. Then

ψQ(β) = E
(
VQ(β)

)
.

(iv) We have that ψQ is surjective, i.e. W0 =
∑

α∈φQ(ΠQ) Zp0(eα).

Proof. (i) The map ΠQ � α → ēφQ(α) ∈ P0/Q0 extends to a linear map ψ′
Q : QQ → P0/Q0. It is

enough to show that ēφQ(γ) = ψ′
Q(γ) for any γ ∈ Δ+

Q. Let us show this by induction on the length
of γ. If γ is not a simple root, take a minimal pair (β, β′) of γ (see Proposition 2.4). Since VQ(γ)
appears as a composition factor of VQ(β) ⊗ VQ(β′) by Proposition 2.4, we have

ēφQ(γ) = ēφQ(β) + ēφQ(β′) = ψ′
Q(β) + ψ′

Q(β′) = ψ′
Q(γ).

Assertion (ii) follows from (i), and (iii) follows from (ii) and a surjective map P0/Q0 � W0. �
In the proof of the following lemma, we use the fact that the rank of W0 is at least the rank

of Δ+
Q (stated in Theorem 4.6, whose proof is postponed to § 6; see (6.3)).

Lemma 5.13. We have the isomorphisms

P0/Q0
∼−−→W0 and P/Q ∼−−→W.

Proof. The second isomorphism easily follows from the first isomorphism together with (5.3) and
(5.4). So we need only show that P0/Q0 � W0 is an isomorphism.

Let r be the rank of Δ+
Q. By (6.3), the rank of W0 is at least r. Let us consider a surjective

homomorphism
P0/Q0 � W0. (5.5)

By Lemma 5.12, P0/Q0 is generated by r elements. Hence (5.5) is an isomorphism. �
For λ =

∑k
t=1 eαt ∈ P+, we set

V̄ (λ) := [V (α1) ⊗ V (α2) ⊗ · · · ⊗ V (αk)] ∈ K(Cg).

Note that for λ, μ ∈ P+, if 1 appears in V̄ (λ) and V̄ (μ), then 1 also appears in V̄ (λ) ⊗ V̄ (μ).
Hence any element of Q can be written as λ− μ with λ, μ ∈ P+ such that 1 appears in both
V̄ (λ) and V̄ (μ).

Theorem 5.14. For any α ∈ W, the subcategory Cg,α is a block of Cg.
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Proof. Let α ∈ W, and let S and S′ be simple modules in Cg,α. We shall show that S and S′

belong to the same block.
Thanks to Theorem 2.2(iv), there exist λ, λ′ ∈ P+ such that S appears in V̄ (λ) and S′

appears in V̄ (λ′). By Lemma 5.13, we have λ− λ′ ∈ ker p = Q. Then there exist μ, μ′ ∈ P+ that
satisfy the following:

• λ− λ′ = μ′ − μ;
• 1 appears in V̄ (μ) and V̄ (μ′).

Thus the following hold:

(a) λ+ μ = λ′ + μ′, i.e. V̄ (λ+ μ) = V̄ (λ′ + μ′);
(b) S appears in V̄ (λ) ⊗ V̄ (μ) = V̄ (λ+ μ);
(c) S′ appears in V̄ (λ′) ⊗ V̄ (μ′) = V̄ (λ′ + μ′).

This tells us that S and S′ belong to the same block by Lemma 5.11. �
Combining Theorem 5.10 with Theorem 5.14, we have the following block decomposition.

Corollary 5.15. There exist the block decompositions

Cg =
⊕
β∈W

Cg,β and C 0
g =

⊕
β∈W0

Cg,β .

Remark 5.16. Lemma 5.13 gives a group presentation of W which parameterizes the block decom-
position of Cg. When g is of untwisted type, the block decomposition of Cg was given in [CM05]
and [EM03]. Considering [CM05] and [EM03] in our setting, their results give another group
presentation of W. Let us explain more precisely what this means in our setting.

Suppose that g is of untwisted type. We define

PS :=
⊕

(i,a)∈σ(g), i∈S
Ze(i,a),

where

S =

⎧⎪⎨
⎪⎩
{1} if g is of type A(1)

n , C(1)
n or E(1)

6 ,
{n} if g is of type B(1)

n or D(1)
n (n odd),

{n− 1, n} if g is of type D(1)
n (n even),

and S is {2}, {4}, {7} or {8} if g is of type G(1)
2 , F (1)

4 , E(1)
7 or E(1)

8 , respectively.
One can show that p(PS) = W. Thus we have the surjective homomorphism

pS := p|PS
: PS � W.

Then the results in [CM05, Proposition 4.1 and Appendix A] and [EM03, Lemma 4.6 and § 6]
explain that the kernel ker(pS) is generated by the subset G described as follows:

(a) if g is of type A(1)
n , then G = {∑n

k=0 e(1,tq2k) | t ∈ k×};
(b) if g is of type B(1)

n , then G = {e(n,t) + e(n,tq2n−1) | t ∈ k×};
(c) if g is of type C(1)

n , then G = {e(1,t) + e(1,tqn+1) | t ∈ k×};
(d) if g is of type D(1)

n and n is odd, then G = {en,t + en,tq2 + en,tq2n−2 + en,tq2n | t ∈ k×};
(e) if g is of type D

(1)
n and n is even, then G = {e(n−1,t) + e(n−1,tq2) + e(n,tq2n−2) +

e(n,tq2n), e(n−1,t) + e(n−1,tq2n−2), e(n,t) + e(n,tq2n−2) | t ∈ k×};
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(f) if g is of type E(1)
6 , then G = {e(1,t) + e(1,tq8) + e(1,tq16), e(1,t) + e(1,tq2) + e(1,tq4) + e(1,tq12) +

e(1,tq14) + e(1,tq16) | t ∈ k×};
(g) if g is of type E(1)

7 , then G = {e(7,t) + e(7,tq18), e(7,t) + e(7,tq2) + e(7,tq12) + e(7,tq14) + e(7,tq24) +
e(7,tq26) | t ∈ k×};

(h) if g is of type E(1)
8 , then G = {e(8,t) + e(8,tq30), e(8,t) + e(8,tq20) + e(8,tq40), e(8,t) + e(8,tq12) +

e(8,tq24) + e(8,tq36) + e(8,tq48) | t ∈ k×};
(i) if g is of type F (1)

4 , then G = {e(4,t) + e(4,tq9), e(4,t) + e(4,tq6) + e(4,tq12) | t ∈ k×};
(j) if g is of type G(1)

2 , then G = {e(2,t) + e(2,tq4), e(2,t) + e(2,t(−qt)8) + e(2,t(−qt)16) | t ∈ k×}.
We remark that there are typos in the descriptions for types E8 and F4 in [CM05,
Appendix A].

6. Proof of Theorem 4.6

6.1 Strategy of the proof
We now start to prove Theorem 4.6. We shall use the same notation as in §§ 2.3 and 2.4. Recall
the explicit descriptions for σ0(g) and σQ(g). Let ΠQ = {αi}i∈Ifin

be the set of simple roots of
Δ+
Q, and let QQ be the root lattice of gfin. Hence

ΠQ ⊂ Δ+
Q ⊂ QQ.

Then, by Lemma 5.12, we have

W0 =
∑
i∈Ifin

ZsφQ(αi), (6.1)

where φQ : Δ+
Q

∼−−→σQ(g) is the bijection given in (2.11).

Let MQ := (mQ
i,j)i,j∈Ifin

be the square matrix given by

mQ
i,j := (sφQ(αi), sφQ(αj)).

Thanks to Lemma 4.3, we know that

mQ
i,i = 2 for any i ∈ Ifin.

To prove Theorem 4.6, it suffices to show that MQ is the Cartan matrix of the finite simple Lie
algebra gfin, i.e.

(sφQ(αi), sφQ(αj)) = (αi, αj). (6.2)

Indeed, (6.2) implies the following lemma, and Theorem 4.6 is its immediate consequence.

Lemma 6.1. Assume (6.2). Then the map Δ+
Q � β → E

(
VQ(β)

) ∈ Δ0 ⊂ W0 extends uniquely to
an additive isomorphism

ψQ : QQ
∼−−→W0.

Moreover, it preserves the inner products of QQ and W0.

Proof. Since the Cartan matrix is a symmetric positive-definite matrix, {sφQ(αi)}i∈Ifin
is linearly

independent. Hence we obtain that

the rank of W0 is at least the rank r of gfin. (6.3)

On the other hand, Lemma 5.12 implies that ψQ : QQ → W0 is surjective. Hence ψQ is an iso-
morphism. Moreover, (6.2) shows that ψQ preserves the inner products of QQ and W0. The other
assertions then easily follow. �
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6.2 Calculation of the inner products
In this subsection, we give a type-by-type proof of (6.2).

Lemma 6.2. Suppose that g is of affine ADE type. Let i, j ∈ I0.

(i) For t ∈ Z, we have

d(V (�i), V (�j)(−q)t) = δ(2 � |t| � h) c̃i,j(|t| − 1),

where h is the Coxeter number of g and c̃i,j(k) is the integer defined in (A.1) in
Appendix A.

(ii) If 0 < t < 2h, then we have

Λ∞(V (�i), V (�j)(−q)t) = c̃i,j(t− 1) − c̃i,j(t+ 1)

and Λ∞(V (�i), V (�j)) = −2δi,j .

Proof. (i) For i, j ∈ I, we write di,j(z) := dV (�i),V (�j)(z). Combining Proposition 3.9 with the
denominator formula

di,j(z) =
h−1∏
k=1

(z − (−q)k+1)c̃i,j(k)

given in (A.2), we compute

d(V (�i), V (�j)(−q)t) = δ(2 � t � h) c̃i,j(t− 1) + δ(2 � −t � h) c̃i,j(−t− 1)

= δ(2 � |t| � h) c̃i,j(|t| − 1).

(ii) For a ∈ Z, let [a] :=
∏∞
n=0(1 − (−q)ap̃nz). Combining the equation (A.13) in [AK97] with

the denominator formula (A.2), we have

ai,j((−q)tz) =
∏

1�k�h−1

([h+ k + 1 + t]c̃j,i∗(k))([h− k − 1 + t]c̃j,i∗ (k))
([k + 1 + t]c̃i,j(k))([2h− k − 1 + t]c̃i,j(k))

=
∏

1�k�h−1

([h+ k + 1 + t]−c̃i,j(h+k))([h− k − 1 + t]−c̃i,j(h+k))
([k + 1 + t]c̃i,j(k))([2h− k − 1 + t]c̃i,j(k))

=
∏

1�k�2h−1

1
([k + 1 + t]c̃i,j(k))([2h− k − 1 + t]c̃i,j(k))

for any t ∈ Z, up to a constant multiple. For the second equality, we used

c̃i,j(h+ k) = −c̃i,j(h− k) = −c̃j∗,i(k) for 1 � k � h− 1,

which comes from [Fuj22, Lemma 3.7 (4) and (5)]. Hence we have

Λ∞(V (�i), V (�j)(−q)t) = −Deg∞(ai,j((−q)tz))
=

∑
1�k�2h−1

(
c̃i,j(k)(δ(k + 1 + t ≡ 0 mod 2h) + δ(2h− k − 1 + t ≡ 0 mod 2h))

)
= c̃ij(2h− t− 1) + c̃ij(t− 1)

= −c̃ij(t+ 1) + c̃ij(t− 1)

for 1 � t � 2h− 1. If t = 0, then we have

Λ∞(V (�i), V (�j)) = 2c̃i,j(2h− 1) = −2c̃i,j(1) = −2δi,j ,

as desired. �
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Type A(1)
n . If n = 1, then it is obvious that MQ is a Cartan matrix, so we may assume that n � 2.

Recall the explicit description of σQ(g) for type A(1)
n . Note that the Dynkin quiver corresponding

to σQ(g) is given in (A.3). In this case, h = n+ 1 and

φQ(αi) = (1, (−q)2−2i) ∈ σQ(g) for i ∈ Ifin = {1, . . . , n}
by [KKK15, Lemma 3.2.3]. For example, if it is of type A(1)

4 , then elements (i, (−q)k) of σQ(g)
with the values of φ−1

Q can be drawn as follows.

i\k −6 −5 −4 −3 −2 −1 0

1 (0001) (0010) (0100) (1000)

2 (0011) (0110) (1100)

3 (0111) (1110)

4 (1111)

Here (a1, a2, a3, a4) :=
∑4

k=1 akαk ∈ Δ+
Q is placed at the position φQ(a1, a2, a3, a4), and the

underlined ones are simple roots. Using the formula given in Appendix A.1, one can compute
that c̃1,1(2k) = 0 and

c̃1,1(2k + 1) = (τkα1, �1) = (αk+1, �1) = δk,0 for 0 � k < n.

Lemma 6.2 implies that

Λ∞(V (�1), V (�1)(−q)2k) = δk,1 for k ∈ Z with 1 � k � n− 1.

Therefore, for i > j we have

mQ
i,j = −Λ∞(V (�1), V (�1)(−q)2(i−j)) = −δi−j,1,

which tells us that MQ is a Cartan matrix of type An.

Type B(1)
n . Recall the explicit description of σQ(g) for type B(1)

n (n � 2), which can be obtained
from [KO19]. Note that the Dynkin diagram of B(1)

2 is given in (2.1). In this case gfin is of type
A2n−1, and for i ∈ Ifin = {1, . . . , 2n− 1} we have

φQ(αi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, (−1)n+1q2n+1−4i
s ) if 1 � i � n− 1,

(n, q−2n+2) if i = n,

(n, q−2n+3) if i = n+ 1,
(1, (−1)n+1q−6n+4i−1

s ) if n+ 2 � i � 2n− 1.

For example, if it is of type B(1)
3 , then elements of σQ(g) with the values of φ−1

Q can be drawn
as follows.

i\k −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3

1 (00111) (11110) (01000) (00001) (10000) : (−1)i+3qk
s

2 (00110) (01110) (01111) (11111) (11000)

3 (00100) (00010) (01100) (00011) (11100) : qk
s

Here we set (a1, a2, a3, a4, a5) :=
∑5

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots.

Combining Propositions 3.11 and 3.9 with the denominator formula given in Appendix A, we
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compute that d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)qk) = d(V (�1), V (�1)qk)

= δk,2 for k = 1, 2, . . . , 2n− 4,

Λ∞(V (�n), V (�1)(−1)n+1qt
s
) = d(V (�n), V (�1)(−1)n+1qt

s
)

= δt,2n+1 for t = 2n− 1, 2n+ 1, . . . , 6n− 7,

Λ∞(V (�n), V (�n)q) = 1.

Therefore, for i > j we obtain

mQ
i,j = −δi−j,1,

which tells us that MQ is a Cartan matrix of type A2n−1.

Type C(1)
n . Recall the explicit description of σQ(g) for type C(1)

n (n � 3), which can be obtained
from [KO19]. In this case gfin is of type Dn+1, and for 1 � i � n+ 1 we have

φQ(αi) =

{
(1, (−qs)2−2i) if 1 � i � n,

(n, (−qs)−3n+1) if i = n+ 1.

For example, if it is of type C(1)
4 , then elements of σQ(g) with the values of φ−1

Q can be drawn
as follows.

i\k −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1
(

1
1110

) (
0

0001

) (
0

0010

) (
0

0100

) (
0

1000

)
: (−qs)

k

2
(

1
0110

) (
1

1111

) (
0

0011

) (
0

0110

) (
0

1100

)

3
(

1
0010

) (
1

0111

) (
1

1121

) (
0

0111

) (
0

1110

)

4

(
1

0000

) (
1

0011

) (
1

0121

) (
1

1221

) (
0

1111

)

Here we set
( a5

a1a2a3a4

)
:=
∑5

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots. Combining

Propositions 3.11 and 3.9 with the denominator formula given in Appendix A, we compute that
d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)(−qs)k) = d(V (�1), V (�1)(−qs)k)

= δk,2 for k = 2, 4, . . . , 2n− 2,

Λ∞(V (�n), V (�1)(−qs)t) = d(V (�n), V (�1)(−qs)t)

= δt,n+3 for t = n+ 1, n+ 3, . . . , 3n− 1.

Therefore, for i > j we have

mQ
i,j =

{
−1 if (i � n and i− j = 1) or (i, j) = (n+ 1, n− 1),
0 otherwise,

which says that MQ is a Cartan matrix of type Dn+1.

Type D(1)
n . Recall the explicit description of σQ(g) for type D(1)

n (n � 4). Note that the Dynkin
quiver corresponding to σ(g)Q is given in (A.3). In this case h = 2n− 2, and for 1 � i � n we
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have

φQ(αi) =

⎧⎪⎨
⎪⎩

(1, (−q)−2(i−1)) if i � n− 2,
(n− 1, (−q)−3n+6) if (i = n− 1 and n is even) or (i = n and n is odd),
(n, (−q)−3n+6) if (i = n and n is even) or (i = n− 1 and n is odd)

by [KKK15, Lemma 3.2.3]. For example, if it is of type D(1)
5 , then elements (i, (−q)k) of σQ(g)

with the values of φ−1
Q can be drawn as follows.

i\k −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1
(

1
1111

) (
0

0010

) (
0

0100

) (
0

1000

)

2
(

1
0111

) (
1

1121

) (
0

0110

) (
0

1100

)

3
(

1
0011

) (
1

0121

) (
1

1221

) (
0

1110

)

4

(
1

0000

) (
0

0011

) (
1

0110

) (
0

1111

)

5

(
0

0001

) (
1

0010

) (
0

0111

) (
1

1110

)

Here we set
( a5

a1a2a3a4

)
:=
∑5

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots. Using the

formula given in Appendix A.1, one can compute that for 1 � k < h,

c̃1,1(k) = δk,1 + δk,2n−3, c̃n,1(k) = c̃n−1,1(k) = δk,n−1,

c̃n,n(k) = c̃n−1,n−1(k) = δ(k ≡ 1 mod 4),

c̃n,n−1(k) = c̃n−1,n(k) = δ(k ≡ 3 mod 4).

Combining this with Lemma 6.2, we compute that

Λ∞(V (�1), V (�1)(−q)k) = δk,2 for 2 � k � h− 4,

Λ∞(V (�n), V (�1)(−q)k) = δk,n for n � k � 3n− 6,

Λ∞(V (�n), V (�n−1)) = 0.

Therefore, for i > j we have

mQ
i,j =

{
−1 if (i � n− 1 and i− j = 1) or (i, j) = (n, n− 2),
0 otherwise,

which says that MQ is a Cartan matrix of type Dn.

Type A(2)
2n . Recall the explicit description of σQ(g) for type A(2)

2n (n � 1), which can be obtained
from [KKKO16]. In this case gfin is of type A2n, and for 1 � i � 2n we have

φQ(αi) = (1, (−q)2−2i).
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For example, if it is of type A(2)
4 , then elements of σQ(g) with the values of φ−1

Q can be drawn as
follows.

i\k −6 −5 −4 −3 −2 −1 0

1 (0001) (0010) (0100) (1000)

2 (0011) (0110) (1100)

2 (0111) (1110)

1 (1111)

Here (a1, a2, a3, a4) :=
∑4

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots. It fol-

lows from Propositions 3.11 and 3.9 and the denominator formula in Appendix A that
d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)(−q)k) = d(V (�1), V (�1)(−q)k)

= δk,2 for k = 2, 4, . . . , 4n− 2.

Therefore, for i > j we have

mQ
i,j = −Λ∞(V (�1), V (�1)(−q)2(i−j)) = −δi−j,1,

which tells us that MQ is a Cartan matrix of type A2n.

Type A
(2)
2n−1. Recall the explicit description of σQ(g) for type A

(2)
2n−1 (n � 2), which can be

obtained from [KKKO16]. In this case gfin is of type A2n−1, and for 1 � i � 2n− 1 we have

φQ(αi) = (1, (−q)2−2i).

For example, if it is of type A(2)
5 , then elements of σQ(g) with the values of φ−1

Q can be drawn as
follows.

i\k −8 −7 −6 −5 −4 −3 −2 −1 0

1 (00001) (00010) (00100) (01000) (10000) : (−q)k

2 (00011) (00110) (01100) (11000)

3 (00011) (01110) (11100)

2 (01111) (11110) : −(−q)k

1 (11111)

Here (a1, a2, a3, a4, a5) :=
∑5

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots. Note that

V (�n)a � V (�n)−a. It follows from Propositions 3.11 and 3.9 and the denominator formula in
Appendix A that d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)(−q)k) = d(V (�1), V (�1)(−q)k)

= δk,2 for k = 2, 4, . . . , 4n− 4.

Thus we obtain

mQ
i,j = −Λ∞(V (�1), V (�1)(−q)2(i−j)) = −δi−j,1, for i > j,

which implies that MQ is a Cartan matrix of type A2n−1.
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Type D
(2)
n+1. Recall the explicit description of σQ(g) for type D

(2)
n+1 (n � 3), which can be

obtained from [KKKO16]. In this case gfin is of type Dn+1, and for 1 � i � n+ 1 we have

φQ(αi) =

{
(1, (

√−1)n(−q)−2(i−1)) if i � n− 1,
(n, (−1)i(−q)−3n+3) if i = n, n+ 1.

For example, if it is of type D(2)
5 , then elements of σQ(g) with the values of φ−1

Q can be drawn
as follows.

i\k −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1
(

1
1111

) (
0

0010

) (
0

0100

) (
0

1000

)
: (−q)k

2
(

1
0111

) (
1

1121

) (
0

0110

) (
0

1100

)
: −√−1(−q)k

3
(

1
0011

) (
1

0121

) (
1

1221

) (
0

1110

)
: −(−q)k

4

(
1

0000

) (
0

0011

) (
1

0110

) (
0

1111

)
: (−q)k

4

(
0

0001

) (
1

0010

) (
0

0111

) (
1

1110

)
: −(−q)k

Here we set
( a5

a1a2a3a4

)
:=
∑5

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots. Note that

V (�i)a � V (�i)−a for i < n. It follows from Propositions 3.11 and 3.9 and the denominator
formula in Appendix A that d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)(−q)k) = d(V (�1), V (�1)(−q)k)

= δk,2 for k = 2, 4, . . . , 2n− 4,

Λ∞(V (�n), V (�1)±√−1
n
(−q)k) = d(V (�n), V (�1)±√−1

n
(−q)k)

= δk,n+1 for k = n+ 1, n+ 3, . . . , 3n− 3,

Λ∞(V (�n), V (�n)−1) = 0,

which give the values of mQ
i,j . Thus, one can check that the matrix MQ is a Cartan matrix of

type Dn+1.

Type E
(1)
6 . Recall the explicit description of σQ(g) for type E(1)

6 . The Dynkin quiver corre-
sponding to σ(g)Q is given in (A.3). In this case, h = 12 and elements (i, (−q)k) of σQ(g) with
the values of φ−1

Q can be drawn as follows.

i\k −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1

(
000
001

) (
000
010

) (
000
100

) (
011
111

) (
101
110

) (
010
100

) (
001
000

) (
100
000

)

3

(
000
011

) (
000
110

) (
011
211

) (
112
221

) (
111
210

) (
011
100

) (
101
000

)

4

(
000
111

) (
011
221

) (
112
321

) (
122
321

) (
112
210

) (
111
100

)

2

(
010
111

) (
001
110

) (
111
211

) (
011
110

) (
101
100

) (
010
000

)

5

(
001
111

) (
111
221

) (
011
210

) (
112
211

) (
111
110

)

6

(
101
111

) (
010
110

) (
001
100

) (
111
111

)
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Here we set
( a1a2a3

a4a5a6

)
:=
∑6

i=1 aiαi ∈ Δ+
Q, and the underlined ones are simple roots. Using the

formula given in Appendix A.1, one can compute that for 1 � k < h,

c̃1,1(k) = δk,1 + δk,7, c̃1,2(k) = δk,4 + δk,8.

By Lemma 6.2, we compute

Λ∞(V (�1), V (�1)(−q)k) = δk,2 + δk,8 for k = 2, 4, 8, 10, 12, 14,

Λ∞(V (�1), V (�2)(−q)k) = δk,9 for k = −1, 1, 9, 11, 13,

which give the values of mQ
i,j . Therefore, one can check that the matrix MQ is a Cartan matrix

of type E6.

Type E
(1)
7 . Recall the explicit description of σQ(g) for type E(1)

7 . The Dynkin quiver corre-
sponding to σ(g)Q is given in (A.3). In this case, h = 18 and elements (i, (−q)k) of σQ(g) with
the values of φ−1

Q can be drawn as follows.

i\k −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1

(
1011
111

) (
0101
110

) (
0011
100

) (
1112
111

) (
0111
110

) (
1011
100

) (
0101
000

) (
0010
000

) (
1000
000

)

3

(
0011
111

) (
1112
221

) (
0112
210

) (
1123
211

) (
1223
221

) (
1122
210

) (
1112
100

) (
0111
000

) (
1010
000

)

4

(
0001
111

) (
0112
221

) (
1123
321

) (
1224
321

) (
1234
321

) (
2234
321

) (
1223
210

) (
1122
100

) (
1111
000

)

2

(
0101
111

) (
0011
110

) (
1112
211

) (
0112
110

) (
1122
211

) (
1112
110

) (
0111
100

) (
1011
000

) (
0100
000

)

5

(
0000
111

) (
0001
110

) (
0112
211

) (
1123
221

) (
1223
321

) (
1123
210

) (
1223
221

) (
1122
110

) (
1111
100

)

6

(
0000
011

) (
0000
110

) (
0001
100

) (
0112
111

) (
1122
221

) (
1112
210

) (
0112
100

) (
1122
111

) (
1111
110

)

7

(
0000
001

) (
0000
010

) (
0000
100

) (
0001
000

) (
0111
111

) (
1011
110

) (
0101
100

) (
0011
000

) (
1111
111

)

Here we set
( a1a2a3a4

a5a6a7

)
:=
∑7

i=1 aiαi ∈ Δ+
Q, and the underlined ones are simple roots. Using the

formula given in Appendix A.1, one can compute that for 1 � k < h,

c̃1,1(k) = δk,1 + δk,7 + δk,11 + δk,17, c̃1,2(k) = δk,4 + δk,8 + δk,10 + δk,14,

c̃7,1(k) = δk,6 + δk,12, c̃7,2(k) = δk,5 + δk,9 + δk,13, c̃7,7(k) = δk,1 + δk,9 + δk,17.

By Lemma 6.2, we compute

Λ∞(V (�1), V (�1)(−q)2) = 1, Λ∞(V (�1), V (�2)(−q)) = Λ∞(V (�2), V (�1)(−q)) = 0,

Λ∞(V (�7), V (�1)(−q)k) = δk,13 for k = 13, 15, 17, 19, 21,

Λ∞(V (�7), V (�2)(−q)k) = δk,14 for k = 14, 16, 18, 20,

Λ∞(V (�7), V (�7)(−q)k) = δk,2 for k = 2, 4, 6,

which give the values of mQ
i,j . Therefore, one can check that the matrix MQ is a Cartan matrix

of type E7.

Type E
(1)
8 . Recall the explicit description of σQ(g) for type E(1)

8 . The Dynkin quiver corre-
sponding to σ(g)Q is given in (A.3). In this case, h = 30 and elements (i, (−q)k) of σQ(g) with
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the values of φ−1
Q can be drawn as follows.

i\k−34 −33 −32 −31 −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1

⎛
⎝10

11
11
11

⎞
⎠

⎛
⎝01

01
11
10

⎞
⎠

⎛
⎝00

11
11
00

⎞
⎠

⎛
⎝11

12
21
11

⎞
⎠

⎛
⎝01

12
11
10

⎞
⎠

⎛
⎝11

22
22
11

⎞
⎠

⎛
⎝11

12
21
10

⎞
⎠

⎛
⎝01

12
11
00

⎞
⎠

⎛
⎝11

22
21
11

⎞
⎠

⎛
⎝11

12
11
10

⎞
⎠

⎛
⎝01

11
11
00

⎞
⎠

⎛
⎝10

11
10
00

⎞
⎠

⎛
⎝01

01
00
00

⎞
⎠

⎛
⎝00

10
00
00

⎞
⎠

⎛
⎝10

00
00
00

⎞
⎠

3

⎛
⎝00

11
11
11

⎞
⎠

⎛
⎝11

12
22
21

⎞
⎠

⎛
⎝01

12
22
10

⎞
⎠

⎛
⎝11

23
32
11

⎞
⎠

⎛
⎝12

24
32
21

⎞
⎠

⎛
⎝12

34
33
21

⎞
⎠

⎛
⎝22

34
43
21

⎞
⎠

⎛
⎝12

24
32
10

⎞
⎠

⎛
⎝12

34
32
11

⎞
⎠

⎛
⎝22

34
32
21

⎞
⎠

⎛
⎝12

23
22
10

⎞
⎠

⎛
⎝11

22
21
00

⎞
⎠

⎛
⎝11

12
10
00

⎞
⎠

⎛
⎝01

11
00
00

⎞
⎠

⎛
⎝10

10
00
00

⎞
⎠

4

⎛
⎝00

01
11
11

⎞
⎠

⎛
⎝01

12
22
21

⎞
⎠

⎛
⎝11

23
33
21

⎞
⎠

⎛
⎝12

24
43
21

⎞
⎠

⎛
⎝12

35
43
21

⎞
⎠

⎛
⎝23

46
54
32

⎞
⎠

⎛
⎝23

46
54
31

⎞
⎠

⎛
⎝23

46
54
21

⎞
⎠

⎛
⎝23

46
53
21

⎞
⎠

⎛
⎝23

46
43
21

⎞
⎠

⎛
⎝23

45
43
21

⎞
⎠

⎛
⎝22

34
32
10

⎞
⎠

⎛
⎝12

23
21
00

⎞
⎠

⎛
⎝11

22
10
00

⎞
⎠

⎛
⎝11

11
00
00

⎞
⎠

2

⎛
⎝01

01
11
11

⎞
⎠

⎛
⎝00

11
11
10

⎞
⎠

⎛
⎝11

12
22
11

⎞
⎠

⎛
⎝01

12
21
10

⎞
⎠

⎛
⎝11

23
22
11

⎞
⎠

⎛
⎝12

23
32
21

⎞
⎠

⎛
⎝11

23
32
10

⎞
⎠

⎛
⎝12

23
32
11

⎞
⎠

⎛
⎝11

23
21
10

⎞
⎠

⎛
⎝12

23
22
11

⎞
⎠

⎛
⎝11

22
21
10

⎞
⎠

⎛
⎝11

12
11
00

⎞
⎠

⎛
⎝01

11
10
00

⎞
⎠

⎛
⎝10

11
00
00

⎞
⎠

⎛
⎝01

00
00
00

⎞
⎠

5

⎛
⎝00

00
11
11

⎞
⎠

⎛
⎝00

01
11
10

⎞
⎠

⎛
⎝01

12
22
11

⎞
⎠

⎛
⎝11

23
32
21

⎞
⎠

⎛
⎝12

24
33
21

⎞
⎠

⎛
⎝12

34
43
21

⎞
⎠

⎛
⎝22

35
43
21

⎞
⎠

⎛
⎝13

35
43
21

⎞
⎠

⎛
⎝22

45
43
21

⎞
⎠

⎛
⎝23

35
43
21

⎞
⎠

⎛
⎝12

34
32
10

⎞
⎠

⎛
⎝22

34
32
11

⎞
⎠

⎛
⎝12

23
21
10

⎞
⎠

⎛
⎝11

22
11
00

⎞
⎠

⎛
⎝11

11
10
00

⎞
⎠

6

⎛
⎝00

00
01
11

⎞
⎠

⎛
⎝00

00
11
10

⎞
⎠

⎛
⎝00

01
11
00

⎞
⎠

⎛
⎝01

12
21
11

⎞
⎠

⎛
⎝11

23
22
21

⎞
⎠

⎛
⎝12

23
33
21

⎞
⎠

⎛
⎝11

23
32
10

⎞
⎠

⎛
⎝12

24
32
11

⎞
⎠

⎛
⎝12

34
32
21

⎞
⎠

⎛
⎝22

34
33
21

⎞
⎠

⎛
⎝12

23
32
10

⎞
⎠

⎛
⎝11

23
21
00

⎞
⎠

⎛
⎝12

23
21
11

⎞
⎠

⎛
⎝11

22
11
10

⎞
⎠

⎛
⎝11

11
11
00

⎞
⎠

7

⎛
⎝00

00
00
11

⎞
⎠

⎛
⎝00

00
01
10

⎞
⎠

⎛
⎝00

00
11
00

⎞
⎠

⎛
⎝00

01
10
00

⎞
⎠

⎛
⎝01

12
11
11

⎞
⎠

⎛
⎝11

22
22
21

⎞
⎠

⎛
⎝11

12
22
10

⎞
⎠

⎛
⎝01

12
21
00

⎞
⎠

⎛
⎝11

23
21
11

⎞
⎠

⎛
⎝12

23
22
21

⎞
⎠

⎛
⎝11

22
22
10

⎞
⎠

⎛
⎝11

12
21
00

⎞
⎠

⎛
⎝01

12
10
00

⎞
⎠

⎛
⎝11

22
11
11

⎞
⎠

⎛
⎝11

11
11
10

⎞
⎠

8

⎛
⎝00

00
00
01

⎞
⎠

⎛
⎝00

00
00
10

⎞
⎠

⎛
⎝00

00
01
00

⎞
⎠

⎛
⎝00

00
10
00

⎞
⎠

⎛
⎝00

01
00
00

⎞
⎠

⎛
⎝01

11
11
11

⎞
⎠

⎛
⎝10

11
11
10

⎞
⎠

⎛
⎝01

01
11
00

⎞
⎠

⎛
⎝00

11
10
00

⎞
⎠

⎛
⎝11

12
11
11

⎞
⎠

⎛
⎝01

11
11
10

⎞
⎠

⎛
⎝10

11
11
00

⎞
⎠

⎛
⎝01

01
10
00

⎞
⎠

⎛
⎝00

11
00
00

⎞
⎠

⎛
⎝11

11
11
11

⎞
⎠

Here we set
( a1a2
a3a4
a5a6
a7a8

)
:=
∑8

i=1 aiαi ∈ Δ+
Q, and the underlined ones are simple roots. Using the

formula given in Appendix A.1, one can compute that for 1 � k < h,

c̃1,1(k) = δ(k = 1, 7, 11, 13, 17, 19, 23, 29),

c̃1,2(k) = δ(k = 4, 8, 10, 12, 14, 16, 18, 20, 22, 26),

c̃8,1(k) = δ(k = 7, 13, 17, 23),

c̃8,2(k) = δ(k = 6, 10, 14, 16, 20, 24),

c̃8,8(k) = δ(k = 1, 11, 19, 29).

By Lemma 6.2, we compute

Λ∞(V (�1), V (�1)(−q)2) = 1, Λ∞(V (�1), V (�2)(−q)) = Λ∞(V (�2), V (�1)(−q)) = 0,

Λ∞(V (�8), V (�1)(−q)k) = δk,24 for k = 24, 26, 28, 30, 32, 34,

Λ∞(V (�8), V (�2)(−q)k) = δk,25 for k = 25, 27, 29, 31, 33,

Λ∞(V (�8), V (�8)(−q)k) = δk,2 for k = 2, 4, 6, 8,

which give the values of mQ
i,j . Therefore, one can check that the matrix MQ is a Cartan matrix

of type E8.

Type F (1)
4 . Recall the explicit description of σQ(g) for type F (1)

4 , which can be obtained from
[OS19a]. In this case gfin is of type E6, and elements of σQ(g) with the values of φ−1

Q can be
drawn as follows.

i\k −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1

(
000

111

) (
111

210

) (
011

110

) (
001

111

) (
111

211

) (
111

110

) (
001

000

) (
000

001

) (
100

000

)
: (−1)iqks

2

(
000

110

) (
011

210

) (
011

221

) (
112

321

) (
122

321

) (
112

221

) (
112

211

) (
111

111

) (
101

000

)

3

(
000

100

) (
010

110

) (
001

110

) (
011

211

) (
111

221

) (
112

210

) (
011

111

) (
101

111

) (
111

100

)

4

(
010

100

) (
000

010

) (
001

100

) (
010

111

) (
101

110

) (
011

100

) (
000

011

) (
101

100

) (
010

000

)
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Here we set
( a1a2a3

a4a5a6

)
:=
∑6

i=1 aiαi ∈ Δ+
Q, and the underlined ones are simple roots. It fol-

lows from Propositions 3.11 and 3.9 and the denominator formula in Appendix A that
d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)qk
s
) = d(V (�1), V (�1)qk

s
) = δk,4 for k = 2, 4,

Λ∞(V (�3), V (�1)qk
s
) = d(V (�3), V (�1)qk

s
) = δk,15 for k = 15, 17, 19,

Λ∞(V (�4), V (�1)−qk
s
) = d(V (�4), V (�1)−qk

s
)

= δk,14 for k = −2, 0, 2, 12, 14, 16,

Λ∞(V (�3), V (�4)−qk
s
) = d(V (�3), V (�4)−qk

s
) = 1 for k = 3, 17,

Λ∞(V (�4), V (�4)q14s
) = d(V (�4), V (�4)q14s

) = 0,

which give the values of mQ
i,j . Thus, one can check that the matrix MQ is a Cartan matrix of

type E6.

Type G(1)
2 . Recall the explicit description of σQ(g) for type G(1)

2 , which can be obtained from
[OS19a]. In this case gfin is of type D4, and elements of σQ(g) with the values of φ−1

Q can be
drawn as follows.

i\k −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1

(
1

000

) (
1

011

) (
1

111

) (
1

121

) (
0

111

) (
0

110

)
: (−qt)

k

2
(

1
010

) (
0

001

) (
1

110

) (
0

011

) (
0

100

) (
0

010

)

Here we set
( a4

a1a2a3

)
:=
∑4

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots. It fol-

lows from Propositions 3.11 and 3.9 and the denominator formula in Appendix A that
d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�2)(−qt)k) = d(V (�1), V (�2)(−qt)k) = δk,11 for k = 3, 9, 11,

Λ∞(V (�2), V (�2)(−qt)k) = d(V (�2), V (�2)(−qt)k) = δk,2 + δk,8 for k = 2, 6, 8,

which give the values of mQ
i,j . Thus, one can check that the matrix MQ is a Cartan matrix of

type D4.

Type E(2)
6 . Recall the explicit description of σQ(g) for type E(2)

6 , which can be obtained from
[OS19a]. In this case gfin is of type E6, and elements of σQ(g) with the values of φ−1

Q can be
drawn as follows.
i\k −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1

(
000
001

) (
000
010

) (
000
100

) (
011
111

) (
101
110

) (
010
100

) (
001
000

) (
100
000

)
: (−q)k

2

(
000
011

) (
000
110

) (
011
211

) (
112
221

) (
111
210

) (
011
100

) (
101
000

)

3

(
000
111

) (
011
221

) (
112
321

) (
122
321

) (
112
210

) (
111
100

)
:
√−1(−q)k

4

(
010
111

) (
001
110

) (
111
211

) (
011
110

) (
101
100

) (
010
000

)

2

(
001
111

) (
111
221

) (
011
210

) (
112
211

) (
111
110

)
: −(−q)k

1

(
101
111

) (
010
110

) (
001
100

) (
111
111

)
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Here we set
( a1a2a3

a4a5a6

)
:=
∑6

i=1 aiαi ∈ Δ+
Q, and the underlined ones are simple roots. Note that

V (�i)a � V (�i)−a for i = 3, 4. It follows from Propositions 3.11 and 3.9 and the denominator
formula in Appendix A that d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)qk) = d(V (�1), V (�1)qk) = δk,2 + δk,8 for k = 2, 4, 8, 10, 12, 14,

Λ∞(V (�1), V (�4)√−1qk) = d(V (�1), V (�4)√−1qk)

= δk,9 for k = −1, 0, 1, 9, 11, 13,

which give the values of mQ
i,j . Thus, one can check that the matrix MQ is a Cartan matrix of

type E6.

Type D(3)
4 . Recall the explicit description of σQ(g) for type D(3)

4 , which can be obtained from
[OS19a]. In this case gfin is of type D4, and elements of σQ(g) with the values of φ−1

Q can be
drawn as follows.

i\k −6 −5 −4 −3 −2 −1 0

1
(

1
111

) (
0

010

) (
0

100

)
: qk

2
(

1
011

) (
1

121

) (
0

110

)
: −qk

1

(
0

001

) (
1

010

) (
0

111

)
: ωqk

1

(
1

000

) (
0

011

) (
1

110

)
: ω2qk

Here we set
( a4

a1a2a3

)
:=
∑4

k=1 akαk ∈ Δ+
Q, and the underlined ones are simple roots. Note that

V (�2)a � V (�2)ωta for t = 1, 2. It follows from Propositions 3.11 and 3.9 and the denominator
formula in Appendix A that d(VQ(αi),DkVQ(αj)) = 0 for i �= j and k �= 0 and that

Λ∞(V (�1), V (�1)ωtqk) =

{
1 if (t, k) = (0, 2), (1, 4), (2, 4),
0 if (t, k) = (1, 0), (2, 0), (1, 6), (2, 6),

which give the values of mQ
i,j . Thus, one can check that the matrix MQ is a Cartan matrix of

type D4.
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Appendix A. Denominator formulas

The denominator formulas were studied and computed in [AK97, DO94, Fuj22, KKK15, Oh15,
OS19a]. In this appendix we present the denominator formulas for all types.

Let qs, qt ∈ k× be such that q = q2s = q3t , and let ω ∈ k be such that ω2 + ω + 1 = 0. For
i, j ∈ I, we set

di,j(z) := dV (�i),V (�j)(z).
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A.1 Simply laced affine ADE types
Suppose that the Cartan matrix C = (ci,j)i,j∈I0 is of type An,Dn or Ek (k = 6, 7, 8). The quantum
Cartan matrix C(z) = (ci,j(z))i,j∈I0 is defined by

ci,j(z) := δ(i = j)(z + z−1) + δ(i �= j)ci,j .

We denote by C̃(z) = (c̃i,j(z))i,j∈I0 the inverse of C(z), and write

c̃i,j(z) =
∑
k∈Z�0

c̃i,j(k)zk for i, j ∈ I0. (A.1)

Then the following beautiful formula is given in [Fuj22, Theorem 2.10]:

di,j(z) =
h−1∏
k=1

(z − (−q)k+1)c̃i,j(k), (A.2)

where h is the Coxeter number. Note that the dual Coxeter number is equal to the Coxeter
number in this case.

Let g0 be a simple Lie algebra of type ADE with index set I0, and let Q be a Dynkin quiver
of g. Let ξ : I0 → Z be a height function such that ξj = ξi − 1 for i→ j in Q. Choose a total
order > on I such that i > j for ξi > ξj and write I0 = {i1 > i2 > · · · > in}. We set τ := si1 · · · sin ,
which is a Coxeter element. For i ∈ I0 we set γi :=

∑
j∈B(i) αj , where B(i) is the subset of I0

consisting of all elements j such that there is a path from j to i in Q. Then we have the following.

Proposition A.1 [HL15, Proposition 2.1]. For i, j ∈ I and k ∈ Z>0, we have

c̃i,j(k) =

{
(τ (k+ξi−ξj−1)/2(γi), �j) if k + ξi − ξj − 1 is even,

0 otherwise.

In this paper, we make the following choice of Dynkin quivers:

An : ◦
1

��◦
2

�� · · · ��◦
n−1

��◦
n
, Dn :

◦

◦
1

��◦
2

�� · · · ��◦
n−2

��

n��

◦
n−1

,

E6 :

◦ 2

��◦
1

��◦
3

��◦
4

��◦
5

��◦
6
, E7 :

◦ 2

��◦
1

��◦
3

��◦
4

��◦
5

��◦
6

��◦
7
,

E8 :

◦ 2

��◦
1

��◦
3

��◦
4

��◦
5

��◦
6

��◦
7

��◦
8
.

(A.3)

In this case we have the following data, which allow us to compute c̃i,j(k) explicitly.

(a) (Type An) τ = s1s2 · · · sn, ξi = 1 − i and γi =
∑i

j=1 αj .
(b) (Type Dn) τ = s1s2 · · · sn−1sn and

ξi =

{
1 − i if i < n− 1,
−n+ 2 if i = n− 1, n,

γi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i∑
j=1

αj if i < n,

n−2∑
j=1

αj + αn if i = n.
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(c) (Type En, n = 6, 7, 8) τ = s1s2 . . . sn, ξ1 = 0, ξ2 = −1 and ξk = 2 − k for k = 3, 4, . . . , n, and
γ1 = α1, γ2 = α2, γ3 = α1 + α3 and γt =

∑t
k=1 αk for t = 4, . . . , n.

Indeed, in the figures of § 6.2, the root γi is the rightmost one in the row labeled by i,
and τ corresponds to horizontal translation by −2. Hence one can read such values of c̃i,j(k)
easily from the figures.

A.2 Other classical affine types
The denominator formulas for other classical affine types can be found in [AK97, Appendix C.4]
for type C(1)

n and in [Oh15, Appendix] for types B(1)
n , D(2)

n+1 and A(2)
N (N = 2n, 2n− 1).

(i) Type B(1)
n (n � 2):

(a) dk,l(z) =
∏min(k,l)
s=1

(
z − (−q)|k−l|+2s

)(
z + (−q)2n−k−l−1+2s

)
for 1 � k, l � n− 1;

(b) dk,n(z) =
∏k
s=1

(
z − (−1)n+kq2n−2k−1+4s

s

)
for 1 � k � n− 1;

(c) dn,n(z) =
∏n
s=1

(
z − (qs)4s−2

)
.

(ii) Type C(1)
n (n � 2):

(a) dk,l(z) =
∏min(k,l,n−k,n−l)
s=1

(
z − (−qs)|k−l|+2s

)∏min(k,l)
s=1

(
z − (−qs)2n+2−k−l+2s

)
for 1 �

k, l � n.
(iii) Type A(2)

2n−1 (n � 2):

(a) dk,l(z) =
∏min(k,l)
s=1

(
z − (−q)|k−l|+2s

)(
z + (−q)2n−k−l+2s

)
for 1 � k, l � n.

(iv) Type A(2)
2n (n � 1):

(a) dk,l(z) =
∏min(k,l)
s=1

(
z − (−q)|k−l|+2s

)(
z − (−q)2n+1−k−l+2s

)
for 1 � k, l � n.

(v) Type D(2)
n+1 (n � 3):

(a) dk,l(z) =
∏min(k,l)
s=1

(
z2 − (−q2)|k−l|+2s

)(
z2 − (−q2)2n−k−l+2s

)
for 1 � k, l � n− 1;

(b) dk,n(z) =
∏k
s=1

(
z2 + (−q2)n−k+2s

)
for 1 � k � n− 1;

(c) dn,n(z) =
∏n
s=1

(
z + (−q2)s) for k = l = n.

A.3 Other exceptional affine types
The denominator formulas for exceptional affine type can be found in [OS19a, §§ 4 and 7].

(i) Type G(1)
2 :

(a) d1,1(z) = (z − q6t )(z − q8t )(z − q10t )(z − q12t );
(b) d1,2(z) = (z + q7t )(z + q11t );
(c) d2,2(z) = (z − q2t )(z − q8t )(z − q12t ).

(ii) Type F (1)
4 :

(a) d1,1(z) = (z − q4s)(z − q10s )(z − q12s )(z − q18s );
(b) d1,2(z) = (z + q6s)(z + q8s)(z + q10s )(z + q12s )(z + q14s )(z + q16s );
(c) d1,3(z) = (z − q7s)(z − q9s)(z − q13s )(z − q15s );
(d) d1,4(z) = (z + q8s)(z + q14s );
(e) d2,2(z) = (z − q4s)(z − q6s)(z − q8s)

2(z − q10s )2(z − q12s )2(z − q14s )2(z − q16s )(z − q18s );
(f) d2,3(z) = (z + q5s)(z + q7s)(z + q9s)(z + q11s )2(z + q13s )(z + q15s )(z + q17s );
(g) d2,4(z) = (z − q6s)(z − q10s )(z − q12s )(z − q16s );
(h) d3,3(z) = (z − q2s)(z − q6s)(z − q8s)(z − q10s )(z − q12s )2(z − q16s )(z − q18s );
(i) d3,4(z) = (z + q3s)(z + q7s)(z + q11s )(z + q13s )(z + q17s );
(j) d4,4(z) = (z − q2s)(z − q8s)(z − q12s )(z − q18s ).
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(iii) Type D(3)
4 :

(a) d1,1(z) = (z − q2)(z − q6)(z − ωq4)(z − ω2q4);
(b) d1,2(z) = (z3 + q9)(z3 + q15);
(c) d2,2(z) = (z3 − q6)(z3 − q12)2(z3 − q18).

(iv) Type E(2)
6 :

(a) d1,1(z) = (z − q2)(z + q6)(z − q8)(z + q12);
(b) d1,2(z) = (z + q3)(z − q5)(z − q7)(z + q7)(z + q9)(z − q11);
(c) d1,3(z) = (z2 + q8)(z2 + q12)(z2 + q16)(z2 + q20);
(d) d1,4(z) = (z2 + q10)(z2 + q18);
(e) d2,2(z) = (z − q2)(z − q4)(z − q6)(z − q8)2(z − q10)(z + q4)(z + q6)2(z + q8)

(z + q10)(z + q12);
(f) d2,3(z) = (z2 + q6)(z2 + q10)2(z2 + q14)2(z2 + q18)2(z2 + q22);
(g) d2,4(z) = (z2 + q8)(z2 + q12)(z2 + q16)(z2 + q20);
(h) d3,3(z) = (z2 − q4)(z2 − q8)2(z2 − q12)3(z2 − q16)3(z2 − q20)2(z2 − q24);
(i) d3,4(z) = (z2 − q6)(z2 − q10)(z2 − q14)2(z2 − q18)2(z2 − q22);
(j) d4,4(z) = (z2 − q4)(z2 − q12)(z2 − q16)(z2 − q24).
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