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Spherical coverings and X-raying convex
bodies of constant width
Andriy Bondarenko, Andriy Prymak , and Danylo Radchenko

Abstract. Bezdek and Kiss showed that existence of origin-symmetric coverings of unit sphere in
E

n by at most 2n congruent spherical caps with radius not exceeding arccos
√

n−1
2n implies the X-ray

conjecture and the illumination conjecture for convex bodies of constant width inE
n , and constructed

such coverings for 4 ≤ n ≤ 6. Here, we give such constructions with fewer than 2n caps for 5 ≤ n ≤ 15.
For the illumination number of any convex body of constant width in E

n , Schramm proved an
upper estimate with exponential growth of order (3/2)n/2 . In particular, that estimate is less than 3 ⋅
2n−2 for n ≥ 16, confirming the abovementioned conjectures for the class of convex bodies of constant
width. Thus, our result settles the outstanding cases 7 ≤ n ≤ 15.

We also show how to calculate the covering radius of a given discrete point set on the sphere
efficiently on a computer.

1 Introduction

The problem of packing congruent spherical caps on a sphere has received consider-
able attention, because the centers of the caps form spherical codes which have many
applications [5]. The corresponding covering problem is not that well studied. The
general results of Rogers [14, 15] have been improved in this context by Böröczky and
Wintsche [4] and later by Dumer [9] and Naszódi [12]. All these results specifically
target higher dimensions, and underperform in the lower dimensions compared to
concrete constructions of covering sets derived from lattices or from other regular
or symmetric arrangements of points. Motivated by applications in certain problems
from convex geometry considered by Bezdek and Kiss [2], our goal in this work is to
construct several spherical coverings with some additional properties such as origin
symmetry and a specific covering radius. Our constructions, as well as the method
for calculation of the covering radius, may also be of independent interest. Now, let
us describe the corresponding geometric problems.

A convex body in the n-dimensional Euclidean space E
n is a convex compact

set with nonempty interior. A point x on the boundary of a convex body K in E
n

is illuminated along a direction ξ ∈ Sn−1 (where S
n−1 is the unit sphere in E

n) if
the ray {x + tξ ∶ t ≥ 0} intersects the interior of K. A convex body K is illuminated
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along a set of directions E ⊂ Sn−1 if for any point of the boundary of K, there is a
direction ξ ∈ E such that this point is illuminated by ξ. The illumination number
I(K) is defined as the smallest cardinality of a set of directions illuminating K. The
well-known illumination conjecture is that for any convex body K ⊂ En , one has
I(K) ≤ 2n . Note that the illumination number of an n-cube is 2n . An equivalent
formulation of the illumination conjecture is that any convex body K ⊂ En can be
covered by at most 2n smaller homothetic copies of K. For a survey on these conjec-
tures, also known as the (Levi–)Hadwiger conjecture or Gohberg–Markus covering
conjecture, see [1] and the references therein; for recent results in the asymptotic case,
see [10]; for recent results in the low-dimensional case, see [13]; and for a computer-
based approach, see [17].

A related concept to illumination is that of X-raying a convex body introduced by
Soltan. A point x ∈ K, where K ⊂ En is a convex body, is X-rayed along a direction
ξ ∈ Sn−1 if the line {x + tξ ∶ t ∈ R} intersects the interior of K. K is X-rayed by E ⊂
S

n−1 if for every point x ∈ K, there is a direction ξ ∈ E such that x is X-rayed along ξ.
The X-ray number X(K) is the smallest cardinality of a set of directions X-raying K.
X-raying conjecture by Bezdek and Zamfirescu is that X(K) ≤ 3 ⋅ 2n−2 for any convex
body K ⊂ En . An example achieving the bound is the convex hull of the vertices of
an n-cube with one (n − 2)-dimensional face removed. The reader can refer to [2] for
further details.

The connection between the X-raying and the illumination problems is not hard
to observe: one always has X(K) ≤ I(K) ≤ 2X(K) for any convex body K.

Convex body has constant width if its projection onto any line has length inde-
pendent of the choice of the direction of the line. This class of convex bodies plays a
very important role in convex geometry and other areas of mathematics (see, e.g., [11]
for a comprehensive exposition). We define Xw

n and Iw
n as the largest values of X(W)

and I(W), respectively, where W varies over all convex bodies of constant width in
E

n . A natural problem considered by Bezdek and Kiss in [2] is to confirm X-raying
and illumination conjectures for the class of convex bodies of constant width, e.g., to
establish Xw

n ≤ 2n−1.
Using an interesting probabilistic argument, Schramm proved in [16] that asymp-

totically Iw
n < n1.5+o(1)(3/2)n/2 as n →∞. He provided an explicit estimate for all n,

namely (see [16, p. 188]),

Iw
n < 1 + 4n

√
πn/3 ln(13 + 16n) (3

2
)

n/2
.(1.1)

If n ≥ 16, the right-hand side of (1.1) is less than 3 ⋅ 2n−2, and we always have Xw
n ≤ Iw

n ,
so (1.1) confirms the X-raying and illumination conjectures for the class of convex
bodies of constant width and dimensions n ≥ 16. (We remark that the simpler estimate
than (1.1) given in [16, Theorem 1] is not sufficient for n = 16, and, on the other hand,
further fine-tuning of parameters and constants in the proof in [16] does not seem to
allow to confirm the conjectures of our interest for n = 15.)

Returning to small dimensions, for n ≤ 6, the inequality Xw
n ≤ 2n−1 was confirmed

by Bezdek and Kiss in [2] by reduction to a specific covering problem on the sphere.
Let us explicitly formulate this reduction which is valid in all dimensions. For a finite
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set A ⊂ Sn−1, the covering radius of A is the smallest r > 0 such that the union of
spherical balls of radii r centered at the points of A is S

n−1. A is origin-symmetric
if −A = A. Let wn denote the smallest cardinality of an origin-symmetric set A ⊂ Sn−1

with covering radius not exceeding arccos
√

n−1
2n .

Lemma 1.1 [2, Lemma 3.1] Xw
n ≤ 1

2 wn .

Let us briefly describe two main ingredients in the proof of this lemma; full details
can be found in [2]. The key concept is that of the Gauss image of a face (intersection
of the boundary with a supporting hyperplane) of a convex body, which is the set of
outer unit normal vectors of all supporting hyperplanes containing the face (see also
[11, p. 35] for the simpler case of smooth boundary). If the Gauss image (which is a
subset of the unit sphere) of any face of a convex body can be covered by an appropriate
spherical cap, then an estimate on the X-ray number of the body follows, as established
in [2, Lemma 2.4]. The second ingredient, which was used in [16] as well, is a nice
geometric property of convex bodies of constant width stating that the angle between
any two outer unit normal vectors of supporting hyperplanes at the same point of the
boundary is at most π/3. The value arccos

√
n−1
2n arises as the complementary angle

to the circumradius of a regular (n − 1)-dimensional spherical simplex of edge length
π/3.

It was shown in [2] that w4 ≤ 12 and wn ≤ 2n , for n = 5, 6, and was asked if this
inequality can be extended to 7 ≤ n ≤ 15. We show by explicit construction that wn <
2n , for 5 ≤ n ≤ 15, and thus completely confirm the X-raying and the illumination
conjectures for the class of convex bodies of constant width in any dimension. X-
raying problem is connected to a theorem of Danzer and Grünbaum [7] on antipodal
convex polytopes (see [2, Section 4]). Furthermore, X-raying problem has found
applications in approximation theory [6, Section 7] where explicit upper bounds on
the number of directions required for X-raying are of interest.

Our main result is the following theorem.

Theorem 1.2 w5 ≤ 30, w6 ≤ 44, w7 ≤ 112, w8 ≤ 240, w9 ≤ 470, w10 ≤ 692, w11 ≤ 2024,
w12 ≤ 3832, w13 ≤ 7074, w14 ≤ 11132, and w15 ≤ 16442.

Our constructions started from an observation that the (normalized) minimal
norm vectors of the E8 lattice (see, e.g., [5, Section 4.8.1, p. 120]) settle the problem
for n = 8. We further explored various origin-symmetric systems of vectors which
are invariant under permutations of coordinates and were able to solve the problem
for the outstanding dimensions and also improve the known results from [2] for
n = 5, 6.

An important part of the proof which can be of independent interest is an efficient
procedure for computation of covering radius of a given point system which is based
on the computation of the polar of a convex polytope (see Section 2). SageMath [8]
code we used for computations can be found in the Appendix of the preprint [3] of
this article.
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2 Computation of covering radius

Recall that the polar of a convex body (convex compact set with nonempty interior)
K ⊂ En containing the origin is defined as K○ = {x ∈ En ∶ ⟨x , y⟩ ≤ 1 ∀y ∈ K}, where
⟨⋅, ⋅⟩ is the canonical Euclidean scalar product. By conv(A)we denote the convex hull
of A, by ∥ ⋅ ∥ the Euclidean norm, and by ext(K) we denote the set of extreme points
of a convex set K. In the case K is a polytope, ext(K) is the set of its vertices.

Lemma 2.1 Suppose a finite subset A ⊂ Sn−1 is such that the interior of K ∶= conv(A)
contains the origin. Then, the covering radius of A equals arccos((max{∥x∥ ∶ x ∈
ext(K○)})−1).

Proof Because K○ is a convex polytope and x ↦ ∥x∥ is a convex function, by
Krein–Milman theorem, max{∥x∥ ∶ x ∈ ext(K○)} =max{∥x∥ ∶ x ∈ K○} =∶ λ. A point
x ∈ Sn−1 is not covered by the union of spherical balls of radii r centered at the points
of A if and only if ⟨x , y⟩ < cos r for any y ∈ A, i.e., (cos r)−1x lies in the interior of
K○. The covering radius of A is then sup{r > 0 ∶ (cos r)−1

S
n−1 ∩ K○ ≠ ∅} = λ, and the

claim of the lemma follows.

Under the hypothesis of the lemma, K○ is a convex polytope given as the intersec-
tion of half-spaces. Therefore, the covering radius of A can be efficiently computed
after the half-space representation of K○ is converted into the vertex representation.
A function performing such a conversion is readily available in most softwares for
mathematical computations, e.g., MATLAB or SageMath.

If A possesses certain symmetries, then it may be possible to restrict the computa-
tions only to a certain part of the polytope. By O(n)we denote the group of distance-
preserving transformations ofEn that preserve origin. ForT ⊂ O(n), the notation ⟨T⟩
stands for the subgroup of O(n) generated by T.

Lemma 2.2 SupposeT ⊂ O(n) is finite and C ⊂ En is such that⋃{T(C) ∶ T ∈ ⟨T⟩} =
E

n . Furthermore, suppose that for a finite subset A ⊂ Sn−1, the interior of K ∶= conv(A)
contains the origin and T(A) = A for any T ∈ T. Then, the covering radius of A equals
arccos((max{∥x∥ ∶ x ∈ C ∩ ext(K○)})−1).

Proof Clearly, under the hypotheses of the lemma, T(K○) = K○ and T(ext(K○)) =
ext(K○) for any T ∈ ⟨T⟩. By Theorem 2.1, the covering radius of A equals
arccos((max{∥x∥ ∶ x ∈ ext(K○)})−1). Suppose the maximum is attained at a point
x0 ∈ ext(K○). Because ⋃{T(C) ∶ T ∈ ⟨T⟩} = En , there exists T ∈ ⟨T⟩ such that
x0 ∈ T(C), then T−1x0 ∈ C ∩ ext(K○). We have ∥x0∥ = ∥T−1x0∥ ≤max{∥x∥ ∶ x ∈
C ∩ ext(K○)} ≤max{∥x∥ ∶ x ∈ ext(K○)} = ∥x0∥, and the lemma is proved.

For example, if A is origin-symmetric and invariant under permutations of coordi-
nates, we can take C = {x ∈ En ∶ x1 ≥ 0, x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn}, which is applicable to all
the cases in the next section. As C is given as intersection of half-spaces, C ∩ K○ is a
convex polytope, and max{∥x∥ ∶ x ∈ C ∩ ext(K○)} =max{∥x∥ ∶ x ∈ ext(C ∩ K○)}.
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Table 1: Constructions and covering radii.

n Vectors of generating set ∣A∣ Covering radius arccos
√

n − 1
2n

≈

5 (22 , 03), (2,−2, 03), (2, (−1)4) 30 arccos
√

2
5

≈ 0.88608
0.88608

6 (
√

6, 05), (16), (14 , (−1)2) 44 arccos
2
3

≈ 0.84107
0.86912

7 (172 , (−1)5), (132 , (−7)5),
(23, (−3)6), (17, 76) 112

arccos
593

55
√

265
≈ 0.84688

0.85707

8 (22 , 06), (2,−2, 06),
(18), (16 , (−1)2), (14 , (−1)4) 240

π
4
≈ 0.78540 0.84806

9
(32 , 07), (3,−3, 07),

((
√

2)9), ((
√

2)7 , (−
√

2)2),
((
√

2)5 , (−
√

2)4)
470

arccos
1

√
19 − 12

√
2

≈ 0.79265
0.84107

10
((
√

10)2 , 08), (
√

10,−
√

10, 08),
((
√

2)10), ((
√

2)8 , (−
√

2)2),
((
√

2)6 , (−
√

2)4)
692

arccos
1

√
20 − 8

√
5

≈ 0.81180
0.83548

11
(
√

33, 010), ((
√

11)3 , 08),
((
√

11)2 ,−
√

11, 08),
((
√

3)10 ,−
√

3), ((
√

3)7 , (−
√

3)4)
2, 024 ≈ 0.82071 0.83092

12
(2
√

3, 011), (23 , 09), (22 ,−2, 09),
(112), (110 , (−1)2), (18 , (−1)4),

(16 , (−1)6)
3, 832 ≈ 0.78540 0.82711

13

(
√

39, 012), ((
√

13)3 , 010),
((
√

13)2 ,−
√

13, 010), ((
√

3)13),
((
√

3)12 ,−
√

3), ((
√

3)11 , (−
√

3)2),
((
√

3)10 , (−
√

3)3), ((
√

3)9 , (−
√

3)4),
((
√

3)8 , (−
√

3)5)

7, 074 ≈ 0.79098 0.82390

14

(
√

42, 013), ((
√

14)3 , 011),
((
√

14)2 ,−
√

14, 011), ((
√

3)14),
((
√

3)12 , (−
√

3)2), ((
√

3)10 , (−
√

3)4),
((
√

3)8 , (−
√

3)6)

11, 132 ≈ 0.80395 0.82114

15
(2
√

15, 014), ((2
√

15)2 ,−2
√

15, 012),
((
√

15)4 , 011), (215), (214 ,−2),
(212 , (−2)3), (29 , (−2)6)

16, 442 ≈ 0.81793 0.81876

3 Proof of Theorem 1.2

We write (xn1
1 , xn2

2 , . . . ) to denote a vector that has some n i coordinates equal to
x i ; for example, (2, 2,−1, 0, . . . , 0) ∈ En can be written as (22 ,−1, 0n−3). For each n,
5 ≤ n ≤ 15, we construct an appropriate system of points A ⊂ Sn−1, so that Theorem 1.1
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is applicable. The set A is obtained by taking all possible permutations of coordinates
and symmetries about the origin of a certain smaller generating set of vectors.
For convenience, we list the vectors of the generating set on a sphere which is
not necessarily unit; the generating set can be normalized using a scalar multiple.
Covering radii are found on a computer using the techniques of Section 2 and the
code supplied in [3, Appendix]. The constructions and the results are given in Table 1
(∣A∣ denotes the cardinality of A), where the decimal approximations are stated with
the precision of five digits, while actual computational precision is double floating
point arithmetic.

For the dimensions 5 ≤ n ≤ 10, we computed the precise values of the covering
radius by using exact computations in the field of rational numbers or in appropriate
quadratic fields. Note that for n = 5, the covering radius is equal to the one required
by Theorem 2.1. All coordinates in our constructions are given by algebraic numbers,
so with appropriate computational resources, the covering radii can be computed
precisely.

The running time of our script is well under a minute on a modern personal
computer even for the case n = 15 if floating point arithmetic is used. Getting precise
results through symbolic computations takes longer for n = 9 (5 minutes) and n = 10
(1 hour).
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