
An integrated multidomain functional failure and propagation
analysis approach for safe system design

CHETAN MUTHA,1 DAVID JENSEN,2 IREM TUMER,3 AND CAROL SMIDTS1

1Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio, USA
2Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
3School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, Oregon, USA

(RECEIVED March 27, 2012; ACCEPTED December 3, 2012)

Abstract

Early system design analysis and fault removal is an important step in the iterative design process to avoid costly repairs in
the later stages of system development. System complexity is increasing with increased use of software to control the phys-
ical system. There is a dearth of techniques to evaluate inconsistencies, incompatibility, and fault proneness of the system
design in an integrated manner. The early design analysis technique presented in this paper aids a designer to understand the
interplay between the multifaceted components and evaluate his/her design in an integrated manner. The technique allows
simultaneous propagation of different types of faults from various domains and evaluates their functional impact over a
period of time. The structure of the technique is explained using domain-specific conceptual metamodels, whereas the ex-
ecution is based on the event sequence diagram, which is one of the established reliability and safety analysis techniques.
One of the notable features of the proposed technique is the object-oriented nature of the system design representation. The
technique is demonstrated with the help of a case study, and the execution results of two scenarios are evaluated to dem-
onstrate the analysis capability of the proposed technique.

Keywords: Decision Support; Early Design Rationale; Fault Propagation; Integrated Design; Integrated Functional
Analysis

1. INTRODUCTION

One challenge in assuring the safe operation of complex sys-
tems is the identification and mitigation of the potential ef-
fects of failure. As complex systems have advanced in tech-
nological complexity, an increasing source of failure is the
interaction of physical and software (SW) subsystems. Tradi-
tional system design approaches focus on generating concepts
that would satisfy functional and performance requirements,
while satisfaction of safety requirements is determined later in
the validation stage. This approach is time consuming for val-
idation of the design and can be costly to redesign for the mit-
igation of a failure effect. This approach is also challenging
because the different sources and types of failure for different
technical subsystems and their interactions must be identified.
In addition, the effect of faults as they propagate through the
system must be determined.

To address these challenges, methods of safety-based sys-
tem design and concept-stage failure analysis are proposed in

the literature (Leveson, 1995; FAA, 2000; Johannessen et al.,
2001; NASA, 2004; Stone et al., 2005; Hutcheson et al.,
2006; Jensen et al., 2008; Kurtoglu & Tumer, 2008; Jensen
et al., 2009; Kurtoglu et al., 2010; Mutha et al., 2010a,
2010b; Mutha & Smidts, 2011). The objectives are to gener-
ate and evaluate system designs where safety and risk are ad-
dressed early in the design process. Advantages of this ap-
proach include the elimination of costly redesigns and the
creation of risk-based concept selection. However, these
methods face the challenge of identifying the effect of faults
from within the system and faults from the interactions of dif-
ferent technical subsystems and their propagation paths. De-
spite this, the use of a more abstract representation of the sys-
tem early in the design process provides an opportunity to
compare the behavior of the SW and physical subsystems.

In this paper, we focus on the evaluation of a system’s be-
havior early in the design process. Specifically, our focus is
on determining the effect of potential failures and their propa-
gation paths through three different subsystems: mechanical,
communication, and SW. Traditional failure-analysis tech-
niques involve high-fidelity component models that describe
nominal and faulty behaviors. However, early in the design

Reprint requests to: Chetan Mutha, 201 West 19th Avenue, W382 Scott
Laboratory, Ohio State University, Columbus, OH. E-mail: mutha.4@osu.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2013), 27, 317–347.
Cambridge University Press 2013 0890-0604/13 $25.00
doi:10.1017/S0890060413000152

317

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

mailto:mutha.4@osu.edu
https://doi.org/10.1017/S0890060413000152

process, specific components and their design parameters
have not been selected: the design is represented using low-fi-
delity abstractions of intended functionality. For this reason,
to make early design trade-offs, focus must be maintained
on the system functions (Kurtoglu & Tumer, 2008).

The system design analysis in this paper is based on func-
tional failure identification and propagation (FFIP) and fail-
ure propagation and simulation approach (FPSA) based mod-
els (described in Sections 2 and 3, respectively). We have
described FFIP and FPSA metamodels based on the meta-ob-
ject family (MOF) language. The MOF standard is used to de-
fine the abstract mapping between FFIP and FPSA model ele-
ments. The FFIP metamodel is instantiated to create FFIP
models. System Modeling Language (SysML), a derivative
of Unified Modeling Language (UML), can be easily anno-
tated to build FFIP models. FPSA metamodels are instantiated
to create FPSA models. UML can be easily annotated to build
these FPSA models. UML and SysML are both based on
MOF and SysML is a derivative of UML, which facilitates
seamless integration. For example, activity diagrams and
component diagrams can be employed to represent FFIP’s
function flow and configuration flow diagrams, respectively.
Further, the interface feature provided by the component dia-
grams (both in SysML and UML) can be annotated to facili-
tate fault propagation from hardware (HW) to SW and vice
versa.

1.1. Contribution

In this paper we formalize the FFIP method developed for
fault propagation and effects analysis of electromechanical
systems (Kurtoglu & Tumer, 2008; Tumer & Smidts, 2011).

The method is further extended to analyze systems com-
posed of two subsystems: a physical HW subsystem and a
SW subsystem that interfaces with the HW. The physical sub-
system represents the electromechanical components; the SW
subsystem handles the control and decision logic for achiev-
ing the functionality of the physical system.

In this paper we also specifically introduce a second tech-
nique called the FPSA for the fault-propagation analysis in
the SW subsystem and present its formalization. The FFIP
and the FPSA approaches are described in detail in Sections
2 and 3.

Finally, in Section 4, the paper presents an integrated ap-
proach to the failure analysis of a system that contains both
SW and physical subsystems. We develop the integrated sys-
tem failure analysis (ISFA) technique for this purpose and
formalize ISFA. Bridging the two domains (HW and SW)
is achieved by mapping classes, attributes, enumerations,
and data types and by introducing new concepts (represented
as metaclasses) that establish the missing links between the
two domains. As a part of ISFA, a full-scale simulation algo-
rithm is built based on the event sequence diagram (ESD)
framework. The simulation procedure will allow designers
to automate the fault-propagation analysis of an integrated
HW–SW system.

In Section 4.5 we demonstrate the ISFA technique with a
holdup tank case study. The case study demonstrates two
cases of commonly occurring faults that can lead to system
failure. These common faults often escape the design realm
and are captured only (hopefully) during the testing phase.
These cases demonstrate the power of fault-propagation anal-
ysis on an integrated system.

The ISFA technique will enable the designer to

a. proactively analyze simple domain functionality and
complex cross-domain functionality;

b. understand functional and cross-functional failures;
c. identify failure-propagation paths within a particular

subsystem and across both physical and SW subsys-
tems;

d. identify which function(s) will be lost, their impact on
the overall system, and safeguards/redundancies that
should be added; and

e. provide a safety analyst with sufficiently detailed results
so that s/he can understand the safety risk(s) (FAA,
2000).

These advantages are discussed in detail in the conclusion
section (Section 5).

1.2. Related work

1.2.1. Risk and reliability analysis

Safety and reliability assessment is one of the primary ac-
tivities performed during each stage of the development life
cycle of a safety-critical system. Some of the standard and
widely practiced techniques are failure mode and effect anal-
ysis (FMEA; see MIL-STD-1629A; Department of Defense,
1980; FAA, 2000), fault tree analysis (FTA; FAA, 2000), and
probabilistic risk assessment (PRA; see NUREG/CR-2300;
Nuclear Regulatory Commission, 1983). These analysis tech-
niques help ensure high levels of system reliability and are the
key contributors to risk reduction. During the early design
phase, once the primary system model is available, the design
analysis is performed using one of these approaches or a com-
bination of these approaches. Based on the findings of the
analysis, the system design may completely change.

FMEA is an inductive technique for systematic risk analy-
sis of the system. During the analysis, a team of experts enu-
merates failure modes, their causes, and their effect for each
component in the system. Further, a quantitative risk assess-
ment is provided based on the rating scale (1–10) for severity,
likelihood, and detectability. Although this is a valuable risk
assessment technique at the early design stage, it is not the
most effective technique for complex systems. There are in-
herent limitations to this approach. First, the experts manually
identify the effect of fault propagation. Second, only single
faults can be analyzed at a particular time. Third, FMEA
does not explicitly capture component interactions. Fourth,
SW FMEA has limited applicability since the SW faults, their
evolution, and their impact are more complex and difficult to

C. Mutha et al.318

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

understand without execution of actual SW code. This paper
addresses these issues by proposing integration of the HW
and SW design into one unified and formalized model and
a qualitative simulation of the integrated model to identify
fault-propagation paths and their functional consequences.

While FMEA attempts to identify system-level conse-
quences of a component-level fault, FTA decomposes crit-
ical, system-level failures into logical combinations of com-
ponent-level failures. FTA is a deductive technique that
identifies the possible root causes of an undesirable system
state. FTA can potentially identify more failure causes than
the single-component-oriented FMEA. FTA provides a
more formal representation of fault-propagation paths be-
tween the basic events (root causes of component failure)
and the top event (system failure) in the form of Boolean lo-
gic. Even though FTA is a complement to the FMEA analysis
technique, FTA possesses some fundamental limitations.
First, FTA is a snapshot of a system state, so there is no con-
cept of dynamic evolution of system state. Second, the fault-
propagation paths that represent component interactions are
expressed using Boolean logic operators. The Boolean logic
is informally constructed during the expert identification of
event–consequence relationships or using other less informal
approaches such as digraphs (Lapp & Powers, 1977) and
decision tables (Lee et al., 1985) or qualitative simulations
(Lee et al., 1985). The development of this Boolean logic be-
comes increasingly difficult with increasing system complex-
ity. Third, in the case of SW systems, FTA is mostly done at
the code level (Towhidnejad et al., 2003). This paper addres-
ses these issues by integrating the faulty and nominal behav-
ior of the component (for both HW and SW) into the design
and by the dynamic identification of the fault-propagation
paths and their functional consequences. The system state
evolution is captured in the form of mode transitions, which
are used to define the component behavior. The propagation
path changes according to the change in component modes.
The relationships described go beyond those that can be cap-
tured by Boolean logic operators. For example, the behavioral
rules implemented as state-machine diagrams can capture a
number of intermediate states and transition between the
states. A fuzzy logic representation of behavioral rules pro-
vides a wide range of approximations and thus is suitable
for the design evaluation.

The classical PRA (NUREG/CR-2300; Nuclear Regula-
tory Commission, 1983) framework utilizes multiple scenar-
ios and event-sequencing logic models (event trees combined
with fault trees) to quantify risk as the product of an event’s
probability and its consequence (Giarratano & Riley, 1989).
Labeau et al. (2000) mentions that the classical PRA faces
the same limitations as FTA because the representation is
static in nature and building an event tree requires a risk ana-
lyst who can evaluate the complex dynamics behind the sce-
narios. To tackle this problem, dynamic PRA was introduced
to capture the effects of time and process dynamics on the
scenario and remove the limitations introduced by the static
nature of classical PRA. Within the dynamic PRA frame-

work, the semi-Markov based probabilistic dynamic equa-
tions need to be solved (Devooght & Smidts, 1992). These
equations are extremely complex and computationally inten-
sive. The available SW tools for dynamic reliability assess-
ment, including ADAPT (Catalyurec et al., 2010) and SIM-
PRA (Mosleh et al., 2004), are capable of automatically
generating dynamic scenarios and provide accurate results.
These tools are under the development phase and are not
set up to include object-oriented SW design. Thus, even
though dynamic PRA is a far more sophisticated tool to ana-
lyze system reliability, it is limited in scope by application
(more suitable for physical systems) and computational chal-
lenges. In contrast, integrated system failure analysis (ISFA)
provides a seamless integration of object-oriented SW design
into the physical system models. ISFA is a younger tool that is
more suitable for HW–SW intensive systems in contrast to
ADAPT and SIMPRA. ISFA is qualitative in nature and com-
putationally less intensive, which makes it more suitable for
early design stage application. Due to ISFA’s formal nature
and the use of recent industry standards (UML and SysML),
it can potentially target a wider range of industries.

While the general methodology of the three analysis
methods listed above (FMEA, FTA, and PRA) can be applied
early in the design process such as with functional FMEA
(Hawkins & Woollons, 1998), they pose fundamental chal-
lenges that are difficult to overcome in their respective do-
mains.

The ISFA approach presented in this paper uses an induc-
tive approach to assess failure (similar to FMEA). The ISFA
approach is simulation based, qualitative in nature, and not
limited to a single fault or domain. In addition, the fault-prop-
agation paths and the functional consequences are the output
of the analysis, unlike FTA, in which the propagation paths
are predetermined. Finally, PRA methods require a well-re-
fined system design. In this research, behavioral simulation
is based on abstract, qualitative models that do not require
knowledge of specific component implementation. Another
notable feature of ISFA is the object-oriented design repre-
sentations used for SW. Object-oriented design is a paradigm
shift from sequential SW design, and UML has established it-
self recently as the standard language for expressing object-
oriented-based SW design.

1.2.2. Representation of complex system behavior in the
concept stage

The main difficulty in assessing system safety and risk dur-
ing the conceptual design stage is the uncertainty of the sys-
tem’s behavior. Yet the representation of this behavior is an
important objective in system design. Several approaches
have been developed to represent complex system behavior
in the conceptual design stage, but they tend to view the sys-
tem either from a SW perspective or from a physical one. Our
objective is to concurrently assess failures in integrated engi-
neering systems that contain both types of systems. We there-
fore require a common framework to interrelate the descrip-
tion of behavior of both physical and SW elements.

ISFA system design 319

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

The SW design process has undergone a rapid evolution
over the past two decades, and the traditional approaches
are slowly being replaced by the new object-oriented design
paradigm. UML (Rumbaugh, 1999; Erikson, 2004) is the
standard for object-oriented SW modeling and contains six
structural1 and seven behavioral2 views of SW systems to ex-
press SW design from high- to low-level details. The wide-
spread application of UML has led to intensive research
that extends to SW reliability and risk assessment. Existing
research includes completeness, consistency, and correctness
verification of the UML diagrams (Iwu & Toyn, 2003);
UML-based approaches to perform fault diagnosis of SW
systems (Iwu & Toyn, 2003); UML-based risk assessment
during the early phases of development (Goseva-Popstoja-
nova, 2003); and the study of model transformations (Whittle
& Schumann, 2000; Selonen et al., 2001). Model transforma-
tion approaches have been extended to produce established
risk assessment and failure analysis models such as Petri
nets (Baresi & Pezzè, 2001) and fault trees (Towhidnejad
et al., 2003). UML can be easily extended because it provides
extension mechanisms such as stereotypes, constraints, and
tag values (Rumbaugh et al., 1999; Erikson et al., 2004).
Using the same representation approach, UML has been ex-
tended with SysML for the representation of physical systems
(Object Management Group, 2008). SysML provides a
framework for representing the interrelated behavior and
structure of a system in a similar fashion to the degree of rep-
resentation achieved by UML. The main additions include a
representation schema for system design specification and for
the physical variables of flow (energy and material).

Other modeling languages have been developed for sys-
tems that focus on physical structure but are not readily adap-
table to represent the specifics of SW design. Functional
modeling methods can represent system behavior at a high
level of abstraction (Pahl & Beitz, 1996). Largely, research
using such a functional approach has focused on the electro-
mechanical and hydrodynamic features of the system, as can
be seen in the functional ontology developed in Hirtz et al.
(2002). Furthermore, methods to capture the behavior, struc-
ture, and function have also been focused on the physical sys-
tem representation (Umeda & Tomiyama, 1997; Huang &
Jin, 2008; Krus & Grantham Lough, 2009). An exception
to this is the mechatronic focused “Schemebuilder” (Brace-
well & Sharpe, 1996).

Some model-based approaches have been developed to au-
tomatically produce FTA- and FMEA-style analyses by anno-
tating the system architecture with failure information
(Grunske & Han, 2008). In the area of embedded systems de-
sign, the architecture analysis and description language
(Grunske & Han, 2008) describe the runtime nominal and
failure behavior; however, the HW under consideration

only handles the SW execution. Besides the model-based ap-
proaches, some researchers have employed fault-propagation
graphs (such as directed graphs) to analyze component de-
pendencies and fault propagation. Multisignal flow graphs
developed by Deb et al. (2002) are another comprehensive
methodology to model cause–effect dependencies of com-
plex systems. Finally, in cases where physical cause–effect
relationships are difficult to analytically model, statistical
and probabilistic classification methods are applied (Yairi
et al., 2001; Berenji et al., 2003).

The ISFA method described in this paper is function ori-
ented and thus has a conceptual design focus. It integrates
qualitative reasoning with behavioral simulation to enable the
computation of component interactions likely to result in
functional failures. In addition, ISFA allows for the identifi-
cation of both the functional failures and their propagation
paths that are derived from the functional and structural topol-
ogy of a system. Finally, the approach is applicable to a vari-
ety of systems and it is not constrained by a database of doc-
umented, historical failure data.

2. FFIP

The FFIP technique is an approach for evaluating and assess-
ing the risk of functional failures during the conceptual de-
sign phase. The task of the FFIP technique is to estimate po-
tential faults and their propagation paths under critical-event
scenarios. FFIP was developed with a focus on modularity
and with the intent of capturing the effect of complex system
interactions (Jensen et al., 2008; Kurtoglu & Tumer, 2008;
Jensen et al., 2009; Kurtoglu et al., 2010). FFIP identifies
the propagation and functional effect of component failures
by identifying the function–component mappings from a da-
tabase of generic components during the system-simulation
process. The database includes qualitative, state-machine be-
havioral models for each generic component. These behav-
ioral models capture both nominal and faulty behavior. Dur-
ing the system simulation process, different nominal and
faulty behaviors are triggered. Using FFIP, various concep-
tual designs and their limitations are explored. In the later
phases, design analysis is performed to verify and validate
the system. In the field of verification and validation, the
use of strict formalism rules for system representation has en-
abled a rapid means of verifying that a model is consistent.

In this paper, the formalization of FFIP is presented. For-
malization is necessary because information of a particular
domain must be consistently transferred across other domains
in order to correctly analyze multidomain systems.

2.1. Formalization of FFIP

For the formalization of FFIP, the modeling elements will
first be expressed using a formal language such as MOF.
MOF is widely used and provides the necessary constructs
for expressing the conceptual modeling element. Figure 1
shows the FFIP domain modeling elements and their relation-

1 Structural diagrams depict a static view that explains how the system-
specific concepts are related and organized.

2 Behavioral diagrams model how the elements defined in a structural dia-
gram interact with each other.

C. Mutha et al.320

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

ships. The FFIP modeling approach represents a system in
three different views: functional, behavioral, and in terms
of components. Together, these views form the complete
model of an electromechanical system. The FFIP modeling
elements are divided into four packages: FunctionModel,
ConfigurationFlowGraph, Flow, and BehaviorModel. The
FunctionModel and ConfigurationFlowGraph import the
same Flow package. Table 1 provides an overview of the dif-
ferent models and the modeling elements.

FunctionModel is composed of functions and subfunc-
tions, identified as the element HW_Function, and different
types of Flows among functions such as Signal, Material,
and Energy. The association between HW_Function and Flows
indicates that the HW_Function acts on the incoming Flow
and transforms it to outgoing Flow. The FunctionLibrary is
a library of predefined functions that can be updated with
newly discovered functions. In FFIP, “function” is viewed
as the actions that the design is supposed to perform not the
subjective purpose of the design (Deng, 2002). The HW func-
tions are selected from this function library. Similarly, the
FlowLibrary is a library of predefined flow that can be up-
dated with the newly discovered flows. Using the predefined
functions and flows, and connecting them in a particular se-

quence, a function model is generated to achieve the actual
or desired functionality of the system. Taxonomy, such as
functional basis (Hirtz et al., 2002), can be used to standard-
ize the naming convention of function and flow.

The component model, the configuration flow graph
(CFG), is composed of HW components and subcomponents
(collectively termed HW_Component); different types of
flows such as Signal, Material, and Energy; and the variables
depicted as Variable handled by the component. The CFG
follows the functional topology. The relationship between
HW_Function and HW_Component is such that one HW_Com-
ponent can implement multiple HW_Function. The mapping
between HW_Component and HW_Function is critical for the
FFIP framework. The HW_Function acts on the input vari-
ables and transforms them into output variables. The overall
component structure of the system is governed by the system
functional model. CFGs and functional models are similar to
directed flow graphs, where a “component” of the CFG and a
“function” of the functional model act as a “node” and the
“flow” acts as the “arc.” The output of one node is the input
of another node. Because functions are mapped to compo-
nents, the diagrams must maintain flow consistency between
the functional and component views of the system. The flow

Fig. 1. The functional failure identification and propagation metamodel. HW, hardware; FFL, function failure logic.

ISFA system design 321

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

in and out of a function or a group of functions is the same as
the flow for the component(s) implementing the function(s).
This constraint is specified by a set of “well-formedness”
rules defined in the formal object constraint language. An ex-
ample of this is Constraint C1 in Table 1.

The system behavioral model follows a component-ori-
ented approach. Qualitative behavioral models are defined for
each component. The component behavior is depicted as Be-
havioralRules that include both nominal and faulty behaviors
derived from the underlying first principles and the relation-
ship between the input and output variables. The Behavioral-
Rules are based on representing the physics of the component
interactions at a conceptual stage. This is similar to the qual-
itative physics (DeKleer & Brown, 1984) behavioral descrip-
tions, except that state machines are used to represent discrete
nominal and faulty behaviors rather than a continuous set of
equations. For example, in qualitative physics, the spring
equation F ¼ k�x describes a proportional relationship be-
tween the variables F and x. Qualitative reasoning indicates
that the change in F is of the same sign and proportional in
magnitude to the change in x. In this way, qualitative physics

uses “landmark” values for variables instead of continuous
values. For example, landmark values might be the maximum
and minimum F resulting from the maximum and minimum
positions of x. In this way, qualitative physics can be applied
when the precise variable range is not known. While our ap-
proach to modeling behavior builds on this, in order to ac-
complish more precise reasoning about functional states, we
have extended this to a state-based, qualitative interval model.

Our models describe discrete states of behavior using qual-
itative descriptions of the transformation of flows, where the
flows variable is discretized into intervals. BehavioralRules
are state machines composed of multiple Nominal states
and multiple Faulty state definitions. A Nominal state can
transition to another Nominal or Faulty state; similarly, a
Faulty state can transition between other Faulty or Nominal
states. The transitions are triggered by events that are environ-
mental factors or control commands. The discrete behavioral
rule approach would describe the above spring model as a few
discrete states with their own behaviors such as “at rest” or
“compressing and expanding.” In addition, we can include
some failure states representing broken or misaligned springs.

Table 1. Physical system models and the modeling elements

Package Description Elements Used Description

Function Model Depicts a high-level functional
description of the physical system

HW_Function An intended function subjected to the
following constraint:

Constraint: C1
Context FFIP:HW_Function
Inv: self.host � forAll (n:HW_

Component | n.groupID ¼
self.groupID)

Inv: (self.inflow ¼ n.inflow and
self.outflow ¼ n.outflow)

Flow An entity modified by a function and
passed between connecting functions

FunctionLibrary Library of function types
FlowLibrary Library of flow type

Configuration Flow
Graph

Depicts the component structure of
the physical system

HW_Component A high-level component type
Flow An entity passed between connecting

components
Variable A parameter of the flow such as

temperature
ComponentLibrary Library of component types
FlowLibrary Library of flow types (same as

function)
BehaviorModel Defines the behavior of each

component in terms of its input–
output relationship

BehavioralRules A description of a single component
nominal and faulty behavior based
on the input–output variables

Nominal One or more intended operating states
of a component

Faulty One or more failure modes of a
component

Functional failure logic Rules relating flow changes (caused by
component behavior) to a function’s
state

Transition Change from one state to another
caused by an event

C. Mutha et al.322

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

In all these states, the output force is related to the input posi-
tion, so that “low” magnitude of the position flow results in
“low” value for the force flow under nominal behavior states.
The same holds true for other discrete levels of the input
flows.

Another important element of the FFIP framework is the
function failure logic (FFL). It relates the component behav-
ior to the operating state of system functions. The FFL eval-
uates the input and output flow levels as defined in the com-
ponent’s behavioral model and relates those to the status of
intended functions. This operational state is represented as
the HW_Function’s attribute status and is classified as Lost,
Operating, or Degraded. The HW_Function.status is iden-
tified as Lost when the intended function of that component
is not achieved. The HW_Function.status is said to be Oper-
ating when the intended function is achieved. Finally, the
HW_Function.status is said to be Degraded when the in-
tended function is only partially achieved. Figure 2 is a repre-
sentation of a valve component, its function, its behavioral
rule, and the FFL.

2.2. Behavioral simulation

Behavioral simulation is a discrete-time simulation integrated
with the automatic functional reasoning. To simulate a fault,
the fault mode transition in a component behavioral state ma-
chine is triggered. This new state defines how the component
in the failed mode will change the input–output flow relation-
ship. For example, the “clogged” state of a valve component
behavioral model changes the output flow of material from
nominal to zero. After a fault mode transition is triggered,
the component state machines connected to that component
(based on the CFG architecture) are also executed. Concur-
rently with the behavioral execution, the FFL evaluates the
expected flow conversions. For example, the valve compo-
nent is mapped to the function to regulate fluid flow. The
FFL evaluates the input and output flows from the simulation

and compares the expected change of implementing that
function to the change observed in the simulation. The FFL
then identifies the status of that specific function, as well as
the status of all other functions in the model.

3. FPSA

SW fault-propagation methods are limited; they are con-
structed mostly from traditional risk assessment techniques
(such as FTA and FMEA) developed to study physical sys-
tems. Oftentimes, they are inefficient and insufficient for
complex SW analysis. These techniques are applied once
the design is complete and implemented. Any design changes
after risk assessment may incur large costs.

To address this lack of early design stage SW system safety
analysis, we introduce a novel approach called the FPSA. The
FPSA is a UML-based SW fault propagation and effects anal-
ysis method applied at the conceptual design phase. The cen-
tral idea of the FPSA is the mappings between different UML
diagrams. The FPSA propagates faults through various UML
diagrams to determine the SW function status (Mutha et al.,
2010a). The FPSA mapping metamodel (Fig. 3) depicts the
mapping and relationships between different SW-design ele-
ments expressed in different UML diagrams. The relation-
ships between different diagram elements are explained in de-
tail in Table 2. The original UML metamodel of individual
diagrams such as activity, state machine, and use case are pre-
served, while newer, more specific relationships are estab-
lished between elements across the UML diagrams. These
across-diagram relationships help us navigate from one dia-
gram to another.

3.1. Formalization of the FPSA

The FPSA is developed for application during the conceptual
design phase where the focus is on the functional system
structure and not on the implementation-level details. During

Fig. 2. (a) The valve component, its input–output variables, and the flow; (b) the valve function and flow; (c) valve behavioral rules in
terms of input–output relationship; and (d) valve function failure logic.

ISFA system design 323

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

the early design stage, the use case, component, and deploy-
ment diagrams assist a designer in understanding the func-
tional requirements and SW architecture. Details such as
the control logic, the behavior of the objects at runtime, and
the SW structure are necessary to perform safety analysis.
These details are available in the form of an activity, se-
quence, state machine, and class diagram. Despite duplication
of information among these diagrams, each has its own
unique features; therefore, it is necessary to study all of the
diagrams.

Similar to FFIP::behavioralRule and FFIP::FFL, the be-
havioralRule and the FFL are incorporated into the SW rep-
resentation in the following way. The behavioralRule repre-
sents a novel concept introduced to study the input/output
value related to failures such as value, range, type, and
amount (Li et al., 2006). Behavioral rules are presented as
if–then–else condition statements, where the condition is de-
fined as the relationship between the input and output vari-
ables of a particular component. Because these rules are de-
fined by the analyst, there is no standard format; therefore,
they are implemented as Opaque Action. The behavioralRule
captures the nominal and faulty operation modes of a compo-
nent. These modes are defined as relationships between input
and output variables. The input variables associated with the
component are transformed into output variables by the activ-
ities that the component represents. An incorrect action/deci-
sion execution of the activity will result in incorrect output
values that will further trigger the component’s nominal or

faulty modes. For example, consider a faulty execution of
the decision node D1, where at P2 ¼ 0 (which is less than
PLth). If the condition D1 is evaluated to “false” instead of
“true,” then the variable “ControlCommand” will equal
“Open.” In this case, the Faulty2 mode, as shown in
Figure 4c, is triggered.

The FFL is a powerful reasoning tool to determine the SW
functional effect resulting from different modes defined in the
behavioralRules. The FFL of each SW component is imple-
mented as StateMachine. We can easily infer the system-level
functional failure based on the results obtained from the FFL.
The SW function is represented by the Activities that the com-
ponent represents. Depending on the component mode, the
Activity status will be Lost, Operating, or Unknown. Further-
more, the low-level functional effect can be related to the
high-level failure effect based on the relationship between Ac-
tivity and Use Case. An Activity may be usedIn multiple Use
Cases; therefore, one Activity failure may lead to multiple Use
Case failures. Furthermore, according to the standard rela-
tionship between Use Case and Actor, a use case may provide
an output to multiple actors that may represent an external
component such as a HW_Component. Therefore, we can
conclude that failure of an Activity may lead to failure of mul-
tiple Use Cases, which in turn will affect the external compo-
nent inputs. In this paper, we limit the discussion to activity
failure; however, we can further extend a formal deduction
of use case failure simply based on the mapping relationship
between use case and activity.

Fig. 3. The failure propagation and simulation approach mapping metamodel.

C. Mutha et al.324

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

Table 2. FPSA specific relationships

Relationship Description

Activity – Activity
Partition

This unidirectional association indicates that each Activity should be surrounded by one or more Activity Partitions. In
other words, the elements represented by the activity partition are responsible for the enclosed activity. This relationship
modifies the Activity’s association “partition: ActivityPartition [0..*]” (specified in OMG, 2009) to
“partition:ActivityPartition[1..*].”

Activity Partition –
Component

This unidirectional association indicates that one or more Activity Partitions are represented by one Component that is a part of
the Component diagram. This relationship is based on the Activity Partition’s association of “represents: Element [0..1]”
(specified in OMG, 2009) to “represents: Component [1].” This association connects the Component diagram to the
Activity diagram.

Activity – Use Case This simple association indicates that an Activity acts as the behavior of the Use Case. The multiplicity indicates that an
Activity can be used in multiple Use Cases. This association is one way to specify the Use Case behavior. This association
connects the Activity diagram and Use Case diagram.

Component – Class This compositional relationship indicates that a Component is composed of one to many Classes. This relationship is derived
from the Component’s association “packagedElement: PackageableElement [*]” specified in OMG (2009). Here the
packageableElement is Class. This association connects the Class diagram to the Component diagram.

Component – Interface This compositional relationship indicates that each Component is composed of multiple required or provided Interfaces.
These interfaces act as a contract between the two Components that share the services. The relationship is mentioned here
because it is used in integrated system failure analysis while integrating the hardware and software domain (even though it is
the same as the one defined in OMG, 2009).

Component – State
Machine

This compositional relationship indicates that each Component is composed of one State-Machine diagram, which captures
the functional failure logic (FFL). The relationship FFL is not a part of OMG (2009).

Component – Opaque
Action

This compositional relationship indicates that each Component is composed of one Opaque Action, which captures the
behavioralRule. The relationship behavioralRule is not a part of OMG (2009).

Component – Variables This simple association indicates that each Component can have multiple input–output Variables. These variables will be
marked on the connectors.

Constraint: C2
Context: Component
Inv: If component.interface ¼ provided implies Component.variables ¼ output
Inv: If component.interface ¼ required implies Component.variable ¼ input

Class – State Machine This simple association indicates that the behavior of the object of type Class is represented with a State Machine diagram.
Class – Use Case This simple association indicates that each Class is a subject of multiple Use Cases. This relationship is derived from the

Use Case association “subject : Classifier[*]” specified in OMG (2009). This association connects the Class diagram and
Use Case diagram.

Use case – Interaction This simple association indicates that each UseCase behavior can be described by one Interaction, a behavioredClassifier.
This association is one way to specify the UseCase behavior. This association connects the Use case diagram to the
Sequence diagram.

Class – Message The relationship indicates that the Message signature is assigned to one Class. The Message signature is represented as an
operation in the Class. This relationship is derived from the Message’s association “/signature:NamedElement[0..1]”
specified in OMG (2009). This association connects the Class diagram to the Sequence diagram.

Constraint: C3
Context: Message
Inv: Message.signature ¼ class.operation � not empty()

Lifeline – Class This type association indicates that the object represented by the Lifeline is of type Class. This relation is derived from the
Lifeline’s association “represents: ConnectableElement[0..1]” specified in OMG (2009). This connects the Class diagram to
the Sequence diagram.

State – Activity This relationship is specified in OMG (2009). It is an important relationship because in the case of event-driven software, a
part of the process may be executed on the occurrence of an event that may affect the execution sequence of the entire
process flow. An additional constraint is defined for this relationship that will ensure the mapping between activity and
state, thereby enabling the ability to track states/events/triggers that leads to execution of an out of sequence activity.

Constraint: C4
Context: State
Inv: (State.entry ‖ State.doActivity ‖ State.exit) � notEmpty()

Deployment Diagram –
Component Diagram

The deployment diagram imports the component diagram to establish a connection between the external hardware
components and software components. This relationship assists in visualizing fault propagation from external components
into the software system and vice versa. This relationship is not a part of the Universal Modeling Language (UML)
Specification.

Fault – Variable This relationship is established to study the input–output types of faults associated with the software components. A fault is
injected by manipulating the software variable values. This relationship is not a part of the UML Specification.

Fault – OpaqueAction This relationship is established to distinguish the faults originating from the physical system with which the software interacts.
This relationship incorporates the external faults by manipulating the variables, statements, and soforth of the Opaque
Action. This relationship is not a part of the UML Specification.

ISFA system design 325

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

Figure 4 and Table 3 demonstrate a simple example of be-
havioral rules and the FFL for the SW component “Valve
Controller.” In addition to input/output-value types of failure,
other types can be studied. These include failure due to incor-
rect control logic or incorrect decisions; state-based failures;
and communication-related failures such as incorrect se-
quence of events, object missing failures, and message miss-
ing failures.

3.2. Behavioral simulation

The UML-based design provides several options for behav-
ioral simulation. The simulation can be driven by the state
machine, the activity diagram, or the sequence diagram. Of
these, the simulation driven by the activity diagram fulfills
our need to simulate the overall system and does so better
than the other options. In addition, it is supported by the
UML superstructure v2.3, which states the following:

All the behavior formalisms are potentially intra-object, if
they are specified to be executed by and access only one
object. However, state machines are designed specifically
to model the state of a single object and respond to events
arriving at that object. Activities can be used in a similar
way, but also highlight input and output dependency be-

tween behaviors, which may reside in multiple objects. In-
teractions are potentially intra-object, but generally not de-
signed for that purpose. (Object Management Group,
2009)

The behavior simulation of the FPSA is a simple process.
Each node of the activity diagram is traversed following the
control flow edges. The behavioralRules and the FFL, asso-
ciated with the component represented by the activity parti-
tion, are executed at each step. This is done to evaluate the sta-
tus of the SW function (i.e., activity and use case) at each
node. Results are propagated to other diagrams using the
mapping relationships.

4. ISFA

An integrated system is composed of HW and SW systems
working together to achieve a goal or fulfill system-level
functionality. Integration of two different domains demands
interface matching, input/output data matching, synchroniza-
tion of events, and communication in the form of correct mes-
sages and their timing. With the exception of interface match-
ing, the other requirements are behavioral aspects handled by
behavioral diagrams. The functional model of FFIP captures
the functional flow of the HW system, while the activity, use
case, and sequence diagrams of UML capture the functional

Table 2 (cont.)

Relationship Description

Fault – Message This relationship is established to study message-related faults such as the incorrect sequence of messages and missing
message. These types of fault are very common and can have a disastrous effect on overall system behavior. This
relationship incorporates the message faults by modifying the message-related properties such as signature, parameters, and
order. This relationship is not a part of the UML Specification.

Fig. 4. (a) The software component “Valve Controller” and its input–output variables (P2 and ControlCommand), (b) the activity “valve
control logic,” (c) a sample behavioral rule in terms of the relationship between input–output variables, and (d) a sample function failure
logic.

C. Mutha et al.326

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

SW aspect. Of these, only the activity diagram is capable of
capturing the flow of the SW functions, handling externally
triggered activities, and including elements for sending sig-
nals to external entities. Therefore, the functional model of
the FFIP approach and the activity diagram of UML are inte-
grated to study the integrated system-level function.

4.1. Formalization of ISFA

HW is integrated with SW via interfaces. An interface is a
component that communicates the send/receive information
between physical HW and SW systems. Various types of in-
put–output interfaces, such as PCI buses and USBs, can per-
form this task. Interfaces can be complicated and may consist
of a number of electronic components, such as integrated cir-
cuits, resistors, memory units, and capacitors. However, for
high-level functional evaluation, the low-level component
details are abstracted and the interface functions are defined
based on the input/output data. In this paper, the function
of an interface is abstracted as a “transaction.” Basically,
this is a signal type of data object. The success or failure of
an interface is observed by analyzing the properties of the
transaction. Important properties of the transaction include
source, target, and timing information.

In the following discussion, the stereotype symbol,��,
refers to a particular instance of a class. Figure 5 shows the
metamodel for the ISFA analysis and elements used for inte-
gration. As shown in Figure 5a, the structural elements (the
configuration flow graph components of the FFIP and the
component diagram of UML) are integrated via interface,
while the behavioral elements (functions of the FFIP’s func-
tional diagram and UML’s activity diagram) are integrated
via transaction. The associations interface and transaction
are implemented as association classes and are described in
Figure 5b. Each transaction is associated with an interface
and with a TimingConstraint. The TimingConstraint not
only imposes timing constraints on HW–SW interactions
but also keeps track of time during the behavioral simulation.
At the conceptual level, the HW represents the physical-sys-
tem components, while the HW components specific to the
SW (such as buses, storage devices, and input/output devices)
are outside the scope of this paper. The attributes owned by
�interface� represent the input/output data between the
HW and SW components. Each class and their relationships
are explained in detail in Sections 4.1.1 to 4.1.4.

4.1.1. Interface

As mentioned earlier, an interface is an abstract concept
that refers to a common object of interaction between two
components. In the SW domain, an interface is modeled as
an abstract class that contains the method signature and attri-
butes. Its implementation details are specific to the classifier
implementing the interface. Similarly, in the HW domain, an
interface can be modeled as an abstract component capable of
sending/receiving signals to a particular HW component. The
�interface� depicted in Figure 5b can be a component’s
required or a provided interface (indicated by the attribute
component of type “string”). For example, a “Sensor” com-
ponent provides data via �interface� Isensor; therefore,
�interface� Isensor becomes the provided interface of “Sen-
sor.” An “Alarm” component requires sensor data acquired via
�interface� Isensor; therefore, �interface� Isensor
will be the required interface of “Alarm.” The input/output
data passed between components is captured by attribute.
value. The component that implements the interface acquires
data by execution of the two methods that an �interface�
owns. These methods are subjected to the following con-
straints:

Constraint: C5

Context:�interface�
Inv: If �interface� .required ¼ true and �interface�

.attribute.value !¼ null
Execute�interface� .getdata()
Execute�interface� .setdata()

Constraint: C6

Context:�interface�
Inv: If �interface� .required ¼ true and �interface�.

attribute.value ¼ null
Execute�interface� .wait()

Because an interface is the communication link between the
HW and SW, a malfunctioning interface can lead to failure
of the complete system. To study the effect of interface faults,
we apply the failure reasoning of FFIP to interface modeling.
Similar to FFIP, each interface has a set of input/output-based
behavioral rules and the FFL. The behavioral rules consist of
nominal and faulty modes of interface; the FFL defines the
functional effect in a particular mode of operation. Sample
behavioral rules and the FFL are provided in Table 4.

4.1.2. Transaction

A transaction is an instance of a signal and defines the com-
munication details of the HW–SW interaction. Its function is
to communicate that the HW function has generated the
necessary data and is ready to send it, while the SW function
is ready to receive the data and vice versa. Each transaction is
associated with an �interface�, where the provided inter-
face will send the transaction and the required interface will
receive it. The transaction is also associated with a Timing-

Table 3. Variable and design limitations associated
with software component “valve controller”

Variable Values

Pin Pvalid ¼ {Pin | PLTh , Pin , PUTh}, PLTh and PUTh are
defined in the design specification

ControlCommand {Open, Close, Null}

ISFA system design 327

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

Constraint. The details of the transaction are stored in the fol-
lowing six attributes.

1. Source: Name of the function that initiates a transaction.
The source can be either a HW_Function or a SWActivity.

2. Target: The name of the function that receives a transac-
tion. It is subjected to Constraint C7, indicating that the
target function domain is different from the source of a
transaction.

Constraint: C7

Context:�transaction�
Inv: If�transaction�.source ¼ Activity implies
�transaction�.target ¼ HW_Function

Inv: If �transaction�.source ¼ HW_Function im-
plies�transaction�.target ¼ Activity

3. isOrdered: Indicates that the transaction follows a par-
ticular order. The default value is “false.” The order is
defined by the attribute “ordering.”

4. Ordering: Defines a sequence of transactions that
should occur when the isOrdered is set to “true.”

5. Complete: A flag that indicates completion of a
�transaction�. It takes a Boolean value. The default
value is “false.”

6. Status: Indicates the status of the transaction. The trans-
action status is represented using a 2�1 vector. The first
component indicates the status of the transaction as it re-
lates to the physical condition of the interface. The sec-

Fig. 5. (a) Integration of the functional failure identification and propagation (FFIP) and failure propagation and simulation approach
(FPSA) metamodels and (b) the relationship between associations “transaction” and “interface.” FFL, function failure logic.

C. Mutha et al.328

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

ond vector component indicates the status of the trans-
action resulting from the dynamic execution of the
HW–SW interaction. These two components of the
component vector are independent. The first component
of transaction status may take the values OK, Degraded,
Lost, or Unknown. OK indicates the data has correctly
transferred between HW and SW. Degraded indicates
the data was corrupted while it was transferred between
HW and SW. Lost indicates the data transfer did not take
place. Unknown indicates transaction status cannot be
determined based on the available input and output.
The second component of the transaction status vector
can take the values Active, Inactive, Complete, Incom-
plete, Never started, or Error. Active indicates the trans-
action was created. Inactive indicates the transaction
was not created. Complete indicates the attribute trans-
action.complete is set to “true” (i.e., the transaction is

complete). Incomplete indicates the transaction did
not execute to completion. Never started indicates that
the transaction was not allowed to start. Error indicates
the execution of ISFA was faulty. The default status
of the vector is (OK, Inactive). The second component
is subjected to necessary conditions defined in terms of
relevant TimingConstraint.start and TimingConstraint.
finish states. Some of the combinations of start and fin-
ish states are unachievable.

4.1.3. TimingConstraint

In addition to ensuring completion of communication be-
tween the objects, timing is another important factor to de-
termine the reliability and safety of a safety-critical system.
Traditionally, the timing requirements are implemented by
a watchdog timer. In this paper, we represent the timing re-
quirements as TimingConstraint for each transaction. The
TimingConstraint also handles the synchronization aspects
of the HW–SW integration. Therefore, TimingConstraint
must be specified for each transaction. If �transaction�
is unable to fulfill its associated TimingConstraint, the
transaction.complete flag is set to “false.” This would indi-
cate that the communication between the objects did not
complete in a timely manner. The transaction.status would
then be set to “Incomplete.” TimingConstraint records
logical temporal details of a transaction in the following
five attributes.

1. Start: Marks the beginning of a transaction. The attrib-
ute has states: “–1” (unable to start), “0” (not started),
and “1” (started). The default value is “0.”

2. Finish: Marks the end of a transaction. The attribute has
states: “–1” (unable to finish), “0” (not finished), and
“1” (finished). The default value is “0.”

3. Ts: Start time of the transaction.
4. Timevalue: The physical time during the execution.
5. Unit: The unit of time measurement of the system anal-

ysis; for example, millisecond, second, and hour.

The attributes of each TimingConstraint are subjected to the
following constraints (C8):

Constraint: C8

Context: TimingConstraint

Inv: self.start ¼ “1” and self.finish ¼ “1” implies transac-
tion.complete ¼ true

Table 5 constitutes the second component of�transaction�.
status that results from the dynamic execution of the IFSA
model. Boolean logic of start and finish values constitutes
the interface’s behavioral rules, while the “Status” constitutes
the FFL. The default values of [start, finish] are [0, 0] and
change dynamically during the model execution.

Table 4. Sample behavioral rules and functional
failure logic of an interface

Mode Behavioral Rules

NOM If (≪interface≫.provided.value ¼
≪interface≫.required.value) AND
(≪interface≫.provided.transaction ¼
≪interface≫.required.transaction) AND
(≪interface≫transaction.source = empty)

Faulty1 If (≪interface≫.provided.value =

≪interface≫.required.value) AND
(≪interface≫.provided.transaction ¼
≪interface≫.required.transaction) AND
(≪interface≫transaction.source = empty)

Faulty2 If (≪interface≫.provided.value ¼
≪interface≫.required.value) AND
(≪interface≫.provided.transaction =

≪interface≫.required.transaction) AND
(≪interface≫transaction.source = empty)

Faulty3 If (≪interface≫.provided.value =

≪interface≫.required.value) AND
(≪interface≫.provided.transaction =

≪interface≫.required.transaction) AND
(≪interface≫transaction.source = empty)

Faulty4 If (≪interface≫.provided.value ¼
≪interface≫.required.value) AND
(≪interface≫.provided.transaction ¼
≪interface≫.required.transaction) AND
(≪interface≫transaction.source ¼ empty)

. .

. .

. .
Functional failure logic

If NOM, then ≪signal≫transaction.status ¼ OK
If Faulty1, then ≪signal≫transaction.status ¼ Degraded
If Faulty2, then ≪signal≫transaction.status ¼ Unknown
If Faulty3, then ≪signal≫transaction.status ¼ Lost
If Faulty4, then ≪signal≫transaction.status ¼ Unknown

.

.

.

ISFA system design 329

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

4.1.4. InstanceSpecification

InstanceSpecification is a class used to model additional
constraints imposed by the data-transfer protocols. A compu-
ter is a discrete-time system that sends/receives data at spe-
cific instants of time to monitor/control a continuous physical
process. The data-transfer process has to follow a specific
communication protocol depending on the communication
model selected, for example, a “polling system.” The commu-
nication model imposes additional restrictions such as when
and how long a TimingConstraint on a particular transaction
is valid and how often data is transferred. The InstanceSpeci-
fication class can be modified to adopt these requirements.
For example, according to Dasarathy (1985), TimingCon-
straint on events occurring in real-time systems are classified
into types: maximum, minimum, and durational. In this pa-
per, for demonstration purposes, we consider the following
attributes of the InstanceSpecification:

1. Min: Defines the minimum time t, which must elapse
before a transaction is activated.

2. Max: Defines the maximum time t, allotted for a trans-
action to complete.

3. Unit: The unit of time measurement of the system anal-
ysis; for example, millisecond, second, and hour.

The transaction status depends on the type of data transfer al-
gorithm selected for communication. Different communica-
tion algorithms can be modeled and inserted into the ISFA
execution model to determine their system-level functional im-
pact. An example of a simple data-transfer model is expressed
in algorithm format as “Algorithm_TStatus” (Fig. 6). Ac-
cording to the “Algorithm_status” algorithm, data transfer by
the transaction takes place within a time window of [tmin,
tmax]. If the data are sent too early, before tmin, then the data
are rejected. This is indicated by the attribute�signal� trans-
action.start ¼ “–1.” If the data are sent/received too late, after
tmax, then the data are not transferred. This is indicated by the
attribute�signal� transaction.finish¼ “–1.” The detailed al-
gorithm is given in Figure 6.

4.2. ESD notation

Dynamic systems involve interactions among HW, SW, and
humans. The behavior is event driven, meaning it is important

Table 5. All possible combinations of [Start, Finish] and corresponding interpretation of Status

Start Finish Status Start Finish Status Start Finish Status

21 21 Impossible 0 21 Impossible 1 21 Incomplete
21 0 Never started 0 0 Inactive 1 0 Active
21 1 Impossible 0 1 Impossible 1 1 Complete

Fig. 6. The Algorithm_TStatus.

C. Mutha et al.330

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

to know when events such as SW changes and HW state
changes occur. An occurrence of an event could lead to dif-
ferent system behavior. Furthermore, the sequence of events
must be known to determine a particular behavior. Finally,
occurrences of events also depend on time-evolving system
variables, potentially affecting the dynamics of the SW.

The ESD is a framework that represents sequences of events
ordered in time. ESDs are similar to typical flow charts and
likewise are useful in understanding the sequence of events
leading to a particular behavior. They are easily constructed
and facilitate modeling of conditions, concurrent processes,
mutually exclusive outcomes, synchronization processes, and
other highly time-dependent situations (Swaminathan &
Smidts, 1999). In this paper, we adopt elements of the ESD no-
tation (Table 6) to execute the metamodel elements.

4.3. The ISFA execution model

The execution model of the ISFA technique is expressed
using the ESD notation. The HW and SW design execute in

parallel. They communicate via transactions of the related in-
terfaces. Both the HW and the SW design execution include
communication-related processes, for example, creation of a
transaction and determination of the transaction status. These
communication-specific processes ensure that data is transfer-
red from one system (function) to the target system (function)
in a timely manner. The execution model outputs the function
statuses of the HW, SW, and Interface. These are input into
the system function status identification process explained
in Section 4.4.

To evaluate the design, the execution model is simulated
over multiple time steps. In the context of the ISFA execution
model, a “simulation step” is defined as one full execution of
all the processes contained in the execution model, that is, ex-
ecution until the last component of the CFG and of the activ-
ity diagram. A “simulation run” is defined as a repetition of a
simulation step until the point of interest (e.g., a prespecified
mission time defined in multiples of the simulation step) or
point of failure.

Figure 7 shows the concepts of simulation step and simu-
lation run. For each simulation step t1, t2, t3, . . . , tn, the clock
(shown in Fig. 8) is reset. Therefore, the total time of simula-
tion run can be calculated as t ¼ t1 þ t2 þ t3 þ ...þ tn.

The ISFA simulation process involves a synchronized ex-
ecution of the HW design and the SW design. The synchro-
nization occurs via transaction. The HW design execution
is driven by the FFIP’s CFG, while the SW design execution
is driven by the FPSA’s activity diagram. Each execution al-
gorithm is detailed in Figure 8 and explained below.

The start of the execution leads to the process “Initialize the
system,” which sets the initial conditions of the HW, the SW,
and the transaction models of the system. After initialization,
two concurrent paths, p1 and p2, are created by the AND1
gate. Path p1 leads to HW design execution, while path p2
leads to SW design execution. Along each execution path
transactions are created and read that ensure synchronization
of the HW/SW design execution.

4.3.1. HW design execution

Path p1 leads to an OR1 gate. The multiple-input/single-
output OR1 gate creates a loop, which iterates over the HW
components of the CFG. OR1 leads to path p3, which points
to the process “Identify the HW_Component (i),” where “i” is
an index to identify a HW_Component. For each component
identified, a multiple-input/single-output OR2 gate creates a
loop that iterates over all the functions of the component in
consideration. OR2 leads to the process “Read HW_Function

Fig. 7. A simulation step and simulation run.

Table 6. Event sequence diagram symbols

Symbols Description

Process: Represents the execution of a part of the
design specification.

This special process symbol is used to capture
possible design specification execution failures
in the “No” path and to report them. The symbol
⊕ stands for the following failures modes:
1. incomplete design specification
2. design models do not conform to respective

metamodel, for example, undefined
component-function mapping.

Comment Box: Represents the information
provided by the execution of previous process

Initiating Event: First event in the ESD that initiates
a sequence

End State: Terminating point of an ESD scenario

Output OR gate: Models multiple mutually
exclusive outcomes. This gate has one input and
multiple outputs

Input OR gate: Models the selection of one of the
multiple inputs that leads to a common process.
This gate has multiple inputs and a single output.

Output AND gate: Models multiple concurrent
processes. This gate has one input and multiple
outputs.

Input AND gate: Models synchronization of
processes. This gate has multiple inputs and a
single output.

Multiple input–output AND gate: Models
synchronization of input processes as well as
multiple concurrent output processes. This gate
has multiple inputs and multiple outputs.

Condition: Used to model a condition, which
evaluates to yes “Y” or no “N.”

ISFA system design 331

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

Fig. 8. (Color online) The integrated system failure analysis execution model at time step t.

C
.M

utha
et

al.
332

https://doi.org/10.1017/S0890060413000152 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060413000152

(i,j),” where “j” is an index to identify a HW_Function of the
i-th component. The outputs of this process (i.e., function
name, inflow, and outflow information) are presented in the
comment box. For each function identified, a multiple-in-
put/single-output OR3 gate creates a loop that iterates over
all the inflows of the functions. This iterative process over
the inflows consists of a condition check “Is inflow (i,j,k)
¼�signal� transaction?” where “k” is an index to identify
the inflow of the j-th function of the i-th component.

a. If the above condition is evaluated to “Y,” it means that
an incoming transaction is necessary to execute the
HW_Function (i,j). The transaction is created during
the SW design execution, while it is read during HW
design execution by the process “Read �signal�
transaction.”

The process returns the detail of the corresponding
transaction (i.e., target and status). Next, the condition
“Is HW_Function (i,j) ¼ transaction.target?” checks if
the target of the transaction is the function being exe-
cuted. If “Y,” the process “Execute Algorithm_TStatus”
evaluates the transaction status. The process leads to
AND3, where the path branches into two parallel paths:
p4 and p5. Path p5 ends with the process “Update trans-
action(k).status.” Path p8 leads to a condition check “Is
inflow (i,j,k) ¼�signal� transaction?” If “N,” it leads
to a condition check “Is k . #inflow?”

b. If the above condition is evaluated to “N,” the loop
continues to execute until the condition “Is k.#
inflow(kmax)?” is satisfied.

Once all the inflows of the function are identified, the execu-
tion path marked as p6 leads to the process “Execute
HW_Function (i,j).” This process will modify the output
variable values and may cause a component mode change.
Therefore, the next process, “Execute the Behavioral Rules,”
is executed to identify the mode of the component. Each
mode definition comprises a set of variables assembled in a
mathematical equation. These variables are extracted by the
subsequent process “Extract variables.” This process pro-
vides the name, value, and flow type as seen in the subsequent
comment box, further leading to the AND4 gate. AND4
branches path p6 into two parallel execution paths: p7 and p8.
Path p7 leads to the process “Execute FFL,” which deter-
mines the function status, and the process “Update
HW_Function status” terminates this path. Path p8 leads to
OR4, which iterates over all the output variables of the func-
tion being considered and checks if there is any outgoing
transaction signal.

OR4 leads to the condition check “Is outflow (i, j, m) ¼
�signal� transaction,” where “m” is the index of outflow
variable.

a. If the above condition is evaluated to “Y,” it leads to
AND6, which creates two parallel execution paths:
p11 and p12. Path p11 increments the outflow counter

and leads to OR4. Path p12 leads to the process “Create
the �signal� transaction” that instantiates the neces-
sary signal and its attributes (i.e., source, target, and sta-
tus). The transaction will be read during the SW design
execution. Path p12 ends with the process “Update
transaction(m).status.”

b. If the above condition is evaluated to “N,” it leads to
AND5, which creates two parallel paths: p9 and p10.
Path p9 checks the condition “Is m . #outflow(mmax)?”
and increments the outflow if the condition evaluates to
“N.” Path p10 leads to a condition check “Is j .

#functions(jmax)?” which checks if the index of the cur-
rent function is greater than the total number of func-
tions of the i-th component. If “Y,” then the execution
process leads a condition check “Last component?” If
“Y,” the last component of the CFG is reached and
the execution path p1 ends. If “N,” the path leads to
OR1, which iterates over the next component. If the
condition “Is j . #functions(jmax)?” evaluates to “N,”
then the execution process leads to OR2 and the itera-
tion over the next function continues.

4.3.2. SW design execution

The SW design and its execution are fundamentally differ-
ent from the HW design within which it operates. In an ob-
ject-oriented SW design, the structural diagrams do not cap-
ture the flow of the SW execution. The flow of the SW
execution is captured in the activity diagram.

The SW design execution begins with the process “Exe-
cute the main activity diagram.” The process leads to OR5,
which iterates over all the activities of the main activity dia-
gram. The output of OR5 marked as path A1 leads to the pro-
cess “Read Activity (l),” which returns the name of the activ-
ity (l), which further leads to the process “Identify the
component,” which returns the name of the component that
surrounds Activity (l), the components inflows (nmax),
outflows(pmax), where nmax and pmax are the maximum num-
ber of inflows and outflows, as shown in the subsequent com-
ment box. This leads to OR6, which iterates over all the in-
flows of Activity (l). The iteration involves a condition “Is
inflow(n) ¼�signal� transaction?”

a. If the above condition evaluates to “Y,” it leads to the
process “Read�signal� transaction.”

b. If the above condition evaluates to “N,” it leads to an-
other condition, “Is n .#inflow(nmax)?”

If “Y,” it leads to path A4. If “N,” it leads back to OR6 to
evaluate the next inflow.

The process “Read�signal� transaction” returns the de-
tails of the corresponding transaction (i.e., target and status),
as presented in the subsequent comment box. Next, the con-
dition “Is Activity (l) ¼ transaction.target?” checks if the ac-
tivity being executed is the same as the activity identified dur-
ing the HW design execution.

ISFA system design 333

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

a. If the above condition is evaluated to “Y,” the process
“Execute Algorithm_TStatus” evaluates the transaction
status. The process leads to AND7, where the path
branches into two parallel paths: A2 and A3. Path A3
ends with the process “Update transaction(n).status.” Path
A2 leads back to the condition “Is n .#inflow(nmax)?”

b. If the above condition is evaluated to “N,” it leads di-
rectly to the condition “Is n . #inflow(nmax)?”

Once all the inflows of the function are identified, the execu-
tion path marked A4 leads to the process “Execute Activity
(l),” which further leads to AND8. This process will modify
the output variable values that may or may not cause a com-
ponent mode change. The AND8 gate divides path A4 in two
parallel paths: A5 and A6.

Path A5 leads to the process “Execute the Behavioral
Rules” and determines the component mode, as presented
in the subsequent comment box. Next, the process “Execute
FFL” is executed to determine the status of the Activity (l).

Path A6 leads to the process “Extract outflow variables,”
which returns the name of the variables, their values, and their
flow type. The process leads to OR7, which iterates over all
the outflows. During the iteration, the condition check “Is
outflow(p) ¼�signal� transaction?” is performed.

a. If the condition evaluates to “Y,” it leads to AND9,
creating two parallel executing paths: A7 and A8.
Path A7 increments the outflow counter and leads to
OR7 to evaluate the next outflow. Path A8 leads to
the process “Create the transaction,” which creates an
object of the transaction and sets the transaction (p).sta-
tus ¼ “Active,” as shown in the subsequent comment
box. The path ends with the process “Update transac-
tion(p).status.”

b. If the condition evaluates to “N,” it leads to another con-
dition, “Is p. #outflow(pmax)?” If this condition eval-
uates to “N,” the next signal is considered. If this con-
dition evaluates to “Y,” a check on the end of main
activity diagram is performed. If the end of main activ-
ity diagram is reached, the execution path p2 ends.
Otherwise, the next activity is read.

4.4. Evaluation of system function status

System functions are identified in the system requirements.
These functions are decomposed into HW, SW, and interface
functions. Determination of system function is dependent on
the status of the decomposed functions. However, evaluation

of system function status based on the decomposed functions
status is not a matter of set theory union. A system failure can
be defined in terms of critical physical variables that cross
limiting conditions. These conditions, which are called “sys-
tem failure criteria,” are deterministic and are predefined by
the system analysts/designers. The state of the critical vari-
ables continuously changes during the ISFA design execution
described in Section 4.3. The evolution of these critical vari-
ables is the result of HW_Function, Activities, and transac-
tions. At the end of each simulation step, the state of the critical
variables must be evaluated to determine if a system failure has
occurred. An overview of the complete process of system func-
tion status evaluation is summarized in Figure 9.

4.5. Case study

In this section, we demonstrate the application of the ISFA
method using a “holdup” tank system (Fig. 10). The holdup
tank in this case study is composed of an inlet valve with a
position sensor, pipes, a tank with a pressure sensor, an outlet
valve with a position sensor, and a SW-based computer con-
troller. The function of the holdup tank system is to regulate
the fluid flow from the tank to the output pipe while maintain-
ing the desired water level in the tank. If the pressure is below
a critical value, the output flow must be stopped and the input
flow must start so that the water level is within the desired
range. The input and output valves operate according to the
SW-controlled logic defined in the activity diagram.

The holdup tank system ensures a constant flow (say, Q) of
water to a nuclear core as the heating element. In this hypothe-
tical example, we assume that if the water supply from the
holdup tank is lost for more than 5 units of time, the core
may uncover, leading to an accident. As a safety measure, a
backup system pumps water from a limited-capacity reservoir
when the water level in the holdup tank drops below the lower
threshold limit. The availability of the backup system is limited,
for example, let us assume that water can be pumped for up to 5
units of time and the reservoir can be refilled every 20 units of
time. Thus, the backup system availability is one for only 5
units of time and zero for the remaining 15 units of time.

In this case study, we initially describe the models that con-
form to the ISFA metamodel, followed by the demonstration
of the ISFA simulation process (Fig. 8). The demonstration
includes analysis of two different faults: a tank leak that leads
to fatigue failure of the outlet valve and an incorrect SW mod-
ification in the presence of a tank leak. How these faults prop-
agate within the ISFA models and lead to the system failure
will be discussed in detail.

Fig. 9. An evaluation of the system function status. IFSA, integrated system failure analysis; HW, hardware; SW, software.

C. Mutha et al.334

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

4.5.1. System model

The system component model is shown in Figure 11. The
component model is composed of the following parts:

1. Physical component model: It is described by the FFIP::
ConfigurationFlowGraph. The components include the
inlet valve with a position sensor, pipes, a tank with a
pressure sensor, and an outlet valve with a position sen-
sor. The flow between the components is liquid and that
between the interfaces is signal.

2. Interface model: Based on the ISFA metamodel,
the �interface� are annotated as I1, I2, I3, I4,
and I5 on the model. For example, �interface�I1
and �interface�I2 are required interfaces of SW
component Sensor, while �interface�I1 and
�interface�I2 are provided interfaces of HW com-
ponents pressure and position sensors, respectively.

3. SW component model: Described by the combined
UML::Deployment diagram and the UML::Component
diagram. This model conforms to the additional con-
straints imposed by the FPSA metamodel. The SW

Fig. 10. (Color online) A schematic of the holdup tank system.

Fig. 11. (Color online) An integrated system failure analysis component diagram. CFG, configuration flow graph.

ISFA system design 335

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

components are ConfigurationManager, Sensor, and
Valve Controller.

Figure 12, Figure 13, Figure 14, and Figure 15 illustrate the
system functional models. The three parts are the following:

1. Physical function model: Described in Figure 12, this
contains the FFIP::Functional model that conforms to
the HW_Function–HW_Component mapping relation-
ship. The relationship is explicitly tabulated in Table 7
for completeness.

2. Transaction model: Based on the ISFA metamodel, the
�signal� transactions are annotated as T1, T2, T3,
and T4. Figure 15 presents the details of a sample trans-
action, T1. The attributes of the TimingConstraint asso-
ciated with each transaction are set to default values
(i.e., start ¼ 0; finish ¼ 0; timevalue ¼ 0; units ¼ s).
These attributes change during the simulation process,
as discussed in Section 4.2. Table 8 summarizes the
transaction–interface association.

3. SW function model: Figures 13 and 14 describe the ac-
tivity diagrams conforming to the additional constraints
imposed by the FPSA metamodel. Figure 13 clearly pre-
sents the component–activity mapping relationship.

The behavioral rules and the FFL are presented in Table 9,
and the variable and design limitations associated with SW
component “valve controller” are provided in Table 10.

Case 1 illustrates a hypothetical scenario of how a holdup-
tank-leak fault evolves, translates into valve failure, and even-
tually leads to system failure. We assume that all the inter-
faces are in a healthy condition, all transactions have [min,
max] time limit of [0, 13], and the transactions are activated
and completed within the time limit.

Fig. 12. (Color online) The integrated system failure analysis functional model of the holdup tank system.

Fig. 13. (Color online) The main activity diagram of the computer controller.

3 The value 1 is just a sufficiently large number to ensure that all of the
transactions are completed within the time limit.

C. Mutha et al.336

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

The simulation (Fig. 8) begins and the initial conditions set
are no faults are injected, all HW and SW components exhibit
nominal behavior, and all transactions are inactive, that is,
[start, finish]¼ [0, 0] (Table 5). Other initial conditions include
holdup tank is half full (i.e., PLTh , P , PUTh) and the inlet and
the outlet valves are Nominal ON (i.e., open). With these initial
conditions, the simulation is performed and results are recorded
in Table 11 under Case 1. Some of the important steps and re-
sults of the simulation are discussed below.

Path p1 (in Fig. 8) leads to execution of the CFG (Fig. 11)
and path p2 (in Fig. 8) leads to execution of the Activity dia-
gram (Fig. 13). The execution along path p1 and p2 is ex-
plained next.

Along path p1 the first component of the CFG, pipe1, is
identified (Fig. 8 along path p3). It has one function, transfer
fluid (Table 7), and has one inflow (Q1

in), one outflow (Q1
out),

and none of them is a transaction (Table 9). This leads to ex-
ecution of the transfer fluid function (Fig. 8 along path p6).
Since no faults are injected, the execution of behavioral rules
concludes that pipe1 exhibits nominal behavior (Table 9).
Along path p7, the execution of the FFL indicates the transfer
fluid function is operating (Table 9). Path p8 leads to paths p9
and p10 since there are no outgoing transactions. Along path

10, since the pipe1 component has only one function, the path
leads to identification of the next component, the inlet valve.

Inlet valve has one function, regulate fluid (Table 7); two
inputs, Qiv

in and�signal�T4 or�signal�T5 (Table 9 and
Fig. 12); and one output, Qiv

out. The transactions are not
created by the SW; thus, they have default values, that is,
[start, finish]¼ [0, 0], which indicates the transactions’ status
is inactive (Table 5). Next, we execute the regulate fluid func-
tion (along path p6). Since no faults are injected, the execu-
tion of behavioral rules concludes that the inlet valve exhibits
nominal behavior (Table 9). Further along path p7 execution
of the FFL indicates the regulate fluid function status as op-
erating (Table 9). Path p8 leads to paths p9 and p10 since
there are no outgoing transactions. Along path 10, since the
inlet valve has only one function, we move on to identify
the next component in the CFG. After inlet valve, there are
two components: position sensor1 and pipe2. We select posi-
tion sensor1 as the next component and then pipe2, since par-
allel execution of components in the CFG is not currently
possible.

Position sensor1 has one function, measure position (Ta-
ble 7); one inflow, Pos; and two outflows, Pos and�signal�
T6 (Table 9). This leads to execution of the measure position

Fig. 14. (Color online) The valve control logic of the main activity diagram.

ISFA system design 337

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

function (Fig. 8 along path p6). Since no faults are injected,
the execution of behavioral rules concludes that position sen-
sor1 exhibits nominal behavior (Table 9). Along path p7, the
execution of the FFL indicates the measure position function
is operating (Table 9). Path p8 leads to path p11 and path 12
since there is one outgoing transaction. Along path p12 a
transaction �signal�T6 is created and its [start, finish]
value changes to [1, 0], which indicates its status is active (Ta-
ble 5). Path p8 leads to path p9 and path p10. Along path p10,
since the position sensor1 component has only one function,

the path leads to identification of the next component, pipe2,
as mentioned earlier. Execution of pipe2 is identical to the ex-
ecution of pipe1 discussed before. Following pipe2, the next
component is holdup tank.

Holdup tank has two functions, store fluid and supply fluid
(Table 7), and has one inflow (Qin) and one outflow (Qout)
(Table 9). For the first function, store fluid, there is no incom-
ing transaction, thus leading to the execution of the store fluid
function (along path p6). Since no faults are injected, the ex-
ecution of behavioral rules concludes that holdup tank exhi-
bits nominal behavior (Table 9). Along path p7, the execution
of the FFL indicates that the store fluid function is operating
(Table 9). Path p8 leads to paths p9 and p10 since there are no
outgoing transactions. Along path 10, since the holdup tank
component has another function, the path leads to identifica-
tion of the next function, supply fluid. There is no incoming
transaction, thus leading to the execution of the supply fluid
function (Fig. 8 along path p6). Since no faults are injected,
the execution of behavioral rules concludes that holdup
tank exhibits nominal behavior (Table 9). Along path p7,
the execution of the FFL indicates that the supply fluid func-
tion is operating (Table 9). Path p8 leads to paths p9 and p10
since there are no outgoing transactions. Along path 10, since
the last function of holdup tank is evaluated, the path leads to
identification of the next component. Holdup tank is con-
nected to two components, pressure sensor and pipe3. Since
the simulation procedure is not set for parallel execution, the
pressure sensor component is selected first and pipe3 as the
next component.

Pressure sensor has one function, measure pressure (Ta-
ble 7); one inflow, Pin; and two outflows, Pout and�signal�
T1 (Table 9). This leads to execution of the measure pressure
function (Fig. 8 along path p6). Since no faults are injected,
the execution of behavioral rules concludes that the pressure
sensor exhibits nominal behavior (Table 9). Along path p7,
the execution of the FFL indicates that the measure pressure
function is operating (Table 9). Path p8 leads to paths p11 and
p12 since there is one outgoing transaction. Along path 12, a
transaction �signal� T6 is created and its [start, finish]
value changes to [1, 0], which indicates its status is active
(will be updated in while execution of path p2). Eventually,
path p8 leads to paths p9 and p10. Along p10, since the pres-
sure sensor component has only one function, the path leads
to identification of the next component, pipe3, as mentioned
earlier. Execution of pipe3 is identical to execution of pipe1
discussed before. Following pipe3, the next component is
outlet valve.

Outlet valve has one function, that is, regulate fluid (Ta-
ble 7); two inputs, Qov

in and�signal� T2 or�signal� T3
(Fig. 12); and one output, Qov

out. The transactions are not cre-
ated by the SW; thus, they have default values, [start, finish]
¼ [0, 0], which indicates its status as inactive (Table 5). Next,
we execute the regulate fluid function (Fig. 8 along path p6).
Since no faults are injected, the execution of behavioral rules
concludes that the outlet valve exhibits nominal behavior (Ta-
ble 9). Along path p7, the execution of the FFL indicates the

Table 8. Mapping of transaction to provided and
required interfaces

Transaction Provided Interface Required Interface

T1 I2. Pressure sensor I2. Sensor
T2 I4. ValveController I4. Outlet valve
T3 I4. ValveController I4. Outlet valve
T4 I5. ValveController I5. Inlet valve
T5 I5. ValveController I5. Inlet valve
T6 I1. Position sensor I1. Sensor
T7 I3. Position sensor I3. Sensor

Table 7. Mapping of hardware component
to hardware function

HW_Component HW_Function

Holdup tank Store fluid, supply fluid
Pressure sensor Measure pressure
Position sensor Measure position
Pipe Transfer fluid
Inlet and outlet valve Regulate fluid

Fig. 15. A sample transaction instance�transaction� T1.

C. Mutha et al.338

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

Table 9. Behavioral rules and function failure logic

Component Inputs Outputs Behavioral Rules Function Failure Logic

Mechanical Components

Holdup tank Qin Qout Mode ¼ Nominal
IF Qout¼Qin

Mode ¼ Dry-out
IF P , PLTh

Mode ¼ Overflow
IF P . PUTh

IF mode ¼ Nominal
Then Supply fluid ¼ O
Store fluid ¼ O
IF mode ¼ Dry-out OR Overflow
Then Store fluid ¼ L

Pressure
Sensor

Pin Pout

≪signal≫T1
Mode ¼ Nominal
IF Pout = Null
Mode ¼ Faulty1
IF Pout ¼ Null

IF mode ¼ Nominal
Then Measure Pressure ¼ O
IF mode ¼ Faulty1
Then Measure Pressure ¼ L

Position
Sensor1
Position
Sensor2

Pos
Qj

in
j ¼ pipe index

Pos
≪signal≫T6,
≪signal≫T7

Mode ¼ Nominal
IF Pos = Null
Mode ¼ Faulty1
IF Pos ¼ Null

IF mode ¼ Nominal
Then Measure Position ¼ O
IF mode ¼ Faulty1
Then Measure position ¼ L

Pipe1,
Pipe2
Pipe3
Pipe4

Qj
out

j ¼ pipe index
Mode ¼ Nominal
IF Qj

out ¼ Qj
in

Mode ¼ Clogged/Leak
IF Qout , Qin

Mode ¼ Burst
IF Qout ¼ zero

IF mode ¼ Nominal
Then Transfer fluid ¼ O
IF mode ¼ Clogged/Leak
Then Transfer fluid ¼ D
IF mode ¼ Burst
Then Transfer fluid ¼ L

Inlet valve (iv) Qiv
in

≪signal≫T4
≪signal≫T5

Qiv
out Mode ¼ Nominal ON

IF Qout ¼ Qin

Mode ¼ Nominal OFF
IF Qout ¼ zero
Mode ¼ Failed open
IF (Qin = zero AND Qout ¼ zero)
Mode ¼ Failed close
IF (Qout = zero)
Mode ¼ Faulty1
IF Qout , Qin

IF mode ¼ Nominal ON or
Nominal OFF

Then Regulate fluid ¼ O
IF mode¼ Failed open OR Failed

close
Then Regulate fluid ¼ L
IF mode ¼ Faulty1
Then Regulate fluid ¼ D

Outlet valve
(ov)

Qov
in

≪signal≫T2
≪signal≫T3

Qov
out Same as inlet valve Same as inlet valve

Software Components

Configuration
Manager

Conversion-Data Mode ¼ Nominal
IF ConversionData = {Null}
Mode ¼ Faulty1
IF ConversionData ¼ {Null}

IF mode ¼ Nominal
Then Configure system ¼ O
IF mode ¼ Faulty1
Then Configure system ¼ L

Sensor ≪signal≫T1
≪signal≫T6
≪signal≫T7

Pos
Level

Mode ¼ Nom1
IF ≪signal ≫ T1.status ¼ C
Mode ¼ Nom 2
IF ≪signal≫T6.status ¼ C OR
≪signal≫T7.status ¼ C
Mode ¼ Nom 3
IF Level = NULL
Mode ¼ Nom 4
IF Pos = NULL
Mode ¼ Faulty 1
IF ≪signal ≫ T1.status = C
Mode ¼ Faulty 2
IF ≪signal ≫ T6.status = C OR
≪signal ≫ T7.status = C
Mode ¼ Faulty 3
IF Level ¼ NULL
Mode ¼ Faulty 4
IF Pos ¼ NULL

IF mode ¼ Nom 1
Then Read Pressure ¼ O
IF mode ¼ Nom 2
Then Read Position ¼ O
IF mode ¼ Nom 3
Then Calculate Level ¼ O
IF mode ¼ Nom 4
Then Store Pos ¼ O
IF mode ¼ Faulty1
Then Read Pressure ¼ L
IF mode ¼ Faulty2
Then Read Position ¼ L
IF mode ¼ Faulty3
Then Calculate Level ¼ L
IF mode ¼ Faulty 4
Then Store as Pos ¼ L

ISFA system design 339

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

regulate fluid function status as operating (Table 9). Since the
outlet valve has only one function, we move on to identify the
next component in the CFG. After outlet valve, there are two
components: position sensor2 and pipe4. We select position
sensor2 as the next component and then pipe4, since parallel
execution of components in the CFG is not currently possible.

Execution of the position sensor2 is identical to execution
of the previously encountered position sensor1. Execution of
pipe4 is identical to that of pipe1, discussed earlier. However,
note that pipe4 is the last component of the CFG; thus, path
p10 leads to the end of the CFG. The end of the CFG indicates

Table 10. Variable and design limitations associated
with software component “valve controller”

Variable Values

Pin, Pout Pvalid ¼ {P | PLTh , P , PUTh}, PLTh, and PUTh are
defined in the design specification.

Level Lvalid ¼ {Level | LL , Level , LU}, LL and LU are
defined in the design specification.

ControlCommand {Open, Close, Null}
Pos {1, 0} ≈ {Open, Close}

Table 9 (cont.)

Component Inputs Outputs Behavioral Rules Function Failure Logic

Valve
Controller

Pos
Level

Control-Command
≪signal≫T2
≪signal≫T3
≪signal≫T4
≪signal≫T5

Mode ¼ Nom 1
IF Level 1 Lvalid & Pos ¼ {NA,

Open} AND Control
command = {NA, Close}

Elseif Level 1 Lvalid AND Pos ¼
{NA, Close} AND
ControlCommand ¼ {NA,
Open}
Mode ¼ Nom 2

IF Level , LL AND Pos ¼ {NA,
NA} AND Control Command
= {NA, Open}

Elseif Level , LL AND Pos ¼
{NA, NA} AND Control
Command = {Close, NA}
Mode ¼ Nom 3

IF Level . Lu AND Pos ¼ {NA,
NA} AND Control
Command = {NA, Close}

Elseif Level . Lu & Pos ¼ {NA,
NA} AND Control Command
= {Close, NA}
Mode ¼ Faulty 1

IF Level 1 Lvalid AND Pos ¼
{Open, Open} AND Control
Command ¼ {NA, Close}

Elseif Level 1 Lvalid AND Pos ¼
{NA, Close} AND Control
Command = {NA, Open}
Mode ¼ Faulty 2

IF Level , LL AND Pos ¼ {NA,
NA} AND Control Command
= {NA, Open}

Elseif Level , LL AND Pos {NA,
NA} & Control Command =

{Close, NA}
Mode ¼ Faulty 3

IF Level . Lu AND Pos ¼ {NA,
NA} AND Control Command
¼ {NA, Close}

Elseif Level . Lu AND Pos ¼
{NA, NA} AND Control
Command+{Close, NA}

IF mode ¼ Nom1 OR Nom2 or
Nom3

Then Valve control logic ¼ O
IF mode ¼ Faulty1 OR Faulty2

OR Faulty3
Then Valve control logic ¼ L
Else Valve control logic ¼ U

Note: O, operating; L, lost; D, degraded; U, unknown; C, complete; NA, not applicable.

C. Mutha et al.340

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

Table 11. Simulation results

Hardware Components and Functions Interface Software Components and Functions

Inlet
Valve Holdup Tank

Pressure
Sensor Pipea

Outlet
Valve

Position
Sensorb I1 I2 I3 I4 I5

Configuration
Manager Sensor

Control
Valve

System
Function

Simulation
Time (t)

Regulate
Fluid

Store
Fluid

Supply
Fluid

Measure
Pressure

Transfer
Fluid

Regulate
Fluid

Measure
Position T1 T6 T7 T2 (C) T3 (O) T4 (C) T5 (O)

Configure
System

Read
Pressure

Calculate
Level

Read
Position

Control
Logic

Transfer
Fluid

Case 1

1 O O O O O O O C C C IA IA IA IA O O O O O O
6 O O O O O O O C C C IA IA IA IA O O O O O O
10 O L L O O O O C C C C IA IA IA O O O O O O
11 O O O O O O O C C C IA C IA IA O O O O O O
15 O L L O O O O C C C C IA IA IA O O O O O O
20 O L L O O O O C C C C IA IA IA O O O O O O
. .

100,100 O L L O O O O C C C C IA IA IA O O O O O O
100,105 O L L O O O O C C C IA C IA IA O O O O O L

Case 2

1 O O O O O O O C C C IA IA IA IA O O O O O O
6 O O O O O O O C C C IA IA IA IA O O O O O O
10 O L L O O O O C C C IA IA IA C O O O O O O
11 O L L O O O O C C C IA IA IA C O O O O O O
14 O L L O O O O C C C IA IA IA C O O O O O O
15 O L L O O O O C C C IA IA IA C O O O O O O
19 O L L O O O O C C C IA IA IA C O O O O O L

Note: For simulation, imagine Qiv
in ¼ Qov

out ¼ 10 units, Qleak ¼ 2 units, LL ¼ 2 units, and LU ¼ 20 units. Hence, the Qout of tank is 12 units and level decreases by 2 units in each simulation step. Case 1: Valve
failure; fault injected: tank leak at t ¼ 6. Case 2: incorrect modification of software; fault injected: tank leak at t ¼ 6. O, operating; L, lost; IA, inactive; C, complete.

a“Pipe” corresponds to pipe1, pipe2, pipe3, and pipe4.
bThe position sensor corresponds to both the inlet and the outlet valve’s position sensors.

ISF
A

system
design

341

https://doi.org/10.1017/S0890060413000152 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060413000152

the end of the HW design execution, which leads the execu-
tion path p1 to the AND2 gate.

Path p2 leads to execution of the main activity diagram
(Fig. 13). The first activity read is configure system (along
path A1 in Fig. 8). The corresponding component is config-
uration manager (Fig. 13), which has no inflows; one outflow,
ConversionData (Table 9); and no transactions. Further, the
path leads to A4 along which the activity configure system
is executed, which will modify the output variables. Path
A4 then leads to two concurrent paths: A5 and A6. Along
A5, the behavioral rule of the component configuration man-
ager is executed. Since no faults were injected, the component
exhibits nominal behavior (Table 9). Next the FFL is exe-
cuted, which indicates the configure system is operating.
Path A6 leads to the next activity since there are no outgoing
transactions from configure system. In Figure 13 we see that
after configure system, the control flow branches out into
two parallel flows owing to the fork. Since parallel execution
of activities has not been set up yet in the ISFA simulation pro-
cess, we will execute the activities in the following order: read
pressure, calculate level, read position, store pos.

The next activity read is read pressure (along path A1). The
corresponding component is sensor (Fig. 13), which has
three inflows,�signal� T1,�signal� T6, and�signal�
T7, and two outflows, Level and Pos (Table 9). The transac-
tion input�signal� T1 (created during the HW design ex-
ecution, path p1) is read without any error since no faults
are injected. Thus the transaction’s [start, finish] value is up-
dated to [1, 1], which indicates the status is complete (Table 5).
Note that the target of�signal� T6 and�signal� T7 are
not read pressure activity (Fig. 13); thus, its status is not up-
dated. Along A4, the activity read pressure is executed, which
will modify the output variables. Path A4 then leads to two
concurrent paths: A5 and A6. Along A5, the behavioral rule
of the component sensor is executed. Since no faults were in-
jected, the component exhibits nominal behavior (Table 9).
Next the FFL is executed, which indicates that the read pres-
sure is operating (Table 9). Path A6 leads to the next activity,
calculate level.

The next activity is calculate level, and the corresponding
component is sensor (Fig. 13), which has three inflows, that
is, �signal� T1, �signal� T6, and �signal� T7, and
two outflow, that is, Level and Pos (Table 9). The target of
the transactions are not calculate level activity (refer to
Fig. 12); thus, their status is not updated. Along A4, the activ-
ity calculate level is executed, which will modify the output
variable Level. Path A4 then leads to two concurrent paths:
A5 and A6. Along A5, the behavioral rule of the component
sensor is executed. Since no faults were injected, the compo-
nent exhibits nominal behavior (Table 9). Next, the FFL is
executed, which indicates that the calculate level is operating.
Path A6 leads to the next activity, read position.

The next activity is read position (along path A1in Fig. 8)
and the corresponding component is sensor (Fig. 13), which
hasthree inflows,�signal�T1,�signal�T6,and�signal�
T7, and two outflows, Level and Pos (Table 9). The transac-

tion inputs�signal� T6 and�signal� T7 are read without
any error since no transaction faults are injected. Thus the
transaction’s [start, finish] value changes to [1, 1], which in-
dicates that the status is complete (Table 5). Note that the tar-
get of �signal� T1 is not read position activity (Fig. 12);
thus, its status is not updated. Along A4, the activity read po-
sition is executed, which will modify the output variables.
Path A4 then leads to two concurrent paths: A5 and A6.
Along A5, the behavioral rule of the sensor is executed. Since
no faults were injected, the component exhibits nominal be-
havior (Table 9). Next, the FFL is executed, which indicates
that the read position is operating. Path A6 leads to the next
activity, store pos.

The next activity is store pos (along path A1), and the cor-
responding component is sensor (Fig. 13), which has three in-
flows,�signal� T1,�signal� T6, and�signal� T7, and
two outflows, Level and Pos (Table 9). The target of the trans-
actions are not store pos activity (refer to Fig. 12); thus, their
status is not updated. Along A4, the activity store pos is exe-
cuted, which will modify the output variable Pos. Path A4
then leads to two concurrent paths: A5 and A6. Along A5,
the behavioral rule of the component sensor is executed.
Since no faults were injected, the component exhibits nom-
inal behavior (Table 9). Next, the FFL is executed, which in-
dicates that the store pos is operating. Path A6 leads to the
next activity, valve control logic. Valve control logic is further
decomposed into other activities (Fig. 14).

The valve control logic is enclosed in the component Valve
Controller (Fig. 14), which has two inflows, Level and Pos
(Table 9), and five outflows, ControlCommand, �signal�
T2, �signal� T3, �signal� T4, and �signal� T5 (Ta-
ble 9). The execution of valve control logic traces the path
D1– D2–D3–Exit. Thus, the output variables are not modi-
fied.

The transactions�signal� T2,�signal� T3,�signal�
T4, or�signal� T5 are not created; thus, their [start, finish]
value remains [0, 0], which indicates that their status is inac-
tive (Table 5). Path A4 then leads to two concurrent paths: A5
and A6. Along A5, the behavioral rule of the component
Valve Controller is executed. Since no faults were injected,
the component exhibits nominal behavior (Table 9). Next,
the FFL is executed, which indicates that the valve control
logic is operating. Since valve control logic is the last activity,
the end of the main activity diagram (Fig. 13) is reached. The
end of the activity diagram indicates the end of the SW design
execution, which leads the execution path p2 to the AND2
gate.

Paths p1 and p2 are synchronized at the AND2 gate, which
further leads to the end of the first simulation step. For the
next simulation step, the above procedure is repeated. During
the execution of each step, the function status is captured and
tabulated (Table 11). Some of the important results and their
interpretation are discussed below.

At step t¼ 1, all the HW and SW functions were operating,
and the transactions �signal� T1, �signal� T6, and
�signal� T7 were complete. The transaction �signal�

C. Mutha et al.342

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

T2, �signal� T3, �signal� T4, and �signal� T5 were
inactivate because the pressure was within the operating range
[PLTh, PUTh], and both the valves were in open position
(Fig. 14). Thus, the system function transfer fluid is operating.

At step t ¼ 6, a tank leak fault is injected, and as such, the
tank level started decreasing and reached a lower acceptable
limit at t ¼ 10. During this period from t ¼ 6 to t ¼ 10, all
the HW and SW functions were in operating state, the water
supply from the holdup tank was not interrupted, and thus
the system function transfer fluid was operating.

At step t¼ 10, the holdup tank pressure dropped below the
lower threshold value (PLTh) on account of the leak, and the
backup system was started. The holdup tank’s mode changed
from nominal to dry-out; thus, its functions, supply fluid and
store fluid, were inferred as lost (Table 9). The SW function
valve control logic (Fig. 14) followed the path (D1–D5–D6–
D7), causing a transaction�signal� T2, that is, close outlet
valve, to occur. Thus, with only inflow and no outflow, the
water level rose to the desired range and the holdup tank
was available for the next time step. Note that the back system
pumped water from the reservoir for one unit of time; thus, the
system function transfer fluid was operating.

At step t ¼ 11, the holdup tank functions were back to op-
erating state, accompanied by a transaction change from
�signal� T2 to�signal� T3. At this step, the system be-
haved similar to that at step t ¼ 6, eventually leading to the
holdup tank functions loss at step t ¼ 15. At step t ¼ 15,
the system behaves similar to that at step t ¼ 10. The backup
system was switched ON, and the transaction�signal� T2
occurred.

The above system behavior continued up to step t ¼
100,100. At step t ¼ 100,100, the outlet valve was closed.
At this point, the valve reached its fatigue limit. From the
next time step onward, the outlet valve’s failure mode failed
open is triggered. The backup system supplied water for the
next five units of time (i.e., until t ¼ 100,104), after which
the system failure occurred at step t ¼ 100,105.

In Case 1, the pattern of transaction and HW function status
is worth noting. The transaction change from�signal� T2
to �signal� T3 and vice versa occurs every four units of
time owing to the leak. In the absence of the leak, the outlet
valve state would remain open. Thus, the transaction pattern
indicates a symptom of fatigue failure of the outlet valve.
The HW function status pattern indicates a symptom of small
leak.

Case 2 illustrates a hypothetical scenario of how a classic
SW modification fault (a commission error) evolves and
translates into system failure. Before the SW modification,
the variable Pos was set to values f1 or 0g corresponding
to fOpen or Closeg. These values were stored in the computer
memory during the execution of the valve control logic
(Fig. 14). Later the SW design was modified in congruence
with the holdup tank design change, that is, the decision to
add a position sensor to each valve. So the SW was modified
to read the valve’s position data from the position sensor in-
stead of from the computer memory. However, during the

new SW modification, the position sensor data was read and
the variable Pos was erroneously set to f0 or1g corresponding
to fOpen or Closeg while the valve control logic was copied
without any modification. The analysis of this commission er-
ror accompanied with the tank leak (same as Case 1) is per-
formed using the ISFA simulation process (Fig. 8). Important
results of the simulation are explained below.

At step t ¼ 1 (same as Case 1), all the HW and SW func-
tions were operating, and the transactions �signal� T1,
�signal� T6, and�signal� T7 were complete. The trans-
actions �signal� T2, �signal� T3, �signal� T4, and
�signal� T5 were inactive because the pressure was within
the operating range [PLTh, PUTh], and both the valves were in
open position (Fig. 14). Thus, the system function transfer
fluid is operating.

At step t ¼ 6, the system behavior was also the same as in
Case 1 (step t ¼ 6) explained earlier. However, at step t ¼10,
when the pressure goes below the lower threshold, the execu-
tion of activity diagram (Fig. 14) takes a different path (D1–
D5–D6–D8–Exit) than in Case 1. As a consequence, the
transaction �signal� T5, that is, open inlet valve, was ob-
served while �signal� T4 remained inactive. At the same
time, the backup was switched ON, so the system function
transfer fluid was operating. However, the holdup tank’s
mode changed from nominal to dry-out; thus, its functions,
supply fluid and store fluid, were inferred as lost (Table 9).

At step t¼ 11, the holdup tank pressure was still below the
lower threshold value since the outlet valve was open. Thus,
the water kept draining from the tank accompanied by the
leakage. Therefore, the backup system was ON. This condi-
tion continued until step t ¼ 14, when the backup system’s
limited reservoir was depleted. During this period the system
function transfer fluid was operating.

After step t¼ 14 until step t¼ 19, the water supply from the
tank was less than required owing to the leak. Thus for five units
of time the nuclear core did not get the required amount of water,
leading to core uncover and thus the system function was lost.

In Case 2, the pattern of transaction and HW function status
is worth noting. The transaction�signal� T5 is always ac-
tivated on account of combined SW modification fault and
tank leak fault. In the absence of leak, the outlet valve would
always be open and the transaction �signal� T2 and
�signal� T3 would always remain inactive in the presence
of the SW fault. Thus, the given SW fault will have no impact
on the system function under the nominal behavior of the com-
ponents, giving an impression that the SW modification was
correct. Thus, observing the transaction status pattern can
give an insight into the type of fault (HW, SW, or both).

Case 1 and Case 2 demonstrate that we can propagate HW
fault and SW faults independently and simultaneously. In ad-
dition, we can evaluate the system-level functional impact of
the combined faults. In general, the system function loss can
occur as a result of component or function failure, and inter-
action failure. Impact analysis of all these failures requires an
integrated domain model representation to enable seamless
fault propagation.

ISFA system design 343

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

5. CONCLUSION

The ISFA method is presented as a method to enhance tradi-
tional techniques such as FMEA and FTA by addressing
some of the inherent difficulties of using these methods in
complex systems. In an FMEA, engineers are expected to
identify the potential effects, to determine causes and con-
trols, and to assign a qualitative score to the severity, likeli-
hood of occurrence, and detectability of a particular fault.
However, the format of an FMEA limits the ability to evaluate
multiple faults, such as the combined SW and outlet valve in
Case 2. Further, it is left to designer judgment to identify the
propagation and severity of the fault. Both of these are iden-
tified automatically with ISFA. The propagation path is a sys-
tematic outcome of each simulation step. For example, at time
step t ¼ 10, the propagation path includes D1–D5–D6–D7
(Fig. 14) along which�signal� T2 is activated (Table 11),
while at time step t ¼ 11, the path includes D1–D2–D3
(Fig. 14) along which�signal� T3 (Table 11) is activated.
In the case study discussed, the severity of a fault is dependent
upon the time to system failure. The severity is very low if the
system failure occurs after 100,000 time steps, medium if the
failure occurs between time steps t¼ 10,000 and t¼ 100,000,
high if failure occurs between time steps t ¼ 1000 and t ¼
10,000, and very high if the failure occurs between time steps
t ¼ 1 and t ¼ 1000. Thus, the results (Table 11) indicate the
severity of incorrect SW modification fault combined with
tank leak’ fault (Case 2) is very high since the system failure
occurs at time step t ¼ 19, while in Case 1 the severity of the
tank leak fault alone is very low since the system failure oc-
curs at time step t ¼ 100,105. FTA shows a partial listing
of the faults that might lead to the system-level failure of
loss of fluid supply. The FTA process requires that engineers
thoroughly evaluate potential causes and identify all the po-
tential causalities. This time-consuming process is simplified
in the ISFA simulation approach. Further, simulation results
provide additional impacts to the system, such as the loss of
fluid transportation or flow detection.

Another advantage of ISFA is that identification of the
fault-propagation paths is inductive. No a priori fault-propa-
gation paths are defined. The fault-propagation path is an out-
come of the simulation of any fault that can be injected at any
point in time during the simulation process. Existing fault-
propagation analysis tools, such as TEAMS (QSI Tool),
SymCure (Kapadia, 2003), and the HFPG (Mosterman &
Biswas, 1999), require designers to explicitly formulate a
fault-propagation model by specifying paths of causal rela-
tionships. In contrast, ISFA only uses information available
during the design stage to determine potential failures and
their propagation paths. Further, this propagation is identified
through component behavioral simulation rather than func-
tional dependencies (Kruse & Grantham Lough, 2009).

Because SW faults give rise to unexpected failures, the ad-
dition of SW control increases the nonlinearity of the system.
ISFA captures various nonlinear aspects of fault propagation.
It is simplistic and often incorrect to assume that faults propa-

gate by following the functional or structural connectivity of a
system. For example, a “leak” in the tank should not impose
any fault propagation to its neighboring components and func-
tions. Similarly, the Store Pos SW fault should only affect the
component it controls. However, we see nonlinear behavior:
the SW failure does not immediately affect the physical system,
but as the fault persists, the Regulate fluid function is lost, lead-
ing to total system failure. However, these two functions are un-
connected to the valve and SW control and not on the down-
stream path in the function model. With ISFA, a proper
mapping among the system behavior, its physical state, and
the system functions will enable the identification of these non-
trivial, nonlinear, fault-propagation paths.

An additional feature of ISFA is its ability to identify func-
tional failures that result from global component interactions,
masked fault activation, and timing faults. In Case 2, the tank
leak fault was initially active for some time, but the simulation
indicated that the SW was able to maintain normal operation for
a few time steps, thereby masking the leak fault. However, over
a period of time, the transaction frequency activated a valve fail-
ure, resulting in the loss of store fluid, supply fluid, and regulate
fluid. Therefore, even though the transactions occur normally,
their timing and frequency can potentially lead to system failure.

The case study also demonstrated that the simulation can be
performed directly on a high-level design without any imple-
mentation level details or model transformation. Different
components, functions, and communication models can be
inserted into the design and analyzed to develop an optimum
design early in the design phase. The analysis is qualitative
but powerful enough to identify areas of potential failures.
Such failures would typically remain unnoticed in the early
design phase, only to be discovered later in the development
process. At such a point, significant resources would have
been committed, subsystems would have been fully defined
and assembled, and levels of detail would have escalated, pre-
cluding exhaustive analysis.

This paper addressed a limited case study intentionally de-
signed to demonstrate nonlinear behavior and interactions but
was not overly complicated. There are two main considera-
tions for scaling this to a realistic system. These two consid-
erations include the time required to simulate and test a sce-
nario and the amount of scenarios to test. The time required
to simulate a particular scenario will be dependent on the
solver and the level of model complexity. The simple compo-
nent state machines used in this method can be solved quite
rapidly. Further better solvers have built-in capabilities to
skip solving some state machines if no transition is going to oc-
cur. The alternative approach is to model at higher abstractions.
For example, we could model the holdup tank and controller as
a single state machine interacting with the rest of some larger
system. The second issue is the completeness in the number
of scenarios to test. A baseline is testing each component fault
mode by itself. This would produce the same result as a de-
tailed FMEA. The strength of ISFA is the ability to test multi-
ple faults. Reliability requirements can be used to specify a
number of allowable faults where a system must remain func-

C. Mutha et al.344

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

tional. Without an intelligent method of picking scenarios, a
brute force method of working through each combination of
faults is possible if a system is allowed only 2–3 faults.

In conclusion, the ISFA method provides constructs for
multiple-domain representation, thereby providing a unique
system-level model. In addition, ISFA provides an execution
model to simulate the system model. This enables designers
to understand the interactions that may lead to functional fail-
ures and help them improve the system quality at the earliest
stages of the design process.

6. FUTURE RESEARCH

In this paper, a sophisticated functional fault-propagation ap-
proach was described in which a set of behavioral rules was
one of the important components to identify the functional
failure. Although these rules are based on first principles
and expert opinions, these rules can be enhanced to include
AI-specific fuzzy logic, heuristics, or probabilistic tech-
niques. The formal nature of the ISFA technique expressed
in one common MOF language lends itself to a desired inte-
gration of AI into design (Brown, 2007).

Another interesting extension to ISFA would be to inte-
grate backtracking algorithms into the ISFA technique, such
that exact location and nature of the faults that lead to particu-
lar system level failures could be automatically determined
and design modifications that prevent the propagation of
such faults suggested. The fault propagation and its impact
on the modified design can be reanalyzed, thus converging
progressively toward highly reliable design.

For complex systems, an exhaustive analysis of all possible
scenarios is infeasible. Intelligent-scenario-selection algo-
rithms could be developed to study the most critical fault
combination.

Algorithms could be developed to analyze/learn the pat-
terns of transaction and HW/SW function status, leading to
further degradation (e.g., the repeated cycling of the outlet
valve in Case 2 of Section 4.5 due to the tank leak finally
leading to a permanent failed closed wear failure of the
valve). These particular patterns could give useful insights
into the degree of impact a particular fault could have on
the system and may help identify design configurations that
should be avoided. Such design configurations could be
stored in a design library and a new design analyzed to verify
that the configurations cannot be found in the design, or at
least these could be flagged as a potential risk.

ACKNOWLEDGMENTS

This research was supported by the Air Force Office of Scientific Re-
search (under Grants AFOSR FA9550-08-1-0158 and AFOSR
FA9550-08-1-0139) and the Department of Energy (under Grant
GRT00021770). In addition, we acknowledge Matt Gerber for edit-
ing this paper. We also thank the reviewers for their constructive
comments. Any opinions or findings of this work are the responsi-

bility of the authors and do not necessarily reflect the views of the
sponsors or collaborators.

REFERENCES

Baresi, L., & Pezzè, M. (2001). On formalizing UML with high-level petri
nets. In Concurrent Object-Oriented Programming and Petri Nets
(Agha, G.A., Cindio, F., & Rozenberg, G., Eds.), pp. 276–304. Berlin:
Springer–Verlag.

Berenji, H.R., Ametha, J., & Vengerov, D. (2003). Inductive learning for
fault diagnosis. Fuzzy Systems 1, 726–731.

Bracewell, R., & Sharpe, J. (1996). A functional descriptions used in compu-
ter support for qualitative scheme generation-“Schemebuilder.” Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 10(4),
333–345.

Brown, D.C. (2007). AIEDAM at 20. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 21(1), 1–2.

Catalyurec, U., Rutt, B., Metzroth, K., Hakobyan, A., Aldemir, T., Denning,
R., Dunagun, S., & Kunsman, R. (2010). Development of a code-agnos-
tic computational infrastructure for the dynamic generation of accident
progression event trees. Reliability Engineering and System Safety
95(3), 278–294.

Dasarathy, B. (1985). Timing constraints of real-time systems: constructs for
expressing them, methods of validating them. IEEE Transactions on Soft-
ware Engineering 11(1), 80–86.

Deb, S., Pattipati, K.R., Raghavan, V., Shakeri, M., & Shrestha, R. (2002).
Multi-signal flow graphs: a novel approach for system testability analysis
and fault diagnosis. IEEE Aerospace and Electronic Systems Magazine
10(5), 14–25.

Deng, Y. (2002). Function and behavior representation in conceptual me-
chanical design. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 16(5), 343–362.

De Kleer, J., & Brown, J.S. (1984). A qualitative physics based on conflu-
ences. Artificial Intelligence 24(1), 7–83.

Department of Defense. (1980). Military Standard: Procedures for Perform-
ing a Failure Mode, Effects, and Criticality Analysis (MIL-STD-1629A).
Washington, DC: Department of Defense.

Devooght, J., & Smidts, C. (1992). Probabilistic reactor dynamics. I: The the-
ory of continuous event trees. Nuclear Science and Engineering 111(3),
229–240.

Erikson, H.-E., Penker, M., Lyons, B., & Fado, D. (2004). UML 2 Toolkit.
Indianapolis, IN: Wiley.

FAA. (2000). FAA System Safety Handbook. Washington, DC: FAA.
Giarratano, J., & Riley, G. (1989). Expert Systems: Principles and Program-

ming, p. 856. Boston: PWS-Kent.
Goseva-Popstojanova, K., Hassan, A., Guedem, A., Abdelmoez, W., Nassar,

D.E.M., Ammar, H., & Mili, A. (2003). Architectural-level risk analysis
using UML. IEEE Transactions on Software Engineering 29(10), 946–
960.

Grunske, L., & Han, J. (2008). A comparative study into architecture-based
safety evaluation methodologies using AADL’s error annex and failure
propagation models. Proc. IEEE High Assurance Systems Engineering
Symp., pp. 283–292, Nanking.

Hawkins, P.G., & Woollons, D.J. (1998). Failure modes and effects analysis
of complex engineering systems using functional models. Artificial Intel-
ligence in Engineering 12(4), 375–397.

Hirtz, J., Stone, R.B., Mcadams, D.A., Szykman, S., & Wood, K.L. (2002). A
functional basis for engineering design: reconciling and evolving pre-
vious efforts. Research in Engineering Design 13(2), 65–82.

Huang, Z., & Jin, Y. (2008). Conceptual stress and conceptual strength for
functional design-for-reliability. Proc. 20th Int. Conf. Design Theory
and Methodology 2nd Int. Conf. Micro and Nanosystems, Vol. 4, pp.
437–447. New York: American Society of Mechanical Engineers.

Hutcheson, R.S., McAdams, D.A., & Stone, R.B. (2006). A function-based
methodology for analyzing critical events. Proc. Int. Design Engineering
Technical Conf. Computers and Information in Engineering Conf., Phil-
adelphia, PA.

Iwu, F., & Toyn, I. (2003). Modeling and analyzing fault propagation in
safety-related systems. Proc. Software Engineering Workshop 28th An-
nual NASA Goddard, pp. 167–174, Greenbelt, MD.

Jensen, D.C., Tumer, I.Y., & Kurtoglu, T. (2008). Modeling the propagation
of failures in software-driven hardware systems to enable risk-informed

ISFA system design 345

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

design. Proc ASME’08 Int. Mechanical Engineering Congr. Exposition
(IMECE2008), Vol. 16, ppp. 283–293. New York: American Society
of Mechanical Engineers.

Jensen, D.C., Tumer, I.Y., & Kurtoglu, T. (2009). Flow state logic (FSL) for
analysis of failure propagation in early design. Proc. Int. ASME’09 Int.
Design Engineering Technical Conf. Computers and Information in En-
gineering Conf. (Paper No. IDETC/CIE2009), Vol. 8, pp. 1033–1043.
New York: American Society of Mechanical Engineers.

Johannessen, P., Grante, C., Alminger, A., Eklund, U., Torin, J., & Assess-
ment, F.H. (2001). Hazard analysis in object oriented design of depend-
able systems. Proc. Dependable Systems and Networks, pp. 507–512,
Göteborg, June 30–July 4.

Kapadia, R. (2003). SymCure: a model-based approach for fault management
with causal directed graphs. Developments in Applied Artificial Intelli-
gence 2718, 582–591.

Krus, D., & Grantham Lough, K. (2009). Function-based failure propagation
for conceptual design. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 23(4), 409–426.

Kurtoglu, T., & Tumer, I.Y. (2008). A graph-based fault identification and
propagation framework for functional design of complex systems. Jour-
nal of Mechanical Design 30(5), 051401.

Kurtoglu, T., Tumer, I.Y., & Jensen, D.C. (2010). A functional failure rea-
soning methodology for evaluation of conceptual system architectures.
Research in Engineering Design 21(4), 209–234.

Labeau, P.E., Smidts, C., & Swaminathan, S. (2000). Dynamic reliability: to-
wards an integrated platform for probabilistic risk assessment. Reliability
Engineering & System Safety 68(3), 219–254.

Lapp, S.A., & Powers, G.J. (1977). Computer-aided synthesis of fault-trees.
IEEE Transactions on Reliability 26(1), 2–13.

Lee, W.S., Grosh, D.L., Tillman, F.A., & Lie, C.H. (1985). Fault tree analy-
sis, methods, and applications: a review. IEEE Transactions on Reliabil-
ity 34(3), 194–203.

Leveson, N.G. (1995). Safeware: System Safety and Computers. Boston: Ad-
dison–Wesley.

Li, B., Li, M., Chen, K., & Smidts, C. (2006). Integrating software into PRA:
a software-related failure mode taxonomy. Risk Analysis 26(4), 997–
1012.

Mosleh, A., Groen, F., Hu, Y., Nejad, H., Zhu, D., & Piers, T. (2004). Simu-
lation-Based Probabilistic Risk Analysis Report. Center for Risk and Re-
liability, University of Maryland.

Mosterman, P.J., & Biswas, G. (1999). Diagnosis of continuous valued sys-
tems in transient operating regions. IEEE Transactions on Systems Man
and Cybernetics: Part A Systems and Humans 29(6), 554–565.

Mutha, C., Rodriguez, M., & Smidts, C.S. (2010a). Software fault-failure and
error propagation analysis using the unified modeling language. Proc. Int.
Probabilistic Safety Assessment & Management Conf., Seattle, WA.

Mutha, C., Rodriguez, M., & Smidts, C.S. (2010b). Design and analysis of
safety critical software using UML. Proc. Man–Technology–Organiza-
tion Sessions [HPR-372(2)].

Mutha, C., & Smidts, C.S. (2011). An early design stage UML-based safety
analysis approach for high assurance software systems. IEEE Int. Symp.
High-Assurance Systems Engineering, pp. 202–211, Boca Raton, FL.

NASA. (2004). NASA Software Safety Guidebook (NASA-GB-8719.13).
Washington, DC: Author.

Nuclear Regulatory Commission. (1983). PRA Procedures Guide: A Guide
to the Performance of Probabilistic Risk Assessments for Nuclear Power
Plants (NUREG/CR-2300). Washington, DC: Nuclear Regulatory Com-
mission.

Object Management Group. (2008). UML Profile Systems Modeling Language
(SysML) Specification. Needham, MA: Object Management Group.

Object Management Group. (2009). UML 2 Superstructure Specification,
v2.2. Needham, MA: Object Management Group .

Pahl, G., & Beitz, W. (1996). Engineering Design: A Systematic Approach.
(Wallace, K., Ed.). New York: Springer.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Lan-
guage Reference Manual, p. 30. Boston: Addison–Wesley.

Selonen, P., Koskimies, K., & Sakkinen, M. (2001). How to make apples
from oranges in UML. Proc. Int. Conf. System Sciences 3, pp. 3054–
3064.

Stone, R.B., Tumer, I.Y., & Van Wie, M. (2005). The function-failure design
method. Journal of Mechanical Design 127(3), 397–407.

Swaminathan, S., & Smidts, C.S. (1999). The event sequence diagram frame-
work for dynamic probabilistic risk assessment, reliability engineering &
system safety. Reliability Engineering and System Safety 63(1), 73–90.

Towhidnejad, M., Wallace, D.R., Gallo, A.M., Goddard, N., & Flight, S.
(2003). Fault tree analysis for software design. Proc. IEEE Software En-
gineering Workshop, pp. 24–29.

Tumer, I., & Smidts, C. (2011). Integrated design-stage failure analysis of
software-driven hardware systems. IEEE Transactions on Computers
60(8), 1072–1084.

Umeda, Y., & Tomiyama, T. (1997). Functional reasoning in design. IEEE
Expert 12(2), 42–48.

Whittle, J., & Schumann, J. (2000). Generating statechart designs from sce-
narios. Proc. Int. Conf. Software Engineering, ICSE’00 (Ghezzi, C., Ja-
zayeri, M., & Wolf, A.L., Eds.), pp. 314–323.

Yairi, T., Kato, Y., & Hori, K. (2001). Fault detection by mining association
rules from house-keeping data. Proc. Int. Symp. Artificial Intelligence
Robotics and Automation in Space, Quebec.

Chetan Mutha is a PhD student in the Department of Mechan-
ical and Aerospace Engineering at Ohio State University. His
research interests include systems and software reliabilityassess-
ment, integrated system design and analysis, and fault diagnosis
early in the design phase. He has published three conference pa-
pers. He works in the Risk and Reliability Laboratory located at
Ohio State University and is advised by Dr. Carol Smidts. His
research has been funded through government agencies such
as the Air Force Office of Scientific Research, the Department
of Defense, and the Nuclear Regulatory Commission.

David Jensen is an Assistant Professor at the University of Ar-
kansas in the Department of Mechanical Engineering, where
he teaches courses in design and mechanics. One of his teach-
ing goals is incorporating “systems thinking” into fundamental
engineering coursework to better prepare engineers for work-
ing with advance technologies and industries. He earned his
doctorate in mechanical engineering at Oregon State Univer-
sity. His research has focused on modeling and assuring safety
in the early design stage of engineered systems. He has collab-
orated extensively with researchers in industry and academia to
perform cutting-edge research in model-based prediction of
system failure behavior and systems validation. His research
has been funded through government agencies such as
NASA, the Defense Advanced Research Projects Agency,
and the Air Force Office of Scientific Research.

Irem Tumer is an Associate Professor at Oregon State Uni-
versity, where she leads the Complex Engineered System De-
sign Laboratory. She received her PhD in mechanical engi-
neering from the University of Texas at Austin in 1998.
Prior to accepting a faculty position at Oregon State Univer-
sity, Dr. Tumer led the Complex Systems Design and Engi-
neering Group in the Intelligent Systems Division at NASA
Ames Research Center, where she worked from 1998 through
2006 as research scientist, group lead, and program manager.
Her research focuses on the overall problem of designing
highly complex and integrated engineering systems with re-
duced risk of failures and developing formal methodologies
and approaches for complex system design and analysis.
Since moving to Oregon State University in 2006, her fund-
ing has largely been through the National Science Founda-
tion, the Air Force Office of Scientific Research, the Defense
Advanced Research Projects Agency, and NASA.

C. Mutha et al.346

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

Carol Smidts is a Professor in the Department of Mechanical
and Aerospace Engineering at Ohio State University. She
graduated with a BS/MS and PhD from the Université Libre
de Bruxelles, Belgium, in 1986 and 1991, respectively. She
was a Professor at the University of Maryland at College
Park in the Reliability Engineering Program from 1994 to
2008. Her research interests are in software reliability, SW
safety, SW testing, PRA, and human reliability. She is a se-
nior member of the Institute of Electrical and Electronic En-
gineers; an Associate Editor of IEEE Transactions on Reli-
ability; and a member of the editorial board of Software
Testing, Verification, and Reliability.

APPENDIX A

Nomenclature

ESD event sequence diagram
FFIP functional failure identification and propagation

FFL function failure logic
FMEA failure mode effect analysis
FPSA failure propagation and simulation approach
FTA fault tree analysis
HW hardware
ISFA integrated system failure analysis
MOF meta-object facility
PRA probabilistic risk assessment
SW software
SysML System Modeling Language
UML Unified Modeling Language

ISFA system design 347

https://doi.org/10.1017/S0890060413000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000152

	An integrated multidomain functional failure and propagation analysis approach for safe system design
	Abstract
	INTRODUCTION
	Contribution
	Related work
	Risk and reliability analysis
	Representation of complex system behavior in the concept stage

	FFIP
	Formalization of FFIP
	Behavioral simulation

	FPSA
	Formalization of the FPSA
	Behavioral simulation

	ISFA
	Formalization of ISFA
	Interface
	Transaction
	TimingConstraint
	InstanceSpecification

	ESD notation
	The ISFA execution model
	HW design execution
	SW design execution

	Evaluation of system function status
	Case study
	System model

	CONCLUSION
	FUTURE RESEARCH
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A
	Nomenclature

