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Abstract
For a rumour spreading protocol, the spread time is defined as the first time everyone learns the rumour.
We compare the synchronous push&pull rumour spreading protocol with its asynchronous variant, and
show that for any n-vertex graph and any starting vertex, the ratio between their expected spread times
is bounded by O(n1/3log2/3 n). This improves the O(

√
n) upper bound of Giakkoupis, Nazari and Woelfel

(2016). Our bound is tight up to a factor of O( log n), as illustrated by the string of diamonds graph. We
also show that if, for a pair α, β of real numbers, there exist infinitely many graphs for which the two spread
times are nα and nβ in expectation, then 0� α � 1 and α � β � 1

3 + 2
3α; and we show each such pair α, β

is achievable.

2010 MSC Codes: Primary 68Q87; Secondary 05C81, 60C05, 68W15

1. Introduction
Randomized rumour spreading is an important paradigm for information dissemination in net-
works with numerous applications in network science, ranging from spreading of information
on the Web or Twitter to diffusion of ideas and spreading of viruses in human communities. A
well-studied rumour spreading protocol is the (synchronous) push&pull protocol, introduced by
Demers et al. [4] and popularized by Karp et al. [10].

Definition 1.1 (synchronous push&pull protocol). Suppose that one node s in a network G is
aware of a piece of information, the ‘rumour’, and wants to spread it to all nodes quickly. The syn-
chronous protocol proceeds in rounds; in each round 1, 2, . . . , all vertices perform their random
actions simultaneously. Each vertex x calls a random neighbour y, and the two share any infor-
mation they may have: if x knows the rumour and y does not, then x tells y the rumour (a push
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operation); if x does not know the rumour and y knows it, y tells x the rumour (a pull opera-
tion). Note that this is a synchronous protocol, that is, a vertex that receives a rumour in a certain
round cannot also send it on in the same round, even though the vertex may be involved in mul-
tiple simultaneous calls initiated by other vertices. The synchronous spread time of G, denoted by
S(G, s), is the first time that everyone knows the rumour. This is a discrete random variable.

A point-to-point communication network can be modelled as an undirected graph: the nodes
represent the processors and the links represent communication channels between them. The
study of rumour spreading has several applications to distributed computing in such networks, of
which wemention just two (see also [7]). The first is in broadcasting algorithms: a single processor
wants to broadcast a piece of information to all other processors in the network. The push&pull
protocol has several advantages over other protocols: it puts less load on the edges than the naive
flooding protocol; it is simple and naturally distributed, since each node makes a simple local
decision in each round; no knowledge of the global state or topology is needed; no internal states
are maintained; it is scalable (the protocol is independent of the size of network and does not grow
more complex as the network grows); it is robust, in that the protocol tolerates random node/link
failures without the need for error recovery mechanisms.

A second application comes from the maintenance of databases replicated at many sites, e.g.
Yellow Pages, name servers, or server directories. Updates to the database may be injected at
various nodes, and these updates must propagate to all nodes in the network. In each round, a
processor communicates with a random neighbour and they share any new information, so that
eventually all copies of the database converge to the same contents. See [4] for details.

The above protocol assumes a synchronized computation and communication model, that is,
all nodes take action simultaneously at discrete time steps. In many applications, and certainly
for modelling information diffusion in social networks, this assumption is not realistic. In light
of this, Boyd, Ghosh, Prabhakar and Shah [3] proposed an asynchronous model with a continu-
ous timeline. This too is a randomized distributed algorithm for spreading a rumour in a graph,
defined below. An exponential clock with rate λ is a clock that, once turned on, rings at times of a
Poisson process with rate λ.

Definition 1.2 (asynchronous push&pull protocol). Given a graph G, independent exponential
clocks of rate 1 are associated with the vertices of G, one to each vertex. Initially, one vertex s of
G knows the rumour, and all clocks are turned on. Whenever the clock of a vertex x rings, it calls
a random neighbour y. If x knows the rumour and y does not, then x tells y the rumour (a push
operation); if x does not know the rumour and y knows it, y tells x the rumour (a pull operation).
The asynchronous spread time of G, denoted by A(G, s), is the first time that everyone knows the
rumour.

Rumour spreading protocols in this model turn out to be closely related to Richardson’s model
for the spread of a disease [6, 11]. Moreover, the push&pull protocol is also quite similar to the
first passage percolation model introduced by Hammersley andWelsh [9] with edges having inde-
pendent exponential weights (see the survey [2]). The difference between the push&pull model
and first passage percolation stems from the fact that, in rumour spreading models, each vertex
contacts one neighbour at a time, so the rate at which x pushes the rumour to y is inversely propor-
tional to the degree of x. A rumour can also be pulled from x to y; this happens at a rate determined
by the degree of y. On regular graphs, the asynchronous push&pull protocol, Richardson’s model
and first passage percolation are fundamentally equivalent, assuming appropriate parameters are
chosen. For general graphs, the push&pull model is equivalent to first passage percolation with
exponential edge weights that are independent, but have different means. Hence, the degrees of
vertices play a different role here than they do in Richardson’smodel or in first passage percolation.
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Figure 1. The string of diamonds graph S3,4,5.

A collection of known bounds for the average spread times of many graph classes is given in [1,
Table 1].

Doerr, Fouz and Friedrich [5] experimentally compared the spread times in the two time mod-
els. They write ‘Our experiments show that the asynchronous model is faster on all graph classes
[considered here].’ The first general relationship between the spread times of the two variants was
given in [1], where it was proved using a coupling argument that

E[S(G, s)]
E[A(G, s)]

= Õ(n2/3).

Here and below Õ (and �̃) allows for polylogarithmic factors. Building on the ideas of [1] and
using more involved couplings, Giakkoupis, Nazari and Woelfel [8] improved this bound to
O(n1/2). Our main contribution is to further improve this bound to Õ(n1/3).

Theorem 1.3. For any (G, s), we have
E[S(G, s)]
E[A(G, s)]

=O(n1/3log2/3 n).

An explicit graph was given in [1] with
E[S(G, s)]
E[A(G, s)]

= �̃(n1/3),

known as the string of diamonds (see Figure 1), which shows that the exponent 1/3 is optimal.
While we also use a coupling argument, our argument is rather different from previous ones.

Our coupling is motivated by viewing rumour spreading as a special case of first passage percola-
tion. This novel approach involves carefully intertwined Poisson processes. Our proof also yields
a natural interpretation for the exponent 1/3: using non-trivial counting arguments, we prove
that the longest (discrete) distance that the rumour can traverse during a unit time interval in the
asynchronous protocol is O(n1/3) (see the proof of Lemma 3.1). The string of diamonds shows
that this is best possible.

We shall make use of the following general bounds. It is proved in [8] that E[A(G, s)]�
E[S(G, s)]+O( log n). Moreover, for all G and s (see [1, Theorem 1.3]), we have

log n/5�E[A(G, s)]� 4n.
In this paper n always denotes the number of vertices of the graph, and all logarithms are in natural
base.

2. Proof of Theorem 1.3.
For an n-vertex graph G and a starting vertex s, recall that A(G, s) and S(G, s) denote the asyn-
chronous and synchronous spread times, respectively. Our main technical result is the following
theorem (proved in Section 3), which has several corollaries.

Theorem 2.1. Given any K > 0, there is a C > 0 such that, for any (G, s) and any t� 1, we have

P[S(G, s)> C(t + t2/3n1/3 log n)]� P
[
A(G, s)> t

] + Cn−K .
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Corollary 2.2. For any (G, s), we have E[S(G, s)]=O(E[A(G, s)]2/3n1/3 log n).

Proof. Apply Theorem 2.1 with K = 1 and t = 3E[A(G, s)]� 12n. By Markov’s inequality,

P[S(G, s)> C(t + t2/3n1/3 log n)]� 1/3+ C/n� 1/2 for n large enough.

Since t =O(n), this implies that the median of S(G, s), denoted by M, is O(t2/3n1/3 log n). To
complete the proof we need only show that E[S(G, s)]=O(M). Consider the protocol which is the
same as synchronous push&pull, except that if the rumour has not spread to all vertices by time
M, then the process reinitializes. Clearly the spread time for this model is larger than the spread
time for the synchronous model. Coupling the new process with push&pull, we obtain for any
i ∈ {0, 1, 2, . . .} that P[S(G, s)> iM]� 2−i. Thus,

E[S(G, s)]=
∞∑
i=0

P[S(G, s)> i]�
∞∑
i=0

M × P[S(G, s)> iM]�M ×
∞∑
i=0

2−i = 2M.

We obtain Theorem 1.3 from Corollary 2.2 by recalling that, for all G and s, E[A(G, s)]=
�( log n).

Theorem 1.3 is tight up to an O( log n) factor: consider the following construction.

Definition 2.3 (Sm,k,l). Let m� 1, k� 2 and l� 0 be integers. The graph Sm,k,l is built as fol-
lows. Start withm+ 1 vertices v0, v1, . . . , vm. For each 0� i�m− 1, add k edge-disjoint paths of
length 2 between vi and vi+1. Finally, add l new vertices and join them to vm (see Figure 1 for an
example). The graph Sm,k,l has m(k+ 1)+ l+ 1 vertices and 2km+ l edges. If l= 0, this is called
a ‘string of diamonds’ in [1].

The spread times of this graph are given by the following lemma, whose proof can be found in
Section 4.

Lemma 2.4. We have E[S(Sm,k,l, v0)]= �(m) and E[A(Sm,k,l, v0)]= �( log n+m/
√
k).

If we letm= �(n1/3( log n)2/3) and k= �((n/ log n)2/3) such that km+m+ 1= n, we obtain
a graph Sm,k,0 with

E[S(Sm,k,0, v0)]
E[A(Sm,k,0, v0)]

= �(n/log n)1/3,

which means Theorem 1.3 is tight up to an O( log n) factor.
It turns out that using our results and the above construction, we can get a more refined pic-

ture of what values the pair (A(G, s), S(G, s)) can take. More precisely, for α, β , we say the pair of
exponents (α, β) is attainable if there exist infinitely many graphs (G, s) for which E[A(G, s)]=
�̃(nα) and E[S(G, s)]= �̃(nβ). One may wonder which pairs (α, β) are attainable? The following
theorem answers this question.

Theorem 2.5. The pair (α, β) is attainable if and only if 0� α � 1 and α � β � 1
3 + 2

3α.

Proof. The necessity of 0� α � β � 1 follows from results in [1] mentioned above. Corollary 2.2
gives β � 1

3 + 2
3α.

To see that these conditions are sufficient, assume (α, β) satisfy 0� α � 1 and α � β � 1
3 + 2

3α.
If β > 0, let m= [nβ/2], k= [n2β−2α], and l= n− 1−m(k+ 1) so that l� 0 for n large enough.
Lemma 2.4 gives
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E[S(Sm,k,l, v0)]= �(m)= �(nβ),

E[A(Sm,k,l, v0)]= �( log n+m/
√
k)= �( log n+ nα)= �̃(nα).

If β = 0, then α = 0. In this case the star graph on n vertices has E[S(G, s)]= �(1) and
E[A(G, s)]= �( log n)= �̃(1) for any vertex s, as required (this is because the expected value
of the maximum of n independent exponential random variables of mean 1 is �( log n): see [1,
Section 2.2] for details).

3. Proof of Theorem 2.1
In this section we fix the graph G and the starting vertex s. We first introduce several notations.
For any vertex v ∈G, let �(s, v) be the set of all simple paths in G from s to v. For a path γ , let E(γ )
be its set of edges and |γ | := |E(γ )| denote its length. Let deg (u) denote the degree of a vertex u.

For any ordered pair (u, v) of adjacent vertices, let Yu,v be an exponential random variable with
rate 1/ deg (u), so that these random variables are all independent. In the asynchronous protocol,
since each vertex u calls any adjacent v at a rate of 1/ deg (u), we can write

A :=A(G, s)=max
v∈V min

γ∈�(s,v)

∑
xy∈E(γ )

min{Yx,y, Yy,x}. (3.1)

To see this, simply interpret Yx,y as the time it takes after one of x, y learns the rumour before x
calls y.

For any positive integer L, we introduce the restriction to short paths:

AL :=max
v∈V min

γ∈�(s,v)
|γ |�L

∑
xy∈E(γ )

min{Yx,y, Yy,x}.

For any L we trivially have AL �A. To bound A from below, we have the following result, giving
stochastic domination ‘with high probability’.

Lemma 3.1. There exists a C0 such that, for any C > C0, t� 1 and L� Ct2/3n1/3, we have
P[AL > t]� P[A> t]+ e−L.

Proof. We show that, in the asynchronous protocol, with probability 1− e−L, during the interval
[0, t], the rumour does not travel along any simple path of length L. This automatically implies
that the rumour does not travel along any longer path either. We prove this by taking a union
bound over all paths of length L. As there is no simple path of length n or more, we may assume
L< n.

Consider a path γ with vertices γ0, γ1, . . . , γL. In order for the rumour to travel along γ , it
is necessary that calls are made along the edges of γ in the order given by γ , at some sequence
of times 0� t1 < · · · < tL � t. Since along each edge the rumour can travel via a push or a pull,
the rate of calls along an edge xy is 1/ deg (x)+ 1/ deg (y). Since the volume of the L-dimensional
simplex of possible sequences (ti) is tL/L!, the probability of such a sequence of calls along the
path γ is at most

tL

L!
L∏

i=1

(
1

deg (γi−1)
+ 1

deg (γi)

)
�

(
2et
L

)L
Q(γ ), (3.2)

where we define

Q(γ ) :=
|γ |∏
i=1

1
min ( deg (γi−1), deg (γi))

.

Our objective is therefore a bound for
∑

|γ |=L Q(γ ).
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For a path γ of length L, consider the sequence of degrees ( deg (γi))Li=0. We say the sequence
has a local minimum at i if deg (γi−1)> deg (γi)� deg (γi+1), and a local maximum at i if
deg (γi−1)� deg (γi)> deg (γi+1). In both of these definitions we use the convention that inequal-
ities involving γ−1 or γL+1 always hold. The edge set of γ can be partitioned into segments starting
and ending at local maxima. For example, suppose L= 7 and the degree sequence is

( deg (γ0), . . . , deg (γ7))= (5, 5, 7, 3, 4, 4, 2, 5).
The local minima are shown in bold. Then the segments are (γ0, γ1, γ2), (γ2, γ3, γ4, γ5), and
(γ5, γ6, γ7). Thus, in each segment the degrees strictly decrease to a local minimum (again, in
bold), then weakly increase up to the local maximum at the end of the segment. Henceforth, we
use the term segment for a path with degrees having this property. (The first and last segments are
special in that the local minimum could be at the beginning and end of the segment, respectively.)

Each path provides an ordered sequence of segments. Denote the segments of γ by σ1, . . . , σs,
and note that s� L/2+ 1, since each segment (except possibly the first and the last ones) contains
at least two edges. The next observation is that we have Q(γ )= ∏

Q(σi); that is, the Q value of
a path equals the product of Q values of its segments (this is true for any partition of a path into
subpaths). Note also that not every sequence of segments can arise in this way: each segment must
start at the last vertex of the previous segment. Since we are interested only in simple paths, the
segments are otherwise disjoint. Thus, for a collection of segments there is at most one order in
which it could arise. Therefore,

∑
|γ |=L

Q(γ )�
L/2+1∑
s=1

∑
|σ1|+···+|σs|=L

1
s!

s∏
i=1

Q(σi), (3.3)

where the second sum is over ordered s-tuples of segments whose lengths add up to L, but without
the condition that they form a path (that is why we have an inequality rather than an equality).
The 1/s! factor comes from the aforementioned fact that at most one ordering of each s-tuple is
possible and needs to be counted.

We now bound the right-hand side of (3.3). We say a segment has type (x, 
−, 
+) ∈V(G)×
Z×Z if the local minimum is at a vertex x (called the centre of the segment), and the segment
has 
− edges before x and 
+ edges after x. (The example path above had s= 3 segments, of types
(γ0, 0, 2), (γ3, 1, 2) and (γ6, 1, 1), respectively.) For a segment σ , let π(σ ) denote its type, and let T
denote the set of all possible types.

For bounding the right-hand side of (3.3), we first fix s and bound the number of options for the
sequence (π(σ1), . . . , π(σs)). There are ns choices for the centres, and at most 2L choices for the
lengths 
± (the number of ways to write L as an ordered sum of natural numbers). Thus there are
at most 2Lns options for (π(σ1), . . . , π(σs)). Enumerate these s-vectors of types by T1, . . . , Tm ∈
T s with m� 2Lns, and let Tj,k denote the kth component of Tj, i.e. the type specified for σk in Tj.
Thus, ∑

|σ1|+···+|σs|=L

s∏
i=1

Q(σi)=
m∑
j=1

∑
(π(σ1),...,π(σs))=Tj

s∏
i=1

Q(σi)�
m∑
j=1

s∏
k=1

( ∑
π(σk)=Tj,k

Q(σk)
)
.

Next, we claim that each term in the last product, which is the sum of Q values of segments of
a given type, can be bounded by 1. Fix some type (x, 
−, 
+), and let 
 = 
− + 
+. The constraints
on the degrees along a segment σ = v0, v1, . . . , v
− , . . . , v
 of this type imply x= v
− and

Q(σ )=

−∏
i=1

1
deg (vi)


−1∏
i=
−

1
deg (vi)

.

If we sum this over all walks of length 
− + 
+ whose 
−th vertex is x, but waiving the degree
monotonicity constraint, then we get 1 (since the number of choices for the neighbours cancels
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out the degree reciprocals). Restricting to simple paths with piecewise monotone degrees only
decreases this. Thus we obtain ∑

|σ1|+···+|σs|=L

s∏
i=1

Q(σi)�m× 1� 2Lns.

Plugging this back into (3.3) yields

∑
|γ |=L

Q(γ )�
L/2+1∑
s=1

2Lns/s!�
(
8en
L

)L/2+1
.

(We use here that L< n, hence each term is less than half the next and the sum is at most twice its
last term.)

Therefore, by (3.2), the probability that the rumour travels along some path of length L is
bounded by

∑
|γ |=L

(
2et
L

)L
Q(γ )�

(
2et
L

)L(8en
L

)L/2+1
� C1n(C2nt2/L3)L/2,

which is at most e−L for L� Ct2/3n1/3, completing the proof.

In (3.1) we wrote A(G, s) in a max-min form. We would like to write S(G, s) in a similar way.
To achieve this, let quv = qvu be the first (discrete) round at which one of u or v learns the rumour.
Suppose the first round strictly after quv at which u calls v is Fuv, and define Tu,v = Fuv − quv.
Note that Tu,v is a positive integer, and is a geometric random variable: P[Tu,v � k]= (1− 1/
deg (u))k−1 for any k= 1, 2, . . . . Moreover, observe that both u and v are informed by round
quv +min{Tu,v, Tv,u}, hence we have

S := S(G, s)�max
v∈V min

γ∈�(s,v)

∑
xy∈E(γ )

min{Tx,y, Ty,x}. (3.4)

We now have a max-min expression for S(G, s). However, a major difficulty in the synchronous
model is that the {Tx,y} are not independent. We will stochastically dominate them by another
collection {Xx,y} of random variables, which are independent. To prove their independence, we
first define the synchronous protocol in an equivalent but more convenient way.

Consider for each ordered pair u∼ v a pair of exponential clocks Zu,v, Z′
u,v, both with rate

1/ deg (u). All these clocks are independent. Initially, the clocks Zu,v are turned on, and the clocks
Z′
u,v are off. At later times we may turn off Zu,v and turn on Z′

u,v. We say the clocks Zu,v, Z′
u,v are

located at vertex u. Continuous time at each vertex will advance separately, though there will be
synchronized rounds as defined below.

For each round 1, 2, . . . , we visit the vertices one by one. For each vertex u, we let all active
clocks located at u advance, until one of the clocks rings. If that ring comes from clock Zu,v or Z′

u,v,
we say that u calls v in that round. Once the choice of calls at every vertex has been made, we use
these to perform the push&pull operations in a round of the protocol. (Note that the time of the
clocks is separate from the discrete rounds of the synchronous protocol: at each vertex, a different
amount of time has elapsed on the clocks.) Having determined the spread of the rumour at the
present round, whenever a vertex u gets informed of the rumour, for each adjacent v we turn off
the clocks Zu,v and Zv,u, and turn on Z′

u,v and Z′
v,u. (If v was already informed, these status changes

will have already taken place at an earlier round.) Observe that because of memorylessness of
the exponential distribution, and since all clocks at u have the same rate, this process generates
a random sequence of independent uniform neighbours, so it is equivalent to the synchronous
protocol.
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Figure 2. Illustration of the proof of Lemma 3.2: the graph is shown at the
top, together with the three processes Puv , Puz and Pu. The rumour starts
from vertex s. Suppose that at discrete round quv = 5 (continuous time α at
vertex u), vertex v is informed from the left; at this moment clock Zuv (corre-
sponding to empty circles) is turned off and Z′

uv (black circles) is turned on.
After Tu,v = 3 discrete rounds (continuous time Xu,v = β − α has passed), ver-
tex u calls v and gets informed at discrete round Fuv = 8 (continuous time β);
at thismoment clock Zuz (white squares) is turned off and Z′

uz (black squares)
is turned on.

Now let us see what the random variables Tu,v are in this set-up. For each ordered pair u, v,
observe that the combined collection of ringing times of clocks Zu,v, Z′

u,v forms a Poisson process
Pu,v with rate 1/ deg (u). (It does not matter that several initial rings come from Z and subsequent
rings from Z′.) Let

Pu :=
⋃
v∼u

Pu,v,

and note that Pu is a Poisson process with rate 1. See Figure 2 for an illustration.
For a pair u, v, suppose the quvth point in Pu is at α, and suppose the first point of Pu,v strictly

larger than α is at β . Then, Tu,v is precisely the number of points of Pu in the interval (α, β].
Define Xu,v = β − α. By construction, Xu,v is the first time clock Z′

u,v has rung since the time it
was turned on, hence it is exponential with rate 1/ deg (u). Since the clocks are independent, the
random variablesXu,v are also independent. The times at which the Z′ clocks are turned on depend
on other clocks in a non-trivial manner, but do not affect the Xu,v variables. Thus we have proved
the following.

Lemma 3.2. The random variables {Xu,v} defined above are mutually independent.

On the other hand, we can use these to control the Tx,y.

Lemma 3.3. For every K and large enough C� C0(K), with probability at least 1− n−K, for all
adjacent pairs u, v we have Tu,v � C log n+ CXu,v.

Proof. We show that for any adjacent pair x, y, we have P(Tu,v > C log n+ CXu,v)� n−K−2, and
then apply the union bound over all edges.

Observe that, conditioned on Xu,v = t, the random variable Tu,v − 1 is Poisson with rate t ×
( deg (u)− 1)/ deg (u)� t. Indeed, this is the number of rings over time t of the deg (u)− 1 active
clocks on edges (u,w) with w �= v. Let Poi (t) denote a Poisson random variable with mean t > 0.
For m� et, we have P( Poi (t)=m)� e−1

P( Poi (t)=m− 1), hence P( Poi (t)> et +m)� e−m.
This gives

P[Tu,v − 1> (K + 2) log n+ eXu,v|Xu,v = t]� P[Poi (t)> (K + 2) log n+ et]� n−K−2.
The claim follows with C =max (e,K + 2).

Theorem 2.1 now follows easily from our lemmas.

Proof of Theorem 2.1. Given K, pick C sufficiently large so that Lemmas 3.1 and 3.3 hold. Fix
t� 1 and let L= Ct2/3n1/3. We have

P[S> Ct + CL log n]

� P

[(
max
v∈V min

γ∈�(s,v)

∑
xy∈E(γ )

min{Tx,y, Ty,x}
)

> Ct + CL log n
]
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� P

[(
max
v∈V min

γ∈�(s,v)
|γ |�L

∑
xy∈E(γ )

min{Tx,y, Ty,x}
)

> Ct + CL log n
]

� P

[(
max
v∈V min

γ∈�(s,v)
|γ |�L

∑
xy∈E(γ )

C log n+ Cmin{Xx,y, Xy,x}
)

> Ct + CL log n
]

+ n−K

� P

[(
max
v∈V min

γ∈�(s,v)
|γ |�L

∑
xy∈E(γ )

Cmin{Xx,y, Xy,x}
)

> Ct
]

+ n−K

= P[AL > t]+ n−K

� P[A> t]+ n−K + e−Cn1/3 .
Here, the first inequality is copied from (3.4). The second inequality is because restricting the
feasible region of a minimization problem can only increase its optimal value. The third inequality
follows from Lemma 3.3. The fourth inequality is straightforward. The equality follows from the
definition of AL and noting that {Xx,y} have the same joint distribution as {Yx,y}, and the last
inequality follows from Lemma 3.1. This completes the proof of Theorem 2.1.

4. Proof of Lemma 2.4
In this section we show that

2m�E[S(Sm,k,l, v0)]� 4m+ 1 and E[A(Sm,k,l, v0)]= �( log n+m/
√
k).

Fix m� 1, k� 1 and l� 0, and let G= Sm,k,l. Recall that v0, . . . , vm are the vertices connecting
the diamonds in Sm,k,l.

Since the graph distance between v0 and vm is 2m, we have S(G, v0)� 2m deterministically. Fix
0� i�m− 1 and suppose that at some time vi is informed and vi+1 is uninformed.We claim that
the expected time to inform vi+1 is at most 4. Let u be some common neighbour of vi and vi+1. It
takes two rounds in expectation for u to pull the rumour from vi, and another two rounds for it
to push the rumour to vi+1, so the claim follows. Once all the vi are informed, every other vertex
will be informed in the next round. Therefore, E[S(G, v0)]� 4m+ 1.

Next we show E[A(G, v0)]=O( log n+m/
√
k). Let Yi denote the communication time

between vi and vi+1 (the first time that vi+1 learns the rumour, assuming initially only vi knows
the rumour). Between vi and vi+1 there are k disjoint paths of length 2, so Yi is stochastically
dominated by Z :=min{Z1, . . . , Zk}, where the Zi are independent random variables equal in
distribution to the sum of two independent exponential random variables with rate 1/2. (The dif-
ference between Y and Z stems from calls initiated at vi, vi+1.) Since each Zi has density (t/4)e−t/2

on R+, we have

P[Z > t]=
(
1+ t

2

)k
e−kt/2.

The change of variable u= k(t/2+ 1) gives

E[Z]=
∫ ∞

0
P[Z > t] dt = 2ek

kk+1

∫ ∞

k
uke−u du.

The integral of uke−u from 0 to ∞ is k!, so

E[Z]� 2ekk!
kk+1 =O(1/

√
k).

Hence, the expected time for all the vi to learn the rumour is at most O(mk−1/2). After this has
happened, any other vertex pulls the rumour in Exp (1) time. The expected value of the maximum
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of at most n independent Exp (1) variables is the harmonic sum Hn � 1+ log n, so E[A(G, v0)]=
O( log n+mk−1/2).

Finally, we show E[A(G, v0)]= �( log n+mk−1/2). The bound E[A(G, v0)]= �( log n) holds
for any n-vertex graph G (see [1, Theorem 1.3]), so we need only show that E[A(G, v0)]=
�(mk−1/2). In fact, since each of the intermediate vi is a cut-vertex, we need only show that
E[Yi]= �(k−1/2) for each i.

Suppose that at time s only vi is informed. For any t > 0, if vi+1 is informed by time s+ t, then
during the time interval [s, s+ t], either the clock of vi has rung at least once, or the clock of vi+1
has rung at least once, or the clock of one of their k common neighbours has rung at least twice.
Since the ringing times at each vertex are a Poisson process, we find

P[Yi � t]� 2(1− e−t)+ k(1− e−t − te−t)� 2t + kt2/2.

Hence, with t = 1/3
√
k� 1/3,

E[Yi]�
1

3
√
k
P

[
Yi �

1
3
√
k

]
� 1

3
√
k
(1− 2/3− 1/18)= �

(
1√
k

)
,

completing the proof of Lemma 2.4.
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