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Abstract

The mathematical model for the propagation of intense laser pulse in a plasma having Gaussian profile is investigated. The
model has been formulated considering that the relativistic–ponderomotive nonlinearity dominates over other
nonlinearities in the plasma. Model equation for self-compression and self-focusing properties of the laser pulse has
been set up and solved by both semi-analytical and numerical methods. The result indicates that due to the effect of
group velocity dispersion, diffraction of the laser pulse and the nonlinearity of medium, the pulse width parameter as
well as beam width parameter of pulse gets focused at a different normalized distance, and hence the normalized
intensity is also deferred at those points. Numerical simulation shows an oscillatory behavior of intensity during
propagation in the plasma either having minimum beam radius (r0) or having minimum pulse duration (t0) depending
on the normalized distance.
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1. INTRODUCTION

High-power laser–matter interaction has many applications
such as particle acceleration, laser-induced fusion, harmonic
generation, X-ray generation, bio-medical application, elec-
tromagnetic radiation, etc. (Drake et al., 1976; Wilks et al.,
1992; Milchberg et al., 1995; Pukhov & Meyer-Ter-vehn,
1998; Pukhov et al., 1999; Gattass & Mazur, 2008). At pre-
sent, high-power laser systems are able to produce ultra-short
pulses having intensities well above 1018 W cm−2. Such in-
tense laser pulse can reveal numerous types of nonlinear phe-
nomenon (Akhmanov et al., 1968; Hora, 1975; Sodha et al.,
1976; Brandi et al., 1993), during propagation through the
plasma. These nonlinearities include self-focusing/filamen-
tation and self-compression, the growth of various parametric
instabilities, plasma wave excitation, and harmonic genera-
tion (Hora, 1975; Sodha et al., 1976; Kruer, 1988; Milchberg
et al., 1995; Lehner & Di Menza, 2000; Kumar et al., 2006;
Purohit et al., 2012, Rawat et al., 2013). Among all these
nonlinearities, the prime importance goes to self-focusing
and self-compression. These can enhance the intensity of

the pulse many folds at the focused position and affects all
other intensity-dependent complex processes in the plasma.
In general, self-focusing of a laser beam depends on proper-
ties of the medium and laser pulse width. Self-focusing of in-
tense laser beams propagating through the plasma can be
attributed to various nonlinear processes such as collisional,
ponderomotive, and relativistic nonlinearity. These nonline-
arities have a strong dependence on laser beam intensity
and setup in different time scales. In the case of intense
and shorter laser pulses, relativistic and relativistic–pondero-
motive nonlinearities are dominant. Both of these non-
linearities operate at distinct scales of time, (i) t0 < t′pe or (ii)
t′pe < t0 < t′pi; where, t0 is the duration of the laser pulse, t′pe
the period of an electron in plasma and t′pi period of ion in
plasma. The former (relativistic) is set up instantly [case
(i)], while relativistic–ponderomotive is set up at a later
time [case (ii)] (Hora, 1975; Brandi et al., 1993).

The relativistic nonlinearity comes into thepicturebecause the
mass of electron changes as the quiver velocity of electron ap-
proaches to the velocity of light. In ponderomotive nonlinearity,
the change in refractive index arises due to the density variation
induced by ponderomotive force, which expels electrons out of
higher intensity zone. The gradient of intensity is the key cause
for the ponderomotive force generation. When ponderomotive
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and relativistic nonlinearity work simultaneously, the density
perturbation (extra term with relativistic nonlinearity) increases
the weightage of this relativistic–ponderomotive nonlinearity
and confirms the dominance of relativistic–ponderomotive
nonlinearity over relativistic nonlinearity.
Drescher et al. (2002) have successfully demonstrated the

inner-shell decay process inside an atom of a noble gas by
time resolved atomic inner-shell spectroscopy by using sub-
femtosecond pulse. The main challenge to the laser science
community is to generate the high-energy few-cycle pulses,
which is required for time-domain spectroscopy. The few-
cycle laser pulses can be easily achieved by a self-compression
technique in the nonlinear media. But non-plasma-based ma-
terials busted when the power of laser exceeds a certain limit.
To overcome the material busting issue, a novel scheme based
on short pulse laser plasma interaction has been proposed. A
laser pulse undergoes self-compression during its propagation
through plasma due to the interplay between the self-phase
modulations due to the nonlinearity of plasma and group ve-
locity dispersion (GVD) (Mora & Antonsen, 1997; Chessa
et al., 1998; Hauri et al., 2004). GVD is a process in which
the group velocity of the electromagnetic wave in a medium
becomes dependent on the wavelength. GVD is defined as
the derivative of the inverse of the group velocity. It could
be positive or negative depending on the medium. Ultrashort
pulses are having broad spectral band width, which leads to
material dispersion and hence the study of GVD becomes
more important.
Now a days the development of chirped pulse amplifica-

tion (CPA) technique is used to produce short laser pulse
with the intensity of the order of 1022 watt/cm2, in which
laser is first stretched, second amplified, and then recom-
pressed. But, this technique is limited to the active medium
amplifier (millimeter) having finite bandwidth Strickland &
Mourou (1985). It has been found that relativistic mass
variation may also serve as an ingredient for compression
of the laser pulse. Shorokhov et al. (2003) have done one-
dimensional particle-in-cell (1D PIC) and 3D PIC simulation
of a 26 TW laser propagating in the plasma and reported the
compression of a 30 fs long laser pulse to a 5 fs pulse by con-
sidering relativistic nonlinearity. A theoretical model was de-
veloped by Olumi and Maraghechi (2014) to investigate the
self-compression of the relativistic Gaussian laser pulse in
the presence of relativistic nonlinearity in magnetized
plasma. They examined numerically that when the pulse is
compressed, a hike in intensity could be achieved because
of the coupling of relativistic nonlinearity and magnetic
field. They further observed that the negative chirped leads
to more compression of the pulse and positively chirped
leads to decompression of the pulse. Karle and Spatschek
(2008) have shown relativistic laser pulse self-compression
in a plasma channel separated by vacuum in the weakly rel-
ativistic regime. Bokaei and Niknam (2014) have reported
self-compression and self-focusing of laser pulse propaga-
tion by considering weakly relativistic and ponderomotive
nonlinearities, which work at larger time scale to establish

ponderomotive nonlinearity. Compression of laser pulse
using plasma as medium has been studied widely by many
authors (Ren et al., 2001; Avitzour & Shvets, 2008;
Sharma & Kourakis, 2010; Liang et al., 2015) by taking
all spectrum of nonlinearities into account.
This paper presents the simultaneous study of self-

focusing and self-compression of a Gaussian (spatiotempo-
ral) laser pulse due to the combined effect of ponderomotive
and relativistic nonlinearity. This paper is arranged as fol-
lows: In Section 2, we have developed the model equation
of Gaussian laser beam and performed a numerical simula-
tion to examine the pulse amplitude evolution and intensity
enhancement of Gaussian laser pulses in plasma having rel-
ativistic–ponderomotive nonlinearity. Then in Section 3, a
semi-analytical model is obtained for clear insight. Lastly,
the conclusion and summary are given in Section 4.

2. MODEL EQUATION FOR NUMERICAL
SIMMULATION

A short pulse laser having electric field profile (space and
time) �E(x, z, t) = E0(x, z, t)ei(kz−ωt) moving in the z-direction
over the plasma, the governing wave equation is given by,

∇2�E − 1
c2

∂2�E
∂t2

= 4π
c2

∂�J
∂t

, (1)

where �J = −Nee�v is current density, Ne represent the density
of electron, �v and e are the velocity and charge of an electron,
respectively. The high intense laser pulse pushes the elec-
trons from the central region of the pulse due to its ponder-
omotive force and relativistic mass variation because of
electrons oscillates at relativistic frequency, so the density
of plasma can further modify. The relativistic–ponderomo-
tive force (Brandi et al., 1993) is,

�FP = −m0c
2∇(γ− 1), (2)

where γ= (1+ (e2|A|2/m2ω2c2))1/2.
Equation (2) shows the ponderomotive force in the relativ-

istic regime, where the Lorentz factor becomes a function of
the laser intensity. The high intense laser beam increases the
mass of electron, which can strongly modify the laser beam
propagation leading to strong self-focusing and self-
compression of laser beam. The ponderomotive force induc-
es density perturbation within time duration of ω−1

p , due to
the high intensity of laser pulse and very short time duration
permits the movement of electrons only. Moreover, the ions
are remains stationary. The density perturbation can be attrib-
uted by,

Ne

N0
= 1+ c2

ω2
p0

∇2γ− (∇γ)2
γ

( )
. (3)

The nonlinear Schrödinger equation can be written by
using Eq. (1) and replacing the old variables by new variables
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t′ = (t− (z/vg)) and z′ = z, we get

i
∂E0

∂z′
+ ω2

p

2k3c4
∂2E0

∂t′2
+ 1

2k
∂2A
∂r2

+ 1
r

∂A
∂r

( )

+ ω2
p

2kc2
f( E0| |2)E0 = 0,

(4)

where f(|E0|
2)= ((Ne/γN0)− 1). Since the z-variation of

amplitude is linked with t variation the term (∂A/∂z) nearly
as [(1/vg)(∂A/∂z)] (where vg is group velocity), we can re-
place the term (∂2A/∂z2) by [(1/vg)(∂

2A/∂z2)] .We have nor-
malized Eq. (4) by substituting the value of f(|E0|

2) and
using normalized parameters given as,

A = 10eE0

mωc
, where A2 = a2 exp − t′2

t20

( )
exp − r2

r20

( )
,

ς = zω2
p

2k3c4t20
, η = r

r0
, τ = t′

t0
,

where ω, r0, and t0 represent the laser pulse frequency, the
initial beam radius, and pulse duration, respectively. Now
the modified nonlinear Schrödinger equation is,

i
∂A
∂ς

+ Ldisp
Ldif

∂2A
∂η2

+ ∂2A

∂t′2
+ Ldisp

LNL

|A|2
2

A+ Ldisp
LNL

4c2

ω2
pr

2
0

( )
1
2
− 2c2

r20ωp
η2

( )
A| |2A = 0,

(5)

where Ldif = kr20 is called the diffraction length, Ldisp =
(2k3c4t20/ω2

p) indicates the dispersion length and LNL = (2kc2/
ω2
p) represent the nonlinear length. These parameters will help

to dictate the propagation of short pulse laser in plasma.
While solving Eq. (5) numerically, the Pseudo spectral

method along with a predictor corrector scheme have been
employed to study. The spatiotemporal evolution for
different plasma frequencies ω2

p = 0.83ω2, ω2
p = 0.85ω2,

and ω2
p = 0.87ω2 have been seen when initial value of the

normalized electric field a was kept as two. The assuming
laser parameters are laser pulse duration t0= 30 fs, initial
radius of the laser beam r0= 10 μm and wavelength λ=
1064 nm. We have also seen the intensity of the pulse at dif-
ferent values of normalized electric field a= 1.5 and 2.5 by
keeping the plasma frequency constant ω2

p = 0.83ω2. More-
over, we have seen the intensities of pulse at a normalized
distance (ξ= 0.2).

When laser pulse propagates in plasma, it gets compressed
and self-focused simultaneously because of the nonlinear
role played by the plasma, which opposes the dispersion
and diffraction of the laser pulse. This leads to the manifold
intensity enhancement of laser beam. The compression of the
pulse occurs due to interaction of self-phase modulation
(arising due to nonlinearity) and GVD. The mass of electron
varies due to intense laser pulse causing a modification in re-
fractive index. A laser pulse having spatiotemporal Gaussian
profile brings change in refractive index with a maximum
value at maximum intensity and continuously falling in the
radial direction. Hence, laser pulse gets self-focused due to
alteration in refractive index. Short laser pulse increases the
plasma refractive index through increasing intensity and de-
creases as laser pulse goes past. This will make time varying
the index of refraction, which causes the time varying phase
change leading to compression of the pulse in time domain.

Figure 1a plots the initial laser pulse having the normal-
ized intensity of 4 with normalized radial distance (r/r0)
and time (t′/t0). Figure 1b presents the intensity and spatio-
temporal pattern of the compressed laser pulse at z= 18.9
μm. Here the propagating laser pulse of initial time duration
t0= 30 fs get compressed to 9.77 fs and Figure 1c represents
the compressed and initial laser pulse in time domain for
plasma frequency ω2

p = 0.83ω2. Figures 2a–2c display the
intensity and spatiotemporal pattern of the compressed
laser pulse. When the initial laser pulse having pulse duration
t0= 30 fs travels a distance z= 13.0 μm in plasma, initial
pulse duration gets compressed to 8.45 fs at plasma frequency

Fig. 1. (a) Initial laser pulse intensity in 3D at (z= 0), (b) intensity of the compressed pulse in 3D at z= 18.9 μm, and panel (c) represents the
initial and compressed pulse (at z= 18.9 μm) intensity in 2D on pulse duration scale for λ= 1064 nm, ω2

p = 0.83ω2, and a= 2 same for all.
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ω2
p = 0.85ω2. Figures 3a–3c represent the intensity pattern and

compressed laser pulse at plasma frequency ω2
p = 0.87ω2

and the duration of initial pulse get shorter to 5.86 fs at distance
z= 10.4 μm.
It has been observed that increasing the values of normal-

ized electric field, strengthens compression mechanism in the
plasma and an increment in intensity of the laser pulse could
be achieved at constant ω2

p = 0.83ω2 plasma frequency.
Figures 4a–4c show intensity and pattern of compressed
laser pulse at normalized electric field a= 1.5 and plasma
frequency ω2

p = 0.83ω2. However, the laser pulse travels to
z= 16.2 μm distance inside plasma it get compressed to
14.44 fs. Figures 5a–5c present the intensity and pattern of
compressed laser pulse at normalized value of electric field
a= 2.5 and plasma frequency ω2

p = 0.83ω2. However, the
compression in laser pulse duration in plasma is about 4.66
fs at z= 16.2 μm distance. While the pulse propagates
more in the plasma, both dispersion and diffraction circum-
stances are effective that can start chaotic shape.

3. MODEL EQUATION FOR SEMI-ANALYTICAL
METHOD

Consider an approximate model to explain the physical signif-
icance of nonlinear evolution of spatiotemporal Gaussian laser
pulse by using Eqs. (1)–(3) and introducing new dimension-
less variable t′ = (t− (z/vg))(ω vg/ωp0) and z′ = z, one can get

2ik
∂A
∂z′

+ ∂2A

∂t′2
+ ∂2A

∂r2
+ 1

r

∂A
∂r

( )
= ω2

p0

c2
Ne

γN0
− 1

( )
A. (6)

Equation (6) represents the nonlinear Schrödinger equation
and it includes both transverse self-focusing and longitudinal
compression terms. Now assuming the solution of Eq. (6) as,

A(r, z′, t′) = A0(r, z′, t′) exp ikS(r, z′, t′){ }
, (7)

where (A0) is the amplitude and (S) is eikonal of the laser
beam. The eikonal S is a parameter related to the curvature

Fig. 2. (a) Initial laser pulse intensity in 3D at z= 0, (b) intensity of the compressed pulse in 3D at z= 13.0 μm and panel (c) represents the
initial and compressed pulse (at z= 13.0 μm) intensity in 2D on pulse duration scale for λ= 1064 nm, ω2

p = 0.85ω2, and a= 2 same for all.

Fig. 3. (a) Initial laser pulse intensity in 3D at z= 0, (b) intensity of the compressed pulse in 3D at z= 10.4 μm, and panel (c) represents the
initial and compressed pulse (at z= 10.4 μm) intensity in 2D on pulse duration scale for λ= 1064 nm, ω2

p = 0.87ω2, and a= 2 same for all.
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of the wave front and it has been used to study the converging
or diverging behavior of the laser beam (Akhmanov et al.,
1968). Using Eqs. (6) and (7) obtained the real and imaginary
parts of Eq. (6) as,

∂S
∂r

( )2

+ ∂S
∂t′

( )2

+ 2
∂S
∂z′

= ω2
p0

c2 k2
1
γ

Ne

N0
− 1

( )

+ 1
k A0

∂2A0

∂t′2
+ ∂2A0

∂r2
+ 1

r

∂A0

∂r

( )[ ] (8)

and

∂A2
0

∂z′
+ ∂A2

0

∂r

( )
∂S
∂r

( )
+ A2

0
∂2S
∂r2

+ 1
r

∂S
∂r

( )

+ ∂S
∂t′

( )
∂A2

0

∂t′

( )
+ A2

0
∂2S

∂t′2
= 0.

(9)

We have considered the solution of Eq. (9) as follows:

A2
0 =

A2
00

g f 2
exp − r2

r20 f
2
− t′2

t20 g
2

{ }
(10)

and

S = r2

2
β1(z′) +

t′2

2
β2(z′), (11)

where f(z′) and g(z′) are spatial beam width and temporal pulse
width parameters respectively. The evolution of these param-
eters determines the laser pulse dynamics. Now using Eqs.
(10) and (11) in Eq. (9) we get,

β1(z′) =
1
f

∂f
∂z′

, (12a)

Fig. 4. (a) Initial laser pulse intensity in 3D at z= 0, (b) intensity of the compressed pulse in 3D at z= 16.2 μm, and panel (c) represents
the initial and compressed pulse (at z= 16.2 μm) intensity in 2D on pulse duration scale for λ= 1064 nm, ω2

p = 0.83ω2, and a= 1.5 same
for all.

Fig. 5. (a) Initial laser pulse intensity in 3D at z= 0, (b) intensity of the compressed pulse in 3D at z= 16.2 μm, and panel (c) represents
the initial and compressed pulse (at z= 16.2 μm) intensity in 2D on pulse duration scale for λ= 1064 nm, ω2

p = 0.83ω2, and a= 2.5 same
for all.
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β2(z′) =
1
g

∂g
∂z′

. (12b)

Now, using Eqs. (10)–(12b) in Eq. (8) and collecting the coef-
ficient of (t′2) and (r2) we get,

∂2f

∂ξ2
= 1

r40 f
3ε0(ω/c)4

− ε2r(ξ) f
ε0(ω/c)2

(13)

and

∂2g

∂ξ2
= 1

t40g
3ε0(ω/c)4

− ε2τ(ξ) g
ε0(ω/c)2

(14)

where ξ=ωz′/c. We have calculated the values of ε0(ξ), ε2r(ξ),
and ε2τ(ξ) by considering relativistic–ponderomotive nonline-
arity which are given below,

ε0(ξ) = 1− ω2
p0

ω2 γ
+ 2c2a20

ω2γ2 g r20 f
4
, (15)

ε2r(ξ) =
ω2
p0a

2
0

2ω2 γ3f 4g r20
+ 4c2a20

ω2γ2 f 6g r40
− 4c2a40

ω2γ4 f 8 g2 r40
, (16)

ε2τ(ξ) =
ω2
p0a

2
0

2ω2 γ3f 2g3 t20
+ 2c2a20

ω2γ2 f 4g3t20 r
2
0

− 2c2a40
ω2γ4 f 6 g4t20 r

2
0

, (17)

where a0 (= eA00/mωc) is the normalized electric field.
We have solved Eqs. (13) and (14) to examine the self-

focusing and pulse compression behavior of the spatiotempo-
ral Gaussian laser pulse in plasma by using the Runge–Kutta
method in MATLAB with f= g= 1 and (df/dξ)= (dg/
dξ)= 0 at ξ= 0 as the initial boundary conditions. We
have studied the dynamics of the Gaussian pulse using the
following laser parameters: λ= 1064 nm, r0= 10 μm, and
t0= 30 fs. The focusing/defocusing of the laser beam can
be governed by Eq. (13) the first term on the right-hand
side of the specified equation is called diffraction term,
while the second term is answerable for self-focusing due
to relativistic–ponderomotive nonlinearity. The compression
of the laser pulse can be explained by Eq. (14), the first term
appearing on the right-hand side represents the dispersion
broadening term although the last term represents nonlinear
term. The self-compression and self-focusing mechanism
can occur when the magnitude of the second term goes
larger than the first one. As the high intense Gaussian laser
pulse propagates through the plasma, the dielectric constant
get modified due to the combined effects of the ponderomo-
tive and relativistic nonlinearity which in turn leads to the
self-focusing as well as self-compression of the laser pulse.
Figure 6 shows the plot of dimensionless spatial beam

width and temporal pulse width parameters as a function
of the normalized distance of propagation at different
values of plasma frequencies ω2

p = 0.83ω2, ω2
p = 0.85ω2,

and ω2
p = 0.87ω2 for constant value of normalized electric-

field a0= 0.2. Solid curves show the variation of dimension-
less spatial beam width parameter (f ), while the dot-dash
curves show the variation of temporal pulse width parameters
(g) with normalized distance (ξ). However, Figure 7 repre-
sents the variation of beam width and pulse width parameter
for plasma frequency ω2

p = 0.83ω2 at different values of nor-
malized electric field a= 0.15, 0.2, and 0.25. It is clear from
the figure, as the laser beam propagates both spatial beam
width parameter (f ) and temporal pulse width parameter
(g) show an oscillatory behavior. It indicates the intensity
of pulse will also oscillate and having a minimum beam
width at one position and a minimum pulse width at another
position.

Fig. 6. Variation of dimensionless beam width f (solid lines) and pulse width
g (dot-dash lines) parameters of laser beam with normalized distance (ξ) for
electric field a0= 0. 2, λ= 1064 nm, r0= 10 μm, τ0= 30 fs at different
plasma frequencies ω2

p = 0.83ω2, ω2
p = 0.85ω2, and ω2

p = 0.87ω2.

Fig. 7. Variation of dimensionless beam width f (solid lines) and pulse width
g (dot-dash lines) parameters of laser beam with normalized distance (ξ) for
plasma frequency ω2

p = 0.83ω2, λ= 1064 nm, r0= 10 μm, τ0= 30 fs at dif-
ferent normalized electric field a0= 0.15, 0.2, and 0.25.
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4. DISCUSSION AND CONCLUSION

The propagation dynamics of spatiotemporal Gaussian laser
pulse has been investigated by numerical simulation as well
as semi-analytical. In numerical simulation method, we have
obtained the different pulse duration at varying z. The pulse
compression has been studied for both different values of
plasma frequencies (by keeping normalized beam intensity
constant at a2= 4) and varying beam intensities (by keeping
plasma frequency constant at ω2

p = 0.83ω2). It was
observed that the laser beam having initial pulse duration
t0= 30 fs gets compressed to 9.77, 8.45, and 5.86 fs by
varying plasma frequencies ω2

p = 0.83ω2, ω2
p = 0.85ω2, and

ω2
p = 0.87ω2, respectively, at constant value of pulse intensi-

ty of 4. Here, absolute distance for compression comes out to
be z= 18.9, 13.0, and 10.4 μm for above used parameters.
However, we can also see the significant change in pulse dura-
tion of laser beam by varying normalized initial intensity from
2.25 to 6.25 at constant plasma frequency ω2

p = 0.83ω2,
wherein the different values of pulse duration are 14.44 and
4.66 fsat a distance z= 16.2 μm.
Although compression depend on plasma frequency and

initial intensity. In this study, we have found that the opti-
mum value of pulse duration is 4.66 at a distance z=
16.2μm for plasma frequency ω2

p = 0.83ω2. The intense,
non-uniform laser intensity profile gives the relativistic and
ponderomotive phenomenon together, resulting modification
in electron plasma density and variation in relativistic mass.
This leads to a stage where both relativistic and ponderomo-
tive nonlinearity are simultaneously operative. In this scenar-
io, the refractive index is the maximum along the propagation
axis and decreases slowly in the radial direction. This spatial
part of refractive index profile causes lowering of beam width
parameter (f), and time-varying part of the refractive index
will be responsible for lowering of pulse width parameter
(g). Pulse width parameter (g) and beam width parameter
(f) decrease from its initial value. Therefore, the transverse
self-focusing in space and longitudinal self-compression in
time take place.
Ultrashort intense laser pulse invokes nonlinearity in the

plasma, which gives rise to both time & space-varying refrac-
tive index that introduces chirping in the frequency spectrum
and negative curvature in the wavefront of ultrashort pulse.
This chirping has opposite sign than the normal GVD.
This opposite nature of both chirpings is finally responsible
for broadening or compression (depending on their strength)
of the pulse. While negative curvature would be responsible
for focusing of the pulse. Finally, these two phenomena will
decide the intensity of the pulse.
It has been observed that the intensity of the pulse shows an

oscillatory behavior. The results of semi-analytical model also
show different focusing point for pulse width and beam width
parameters. This oscillatory behavior gives the extra freedom
to choose the intensity maxima either having minimum (t0)
or having minimum (r0). The semi-analytical method is used
to analyze the self-focusing and self-compression of the

spatiotemporal Gaussian pulse. It is also found that the rate
of variations of parameters governing the pulse width, the
beam width of the laser pulse, and intensity of the laser
pulse are different at a different normalized distance. More-
over, the plasma parameter such as density governs the
GVD, which is a key parameter in our simulation. In addition,
the results are significantly useful in the studies of short pulse
laser propagation by application of sub-millimeter-scale plas-
mas where self-focusing and self-compression are involved.
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