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ABSTRACT
In this paper, a surrogate model approach for non-linear aerodynamics is presented in order to
reduce the computational effort of coupled aeroelastic analyses. The usability of the approach
is demonstrated in static as well as transient aeroelastic analyses of the HIRENASD wing-
fuselage configuration. Furthermore, it is shown that the surrogate model approach is able to
cover variations of flow conditions at a fixed Mach and Reynolds number.
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NOMENCLATURE
Are f reference relation area of the HIRENASD wing Are f = 0.393 m2

aG
i response of the Gaussian RBF to the ith sample point

aIQ
i response of the IQ RBF to the ith sample point

c4-7 chord length of cut 4 through 7
CD drag coefficient
CL lift coefficient
CM pitching moment coefficient
e time window size of grid velocities
fsp sparsing factor
LRe Reynolds length LRe = 0.3445 m
k elliptic shape exponent
Minp number of input POD base vectors
Mout number of output POD base vectors
N number of RBFs
p dimension of system snapshot y
p∞ free stream pressure
q number of system snapshots y
qs(t) generalised coordinate of the sth eigenmode
r fixed radius used for all radial basis functions
ri adaptive radius of radial basis function i
s number of training samples
M Mach number
Re Reynolds number
U∞ free stream velocity
T∞ free stream temperature
t time
tpred computational effort of the ROM for a prediction of the aerodynamic forces
uz,T ip tip node displacement in z-direction
vtrunc POD truncation threshold
α angle-of-attack
θy torsion angle around y-axis
θy,T ip tip node torsion angle around y-axis
λii eigenvalue of the ith POD mode (method of snapshots)
λs smoothing factor
ρ∞ free stream density
σi singular value of the ith POD mode
cF normalised aerodynamic forces
ĉF,i POD coefficients of normalised aerodynamic forces of ith sample
ci centre of ith radial basis function
D normalised average distance of all RBF centres in each dimension
F x aerodynamic forces in x-direction (on the fluid grid)
F z aerodynamic forces in z-direction (on the fluid grid)
p

re f
reference point for CM calculation, p

re f
= (0.252, 0.0, 0.0)

u fluid surface grid displacement vector
u f (t) fluid surface grid displacement vector of the forced motion
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x(t) mapping method input at time t
�s mode shape of the sth eigenmode
χ

i
ith POD mode

�−1 inverse covariance matrix

Ii identity matrix of dimension i, hence Ii ∈ R
i×i

�∗ singular value matrix
U ∗ left singular vector matrix
V ∗ right singular vector matrix
W weight matrix
Y snapshot matrix
� eigenvalue matrix

1.0 INTRODUCTION
Aeroelasticity is a challenging aspect in modern aircraft design. High-fidelity aeroelastic
simulations with a computational fluid dynamics (CFD) solver coupled with a computational
structure mechanics (CSM) solver lead to high computational costs. Thus, the application of
such methods in the design process of an aircraft is still not practicable. Therefore, reduced
order modeling (ROM) approaches for aeroelasticity problems have been developed since the
last decade.

However, many different reduced order approaches exist, for instance harmonic balance,
centre manifold, normal form and numerical continuation methods. Henshaw et al(1) give
a good overview over these methods. According to Farhat(2), the reduced order model
approaches can be classified into two categories, the internal description and the external
description. The idea of the internal description is to map the governing differential equations
of a system into a low-dimensional subspace and to solve the reduced equation system
subsequently. In contrast, the aim of the external description is the identification of an explicit
input-output map that replaces the full-order system. This kind of model is often called the
‘black box model’.

An approach of the first category is the use of proper orthogonal decomposition (POD)
for projection of the system into a low-dimensional subspace. For instance, Willcox et al(3)

construct a linear reduced-order state space model via POD. Amsallem and Farhat(4,5) show
that new POD bases can be efficiently inter-polated from existing POD bases by using a
tangent space of the Grassmann manifold. With this new POD base, a linear ROM at an
inter-polated Mach number is created. Thomas et al(6) implemented the harmonic balance
approach within the framework of a conventional CFD solver. According to this approach, the
conservation variables are substituted by an Fourier expansion that allows to model non-linear
un-steady aerodynamics for finite amplitude motions of a prescribed frequency. Chen et al(7)

use a flow solver-based non-linear POD approach for aeroelastic investigations.
In the second category, various system identification methods are used to create an input-

output mapping, for instance the Kriging method, neural networks or support vector machines.
An overview over these methods is given by Ahmed et al(8). Voitcu(9,10) applies multi-layer
perceptron artificial neural networks (MLP-ANN) in aeroelastic systems with structural non-
linearities. Lucia et al(11) and Silva(12) consider first- and second-order Volterra theory for
aerodynamic load prediction. Additionally, Lucia use the eigensystem realisation algorithm
(ERA) to create a linear state-space formulation of the aerodynamic system from impulse
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Figure 1. Integration of surrogate model in the aerostructural coupling scheme.(17)

excitations. Han et al(13) show a multi-variable fidelity approach based on Kriging for an
efficient approximation of static aerodynamic coefficients. Chen et al(14) utilise support vector
machines for the prediction of limit cycle oscillations (LCO). Fagley et al(15) use POD
in combination with wavelet neural networks (wavenet) to predict the non-linear dynamic
behaviour of a free shear layer. Zhang et al(16) show that radial basis function artificial neural
networks (RBF-ANN) are able to predict LCO behaviour of the NACA64A010 aerofoil in the
time domain.

The approach presented in this paper is also part of the second category and already
described in Lindhorst et al(17). It is a comparable approach to Zhang(16) but combined with
POD to make it applicable for high-dimensional systems such as discrete 3D models. In
Lindhorst et al(17), LCO behaviour of the NLR7301 aerofoil is predicted with the method.

This paper deals with the application of the method on the 3D HIRENASD configuration.
The HIRENASD is designed to represent a modern transport aircraft wing. It is a multi-
tapered, swept-back wing with a non-symmetric super-critical shape. The surrogate model is
identified from transient RANS analyses, and consequently the influence of viscous effects
on the aerodynamic forces is taken into account. It is shown that the surrogate model is able
to replace the CFD solver without modifying the coupling environment and that a significant
reduction of the computational effort can be achieved.

2.0 SURROGATE MODEL APPROACH
The surrogate model is dedicated to replace the CFD solver in an aerostructural coupling
scheme (CFD-CSM scheme), see Fig. 1. In the current research, it is not the aerodynamic
surface pressure but surface forces which are used for load transfer in the aerostructural
coupling scheme.

In a coupled aerostructural analysis, the CFD solver determines the flow field and the
resulting discrete aerodynamic surface forces F f (t) with respect to the discrete surface
displacement u f (t). Consequently, the surrogate model must also predict the discrete force
distribution F f (t) on the aerodynamic grid from the discrete displacement vector u f (t) of the
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Figure 2. Scheme of the modular process chain for high-dimensional surrogate modeling.(17)

aerodynamic grid surface. Thus, the surrogate model has to approximate relation 1.

F f (t) = f (u f (t)) … (1)

In order to respect the influence of flow conditions on the aerodynamic forces, the
dimensionless forces cF are predicted by the ROM that are defined in accordance to the lift
coefficient CL:

cF = F f
1
2ρ∞U 2∞Are f

… (2)

Here, Are f denotes the reference area, ρ∞ is the free stream density, and U∞ is the free
stream velocity. The reference area Are f = 0.393 m2 is a geometric parameter, and hence it is
constant for an explicit aerodynamic configuration.

2.1 Process chain

In order to approximate the high-dimensional, non-linear and time-dependent relationship
given in Equation (1), a process chain is established that combines several methods in a
modular manner. The process chain consists of four parts as shown in Fig. 2:

1. The input parameter reduction via POD (input POD)

2. The chronological rearrangement of the reduced grid displacements and velocities to the
mapping method input vector x(t) (Markov chain)

3. The non-linear multiple input multiple output mapping (non-linear mapping)

4. The output parameter reconstruction via POD (output POD)

The parameter reduction via POD is explained shortly in Section 2.2. The composition of
vector x(t) by using the Markov chain method is discussed in Section 2.3. For the non-linear
mapping, any arbitrary mapping method can be chosen, for instance Kriging, support vector
machines or artificial neural networks (ANN). In this paper, the radial basis function ANN is

https://doi.org/10.1017/aer.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.12


606 April 2016The Aeronautical Journal

used, which is an easily implemented but effective method. A brief introduction to this method
is given in Section 2.4. The modular characteristics make the surrogate model approach more
variable. For instance, the Markov chain method can be switched off for time-independent
problems or the POD reduction need not be used for low-dimensional systems.

All parts of the process chain are identified from known input-output training data of the
full-order system. With this, the number of necessary sample points must be limited and the
time used for the identification process should be as short as possible. The creation of training
data and the identification of the model is discussed in Section 3.1.

2.2 Proper orthogonal decomposition

POD is also known as Karhunen-Loève expansion as well as principal component analysis
(PCA). The idea of POD is to find a base of M orthogonal vectors for a given number of q
snapshots y

1
, . . . , y

q
of a field y of dimension p that is the optimal representation of the given

snapshots.
For a time-dependent field y(t), the q snapshots are taken at different times y(t1), . . . , y(tq).

The systems state y(t) is then represented by M time-dependent POD coefficients
ŷ1(t), . . . , ŷM (t) and the identified M time-independent base vectors χ

1
, . . . ,χ

M
in sense

of a linear combination (see Equation (3)).

y(t) = y
0
+

M∑
i=1

ŷi(t) χ
i

… (3)

Here, y
0

is a reference point defining the POD base origin in the high-order coordinate
system. For more detailed information, the reader is referred to the plurality of publications
about this method, for instance Lucia et al(11), Willcox et al(3) or Meyer et al(18).

The base is constructed into a space spanned by known snapshots y(t1), . . . , y(tq) of the
system composed to a matrix Y . The time-independent base vectors are determined by using
singular value decomposition (SVD) applied on Y .

Y = U ∗�∗V ∗ … (4)

Here, �∗ is the singular value matrix containing the singular values σi, U ∗ are the
corresponding left singular vectors, and V ∗ is the corresponding right singular vectors. The
left singular vectors equal the seeked POD base vectors. The POD base consists of q base
vectors; hence, M = q. In order to reduce the dimension of the POD base, the base vectors
χ

i
corresponding to small singular values σi are truncated. A criterion for the truncation is

defined in Equation (5).

v =
∑M

i σi∑q
j σ j

≥ vtrunc with 0.0 ≤ vtrunc ≤ 1.0 … (5)

The number of base vectors M < q is set in a way that equation v ≥ vtrunc is satisfied. Here,
vtrunc as a user defined threshold.
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2.3 Markov chain model

In this section, the used Markov chain model is explained in brief. For detailed information,
the reader is referred to the literature, for instance Meyn and Tweedie(19).

The basic idea of a Markov chain model is the prediction of the current state of a time-
dependent system from the finite history of former states. The system is considered as time
discrete with a constant time step size �t. Comparable approaches are utilised in surrogate
modelling of aerodynamics such as the linear auto-regressive moving average (ARMA) model
used by Won(20) or the related auto-regressive with exogenous input (ARX) model used by
Zhang(16).

In this paper, grid displacements and velocities of the aerodynamic coupling surface are
used as model input. In the Markov chain, the corresponding POD coefficients û and ˆ̇u are
used, not the full-order grid displacements u and velocities u̇ (see Equation (6)).

x(t) =

⎛
⎜⎜⎜⎝ û(t)︸︷︷︸

static part

,
ˆ̇u(t)
U∞

,
ˆ̇u(t − fsp�t)

U∞
,

ˆ̇u(t − 2 fsp�t)
U∞

, . . . ,
ˆ̇u(t − e�t)

U∞
)︸ ︷︷ ︸

transient part

⎞
⎟⎟⎟⎠ with fsp = const

… (6)
Only the current grid deformation û(t) is taken into account, and transient effects are

covered by using former grid velocities. There are two main reasons for using only the current
grid deformation: (1) in the static case, the velocities equal zero and only the current grid
deformation remains as an input and (2) the use of redundant input information into the
mapping method is avoided.

Furthermore, a constant sparse factor fsp ∈ N is introduced that reduces the number of input
parameters for the mapping method by using each fsp-th time step instead of each available
time step as an input. It is premised that e is divisible by fsp. For fsp > 1, a sparse time window
is used instead of the full time window.

2.4 Radial basis function artificial neural network

RBF-ANN is a widely used non-linear system identification method. It is easy to implement
and effective due to an explicit training algorithm. According to Ahmed(8), it is applicable
on systems with many input values as well as many output values, and it can process large
training sets. The typical architecture of such a network is proposed by Broomhead et al(21)

and consists of an input, an output and a hidden layer. Kecman(22) and Orr(23) give a good
introduction to this method.

In Fig. 3, the concept of the method is shown graphically for a 2D function. The unknown
function ĉF (t) = f (x(t)) is approximated with a weighted super-position of radial basis
functions ai(x(t)) (see Equation (7)).

ĉF (t) = f (x(t)) = g(x(t)) +
N∑

i=1

wiai(x(t)) … (7)

Here, g(x(t)) denotes a polynomial, in general constant or linear, submodel in order to
cover offsets or linear effects, respectively. In this paper, a constant sub-model g(x(t)) = const
is used for all analyses. The determination of the weight matrix W containing the weight
vectors wi is the aim of the identification process, also called the training or learning process.
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Figure 3. Visualisation of the approximation concept of an unknown
function f (x1, x2) via a sum of weighted RBF.

The target output vector ĉF (t) contains the POD coefficients of the normalised aerodynamic
forces cF (t). Thus, the dimension of ĉF (t) equals the number of output POD modes Mout .

For the transfer function ai(x(t)) in Equation (7), any known type of RBF can be used. In
this research, the popular Gaussian function aG

i (x(t)) (see Equation (8)) as well as the inverse

quadric (IQ) function aIQ
i (x(t)) (see Equation (9)) are considered as proposed for instance by

Kecman(22) or de Boer et al(24).

aG
i (x(t)) = e

− (x(t)−ci )S(x(t)−ci )
r2
i … (8)

aIQ
i (x(t)) = 1

(x(t)−ci )S(x(t)−ci )
r2

i
+ 1

… (9)

The vector ci denotes the functions centre, and the scalar value ri is the radius, also known as
standard deviation in statistics, of the ith RBF, respectively. In this paper, an RBF is positioned
in each known sample point. Moreover, all sample points are projected onto a normed space,
i.e. the range of each spatial direction is between 0 and 1. This avoids poor inter-polation
results due to different spatial ranges.

In Fig. 4, the Gaussian RBF is compared with the IQ RBF. Both functions coincide in vi-
cinity to the functions centre ci, but for increasing distance aIQ is significantly larger than aG.

In order to increase the inter-polation accuracy of the method, the radial function shapes
are modified to elliptic shapes. Therefore, a shape matrix S is introduced in Equations (8) and
(9), respectively. Kecman(22) recommends the inverse covariance matrix of all RBF centres
as shape matrix S = �−1. The investigations for this paper emerged that in combination with

the Markov chain model, the inverse covariance matrix �−1 has very large diagonal entries
which lead to extreme RBF shapes and hence to instabilities during the identification process.

This is the reason why in this paper an alternate definition of elliptic shapes is used: In
order to adapt the functions shapes on the sample distribution, the distances between all RBF
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Figure 4. Comparison of Gaussian and inverse quadric radial basis function.

centres for each spatial direction is summed up and normalised with the average of entries of
the resulting vector (see Equation (10)). The normalisation ensures that the functions shape
is manipulated but that the functions influence region is not scaled. The functions influence
region is solely scaled by the radius ri.

D =
∑N

i=1

∑N
j=1(c j − ci )

avg
(∑N

i=1

∑N
j=1(c j − ci )

) … (10)

The shape matrix is then determined by Equation (11). Here, Idim(D) denotes the identity
matrix with the dimension of D, and thus S is a diagonal matrix with the normalised distances
as diagonal entries diag(S) = D. Additionally, the elliptic shape exponent k is introduced in
order to get more extreme elliptic shapes. In application, k is found by performing parametric
studies. In Fig. 5, the radial shape is compared with the elliptic shapes (DT = (1.1, 0.9)) for
k = 1 and k = 4.

S = Idim(D) Dk … (11)

Another important aspect is the overlapping of the radial basis functions as well as the
smoothness of the resulting super-positioned function. Regarding the overlapping of the radial
basis functions, an adaptive function radius ri for each RBF is introduced by Lindhorst
et al(25,17) (see Equation (12)).

ri = foverlap

N

N∑
j=1

‖c j − ci‖2 … (12)

The overlapping of the functions is controlled with an overlapping factor foverlap scaling the
adaptive radius of all functions. The overlapping factor is set to foverlap = 1.0 in this research
that ensures a sufficient overlapping of radial basis functions.
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Figure 5. Influence of shape matrix S on the radial shape (DT = (1.1, 0.9)).

For function smoothing, a regularisation parameter λs is defined that is also described by
Kecman(22,23) and Lindhorst et al(17). The parameter λs is called ‘smoothing factor’ in this
research. According to Kecman, λs is involved in the determination of the weight matrix W
by manipulating the calculation of the pseudo-inverse A

inv
during the training process (see

Equation (13)).

A
inv

= (AT A + λsIN )−1AT … (13)

The design matrix A contains the function values of all RBF at the known sample points.
With A

inv
, the weight matrix is determined with Equation (14).

W = A
inv

T … (14)

The matrix T denotes the target matrix that contains the target outputs of all known sample
points. For λs = 0, the RBF-ANN inter-polates and for λs > 0 the RBF-ANN approximates
the given data. An adequate value for λs is found through parametric studies.

3.0 HIRENASD WING MODEL
The HIRENASD wing model is defined and investigated within the DFG (German Research
Association)-funded SFB401 project. It is provided through the Aeroelastic Prediction
Workshop (AePW) launched on the IFASD 2011(26,27). The HIRENASD model is already
used by Lindhorst et al(28) for surrogate model investigations at higher angles-of-attack.
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Figure 6. Structural beam model and aerodynamic coupling surface with cut
positions for comparison of discrete surface forces(28).

The wing structure is represented by a NASTRAN beam model provided by A. Boucke
and C. Wieseman via the AePW homepage(29). In Fig. 6, the structure model as well as the
aerodynamic surface with the investigated cut planes are displayed. The cut plane positions
are defined by the normed span-wise coordinate η = y/ymax with ymax = 1.29396 m. The
displacement of the beams marked tip node is used for tracking the wing motion in Section 4.2.
The structure model overhangs the aerodynamic model at the wing tip. In order to preserve
the structure dynamic behaviour of the provided beam model, this overhang is not cut off.
The mass and stiffness matrices are extracted from the NASTRAN model and used for time
integration with the Newmark iteration, which is described by Hughes(30). In Fig. 7, the first
ten eigenmodes are shown, which are inter-polated on the aerodynamic grid. According to
Table 1, the eigenfrequencies coincide with other references in an acceptable manner. The
fuselage is not coupled to the structural model in accordance to Braun(31).

The projection technique used for force as well as displacement inter-polation between the
aerodynamic surface and the FEM-beam is implemented following the description of Reimer
et al(32) as well as Braun et al(31).

For the aerodynamic analyses, three SOLAR grids(35,36,37) are considered, which are
provided by M. Ritter through the AePW homepage. A preliminary comparative study emerge
that the medium grid is sufficient for this research. The coupling surface of the medium grid
is shown in Fig. 8. It consists of 2,448,805 nodes with 47,657 surface nodes. Consequently,
the surrogate model has to predict 142,971 force quantities due to the three force components
of each node. Turbulence is modelled by using the Spalart-Allmaras model and assuming
fully turbulent flow. The flow conditions of the investigated cases are given in Table 2. The
conditions of case 1 are taken from test case 132 given by Chwalowski(27). In case 2, the
free stream temperature is increased by �T = 100 K with a fixed Mach as well as Reynolds
number and the remaining flow parameters are determined via the Sutherland model.
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Table 1
Comparison of calculated eigenfrequencies of the used beam model with

reference values f s,AePW provided on the AePW homepage(33) and f s,Ritter given
by M. Ritter(34) respectively.

Mode f s/Hz f s,AePW /Hz f s,Ritter/Hz

1 25.978 25.951 25.600
2 82.523 82.340 80.200
3 117.987 117.386 106.200
4 169.215 168.104 160.300
5 261.482 260.543 242.000
6 275.124 272.373 252.200
7 282.651 274.891 271.800
8 394.731 384.730 354.200
9 443.006 440.410 437.800
10 552.432 502.761 443.800

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 7. First ten eigenmodes of the structure model inter-polated on the aerodynamic surface.
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Table 2
Aerodynamic conditions of the investigated cases

M Re LRe ρ∞ p∞ u∞ T∞ α0

Case 1
(TC132)

0.8 7 × 106 0.3445 m 1.1983 kg
m3 87, 808 Pa 256.4 m

s 246.9 K 1.5◦

Case 2 0.8 7 × 106 0.3445 m 1.3159 kg
m3 135, 485 Pa 303.9 m

s 346.9 K 1.5◦

Figure 8. Coupling surface of the used medium SOLAR grid.(36)

3.1 Training data

The surrogate model is identified from transient forced motion training data. The training set
used in this paper consists of three analyses with superimposed excitations of scaled structural
mode shapes us of the first ten eigenmodes, which is shown in Equation (15).

ubeam(t) =
10∑

s=1

qs(t)us … (15)

qs(t) = qs,max
(
1 − e−25t) sin

(
2π fst(1 − 0.1 sin

(
2π fs

15
t
))

… (16)

The generalised coordinate qs of the sth structural eigenmode at time t is determined
with Equation (16), which ensures a cumulative growth of the amplitude until qs,max is
reached as well as a modulation of excitation frequency of ±10% of the eigenfrequency.
This procedure is already shown in former investigations by Lindhorst et al(17,28) in order to
prevent sensitivities of the surrogate model on frequency variations. In Table 3, the generalised
coordinates of the three forced motion analyses used for model training are shown. The
third and seventh eigenmode (see Figs 7(c) and (g)) leads to problematic deformation in the
wing root. According to Ritter(34), these eigenmodes show less contribution to the aeroelastic
deformation in test case 252 at α = 3◦. Therefore, it is assumed that the aerodynamic response
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Table 3
Generalised coordinates of forced motion training signal

Analysis q1,max q2,max q3,max q4,max q5,max q6,max q7,max q8,max q9,max q10,max

I 0.1 0.0315 0.0 0.01535 0.00993 0.00944 0.0 0.00658 0.00586 0.0047
II 0.15 0.0315 0.0 0.01535 0.00993 0.00944 0.0 0.00658 0.00586 0.0047
III 0.3 0.0315 0.0 0.01535 0.00993 0.00944 0.0 0.00658 0.00586 0.0047

Figure 9. Flow chart of the surrogate model identification process.

to the third and seventh eigenmode must not be captured by the surrogate model, and hence it
is not included in the training signal.

Ritter(34) used 64 steps per period of the first eigenfrequency that leads to a discrete time
step size of �tRitter = 1.98 × 10−4 s. This step size approximately coincide with the time
step size of �t = 0.0002 s used in this paper. The training analyses are conducted at case 1
conditions given in Table 2.

3.2 Surrogate model identification

For the model identification process, several parameters have to be defined. These are the
number of modes of the input POD base Minp, the number of modes of the output POD base
Mout , the time window size e and the sparse factor fsp of the Markov chain model and finally
the smoothing factor λs and the elliptic shape exponent k of the RBF-ANN. The procedure of
the surrogate model training process is given in Fig. 9.

In Fig. 10(a), the first 15 singular values of the input POD base are displayed. Due to the
significant decrease of singular values at mode 9, the POD base is reduced to Minp = 8 base
vectors. This coincides with the excited eight eigenmodes in the training signal (see Table 3).
The singular values of the output POD base are shown in Fig. 10(b). In this case, a truncation
criterion of vtrunc = 0.99 is defined, which is a recommended value for the most systems. This
criterion leads to Mout = 49 base vectors.

The time window size depends on the observed system, namely the system memory. The
system memory can be assumed as the time span that a disturbance influences the system
response. Investigations showed, that a time window size of a half period of the lowest
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Table 4
Computational effort of surrogate model identification

processor CPU Time (h:min:sec)

Input POD 1 × AMD 2.0 GHz 04:12:35
Output POD 1 × AMD 2.0 GHz 04:09:09
RBF-ANN identification 1 × AMD 2.0 GHz 00:03:13

Figure 10. (a) Singular values of the input POD base, (b) Singular values of the output POD base.

eigenfrequency is sufficient for the most aeroelastic systems. The lowest eigenfrequency of
f1 = 25.978 Hz and the time step size of �t = 0.0002 s lead to a time window size of 100
steps. Additionally, a sparse factor of fsp = 25 is used.

An important aspect is the evaluation of the RBF-ANN accuracy during identification. A
widely used concept for accuracy evaluation is the cross-validation method, i.e. several sample
points are extracted from the training set that are not used for identification but for error
estimation. These points are called cross-validation points in the following. In this study,
every second sample point of all known training samples are taken as cross-validation point.
This leads to seval = 1500 cross-validation points. In order to evaluate the model accuracy, a
quality index Q is introduced, which is shown in Equation (17). Q denotes the mean of the
relative error at all cross-validation points.

Q = 1
seval

seval∑
i=1

||ĉF,i − f (xi )||
||ĉF,i||

… (17)

The parameters of the RBF-ANN, namely the choice of the radial basis function, the
smoothing factor λs and the elliptic shape exponent k, are found through parametric studies.
In Fig. 11 the value of the quality index Q for different λs and k is shown. According to the
parametric study Q becomes minimal for an RBF-ANN with IQ functions, λs = 10−5 and
k = 9.

In Table 4, the computational effort of the identification process is given. The POD bases
are constructed once and then used for each surrogate model in the parametric study.
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Table 5
Comparison of tip node deflection and rotation in the aeroelastic equilibrium

CFD-CSM ROM-CSM Error

uz,T ip 0.013641 m 0.013779 m 1.015%
θy,T ip −0.007883 rad −0.007965 rad 1.041%

Figure 11. Cost function values of the parametric study: (a) Gauss-RBF, (b) IQ-RBF.

4.0 RESULTS
In this section, the proposed approach is applied within an aero-structural coupling scheme
in the time domain. The CFD solver is completely substituted by the reduced order surrogate
model and then the ROM-CSM scheme is compared with the CFD-CSM scheme in various
aeroelastic analyses. The coupling of the codes is performed by using the ifls coupling
environment presented by Haupt et al(38). The CFD solver used for reference results is the TAU
code(39) of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The ROM-CSM scheme
is compared with the CFD-CSM scheme in static aeroelastic as well as transient aeroelastic
analyses.

4.1 Static analysis

In the static analysis the aeroelastic equilibrium state of the coupled model determined with
the CFD-CSM scheme is compared with the ROM-CSM scheme. Only the static part of
the surrogate model is used for prediction (see Equation (6)). Five fluid-structure iterations
(Dirichlet-Neumann iterations) are performed to reach the aeroelastic equilibrium. The first
static analysis is conducted at case 1 flow conditions (see Table 2).

In Fig. 12, the beam deflection uz and torsion θy of the aeroelastic equilibrium is displayed
for the CFD-CSM and ROM-CSM analysis. The structural deformation of both analyses
coincide in an acceptable manner. The errors of the beam deflection and rotation at the tip
node given in Table 5 are smaller than 2% and hence within acceptable bounds.

In Fig. 13, the discrete aerodynamic forces of the ROM-CSM analysis are compared with
the CFD-CSM analysis in cut sections 4 through 7. In order to indicate the changes of the
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Figure 12. Beam deformation of static aeroelastic equilibrium at flow conditions of case 1: (a)
Displacement in z-direction over y; (b) Rotation around y-axis over y.

Figure 13. Aerodynamic forces in the aeroelastic equilibrium predicted by the ROM and calculated by the
CFD as well as CFD calculated forces of the jig shape: (a) cut 4, (b) cut 5, (c) cut 6 and (d) cut 7.
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Table 6
Computational effort of the static aeroelastic analysis at case 1 conditions

Used processors CPU Time (h:min:sec)

CFD-CSM 16 × AMD 2.0 GHz 260:02:06
ROM-CSM 1 × Intel i7 2.6 GHz 000:01:33

Figure 14. Beam deformation of static aeroelastic equilibrium at flow conditions of case 2: (a)
Displacement in z-direction over y; (b) Rotation around y-axis over y.

forces between the un-deformed wing and the aeroelastic equilibrium the forces of the jig
shape are also displayed. As shown in the diagrams, the forces of the equilibrium state are
predicted sufficiently by the ROM. Larger deviations are visible in cut Section 7 in vicinity to
the shock. These deviations can be explained with local non-linear effects in this region due
to the shock that are not captured properly by the ROM. However, the influences of structural
deformation on the discrete forces are covered with an acceptable accuracy.

In Table 6, the computational effort of both analyses are given. The given CPU time is the
sum of computational time of all used processors. The average time for each ROM prediction
is about tpred = 1.35 s. The remaining time is needed for other operations such as grid
inter-polation.

In order to demonstrate the ability of the surrogate model to capture changes of flow
conditions at a fixed Mach number, the static analysis is repeated at the conditions of case
2 (see Table 2). For this analysis, the surrogate model is neither modified nor re-identified.

In Fig. 14, the structural deflection and rotation of the aeroelastic equilibrium is shown.
The equilibrium state predicted by the ROM coincide fairly with the results of the CFD-CSM
analysis. The errors of the beams tip node given in Table 7 are comparable to the errors at case
1 conditions (see Table 5).

The discrete forces of the aeroelastic equilibrium are shown in Fig. 15 for cut sections 4
through 7. As it can be seen, the ROM predicted forces coincide with the CFD calculated
forces in an acceptable manner. Only in cut section 6 are deviations in the shock region
noticeable. In contrast to that in cut section 7, the differences in vicinity to the shock are
smaller than in case 1 (see Figs 13(d) and 15(d)).
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Table 7
Comparison of tip node deflection and rotation

in the aeroelastic equilibrium at case 2

CFD-CSM ROM-CSM Error

uz,T ip 0.020193 m 0.020435 m 1.201%
θy,T ip −0.011731 rad −0.011867 rad 1.166%

Figure 15. Aerodynamic forces in the aeroelastic equilibrium predicted by the ROM
and calculated by the CFD as well as CFD calculated forces of the jig shape

at case 2 conditions: (a) cut 4, (b) cut 5, (c) cut 6, (d) cut 7.

However, this demonstrates that in static analysis change of free stream temperature of
�T = 100 K is fairly captured by the ROM.

4.2 Transient analysis

In this investigation, the transient coupled system is observed. An iterative staggered coupling
is used with a second-order structural predictor in accordance to Unger et al(40). The initial
displacement, velocity and acceleration of the wing is set to zero. Therefore, the system
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Table 8
Maximal occurring error emax and average error eavg of the global aerodynamic

coefficients CL, CD and CM in the transient analysis at case 1 conditions

CL CD CM

emax 0.9529% 0.9232% 1.2351%
eavg 0.4780% 0.4724% 0.5397%

Figure 16. Results of transient analysis at case 1 conditions: (a) Tip node displacement uz,T ip,
(b) Tip node rotation θy,T ip.

is not in an equilibrium state in the beginning of the analysis and the wing starts a free
motion oscillation. The analysis is conducted for 500 time steps with a time step size of
�t = 0.0002 s.

First, the free oscillation of the wing is considered at case 1 flow conditions (see Table 2).
In Fig. 16, the tip node displacement uz,T ip and rotation θy,T ip is displayed over the time.
The structural motion of the ROM-CSM analysis coincide in an acceptable manner with the
corresponding CFD-CSM analysis.

In Fig. 17, the global aerodynamic coefficients are displayed over the time. The global
aerodynamic coefficients coincide fairly with the CFD results in the observed time span. In
Table 8, the maximal occurring error as well as the average error of the global aerodynamic
coefficients are given. The average errors are far smaller than 2%, and hence the prediction
accuracy of the surrogate model is within acceptable bounds.

In order to have a closer look into the discrete aerodynamic forces predicted by the surrogate
model, in Figs 18 and 19 the predicted forces in cut 6 and 7 (see Fig. 6) are compared with the
CFD calculated forces for time t1 = 0.02 s and t2 = 0.04 s. According to Fig. 16, the structural
deflection at time t1 is in the first upper apex, and t2 is in the first lower apex of uz,T ip. The
predicted forces fairly match the CFD calculated forces. Small deviations are noticeable in
vicinity to the shock. At time t2 in cut 7, differences also occur in the entire super-sonic
region on the suction side. This can be explained with the representation of the lower apex in
the training set.

After considering the free oscillation of the wing at case 1 conditions, the investigation is
repeated with case 2 conditions. In Fig. 20, the tip node displacement as well as rotation is

https://doi.org/10.1017/aer.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.12


Lindhorst ET AL 621Reduced-order modelling of non-linear…

Figure 17. Results of transient analysis at case 1 conditions: (a) Lift coefficient,
(b) Drag coefficient, (c) Pitching moment coefficient.

Figure 18. Comparison of forces in cut section 6: (a) t1 = 0.02; (b) t2 = 0.04.
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Table 9
Maximal occurring error emax and average error eavg of the global aerodynamic

coefficients CL, CD and CM in the transient analysis at case 2 conditions

CL CD CM

emax 1.6791% 1.6718% 1.7139%
eavg 0.7326% 0.6896% 0.7002%

Figure 19. Comparison of forces in cut section 7: (a) t1; (b) t2.

Figure 20. Results of transient analysis at case 2 conditions: (a) Tip node
displacement uz,T ip, (b) Tip node rotation θy,T ip.

shown. Again, the structural motion of the ROM-CSM analysis fairly coincide with the results
of the CFD-CSM analysis.

In Fig. 21, the global aerodynamic coefficients are displayed over the time. The prediction
accuracy is comparable to the analysis with case 1 conditions. The maximal occurring error
as well as the mean error of the aerodynamic coefficients are given in Table 9. Compared
to the mean errors at case 1 conditions (see Table 8), the mean errors at case 2 conditions
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Table 10
Computational effort of the transient aeroelastic analysis at case 1 conditions

Used processors CPU Time (h:min:sec)

ROM-CSM (case 1) 1 × Intel i7 2.6 GHz 00005:15:58
ROM-CSM (case 2) 1 × Intel i7 2.6 GHz 00005:33:50

Figure 21. Results of transient analysis at case 2 conditions: (a) Lift coefficient,
(b) Drag coefficient, (c) Pitching moment coefficient.

increase slightly. However, the errors are still smaller than 2% and hence within acceptable
bounds. This investigation shows, that the surrogate model is able to capture the changes of
flow conditions fairly at a fixed Mach and Reynolds number.

In Table 10, the computational effort of the ROM-CSM and CFD-CSM analyses in both
cases are given. Please note that the given CPU time is the sum of computational effort of all
used processors. Again, the average time for each ROM prediction is about tpred = 1.35 s. As
it can be seen, a significant speed-up of the coupled analysis can be achieved. According to
Table 10, the surrogate model reduces the analysis time significantly.
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5.0 CONCLUSIONS
In this paper, the transient, non-linear surrogate model approach presented in Lindhorst
et al(17) is applied to the HIRENASD wing fuselage configuration that represents a realistic
transport aircraft wing. The prediction accuracy of the surrogate model is compared with CFD
results in static as well as free motion investigations.

It is shown that the prediction accuracy of the approach is sufficient in all conducted
analyses, although the surrogate models are identified from transient data. Due to the use
of a RANS solver with the Spalart-Allmaras turbulence model, the surrogate model takes
the influence of viscous effects on the aerodynamic forces into account. Moreover, it is
demonstrated that limited variations of flow conditions at a fixed Mach number are covered
by the surrogate model due to parameter normalisation. Consequently, once the model is
identified, it can be applied in an aerostructural coupling scheme and used in various static
as well as transient aeroelastic investigations with a fraction of the time compared to the
corresponding CFD analyses.

On-going work is the introduction of the Mach number, angle-of-attack as well as Reynolds
number as an additional degree of freedom. Future challenges are the use of the surrogate
model approach in aeroelastic gust or manoeuvre investigations.
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