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We consider the motion of a fluid-immersed negatively buoyant particle in the
vicinity of a thin compressible elastic wall, a situation that arises in a variety of
technological and natural settings. We use scaling arguments to establish different
regimes of sliding, and complement these estimates using thin-film lubrication
dynamics to determine an asymptotic theory for the sedimentation, sliding and
spinning motions of a cylinder. The resulting theory takes the form of three coupled
nonlinear singular-differential equations. Numerical integration of the resulting
equations confirms our scaling relations and further yields a range of unexpected
behaviours. Despite the low-Reynolds-number feature of the flow, we demonstrate
that the particle can spontaneously oscillate when sliding, can generate lift via
a Magnus-like effect, can undergo a spin-induced reversal effect and also shows
an unusual sedimentation singularity. Our description also allows us to address a
sedimentation–sliding transition that can lead to the particle coasting over very long
distances, similar to certain geophysical phenomena. Finally, we show that a small
modification of our theory allows us to generalize the results to account for additional
effects such as wall poroelasticity.

Key words: low-Reynolds-number flows, lubrication theory, particle/fluid flows

1. Introduction
The sedimentation of a heavy solid in a fluid has been studied thoroughly, as the

dynamics of settling and sliding is relevant to a broad class of phenomena across
many orders of magnitude, ranging from landslides (Campbell 1989), earthquakes (Ma
et al. 2003) and avalanches (Glenne 1987) to the lubrication of cartilaginous joints
(Grodzinsky, Lipshitz & Glimcher 1978; Mow, Holmes & Lai 1984; Mow & Guo
2002) and the motion of cells in a microfluidic channel (Byun et al. 2013) or in a
blood vessel (Goldsmith 1971). Following the now classical studies of the dynamics of
a particle near a rigid wall (Brenner 1962; Goldman, Cox & Brenner 1967a,b; Jeffrey
& Onishi 1981), additional effects such as the influence of the boundary conditions
(Hocking 1973), and their role on drag (Trahan & Hussey 1985), viscometry (Wehbeh,
Ui & Hussey 1993) and bouncing (Gondret et al. 1999) have been accounted for.

† Email address for correspondence: lm@seas.harvard.edu
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Recently, the motion of wedge-like objects down an incline (Cawthorn & Balmforth
2010), as well as the effects of elasticity in such contexts as granular impact (Davis,
Serayssol & Hinch 1986), polymer-bearing contacts (Sekimoto & Leibler 1993),
solvent permeation in gels (Sekimoto & Rabin 1994), soft lubrication (Skotheim
& Mahadevan 2004a, 2005), transient effects in displacement-controlled systems
(Weekley, Waters & Jensen 2006), settling on soft and poroelastic beds (Balmforth,
Cawthorn & Craster 2010; Gopinath & Mahadevan 2011), adhesive walls (Mani,
Gopinath & Mahadevan 2012) and self-similar contact (Snoeijer, Eggers & Venner
2013) have also been addressed. In all of these phenomena, the minimal model of
motion relates to that of a solid object immersed in a viscous fluid in the vicinity of
a soft elastic or poroelastic wall.

Perhaps surprisingly then, the general theory for the free motion of a rigid solid
close to a soft incline – which has through its degrees of freedom the ability to
simultaneously sediment, slide and spin – does not seem to have been considered.
These modes naturally arise in several applications such as particle capture and joint
lubrication, and have analogues in certain geophysical phenomena. Here, we study
this problem in a minimal setting and describe the essential scalings and qualitative
features, develop a soft lubrication theory that complements these scaling ideas and
solve the resulting equations numerically to characterize the broad range of possible
behaviours.

2. Mathematical model and scaling analysis
We consider the 2D system depicted in figure 1, which consists of the free

gravitational fall of a long cylinder of radius r, density ρ, mass (per unit length)
m = πr2ρ and buoyant mass m∗ = πr2ρ∗ = πr2(ρ − ρfluid) > 0, where ρfluid is the
density of the neighbouring fluid of viscosity η. We assume that the motion of the
cylinder occurs in the vicinity of a wall that is inclined at an angle α ∈ [0,π/2] with
respect to the horizontal direction and coated with a soft elastic layer of thickness
hs, and Lamé coefficients µ and λ. We denote by δs(x, t) the deformation of the
fluid–wall interface. We note that a positive indentation of the compressible elastic
wall corresponds to a negative value of δs. The system is assumed to be invariant
along y, i.e. we limit ourselves to planar motions wherein the cylinder has three
degrees of freedom: the gap δ(t) between the cylinder and the undeformed wall along
z, the tangential coordinate xG(t) of the cylinder axis along x and the angle θ(t)
through which the cylinder has rotated.

We further assume that the cylinder starts its motion at time t = 0, with δ(0) =
δ0 = εr� r, and possibly non-zero initial translational and angular velocity. Due to
this scale separation, we are in the lubrication regime (Batchelor 1967), where the
fluid viscous shear stresses are small relative to the flow-induced pressure p(x, t). We
note that there is an additional hydrostatic contribution to the pressure through the
buoyancy of the cylinder, which we will consider later. Thus, p(x, t) contains only
the flow contribution, which itself vanishes far from the contact zone as x→ ±∞.
The tangential extent l(t)� δ(t) of the flow-induced pressure disturbance scales as
l(t) ∼√rδ(t)� r, so that as for Hertzian contact (Johnson 1985), we can assume a
parabolic shape of the deformed interface, and the total gap profile may be written as

h(x, t)= δ(t)− δs(x, t)+ [x− xG(t)]2

2r
. (2.1)

The thin soft compressible wall may also be treated via a lubrication-like theory
for elastic deformations if hs� l(t), so that the algebraic displacement δs(x, t) of the
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FIGURE 1. (Colour online) Schematic of the system. A negatively buoyant cylinder (green)
falls down under the influence of gravity g, inside a viscous fluid (blue), in the vicinity
of a thin soft wall (brown). The ensemble lies atop a tilted infinitely rigid support (grey).

fluid–wall interface is simply obtained from the linear elastic response to the local
flow-induced pressure disturbance (Skotheim & Mahadevan 2004a, 2005):

δs(x, t)=−hsp(x, t)
2µ+ λ . (2.2)

We note that when δ is too small, the condition hs�
√

rδ is not satisfied. Nevertheless,
if for instance hs ∼ δ0, this is a valid assumption since δ ∼ δ0� r.

To characterize the motion of the cylinder near the inclined thin soft wall, we
need to calculate the fluid drag force created by the flow-induced pressure field
in the contact zone, which is driven by the tangential fluid velocity u(x, z, t)
along x. We non-dimensionalize the problem using the following choices: z = Zrε,
h = Hrε, δ = ∆rε, x = Xr

√
2ε, xG = XGr

√
2ε, θ = Θ√2ε, t = Tr

√
2ε/c, u = Uc and

p=Pηc
√

2/(rε3/2), where we have introduced a free fall velocity scale c=√2grρ∗/ρ
and the dimensionless parameter

ξ = 3
√

2 η
r3/2ε
√
ρρ∗g

. (2.3)

This parameter measures the ratio of the free fall time
√
ρrε/(ρ∗g) and the typical

lubrication damping time mε3/2/η over which the inertia of the cylinder vanishes. In
fact, for a cylinder falling towards a rigid wall, the lubrication drag force (per unit
length) exerted in the contact zone reads ∼−ηδ̇/ε3/2 (Jeffrey & Onishi 1981). The
typical decay time of the cylinder inertia can thus be estimated by balancing this
damping force and the inertia (per unit length) mδ̈, which leads to the above time
scale.

With these definitions, the dimensionless gap profile given by (2.1) becomes

H(X, T)=∆(T)+ [X − XG(T)]2 + κP(X, T), (2.4)

where the dimensionless compliance is

κ = 2hsη
√

gρ∗

r3/2ε5/2(2µ+ λ)√ρ . (2.5)
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To remain in the linearly elastic regime for the wall deformation, we assume that
κ� 1.

Before delving into a detailed theory, we first derive some scaling relations for
the sliding dynamics of the cylinder. For steady motions, the analysis of Sekimoto
& Leibler (1993) and Skotheim & Mahadevan (2004a, 2005) shows that one non-
trivial effect of the soft substrate is to induce a positive elastohydrodynamic pressure
∼η2ẋ2

Grhs/(µδ
4) in the contact zone, when the particle is translated uniformly along

the wall at speed ẋG while being at a constant distance δ. In the present 2D-like
case of a free cylinder, when that pressure is integrated once along the contact length
l ∼ √rδ, this leads to a net positive elastohydrodynamic lift force (per unit length)
∼η2ẋ2

Gr3/2hs/(µδ
7/2) that tends to repel the sliding particle away from the soft wall.

Since the force of gravity (per unit length) ∼ρ∗gr2 cosα tends to bring it back towards
the wall, balancing the two forces allows one to predict a sliding height as a function
of the speed ẋG, given by

δeq ∼
(

hsη
2ẋ2

G

µ
√

rρ∗g cos α

)2/7

. (2.6)

When the sliding velocity ẋG does not vary much – as is often the case on short
time scales when the damping in the normal direction z is much stronger than that in
the tangential direction x – this represents a stable equilibrium gap thickness. A small
perturbation about this equilibrium position suggests that the cylinder will oscillate
with frequency ∼√ρ∗g cos α/(ρδeq), even though the lubrication viscous damping will
cause these inertial oscillations to decay over a typical time ∼(δeq/r)3/2m/η, as already
introduced above.

Finally, after a transient evolution along the tilted wall, we expect the cylinder to
reach a long-term steady-state sliding regime characterized by a terminal velocity u∞
and a constant gap thickness δ∞. Leaving aside the conditions of existence of this
scenario for now, we can already describe the properties of this regime using simple
arguments. Along z, the gravity-versus-lift force balance leads to (2.6) above, with
ẋG = u∞ and δeq = δ∞. The second equation we need comes from the power balance
in the direction of sliding motion x. The power (per unit length) ∼u∞ρ∗gr2 sin α
generated by the gravitational driving is entirely dissipated in the contact zone
through the viscous damping power ∼η(u∞/δ∞)2lδ∞ ∼ ηu2

∞
√

r/δ∞. This leads to the
expressions for the steady gap and terminal velocity, given by

δ∞ ∼ ρ
∗ 2/5g2/5rh2/5

s sin4/5 α

µ2/5 cos2/5 α
, u∞ ∼ ρ

∗ 6/5g6/5r2h1/5
s sin7/5 α

ηµ1/5 cos1/5 α
. (2.7a,b)

With these scaling relationships in place, we now aim at constructing a detailed soft
lubrication theory that goes beyond these arguments and, as we will see, introduces
new phenomena as well.

3. Soft lubrication theory

In the thin-gap limit, the governing Stokes equations for incompressible viscous flow
are given in scaled form by (Reynolds 1886; Batchelor 1967; Oron, Davis & Bankoff
1997)

UZZ = PX, (3.1)
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Elastohydrodynamics of a free cylinder near a soft wall 185

together with no-slip boundary conditions, U(X, Z =−κP, T)= 0 and U(X, Z =H −
κP, T)= ẊG+ Θ̇ . Solving (3.1) with the above boundary conditions, and invoking the
condition of volume conservation,

∂TH + ∂X

∫ H−κP

−κP
dZ U = 0, (3.2)

yields the following equation for the evolution of the gap:

12∆̇− 24 (X − XG) ẊG + 12κPT =
[
H3PX − 6

(
ẊG + Θ̇

)
H
]

X . (3.3)

The solution of this equation allows us to evaluate the total pressure-induced drag
exerted on the cylinder, through

Dp ≈
∫ ∞
−∞

dX P ez −
√

2ε
∫ ∞
−∞

dX (X − XG) P ex, (3.4)

where we have used the fact that the normal vector to the cylinder surface is n ≈
ez − ((x− xG)/r)ex. Similarly, the shear drag force exerted on the cylinder along the
ex axis is given by

Dσ ,‖ =−
√
ε

2

∫ ∞
−∞

dX UZ|Z=H−κP. (3.5)

When the dimensionless compliance is assumed to satisfy κ � 1, we may employ
perturbation theory in this parameter (Skotheim & Mahadevan 2004a, 2005), using the
following expansion for the pressure: P= P(0) + κP(1), where P(0)|X→±∞ = P(1)|X→±∞
= 0. As detailed in Appendix A and B, integrating (3.3) to first order in κ , and
using (3.4) and (3.5), leads to the following expressions for the perpendicular drag
along ez and the two parallel components along ex:

Dp,⊥ =−3π

2
∆̇

∆3/2
+ κ

[
45π∆̈

16∆7/2
− 63π∆̇2

8∆9/2
+ 3π

(
Θ̇ − ẊG

)2

8∆7/2

]
,

Dp,‖ =π
√

2ε
Θ̇ − ẊG√

∆
+ κ
√
ε

2

[
23π∆̇

(
Θ̇ − ẊG

)
8∆7/2

+ π
(
ẌG − Θ̈

)
2∆5/2

]
,

Dσ ,‖ =−π
√

2ε
Θ̇√
∆
+ κ
√
ε

2

[
π
(
Θ̈ − ẌG

)
4∆5/2

+ π∆̇ẊG

2∆7/2
− 19π∆̇Θ̇

8∆7/2

]
.


(3.6)

We stress that we have neglected the forces acting outside the contact zone,
consistent with the lubrication approximation. To justify this choice, let us first
consider the sedimentation motion towards the rigid wall. The drag force (per unit
length) exerted on a cylinder in a bulk fluid scales as dbulk ∼ ηδ̇ (Brenner 1962).
According to (3.6), the pressure-induced lubrication drag force (per unit length)
reads, in real variables, dp,⊥ = 2cηDp,⊥/ε ∼ ηδ̇(r/δ)3/2 (Jeffrey & Onishi 1981).
Since δ � r in the lubrication approximation, one can safely neglect the bulk drag
relative to the lubrication one acting in the contact zone. Similarly, according to (3.6),
for the tangential motion along a rigid wall, the pressure-induced drag scales as
dp,‖ = 2cηDp,‖/ε ∼ ηẋG

√
r/δ (Jeffrey & Onishi 1981), which – despite being smaller

than dp,⊥ – is once again larger than dbulk in the lubrication approximation. One can
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186 T. Salez and L. Mahadevan

thus safely neglect the bulk drag relative to the lubrication drag for the tangential
degree of freedom as well. Since the shear-induced drag is of the same order and
symmetry as the tangential pressure-induced drag, the previous conclusion extends
immediately to the rotational degree of freedom. We note that the argument above
assumes a rigid wall, since the fluid lubrication order is not modified by the softness
of the wall. As an illustration of this statement, all the softness-induced terms – the
ones proportional to the independent compliance parameter κ in (3.6) – have the
same order in ε as the corresponding terms for the rigid wall.

We also note that it may not be satisfactory at first sight to obtain an acceleration-
dependent drag, even as a first-order correction, as it means that at time T = 0, when
there is no flow, there is a pressure field that deforms the wall. To understand this,
we note that the origin of this behaviour is to be found in the PT term in (3.3), since
P∝ ∆̇ due to the Stokes equation. In our analysis, we have neglected the linearized
inertia of the fluid, ρfluid∂tu, but at very short times this term becomes dominant and
resolves this apparent paradox.

Knowing the dominant elastohydrodynamic drag forces acting on the cylinder, we
now use the balance of linear and angular momentum (see Appendix A and B)
to write down the coupled nonlinear differential equations for the translational and
rotational motions of the cylinder, as it sediments, slides and rolls down the incline:

∆̈=−ξ ∆̇

∆3/2
− κξ

4

[
21

∆̇2

∆9/2
−
(
Θ̇ − ẊG

)2

∆7/2
− 15

2
∆̈

∆7/2

]
− cos α,

ẌG =−2εξ
3

ẊG√
∆
− κεξ

6

[
19
4
∆̇ẊG

∆7/2
− ∆̇Θ̇
∆7/2
+ 1

2
Θ̈ − ẌG

∆5/2

]
+
√
ε

2
sin α,

Θ̈ =−4εξ
3

Θ̇√
∆
− κεξ

3

[
19
4
∆̇Θ̇

∆7/2
− ∆̇ẊG

∆7/2
+ 1

2
ẌG − Θ̈
∆5/2

]
.


(3.7)

We note that the lubrication pressure-induced torque vanishes since the corresponding
forces act along the radii of the cylinder. Interestingly, this would not be the case for
the opposite case of a soft cylinder – which will deform asymmetrically – near a rigid
wall, thus breaking a once well-admitted symmetry between the two dual systems in
elasticity (Johnson 1985).

We see that particle inertia plays a central role in (3.7), even though we have
neglected fluid inertia. To justify this assumption, let us consider for instance an
x translation of the cylinder along the rigid wall, at typical speed c and distance
δ0 from the wall. In the Navier–Stokes equation, the local fluid inertia term reads
ρfluid∂tu ∼ ρfluidc/τ , where τ ∼ l/c is the typical time scale of the flow at speed c,
and l ∼ √rδ0 is the length of the contact zone along x. Similarly, the convective
inertia term reads ρfluidu∂xu ∼ ρfluidc2/l ∼ ρfluidc/τ . On the other hand, the viscous
term in the Navier–Stokes equation reads η∂2

zzu ∼ ηc/δ2
0 . The ratio of inertia over

viscous terms thus reads ∼Re ε ∼ Re δ0/r, where the Reynolds number is given by
Re = ρfluidlc/η. As for the particle inertia, following Newton’s law, we note that it
scales as ∼ρr2l/τ 2. According to our (3.6), for the tangential motion along the rigid
wall, the pressure-induced force (per unit length) scales as dp,‖ = 2cηDp,‖/ε ∼ ηc/

√
ε

(Jeffrey & Onishi 1981), in real variables. The ratio of particle inertia and fluid
viscosity thus reads ∼(ρ/ρfluid)Re/

√
ε, which is much larger than the ratio of fluid

inertia and fluid viscosity – due to the lubrication parameter ε� 1 – even in the case
when the densities are matched. Thus, we see that even if fluid inertia plays a role
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FIGURE 2. (Colour online) Oscillations: when a cylinder is released close to an inclined
wall with a non-zero tangential velocity, it spontaneously oscillates about the stable sliding
height; however, with time, these oscillations eventually decay. These results follow from
the numerical solution of (3.7), for α=π/4, ξ = 0.1, κ = 0.1, ε = 0.1, ∆(0)= 1, XG(0)=
∆̇(0)= Θ̇(0)= 0 and ẊG(0)= 10.

on short time scales, there is a range of parameters over which it is negligible while
particle inertia is still important. This conclusion remains valid even in the presence
of the additional compliance parameter κ describing the wall softness.

4. Behaviour of solutions
The elastohydrodynamic drag terms on the right-hand sides of (3.7) trigger an

interesting zoology of solutions, which we now turn to. The solutions are governed
by four dimensionless control parameters corresponding to a ratio ξ of viscous
damping over gravitational driving, an incline angle α, a scaled wall compliance
κ� 1 and a scaled lubrication gap ε� 1. In addition, there are three relevant initial
conditions, ∆̇(0), ẊG(0) and Θ̇(0), since ∆(0) = 1 by virtue of our choice of the
dimensionless variable ∆ = δ/δ0, while all the initial tangential positions XG(0) and
initial angles Θ(0) are equivalent. Below, we give a brief flavour of some of the
unexpected behaviours of the system with the aim of sketching the diversity of
solutions, potentially valid for a variety of similar systems and experiments, rather
than building a complete phase diagram for this 2D case.

4.1. Zoology
In figure 2, we show that when the cylinder is released along a steep incline, it slides
along it uniformly even as it spontaneously oscillates, although these oscillations are
damped. Indeed, the envelope decays over a dimensionless time that is consistent with
our earlier scaling estimate: ∆3/2

eq /ξ ∼ 6.4 (in dimensionless form) for the parameters
of figure 2. Similarly, the equilibrium height can be calculated by balancing gravity
cos α and the elastohydrodynamic lift κξ Ẋ2

G/(4∆
7/2) in the first line of (3.7), to yield

∆eq = 1
24/7

(
κξ Ẋ2

G

cos α

)2/7

, (4.1)

consistent with the dimensional scaling form given in (2.6). For the parameters in
figure 2, one obtains ∆eq ≈ 0.74, which is close to the observed average value of
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FIGURE 3. (Colour online) Magnus-like effect: when the cylinder is released close to the
horizontal elastic wall with a non-zero angular velocity, it lifts off. These results follow
from the numerical solution of (3.7), for α= 0, ξ = 10, κ= 0.1, ε= 0.1, ∆(0)= 1, XG(0)=
∆̇(0)= 0 and ẊG(0)= Θ̇(0)= 10. If we replace the last condition by Θ̇(0)= 0, then ∆
diminishes.

∼0.79 seen in figure 2(a); the slight difference is due to the weak influence of other
terms in (3.7).

In figure 3, we show another peculiar effect associated with the case when the
cylinder is started with an initial spin. As seen, it can lift off the soft wall via a
Magnus-like effect (Dupeux et al. 2011) even as it slides along a horizontal wall.
This effect is due to the fluid shear induced by rotation which leads to an increased
hydrodynamic pressure, which deforms the wall and thence leads to a normal force.

Next, we turn to examine the equations when the effective mass of the particle
vanishes. Indeed, since we kept both the cylinder inertia and the acceleration drag,
as explained above, those two second-derivative terms may cancel each other. This
singularity leads to a vanishing effective mass and thus a diverging acceleration ∆̈,
and occurs at the three critical heights:

∆c1 =
(

15κξ
8

)2/7

, (4.2)

∆c2 =
(
εκξ

12

)2/5

, (4.3)

∆c3 =
(
εκξ

6

)2/5

. (4.4)

In figure 4, we show the evolution of the height when a relatively heavy cylinder is
released above a horizontal soft wall, by following ∆ which is related to but is not
exactly a cylinder–wall distance, since there is an additional κP(XG,T) term according
to (2.4). However, this additional term can be computed from (A 4) and the solutions
of (3.7), if needed. We see that the particle sediments at an enhanced rate relative to
the case when the soft wall is replaced by a rigid wall, corresponding to κ = 0. This
is due to the fact that when the cylinder reaches the largest critical height ∆c1 < 1
of (4.2), the vanishing effective inertial mass leads to an infinite acceleration. This
unphysical effect is regularized when one takes into account fluid inertia, leading to a
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FIGURE 4. (Colour online) Enhanced sedimentation: when the cylinder is allowed to fall
freely vertically towards the horizontal elastic wall, it sediments faster than if the wall is
rigid. These results follow from the numerical solutions of (3.7), for α = 0, ξ = 1, ε =
0.1, ∆(0)= 1 and XG(0)= ∆̇(0)= ẊG(0)= Θ̇(0)= 0. The dashed line corresponds to the
case of a rigid wall, with κ = 0, showing that ∆ decreases gradually, while the solid line
corresponds to sedimentation towards a soft wall, with κ=0.1, where the cylinder abruptly
crashes downwards after sedimenting at a rate faster than towards a rigid wall. Panel (b)
shows that the horizontal position of the cylinder does not vary at all during sedimentation
(the simulation is extended to T = 2 corresponding to the case of sedimentation towards
a rigid wall).

smoothed out temporal profile of sedimentation. Nonetheless, as explained above, the
temporal cutoff associated with fluid inertia is assumed to correspond to time scales
smaller than the ones associated with the motion of the cylinder, which means that,
even if finite, ∆̈ may be large and the behaviour still very sharp. Finally, we note that
when ∆c1 > 1 and ∆̇ < 0, the singularity may instead occur at ∆c3 >∆c2.

We now use our results to characterize the sedimentation–sliding transition for
a cylinder falling down an incline. Equation (4.1) suggests that the cylinder can
stably slide at a dimensionless height ∆eq. On the other hand, if for instance ∆c1 < 1
in (4.2), ∆c1 fixes the relevant singular sedimentation height that may be encountered
during the fall of the cylinder, as illustrated in figure 4. The balance of these two
dimensionless heights yields the threshold tangential velocity Uc above which sliding
becomes possible:

Uc =
√

15
2

√
cos α. (4.5)

In fact, if ∆eq < ∆c1 < 1, and thus ẊG < Uc, the singular sedimentation height ∆c1
is reached before the sliding height ∆eq, and one typically gets sedimentation. If,
in contrast, ∆eq > ∆c1, and thus ẊG > Uc, the sliding height ∆eq is reached before
the singular sedimentation height ∆c1, and one typically gets sliding. This transition
is illustrated in figure 5, for two given sets of dimensionless parameters and initial
conditions. For instance, with a metre-sized body, this reasonably corresponds to an
∼1 m s−1 threshold velocity. We note that, although the presence of an elastic wall
is crucial in the underlying mechanism, the elastohydrodynamic details do not appear
in this purely gravitational expression.

We conclude our tour of the zoology of solutions by noting that when a relatively
heavy cylinder is released with spin and tangential velocity, it can reverse its direction
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FIGURE 5. (Colour online) Sedimentation–sliding transition, observed when the cylinder
is released close to the inclined elastic wall with the threshold tangential velocity given
by (4.5). The results follow from the numerical solution of (3.7), for α = π/4, ξ = 1,
κ = 0.1, ε = 0.1, ∆(0) = 1, XG(0) = ∆̇(0) = Θ̇(0) = 0, ẊG(0) = 2.1 (red dots) and
ẊG(0) = 2.5 (green lines). For these parameters, Uc ≈ 2.30 (blue dash-dotted line), as
obtained from (4.5).
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FIGURE 6. (Colour online) Spin-induced reversal: when the cylinder is released close to
the horizontal elastic wall with non-zero tangential and rotational velocities, it can return
backwards. These results follow from the numerical solution of (3.7), for α = 0, ξ = 10,
κ = 0.1, ε = 0.1, ∆(0)= 1, XG(0)= ∆̇(0)= 0, ẊG(0)= 1 and Θ̇(0)= 10.

of motion and return backwards along the soft wall, as shown in figure 6. This effect
can be understood by noting that the second equation in (3.7) characterizes the
dynamics of sliding. Thus, when ∆̇< 0, a large enough positive spin velocity suffices
to bring about a reversal in the tangential acceleration.

4.2. Long-term steady sliding
Once initiated and stabilized, the sliding motion eventually reaches a long-term steady
state, with a terminal velocity that reads

U∞ = 37/5

25/2

κ1/5 sin7/5 α

ξ 6/5ε7/10 cos1/5 α
, (4.6)
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FIGURE 7. (Colour online) Convergence to the long-term sliding steady state, observed
when the cylinder is released close to the inclined elastic wall with an initial tangential
velocity greater than the threshold velocity given by (4.5). The results follow from the
numerical solution of (3.7), for α = π/4, ξ = 1, κ = 0.1, ε = 0.1, ∆(0) = 1, XG(0) =
∆̇(0)= Θ̇(0)= 0 and ẊG(0)= 2.5 (green lines). For those parameters, the terminal height
and velocity of the sliding steady state are given by ∆∞ ≈ 0.524 and U∞ ≈ 1.72 (orange
dashed lines), as obtained from (4.6) and (4.7) respectively.

which is obtained by balancing viscous damping and gravity in the tangential
component of (3.7), and by replacing ẊG and ∆eq with U∞ and ∆∞ in (4.1)
respectively. This also leads to a prediction of the associated terminal sliding height:

∆∞ = 34/5

4
κ2/5 sin4/5 α

ξ 2/5ε2/5 cos2/5 α
, (4.7)

consistent with the scaling relations in (2.7). The convergence to this long-term steady
state for the stable sliding case is illustrated by solving (3.7), and the results are
depicted in figure 7, showing that the cylinder indeed reaches the terminal velocity
and height obtained above.

Naturally, these results are valid as long as ∆ remains sufficiently smaller than
∼ε−1, so that the lubrication approximation holds. This criterion corresponds to the

terminal velocity U∞ being smaller than ∼
√

cos α/
(
κξε7/2

)
.

5. Role of poroelasticity
We conclude with a brief discussion of a generalization of our results to the case

when the wall is fluid permeable, a problem of some relevance to many biological
and geological situations (Biot 1941; Burridge & Keller 1981; Gopinath & Mahadevan
2011), and we follow and generalize the results of Skotheim & Mahadevan (2004b,
2005) and Gopinath & Mahadevan (2011) which we summarize below.

We introduce the volume fraction φ of fluid in the porous wall, the bulk modulus
β−1�µ of the solid porous matrix (with µ now being the composite shear modulus
of the poroelastic medium), and the isotropic Darcy permeability k, and we note that
the pore size ∼√k is small in comparison with the wall thickness hs. We assume
that there is no flow inside the poroelastic wall in comparison with the flow in the
lubrication gap, which is valid as long as khs � δ(t)3. For example, if hs ∼ δ0, this
follows due to scale separation.
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The fluid-permeable wall introduces a new time scale associated with flow-induced
stress relaxation given by τp ∼ ηh2

s/(kµ), which has to be compared with the
lubrication time scale τ ∼ r

√
ε/c (Skotheim & Mahadevan 2005). If τ � τp, the

fluid in the wall is in equilibrium with the outside and a purely elastic theory
suffices, so that (2.2) is modified to read

δs(x, t)=−hs(1− φ)
2µ+ λ p(x, t), (5.1)

which simply corresponds to a small effective stiffening due to the presence of a
volume fraction φ of fluid in the poroelastic wall. In contrast, if τ� τp, the pore fluid
has no time to adapt and we find that the wall is effectively stiffer, with (2µ+ λ)→
φ/β, so that

δs(x, t)=−βhs

φ
p(x, t). (5.2)

In both cases there is a purely local elastic response to the driving pressure field.
Therefore, all of our previous results directly apply to these limiting poroelastic cases
as well, provided that we use the transformations κ→ (1− φ)κ if τ � τp and κ→
β(2µ+ λ)κ/φ if τ � τp.

6. Conclusions
Using soft lubrication theory and scaling arguments, we have shown that when a

cylinder moves freely close to an elastic or poroelastic wall, the flow-induced pressure
field exerts a drag force that resists this motion, but it also deforms the wall, which
may in turn increase the gap and reduce this drag, as well as create a supplementary
lift. This leads to a complex and rich zoology of inertial motions that link
sedimentation, sliding and spinning, despite the inertialess motion of the fluid. Indeed,
it is the wall elasticity combined with the cylinder inertia that is at the origin of all of
these effects, even at low Reynolds number. The striking solutions observed include
non-exhaustively oscillations, Magnus-like effect, spin-induced reversal, enhanced
sedimentation and long-term steady sliding. While the fully three-dimensional motion
of a sphere, or other solid, will have three additional degrees of freedom, we expect
many of the qualitative scaling features that we have uncovered to persist.

Appendix A. Zeroth order: the rigid wall
In this first Appendix, we detail the derivation of (3.7) at zeroth order in the

dimensionless compliance κ of the substrate. Equation (3.1) is the Stokes equation
for the flow, and the no-slip boundary conditions read U(X, Z = 0, T) = 0 and
U(X, Z =H, T)= ẊG + Θ̇ . In addition, the profile of (2.4) becomes

H(X, T)=∆(T)+ [X − XG(T)]2 . (A 1)

The corresponding Poiseuille velocity is thus given by

U = PX

2
Z
[
Z −∆− (X − XG)

2]+ (ẊG + Θ̇) Z
∆+ (X − XG)

2 . (A 2)

Then, integrating once the volume conservation of (3.2), with respect to X, leads to

PX = C+ 12X∆̇− 12(X − XG)
2ẊG + 6(ẊG + Θ̇)

[
∆+ (X − XG)

2][
∆+ (X − XG)

2]3 , (A 3)
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where C(T) = −(8∆Θ̇ + 4∆ẊG + 12∆̇XG) is an integration constant, which was
identified thanks to the assumed vanishing lubrication pressure P at X=±∞. In this
case, a second spatial integration leads to

P=−3∆̇+ 2(Θ̇ − ẊG)(X − XG)[
∆+ (X − XG)

2]2 . (A 4)

The pressure is not an even function in X due to the transverse motion, and
therefore there is a tangential drag associated with it, in addition to the normal
one. We use (3.4) to evaluate both projections. By parity, the total dimensionless
pressure-induced drag force along Z is thus

Dp,⊥ =
∫ ∞
−∞

dX P=−3π

2
∆̇

∆3/2
. (A 5)

Similarly, the total dimensionless pressure-induced drag force along X reads

Dp,‖ =−
√

2ε
∫ ∞
−∞

dX (X − XG) P=π
√

2ε
Θ̇ − ẊG√

∆
, (A 6)

which is smaller in magnitude – by a factor ∼√ε � 1 – than the orthogonal one
along Z.

It is important to highlight that we had to go to the next order in
√
ε to obtain

the pressure-induced drag force Dp,‖ in the tangential direction, which is now of
comparable magnitude to the tangential drag Dσ ,‖ obtained from the dominant viscous
stress component: σzx ≈ η∂zu. Therefore, one has to calculate the latter through (3.5)
with κ = 0:

Dσ ,‖ =−
√
ε

2

∫ ∞
−∞

dX UZ|Z=H. (A 7)

Using (A 2) and (A 4), it becomes

Dσ ,‖ =−π
√

2ε
Θ̇√
∆
, (A 8)

which precisely compensates the part of Dp,‖ that depends on Θ̇ .
Knowing the dominant drag in each direction, one can now study the motion of the

cylinder in the presence of gravity and buoyancy. The Z-projection of the balance of
linear momentum reads

∆̈+ ξ ∆̇

∆3/2
+ cos α = 0. (A 9)

Thus, the sedimentation motion is decoupled from the others. In contrast, the sliding
motion is coupled to the sedimentation motion through the X-projection of the balance
of linear momentum, as given by

ẌG + 2εξ
3

ẊG√
∆
−
√
ε

2
sin α = 0. (A 10)

Finally, the spinning motion can be obtained by the balance of angular momentum
which reads

mr2

2
θ̈ = r dσ ,‖, (A 11)
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where the pressure-induced torque is zero since the pressure-induced force acts along
a radius of the cylinder. This can be non-dimensionalized as

Θ̈ + 4εξ
3

Θ̇√
∆
= 0, (A 12)

which results in the trivial non-spinning solution, if Θ̇(0)= 0, due to the absence of
driving force. This statement is modified for a soft wall, as studied below.

Appendix B. First-order correction: the soft compressible wall
Here, we detail the derivation of the central system of equations (3.7) at first

order in the dimensionless compliance κ of the substrate. Solving (3.1) with the new
boundary conditions, U(X, Z =−κP, T)= 0 and U(X, Z =H − κP, T)= ẊG + Θ̇ , and
the gap profile of (2.4), and conserving the volume of the fluid through (3.2), leads
to (3.3). Since P(X, T) depends on X, a direct spatial integration of this equation
would lead to an integro-differential equation. We restrict ourselves to perturbation
theory in κ� 1, consistent with the assumption of linear elasticity:

P = P(0) + κP(1), (B 1)
Dp,⊥ = D(0)

p,⊥ + κD(1)
p,⊥, (B 2)

Dp,‖ = D(0)
p,‖ + κD(1)

p,‖, (B 3)

Dσ ,‖ = D(0)
σ ,‖ + κD(1)

σ ,‖, (B 4)

where both P(0) and P(1) are assumed to vanish at infinity.
Equation (3.3) at zeroth order in κ is equivalent to (A 3), so that the zeroth-order

pressure follows from (A 4):

P(0) =−3∆̇+ 2(Θ̇ − ẊG)(X − XG)[
∆+ (X − XG)

2]2 , (B 5)

while the corresponding zeroth-order drag forces from (A 5), (A 6) and (A 8) are

D(0)
p,⊥ =−

3π

2
∆̇

∆3/2
, (B 6)

D(0)
p,‖ =π

√
2ε

Θ̇ − ẊG√
∆

, (B 7)

D(0)
σ ,‖ =−π

√
2ε

Θ̇√
∆
. (B 8)

Expressing (3.3) at first order in κ then yields[(
∆+ (X − XG)

2
)3

P(1)X + 3
(
∆+ (X − XG)

2
)2

P(0)P(0)X − 6(Θ̇ + ẊG)P(0)
]

X
= 12P(0)T .

(B 9)
Proceeding as in Appendix A, using three spatial integrations and the abovementioned
boundary conditions, one obtains the normal and tangential pressure-induced drag
forces as

D(1)
p,⊥ =

45π∆̈

16∆7/2
− 63π∆̇2

8∆9/2
+ 3π(Θ̇ − ẊG)

2

8∆7/2
, (B 10)

D(1)
p,‖ =

√
ε

2

[
23π∆̇(Θ̇ − ẊG)

8∆7/2
+ π(ẌG − Θ̈)

2∆5/2

]
, (B 11)
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which are consistent with the steady-state results (Skotheim & Mahadevan 2004a,
2005) when ∆= ẊG ≡ 1 and Θ ≡ 0.

In order to calculate the remaining first-order viscous stress, one expresses the
velocity gradient at the surface of the cylinder:

UZ|Z=H−κP =UZ|(0)Z=H−κP + κUZ|(1)Z=H−κP, (B 12)

where

UZ|(1)Z=H−κP =
P(1)X

2

[
∆+ (X − XG)

2
]+ P(0)P(0)X

2
− (Θ̇ + ẊG)P(0)[

∆+ (X − XG)2
]2 . (B 13)

Therefore, using (3.5), one obtains

D(1)
σ ,‖ =

√
ε

2

[
π(Θ̈ − ẌG)

4∆5/2
+ π∆̇ẊG

2∆7/2
− 19π∆̇Θ̇

8∆7/2

]
. (B 14)

Finally, the balance of linear and angular momentum leads to the general coupled
system of three equations:

∆̈+ ξ ∆̇

∆3/2
+ κξ

4

[
21

∆̇2

∆9/2
− (Θ̇ − ẊG)

2

∆7/2
− 15

2
∆̈

∆7/2

]
+ cos α = 0, (B 15)

ẌG + 2εξ
3

ẊG√
∆
+ κεξ

6

[
19
4
∆̇ẊG

∆7/2
− ∆̇Θ̇
∆7/2
+ 1

2
Θ̈ − ẌG

∆5/2

]
−
√
ε

2
sin α = 0, (B 16)

Θ̈ + 4εξ
3

Θ̇√
∆
+ κεξ

3

[
19
4
∆̇Θ̇

∆7/2
− ∆̇ẊG

∆7/2
+ 1

2
ẌG − Θ̈
∆5/2

]
= 0, (B 17)

which corresponds to (3.7).
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