32 THE MATHEMATICAL GAZETTE

An index for betting with examples from games
and sports
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1. Introduction

It is tempting to accept bets when the outcome has a positive
expectation favouring the bettor. We examine situations where this is not
enough of a criterion as a basis for betting. The argument we present shows
that the probability of winning the bets in the long run has to be qualified in
a certain way beyond positive expectation. We introduce an alternative
index as a criterion to recommend to bettors.

2. General set-up

Some bets can have multiple possibilities. For instance, in many team
sports, a game may end up with one team winning, drawing or losing the
game.

In a general setting, we have a finite range, say of m values, for the net
gain in a single bet, which we can list in increasing order as x1, Xy, X3, ... , X,
that can occur with probabilities py, p,, ... , p,. When a bettor risks a unit
(say a dollar), she gains x; units with probability p;.

In real life, some of the values for the net gain per monetary unit bet are
negative, as no real-life bet can have all values in the range of outcomes
being positive. In the following, we shall assume that at least one of the x; is
negative. Thus, without loss of generality, x; is negative.

We call the gain per unit of the nth bet the nth outcome. Accordingly,
the nth outcome is a random variable X,, that assumes the values x, ..., x,,,
with probabilities py, ... , p,, and the outcomes in the different bets are

m
independent. Such betting has average outcome '21 XD
=

The bettor intends to participate in the bets indefinitely. Because of the
possibility of loss, the cautious bettor does not risk all her money in one bet,
even when the probability of gaining in an individual bet is favourable. We
suppose that she risks a certain fixed proportion » € (0, 1) of her money at
each bet, hoping to gain in the long run. Such a proportion must also be
feasible. A natural constraint on b is discussed below. Even if the bettor
loses in one individual bet after committing a feasible proportion b, she still
has money to re-enter the betting game and a chance to recover.

If after n bets the bettor's money is less than her starting capital, we say
that the bettor is in a losing position, and if the money in her account is more
than her starting capital, we say that the bettor is in a winning position,
otherwise we say she is even. Our interest is in the following question: What
is the probability that the bettor will be in a winning position after a large
number of bets?
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Let M,, be the bettor's money after n bets, where the starting capital is
M. Recall that the bettor's strategy at the nth bet is to risk only bM,, _ |, and
for each dollar committed to the bet the reward is X,,. Then we have the
recurrence relation

M, =M, | + bM,_ X, = (1 + bX,)M, _,.
Let us write this as
Mn = YnMn—l, (1)

where Y, is 1 + bX,. As X;, for j = 1, 2, ..., are independent and
identically distributed, so are Y; , forj = 1, 2, ....

One can then seek an optimal value of b that maximises the logarithm,
thus maximising expected gains. The idea is classic in binary betting games;
see [1]. The ensuing formula is called Kelly's criterion. We present
extensions and ramifications.

As the bettor intends to bet repeatedly, her money should not drop to 0
or below. This imposes the constraint 1 + bX, > 0, for every possible
realisation of X,,. This is automatically satisfied for the positive values in the
range of X,. But if one of the outcomes is negative, say —u, for some u > 0,
then 1 — ub > 0, or b < 1/u. If the bettor commits 1/u or more of her
money in a single bet, her money can drop to O or less in a single bet, and
she will not be able to continue betting, contrary to the intended strategy of
perpetual betting. This being true for all possible negative values in the
range of the outcome puts a restriction on b; we must have b < —1/x;. It
may happen that x; is fractional. In this case, the upper bound so imposed is
higher than 1. Another natural bound on b is 1. Respecting all these
constraints, b must fall in the feasible range

0<bc< min[i, 1].
|x1

Feasible b is assumed henceforth.
The recurrence (1) can be iterated to obtain
M, =YY, _M,_, = ... =YY, _ .Y M,

It is natural to deal with logarithms to turn the product into a sum, a
mathematically more tractable form in the calculus of random variables. In
what follows, we use [P for probability and E for expectation.

The probability of being in a winning position after n bets is
P(M, > My) = P(Y,Y,_1... \My > M,)
P(InY, + nY,_; + ... + InY; > 0) (2)
P((Z lnY,-) - pn > —pn
i=1
(E,mr) - p f)
> —=\/n|,
ovn o

=P
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where 8 and 0> > 0 are the mean and variance of InY,. In the sequel we
shall use the notation

S, =Y, + ... +1nY, 3)

3. The betting index

For a given distribution of X;, both § and o2 are functions of b. We shall
call B = B(b) = E[InY,] = E[In(1 + bX,)] the betting index; we write
the function § with its argument when advantageous to clarity.

Let Z be the normally distributed random variable with mean O and
variance 1. According to the central limit theorem, for large n the random
variable

N S, — pn
S gy 4
has an approximate standard normal distribution (and in the limit, as
n — oo, becomes distributed like Z).

Theorem 1: After n bets, the probability of being in a winning position
converges as follows:

0, if g < 0;
P(M, > My) = <1, ifg = 0;
1, ifg > 0.

Proof: We give an argument along the lines of [2]. As already seen in (2)
and the definitions (3) and (4), the probability P (M, > M,) of being in a
winning position is the same as P (S, > 0) = P (S; > —o~'fVn).

If 8 = 0, this probability becomes P (S; > 0). According to the central
limit theorem, this probability converges to 1.

Consider next positive . Let a be any arbitrary negative real number.

As n can be arbitrarily large, —o~'f\/n < a, for n large enough. For large n,
the event S;; < —o~'BVnimplies S; < a. It then follows that, for large n,

P(Ss, <0) =P(S, < -o'8Vn) < P(S, < a).
According to the central limit theorem, as n — oo, we have

lim supP (S, < 0) < limsupP (S, < a) = F,(a),
n— oo n— oo
where F; is the cumulative distribution function of Z. Taking the limit as
a — —oo, since the left-hand side is free of q, its limit (as a — —eo) is
itself, while the right-hand side is diminished to 0. Thus we get
lim supP (S, < 0) < 0.

n— oo
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We must also have
0 < liminfP (S, < 0) < limsupP (S, < 0) < 0.
n—> oo n— oo

Hence lim P (S, < 0) exists and is equal to 0, or equivalently
n—> oo

lim P (M, > M,) = lim P(S, > 0) = 1.
n—> oo n—> oo

The argument for § < 0is similar and we omit it.

The events ¢, = {Z > —év%} are monotone increasing
o n=1

(decreasing) if S is positive (nonpositive).” By the continuity theorem [3],
we obtain

lim P (M, > M,) = P(Z > B lim Vn).

n—> oo O n—ooo
Note that
—oo, if f < 0
B tim Vn > {0, ifg = 0;
O n—oo .
+oo, if f > 0.

Hence we have
P(Z > o) =0, iff <0
PM, > M) - {PZ >0 =1 iff = 0;
P(Z > —e) =1, ifg > 0.

The interpretation of Theorem 1 is that in the long run a winning
position is assured if the betting index is positive, whereas the bettor is even
if that index is 0, and loss is assured if that index is negative. Such a betting
game is recommended only if the betting index S =E[In(1 +bX,)] is

positive. It is not enough for X;, for j = 1, 2, ..., to have a positive
expectation to gain in the long run. We illustrate this point with a few
examples.

4. American roulette

Suppose a player bets half her money (b = %) on the event that the
colour black is the outcome of spinning a roulette wheel. There are 38
numbers on the wheel, of which 18 are black, 18 are red and two are green.
If the player wins the game, for each dollar she bets, she receives a dollar
from the house (with probability 18/38 = 0.47); otherwise for each dollar
she bets she gives the house a dollar (with probability 20/38 = 0.53).

s

By monotone increasing we mean ¢, < ¢,.;, and by monotone decreasing we
mean ¢, D ¢, .
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In this example, X, has the distribution

5 +1, with probability 1§;
e —1, with probability %.

Here x; = —1 and the feasible range of bis 0 < b < 1; the player can bet
any proper proportion of her money with no real restriction. With b = 1,
we have

18 3\ 20 (1
B=E[In(1 +bX)] = — 1n(—) + = ln(—) = -0.1727518860... < 0.
38 \2/ 38 \2

As the betting index is negative, a gambler playing this game will almost
certainly lose in the long run.

Some players mix their bets by choosing more than one possible
outcome. For example, a gambler may bet on black and on the number 12
(which is red). If the ball on the roulette wheel ends up on the number 12,
the player gets $36.00 for every dollar she bets; if the outcome is any of the
black numbers, the player gets $1.00 for every dollar she bets. A player may
bet half her money each time, and her strategy is to split the chips she is
placing as a bet evenly between black and 12. For example, if her capital is
$100.00, she bets $50.00 of this amount, with $25.00 on black and $25.00
on the number 12. Here we have

+18 — 1, with probability 5;
X, = 44 -1 with probability 4§;
-1, with probability 2.

The corresponding betting index is

B = E[n(1 + bX,)]
= w1+ 2 Dm0 v ia - 2w - )
38 4] " 38 38 2
— —0.2866455039...
< 0.

Following this strategy, ultimate loss is almost guaranteed.

5. Binary games

In the previous example, it may appear obvious that ultimate loss is
inevitable since the probability of winning an individual game is less than
0.5, with a net negative average outcome.

However, in certain binary games the probability of winning an
individual game can be above 0.5, and yet eventual loss is certain. Consider
a general binary game, in which the outcome X; of the jth bet is +1 with
probability p, or —1 with probability 1 — p. As in the previous example,
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there is no restriction on the proportion of the money bet; she can bet any
proportion b € (0, 1). If the gambler bets half her money (b = %) at each
game (a case discussed in [4]), we have

B =E[n(1 + ix,)] = pln(%) + (1 -p) ln(%) = phn3 - In2.

In2
Here 111_3 = 0.6309297534... is a critical probability, below which f is
n

negative, at which S is zero, and above which f is positive. According to
Theorem 1, the probability of ultimately being in a winning position
converges in the following fashion:

: In2
0, lfp < 3

P(M, > M) — 14, ifp = i3
1, ifp > P23
The point in this discussion is that p can be well above 0.5, and the gambler
has a positive expectation for the gain in a bet (one individual bet), yet over
an extended number of bets she is losing. Any value of p above 0.5 and
In2
below ln—3 meets this description. For example, with p = 0.6, the gambler
n
will ultimately be in a losing position, while betting half her money at each
game.

For general p and b, the value of 8 associated with the binary game is
BBy =pIn(l +b)+ 1 —-p)In(1 - b).

For any fixed p this function is concave (as it has a negative second
derivative), has value O at b = 0, and achieves its maximum at
b = 2p — 1 (which may be negative and hence not feasible). For all
p < 0.5, the function B(b) stays negative throughout the entire interval
0 < b < 1. No matter what feasible b is chosen, it is a losing game.
However, for p > 0.5, the betting index is positive on some interval
contained in (0, 1), and reaches its maximum at the feasible value
b = 2p — 1in the interval (0, 1).

In this example, when the expected outcome is positive, the betting
index might still be negative for some range of b. That is, positive
expectation of gain in one game is not a sufficient condition for long-term
winning. One has to have the right choice of b to have high chances of
winning.

6. Sports Betting

We use an example pertaining to the sports betting market, an
increasingly popular field of gambling. We focus primarily on spread
betting, which is the most common form. For every game in the National
Football League (NFL), oddsmakers set a point spread for the result of the
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game. This spread is meant to represent the expected result of the game. For
instance, if Dallas Cowboys are playing Washington, a spread of Dallas +7.5
or Washington —7.5 means that the oddsmakers believe that Washington is
expected to win by 7.5 points, and vice versa. In order to win this bet, the
team you place your money on must cover the points. That is, if you bet on
Washington, they must win by 8 or more points in order for you to win the
bet. This spread is set in such a way that picking either side should, in
theory, be a 50-50 result or a fair “coin flip”. However, what is unique to
sports betting is the vigorish added for each bet. Vigorish is the additional
‘tax’ placed on sports bets; typically, if the bet is won, you get only 1¥
dollars (about 91 cents) back for every 1 dollar you place.

Some bettors continue betting on games of this nature in succession for
an entire season, and even continue through future seasons. While the teams
change and the associated spread points vary from game to game, the bettor
is essentially entering a series of bets which correspond to flipping fair
coins. In this example, the gain per dollar in the nth bet is X,, which
corresponds to the distribution

X1=

+10 with probability 4;
-1, with probability 1.

It is fair to assume that the X, are independent.
For all b, we have

B(b) = E[In(1 + bX;)] = l1n(1 + Eb) + l1n(1 - b).
2 11 2

Note that § = fB(b) has a negative derivative and S(0) = 0. So, for

B € (0, 1), the function j (b) is negative, yielding a negative betting index.

This would mean that if the spread is the best possible prediction of the

game, placing bets would result in a negative betting index, regardless of the

proportion of bankroll b you place.

This is a betting game that in theory should not be played. However, the
betting market, unlike all casino games such as roulette, is not completely
efficient. For instance, a handicapper or statistical modeller also attempts to
predict the result of that same game, and her analysis of the chances may
arrive at different odds, such as a 60 percent chance of Washington winning
by more than 7.5. If such a modeller's prediction remains consistently better
than the odds announced by the NFL, her true betting index is

B(b) = E[In(1 + bX,)] = %m(l + %b) + 14—0111(1 - b).

For some b, this index is positive. For instance 5(0.16) = 0.01173957012... .
Hence, if the handicapper can consistently predict some results more
accurately than the oddsmakers, there is reason to believe that she can see
long-term profit in the market.
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7. Optimising bets

Given that a betting game has good prospects, the bettor would be
interested in good advice on how to approach the betting scheme. For
instance, a bettor on binary games may be interested in a good choice of
b € (0, 1) to apportion money for the bets.

If, for the given p, there is no range of b for which the betting index is
above 0, the bettor would be advised not to bet at all. Consider again the
binary game discussed in Section 5. The left plot in Figure 1 shows the
betting index for this game, for p = 0.4, for all possible 4. For such low p,
the index is always negative.

On the other hand, suppose for the given p there is a range of b for
which the betting index is above 0. We know that S, is stochastically
increasing in b. In this case, the bettor is advised to bet the largest possible b
proportion of her money on each bet, while the index remains positive. This
way the bettor is assured of winning. For the binary game discussed, the
right plot in Figure 1 shows the betting index for p = 0.6, for all possible b.
For such high p, the index is positive only for b < 0.38939. The bettor is
advised to bet an amount around 0.38 of her money. The probability of
ultimately winning is 1.

0 02 04 06 08 1 02 04 06 08 1

b -0.2

-0.5
-0.4
-1 -0.6
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-2 -1.2

FIGURE 1: Plot of the betting index against the proportion bet, when p = 0.4 (left)
and when p = 0.6 (right)

8. Conclusion

We presented a betting index, f, that guides a practitioner to a prudent
strategy. Almost surely, in the long run, if the index is negative the bettor
will lose, if the index is positive the bettor will gain, and if the index is 4 the
bettor will come out even. We corroborated the formal approach with
examples from binary games, such as roulette, and the moneyline betting in
the National Football League. The practitioner might be looking for advice
on the proportion of her capital to bet. We said a word about the best
proportion to bet, which may often be 0, that is, not to bet at all when the
games are not designed to favour bettors.
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