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ON THE ALTERNATIVE LONG-RUN
VARIANCE RATIO TEST FOR
A UNIT ROOT

YE CAl AND MOTOTSUGU SHINTANI
Vanderbilt University

This paper investigates the effects of consistent and inconsistent long-run vari-
ance estimation on a test for a unit root, based on the generalization of the von
Neumann ratio. The results from the Monte Carlo experiments suggest that the
unit root tests based on an inconsistent estimator have less size distortion and
more stability of size across different autocorrelation specifications as compared
to the tests based on a consistent estimator. This improvement in size property,
however, comes at the cost of a loss in power. The finite-sample power, in addi-
tion to the local asymptotic power, of the tests with an inconsistent estimator is
shown to be much lower than that of conventional tests. This finding can be well
generalized to the test for cointegration in a multivariate system. The paper also
points out that combining consistent and inconsistent estimators in the long-run
variance ratio test is one possibility of balancing the size and power.

1. INTRODUCTION

Conventionally, the autocorrelation robust inference relies on the consistent
estimation of the long-run variance of the data. In the regression context, such
an estimator based on the nonparametric kernel method is often referred to as
the heteroskedasticity autocorrelation consistent (HAC) estimator and is fre-
quently employed to construct standard errors or the Wald-type test statistics
in the presence of serial correlation of unknown form (see, e.g., Newey and
West, 1987; Andrews, 1991). HAC estimation, however, is known to suffer
from small-sample bias that results in size distortion of the test statistics. Kiefer,
Vogelsang, and Bunzel (2000) have recently proposed autocorrelation robust
test statistics standardized by an inconsistent long-run variance estimator instead
of a consistent estimator. Their alternative asymptotic approximation to the
distribution of the test statistic incorporates the randomness of the (inconsis-
tent) long-run variance estimator and is considered to have some advantages
in improving the size properties compared to the conventional approach.
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Since the influential paper of Phillips (1987), nonparametric long-run vari-
ance estimation has also played an important role in the unit root/cointegration
literature. The nonparametric or semiparametric unit root test designed to incor-
porate general serial correlation, however, is known to suffer from some size
distortion for the same reason as the test with HAC estimation in the standard
regression model. Therefore, it seems reasonable to investigate whether the
inconsistent estimation of the long-run variance provides a useful alternative
approach in the unit root test in addition to in the tests in the regression model.
In this paper, we conduct theoretical and simulation analyses on the effect of
consistent and inconsistent long-run variance estimation in testing for a unit
root. In particular, we focus on a class of nonparametric tests based on the
generalization of the von Neumann (VN) ratio. This class of the unit root test
includes the test considered by Sargan and Bhargava (1983) and Bhargava
(1986), the class of the locally best invariant (LBI) test considered by Nabeya
and Tanaka (1990), the Lagrange multiplier (LM) test of Schmidt and Phillips
(1992), the modified Sargan-Bhargava (MSB) test considered by Stock (1994,
1999) and Perron and Ng (1996), and a nonparametric unit root test of Brei-
tung (2002). Its multivariate extension includes the cointegration tests consid-
ered by Phillips and Ouliaris (1990), Shintani (2001), and Harris and Poskitt
(2004).

The main reason for the choice of the VN ratio test in our analysis, rather
than the more commonly used nonparametric variation of the Dickey—Fuller
type test proposed by Phillips (1987) and Phillips and Perron (1988), is its con-
venience in considering the properties of the long-run variance estimation under
the null and alternative hypotheses. In a typical regression framework, the true
long-run variance used to standardize the Wald test statistic is common under
both null and alternative hypotheses. In the test for a unit root, this is not the
case. To be more specific, estimation of a positive long-run variance of the first
differenced observation (or the error term) is often required for the test statistic
to have a nuisance parameter free limiting distribution under the null hypoth-
esis of a unit root. Under the alternative hypothesis of a stationary root, how-
ever, the long-run variance of the same variable becomes zero because of
overdifferencing. In contrast, the long-run variance of the variable in level is
positive and finite under the alternative, whereas the corresponding long-run
variance cannot be defined under the null hypothesis. The unit root test statistic
we consider is constructed using the ratio of the long-run variance estimator of
the first differenced series to that of the series in levels. Because the growth
rate of the bandwidth in the kernel estimator is the key to distinguishing the
consistent estimator from the inconsistent estimator, the various combinations
of the bandwidths in the numerator and denominator in the long-run variance
ratio offer a systematic way to investigate the effect of new approach under
both the null and alternative hypotheses.

The remainder of the paper is organized as follows. Section 2 introduces the
long-run variance ratio test for a unit root and derives its limiting distribution
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under different assumptions on the growth rate of bandwidths. The finite-
sample size properties of each test are investigated by a Monte Carlo simula-
tion in Section 3. The power of the test is studied in Section 4. Some extensions,
including the analysis of cointegration, are considered in Section 5. Finally,
concluding remarks are made in Section 6. Throughout this paper, we use the
symbols = and %5 to signify weak convergence and convergence in probabil-
ity, respectively. All the limits are taken as the sample size T — oo.

2. THE TEST STATISTICS

Let {y,}/_, be a univariate time series generated by
V= ay tu, 1)

where u, is a weakly stationary zero-mean error with a strictly positive long-
run variance defined by w? = 2;0:_00 ¥, where y; = E(u,u,;). For simplicity,
the initial condition is set to y, = 0. We consider a test for the null hypothesis
of @ = 1 against the alternative hypothesis of |a| < 1. Therefore, under the
alternative hypothesis, y, is the zero-mean stationary process with the long-run
variance w; = (1 — a) ?w®.

Throughout this paper, the long-run variance of the zero-mean series x; is
estimated by a nonparametric kernel estimator with the Bartlett kernel,

K—1 T
@*(x,K)= > (1=[j/KNT! XX 15 )
J=—(K=1) r=1jl+1

where K is the bandwidth/lag truncation parameter. As emphasized in Newey
and West (1987), this choice of the kernel function ensures nonnegative esti-
mates, and thus the long-run variance ratio test statistic defined subsequently will
always be nonnegative. In addition, this long-run variance estimator is known
to be consistent when bandwidth K grows at a rate slower than T /2, with an
optimal growth rate being 7''/3 under some moment conditions (Andrews, 1991).
When x, has a nonzero mean, ®>(x, — %, K) where £ = T~' 3", x, will pro-
vide a consistent estimator. This estimator, however, becomes inconsistent if K
grows too fast, for example, at the rate 7. In what follows we have a convenient
shortcut formula for the Bartlett kernel estimator when its bandwidth equals the
sample size.

LEMMA 1. Let S, = Ej’-:lxj. Then, (2) with K = T can be written as

T
&% (x,,T) =T 2 2 {87+ (S, — 5;)%}
=1

T T
=2T 2> S2+T7'S2-2T725,. > 5,. 3)

=1 =1
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This lemma generalizes equation (1) of Kiefer and Vogelsang (2002) to the
case when S # 0 and will be used to derive the main theoretical results of our
paper.

The VN ratio is usually defined as the ratio of the sample variances of the
first differences and the levels of a time series. The ratio is often applied to
regression residuals to conduct the Durbin—Watson test for serial correlation.
As a test statistic for a unit root hypothesis, however, we utilize the following
generalization of the VN ratio:

@*(Ay,, K)

R =MT == @)
&*(y,, M)

where Ay, =y, — y,—; for t = 1,...,T. This ratio replaces the sample variances

in the original VN ratio with the sample long-run variances. If u, is indepen-
dent and identically distributed (i.i.d.), the ratio with the choice of K = M =1
can be used to test the null hypothesis of a unit root. But for the serially corre-
lated u,, it does not provide the nuisance parameter free distribution under the
null. We consider the following combinations of growth rates of K and M that
provide asymptotically pivotal test statistics in the presence of serially corre-
lated error, u,.

CO. K = kT for some k > 0 and M = 1.

CC. K=kT"? and M = mT " for some k,m > 0.
Cl. K =kT'" for some k > 0and M = T.

II. K=Tand M =T.

The choice of CO is a combination of the bandwidth growth rates that ensures
the numerator providing a consistent estimator of > under the null and the
denominator providing a consistent estimator of the variance of y, (or the auto-
covariance of order zero) under the alternative. With the choice of CC, the
numerator provides a consistent estimator of w? under the null, and the denom-
inator provides a consistent estimator of wf, under the alternative. CI is the case
of the denominator being an inconsistent estimator of a)f, under the alternative,
whereas the numerator is still a consistent estimator of w? under the null. Finally,
II is the combination in which both the numerator and denominator are incon-
sistent estimators under the null and alternative, respectively. The relationship
between our assumptions on bandwidth and the asymptotic properties of the
long-run variance estimators is summarized in Table 1. Note that employing a
rate other than T''/? is also possible in CO, CC, and CI, and theoretical results
will not be affected as long as it provides a consistent estimator. The 7'/ rate
is employed here simply because it is the optimal rate, and this particular rate
will be used in the simulation in the next section.
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TABLE 1. Bandwidth and the long-run variance estimator

Numerator Denominator

d)z(AytsK) d)z(ytrM)
Bandwidth under Hy:a = 1 under H;: |a| < 1
Co Consistent for w? Consistent for o’
cc Consistent for w? Consistent for @?
CI Consistent for w? Inconsistent for w\z
11 Inconsistent for w? Inconsistent for wf,

Note: ®* = long-run variance of u,; o> = variance of y,; w} = long-run variance
of y,.

When nonzero mean stationarity or trend stationarity is allowed as an alter-
native hypothesis, a demeaned and detrended version of the unit root test is
often employed in practice. The long-run variance ratio test can be also extended
to these more empirically relevant cases. Suppose = T"' 27 y,, Ay =T"!
SiAy, § = 2 (Ay; — Ay), and § = T-' I, The demeaned and
detrended test statistics are given by

»*(Ay,,K)
R,=MT Z—t_ &)
o*(y, —y,M)
and
®2%(Ay, — Ay, K)
R. = MT e \8y = anlty 6)

(5, - 5,M)

When K = M =1, R,, corresponds to the test of Sargan and Bhargava (1983)
and R, corresponds to the R, test proposed by Bhargava (1986). Note that R is
based on a detrending procedure that is efficient under the null. Schmidt and
Phillips (1992) also showed that, for a Gaussian likelihood, the LM principle
leads to these tests. With the choice of CO, the test is equivalent to the nonpara-
metric extension of the VN ratio test considered by Nabeya and Tanaka (1990)
and Schmidt and Phillips (1992). It is also equivalent to the MSB test consid-
ered by Stock (1994, 1999) and Perron and Ng (1996). The one-dimensional
case of the cointegration tests considered by Phillips and Ouliaris (1990), Shin-
tani (2001), and Harris and Poskitt (2004) reduces to the same unit root test
under CO. The terms R and R, under CC are equivalent to P*(1,0) and P;(1,0)
of Shintani (2001), respectively. For II, R, is somewhat similar to the Breitung
(2002) test based on the variance ratio BR = T2 X, (y, — y)%/ >, S? where
S, = E;:l (y; — ¥). Note that BR can be rewritten as
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T
2>y —2Ty?
BR=T>—“=L 7)

T
228!
=1
Applying Lemma 1 to (5) under II yields

T
2> y2+ Ty; — 2y, Ty
R _ T2 =1

7 8)
2287
=1

Therefore, the first term is common between the two test statistics. Neverthe-
less, two statistics are different with their own limiting distribution as the remain-
ing terms are not negligible. In the simulation, we will also consider BR for the
purpose of comparison.!

We now introduce the following assumption on the error term.

Assumption 1.

(@) u, = C(L)g, = 272gcig,_j, co =1, |[C(1)| > 8 >0, and 272 jlc;| <
B < oo where 6 and B are some positive constants.

(b) ¢, is i.i.d. with zero mean, variance o2, and finite fourth cumulants, and
g, =0fors=0.

Under Assumption 1, we have w? = C(1)%¢2 and T~"2 3"y, = wW(s)
where [Ts] signifies the integer part of Ts and W(s) denotes a standard Brown-
ian motion defined on C[0,1]. The limiting distribution of the long-run vari-
ance ratio test is given in the following theorem.

THEOREM 1. Suppose that {y,}, is generated by (1) with a = 1 and
Assumption 1 is satisfied. Then,

(a) (Standard test)

- ! -1
<f W(s)? ds> for CO and CC,
0

{of woras ([ woras) -2 [ wora)( [ woa)}

for CI,
R= <

(2]0 W(s)>ds + W(1)> — 2W(1)f0 W(s) ds>

X {2[01 W(s)*ds + <f0] W(s)ds)2 72<f0] W(s)ds)(fo] W(s)ds)}il

\ for 11,
where W(s) = [ W(u) du.
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(b) (Demeaned test)

4 1 —1
<f W, (s)? ds) for CO and CC,
0

! -1
2f w (s)zds> for CI,
R, = < ( o

<2fl W(s)>ds + W(1)> — 2W(1)fl Wi(s) ds)/Zfl Wli(s)2 ds

L for II,

where W, (s) = W(s) — fol W(u) du and W, (s) = [, W, (u) du.
(¢) (Detrended test)

/o -1
(J V,(s)? ds) for CO and CC,
0

1 —1
R.= < <2f V,(s)? ds) for CI,
0

1 1
f V,(s)? ds/f V,(s)*ds forll,
L Jo 0

where V,(s) = V(s) — fol V(u)du, V(s) = W(s) — sW(1), and V,(s) =
Jo V,(u) du.

The limiting distribution of each test statistic is a function of a Brownian
motion or a Brownian bridge. Evidently, this contrasts with the autocorrelation
robust test in regression where only the test with an inconsistent long-run vari-
ance estimator has a nonstandard limiting distribution. Critical values for the
limiting distribution of the long-run variance ratio tests with all the combina-
tions of bandwidth growth rates are provided in Table 2. Numbers are obtained
by simulation using an approximation of Brownian motion by partial sums of
standard normal random variables with 10,000 steps and 10 iterations. In the
following section, we evaluate the finite-sample size property of each test using
these asymptotic critical values. Note that the test rejects the null hypothesis
for large values of the long-run variance ratio and the critical region is con-
structed accordingly. The consistency of the tests is also provided in the follow-
ing theorem.

THEOREM 2. Suppose that {y,}!_, is generated by (1) with |a| < 1 and
Assumption 1 is satisfied. Then, for any bandwidth growth rate combinations
C0, CC, CI, or I,

P[R>c*],P[R, > c*],P[R, > c*]—1

for any fixed constant c*.
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TABLE 2. Critical values

Level
Test Bandwidth 10% 5% 1%
Standard Cco/CcC 13.1 17.8 29.1
CI 88.1 174 586
1I 31.7 52.7 136
Demeaned  CO/CC 21.8 27.5 40.5
CI 643 1.10 X 10> 2.79 x 103
11 213 317 657
Detrended  CO/CC 30.3 36.6 51.0
CI 1.34 X 10 2.10 X 10>  4.76 X 103
II 237 339 680

Note: Results are based on discrete approximation to the Brownian motion by partial sums
of a standard normal random variable with 10,000 steps and 107 replications.

In practice, the ordinary least squares (OLS) residuals from the regression
model (1) are often used to estimate the long-run variance of u, to ensure the
consistency of the unit root test. Theorem 2, however, shows that the long-run
variance estimator, using the overdifferenced series Ay, under the fixed alterna-
tive, still provides consistency of the long-run variance ratio tests. This result
is based on the fact that the long-run variance estimator based on Ay, con-
verges to zero from a positive value at a sufficiently slow rate under the alter-
native. In the simulation that follows, we focus on the case with the long-run
variance estimator using Ay, rather than using the quasi-differenced series from
the OLS residuals. Nevertheless, the residual-based long-run variance ratio test
seems to be a reasonable alternative to our test.

3. FINITE-SAMPLE SIZE OF THE TESTS

In this section, the finite-sample size properties of each test introduced in the
previous section are investigated by a Monte Carlo simulation. We follow pre-
vious experimental studies in the unit root testing literature and consider the
autoregressive (AR) and moving-average (MA) models to introduce serial cor-
relation in the error term. In particular, our data generating process is (1) with
a = 1 using the following three different error structures:

g, (i.i.d. error)
u, =4 pu,_, +¢g (AR(1) error)
g, +0g,_, (MA(1) error),

where g, is an i.i.d. standard normal random variable, p = —0.8, —0.5, 0.5,
0.8, and # = —0.8,—0.5,0.5,0.8. Initial values y,, ug, and g, are set to 0. In all
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cases we use 10,000 replications. There is fairly general agreement that the
data-based bandwidth selection method in the long-run variance estimation has
very important effects on improving the finite-sample performance of the semi-
parametric and nonparametric unit root tests (see, e.g., Stock, 1994; Phillips
and Xiao, 1998). For this reason, we use the Andrews (1991) automatic band-
width selection procedure (designed for the Bartlett kernel) to select K when
tests based on CO, CC, and CI are applied to AR(1) and MA(1) errors. For the
test with CC, the value of the automatic bandwidth selected for K is also used
for M. For i.i.d. errors, we simply use K = 1.

Table 3 reports the rejection frequency of the standard long-run variance ratio
test, R, with an asymptotic level of 5% for a sample of five different sizes, T =
25, 50, 100, 200, and 500. For each pair of bandwidth growth rates, the first
column shows the empirical size when the unit root process has an i.i.d. error.
With the exception of a slight underrejection for the C0O/CI case when T = 25,
the empirical size of the long-run variance ratio tests is very close to the asymp-
totic level for all combinations of bandwidth growth rates. The difference among
the various choices of bandwidth, however, becomes more evident when the
error terms are serially correlated.

TABLE 3. Empirical size of the standard test with 5% level

AR(1) error MAC(1) error
Band-  i.i.d.

T width  error p=-0.8 —0.5 0.5 08 6=-08 —-05 05 0.8

25 Co 0.03 0.0 0.01 0.0 0.0 0.09 0.05 0.01 0.01
CcC 0.03 0.19 0.11 0.02 0.04 0.46 021 0.04 0.04
CI 0.04 0.04 0.05 0.02 0.01 0.18 0.08 0.03 0.03
1I 0.04 0.08 0.05 0.03 0.03 0.14 0.07  0.04 0.04
50 Co 0.04 0.0 0.02 0.01 0.0 0.17 0.08 0.02 0.02
CcC 0.04 0.14 0.10  0.03 0.02 0.51 020  0.05 0.05
CI 0.05 0.05 0.05 0.03 0.01 0.21 0.09 0.04 0.04
I 0.05 0.07 0.05 0.04 0.04 0.13 0.06  0.04 0.04
100 CO 0.05 0.01 0.04 0.02 0.0 0.32 0.09 0.03 0.02
CcC 0.05 0.12 0.09 0.03 0.02 0.52 0.17  0.05 0.04
CI 0.05 0.05 0.05 0.03 0.02 0.21 0.08 0.04 0.04
1T 0.05 0.06 0.05 0.05 0.04 0.10 0.06  0.05 0.05
250 CO 0.04 0.03 0.05 0.02 0.01 0.39 0.10  0.03 0.03
CcC 0.04 0.09 0.07  0.03 0.02 0.49 0.13  0.04 0.04
CI 0.05 0.05 0.05 0.04 0.03 0.21 0.08  0.04 0.04
II 0.05 0.05 0.05 0.05 0.05 0.08 0.05 0.05 0.05
500 CO 0.05 0.04 0.05 0.03 0.02 0.40 0.10  0.04 0.04
CcC 0.05 0.08 0.07  0.04 0.03 0.45 0.12 0.05 0.05
CI 0.05 0.05 0.05 0.04 0.04 0.19 0.07  0.04 0.04
II 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05

Note: Empirical rejection rate of 5% level tests based on asymptotic critical values when data are generated by
(1) with @ = 1. The data-based bandwidth selection method of Andrews (1991) is applied to the first differenced
series for CO, CC, and CI. Results are based on 10,000 replications.
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Consistent with the finding by Schwert (1989) for semiparametric unit root
tests, the long-run variance ratio tests suffer from size distortion mostly in the
case of the near MA unit root (# = —0.8). Overrejection is observed for all
tests, which implies that the tests are too liberal. However, when inconsistent
asymptotics are used for both the numerator and the denominator (II), the size
distortion becomes smaller, and the empirical size approaches the asymptotic
level as sample size increases. In contrast, the size distortion of other tests for
the near MA unit root case does not disappear, even for 7 = 500. The size
distortion appears to be largest when the test is based on CC. The problem
seems to be less severe when the combination of the consistent and inconsis-
tent estimators (CI) is employed in comparison with the conventional case (CO
and CC) when the sample size increases. For the positively correlated MA error
(6 = 0.5,0.8), the tests based on CC, CI, and II have their empirical size quite
close to the nominal size. In this case, only the test with CO has a noticeable
size distortion that results in the conservative test.

On the whole, the size distortion seems to be somewhat less severe for the
AR errors compared to the MA errors. The empirical size of the test with CO is
smaller than the nominal size for the entire range of AR parameters, which
suggests that the test is too conservative. The largest deviation from the nomi-
nal size is observed in the test with CC when AR errors are positively corre-
lated (p = 0.5,0.8). In contrast to the CO case that underrejects for all cases,
the test with CC overrejects when AR parameters are positive (p = 0.5,0.8),
but underrejects when AR parameters are negative (p = —0.8,—0.5). As in the
MA error results, the AR error results again favor the tests that involve incon-
sistent estimators, namely, the CI and II cases. When the sample size increases,
both tests have a size that is very close to the asymptotic level for all values of
AR parameters.

Tables 4 and 5 report the same results for R, and R, respectively. For the
i.i.d. error and positively correlated error, the size performance of the demeaned
and detrended tests is very similar to that of the standard case except for a very
small sample (T = 25). For the negatively correlated case, the problem of size
distortion becomes more severe in general. In particular, rejection frequency
increases substantially with CC for the negatively correlated MA error. When
II is used, however, stability of size remains for # = —0.5, and increases in the
rejection frequency seems to be very modest, even for § = —0.8, compared to
the other choice of bandwidths. The size performance of BR test is somewhat
similar to that of the demeaned test with II.

In summary, consistent with the previous findings in the literature, the test
based on a consistent nonparametric long-run variance estimator suffers from
substantial size distortion when the errors are negatively correlated. In con-
trast, the empirical size of the test using a pair of inconsistent estimators seems
to be very close to nominal size on the whole regardless of the serial correla-
tion structure. Therefore, in terms of stability and accuracy of size, this choice
of bandwidth growth seems to be the most effective one, with the combination
of consistent and inconsistent estimators the second best.
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TABLE 4. Empirical size of the demeaned test with 5% level

AR(1) error MA(1) error
Band-  i.i.d.

T width  error p=-0.8 —0.5 0.5 0.8 0=-08 —-05 05 0.8

25 Cco 0.03 0.0 0.01 0.0 0.0 0.09 0.04 0.01 0.0
CC 0.03 0.46 023 0.05 0.13 0.83 037 0.06 0.08
CI 0.04 0.04 0.05 0.01 0.0 0.34 0.11  0.02 0.02
1I 0.05 0.12 0.07  0.03 0.02 0.30 0.10  0.04 0.04
BR 0.05 0.19 0.10 0.02 0.0 0.47 0.16 0.03 0.03
50 Co 0.04 0.0 0.01 0.0 0.0 0.12 0.06  0.01 0.01
CcC 0.04 0.32 0.17  0.04 0.06 0.86 033  0.06 0.07
CI 0.05 0.05 0.05 0.02 0.0 0.39 0.11  0.03 0.03
1I 0.05 0.10 0.07  0.04 0.02 0.29 0.09 0.05 0.05
BR 0.05 0.14 0.08 0.03 0.01 0.42 0.12  0.04 0.04
100 CO 0.04 0.0 0.02 0.01 0.0 0.33 0.08 0.02 0.0l
CcC 0.04 0.22 0.13  0.03 0.04 0.84 0.27  0.05 0.06
CI 0.05 0.05 0.06 0.03 0.01 0.37 0.10  0.04 0.03
I 0.05 0.07 0.06 0.04 0.03 0.22 0.07  0.05 0.05
BR 0.05 0.10 0.07  0.04 0.02 0.33 0.09 0.05 0.05
250 CO 0.05 0.01 0.04 0.02 0.0 0.55 0.11 0.03  0.02
CcC 0.05 0.14 0.09 0.03 0.03 0.76 0.19 0.05 0.05
CI 0.05 0.05 0.05 0.03 0.02 0.31 0.08  0.04 0.04
11 0.04 0.05 0.05 0.04 0.04 0.13 0.06  0.04 0.04
BR 0.05 0.07 0.05 0.04 0.03 0.19 0.07  0.05 0.05
500 CO 0.05 0.03 0.05 0.02 0.01 0.56 0.11  0.03 0.03
CcC 0.05 0.11 0.08 0.04 0.03 0.69 0.16  0.05 0.05
CI 0.05 0.06 0.06  0.04 0.03 0.28 0.08  0.04 0.04
1T 0.05 0.05 0.05 0.05 0.04 0.09 0.05 0.05 0.05
BR 0.05 0.06 0.05 0.05 0.04 0.13 0.06  0.05 0.05

Note: Empirical rejection rate of 5% level tests based on asymptotic critical values when data are generated by
(1) with @ = 1. The data-based bandwidth selection method of Andrews (1991) is applied to the first differenced
series for CO, CC, and CI. Results are based on 10,000 replications.

4. POWER OF THE TESTS

In the previous section, we found that it was possible to improve the size of the
long-run variance ratio test for a unit root by introducing inconsistent long-run
variance estimators. This section investigates the power properties of the same
tests.

First, we consider the limiting distribution under the local alternative o =
1 + T~ !¢ for a particular value of ¢ < 0. As in the case of other unit root
tests, the limiting distribution involves the functional of a diffusion J.(s) =
J5 exp{(s — u)c} dW(u). Under this local alternative, all the asymptotic results
in Theorem 1 hold by replacing W(s) with J.(s). This can be shown by using
an argument similar to that of Stock (1999) in his analysis of the local asymp-
totic power of the MSB test. The local asymptotic power functions of R, R,
and R for various bandwidth growth rates based on the 5% level are plotted in
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TABLE 5. Empirical size of the detrended test with 5% level

AR(1) error MA(1) error
Band-  i.i.d.

T width  error p=-0.8 —0.5 0.5 0.8 0=-08 —-05 05 0.8

25 Cco 0.02 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0
CC 0.02 0.49 023  0.02 0.07 0.65 034 0.03 0.05
CI 0.04 0.01 0.02 0.0 0.0 0.14 0.06 0.01 0.01
1I 0.05 0.13 0.07  0.03 0.02 0.18 0.09 0.04 0.04
50 Cco 0.03 0.0 0.0 0.0 0.0 0.03 0.03 0.01 0.0
CC 0.03 0.35 0.18 0.02 0.03 0.79 036  0.05 0.05
CI 0.05 0.03 0.04 0.01 0.0 0.24 0.10  0.02 0.02
1I 0.05 0.10 0.06 0.04 0.03 0.21 0.09 0.04 0.04
100 CO 0.04 0.0 0.0 0.0 0.0 0.08 0.04 0.01 0.0
CC 0.04 0.25 0.14  0.02 0.02 0.86 0.30  0.04 0.04
CI 0.05 0.03 0.05 0.02 0.01 0.30 0.09 0.03 0.03
11 0.05 0.07 0.06 0.04 0.03 0.20 0.07 0.05 0.05
250 CO 0.05 0.0 0.03 0.01 0.0 0.49 0.09 0.02 0.02
CcC 0.05 0.16 0.10  0.03 0.02 0.86 0.24  0.05 0.05
CI 0.05 0.05 0.05 0.03 0.01 0.32 0.09 0.04 0.04
1I 0.05 0.06 0.05 0.05 0.04 0.14 0.06  0.05 0.05
500 CO 0.05 0.01 0.04 0.02 0.0 0.62 0.10  0.03 0.02
CcC 0.05 0.12 0.09 0.03 0.03 0.82 0.19  0.05 0.05
CI 0.05 0.05 0.05 0.03 0.02 0.30 0.08 0.04 0.04
1I 0.05 0.06 0.05 0.05 0.04 0.10 0.05 0.05 0.05

Note: Empirical rejection rate of 5% level tests based on asymptotic critical values when data are generated by
(1) with @ = 1. The data-based bandwidth selection method of Andrews (1991) is applied to the first differenced
series for CO, CC, and CI. Results are based on 10,000 replications.

Figures 1, 2, and 3, respectively. They are approximated by discrete Gaussian
random walks with 500 steps with 10,000 replications. For the standard test (R)
in Figure 1, the CO/CC and CI cases have similar power when c is close to zero.
The difference between their power and that of the II case is evident even if ¢ is
close to zero. Although the power of the CI case is slightly below the C0/CC
power function for moderate values of ¢, both power functions become 1.00 rel-
atively fast for distant alternatives. In contrast, the power for the II case is con-
siderably lower for the entire range of local alternative parameter c. It becomes
only about 0.5 even if the c is as small as —24. The local asymptotic power func-
tions of the demeaned and detrended tests (R, and R, in Figures 2 and 3) show
the reduction of the local power by detrending the data compared to their cor-
responding power for the standard test. However, in terms of the ranking and
pattern among the different choices of bandwidth, they are very similar to those
of the standard tests. Figure 2 also contains the local asymptotic power of the
BR test, which shows higher power relative to the II case but lower power rel-
ative to the other cases. In summary, the asymptotic power function of the tests
based on the pair of inconsistent estimators (II) is well below other power func-
tions for the entire range of ¢ for all cases.
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FIGURE 1. Asymptotic power functions: standard test.

FIGURE 2. Asymptotic power functions: demeaned test.
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FIGURE 3. Asymptotic power functions: detrended test.

Second, we investigate the finite-sample power properties using a simula-
tion design similar to the one used in the previous section. We first obtain small-
sample size-adjusted critical values based on the results in Tables 3-5. Note
that the size-adjusted critical values are computed for all combinations of data
generating process and sample size. We then generate the data from (1) with
a = 0.9 using the same values of the error term used for the & = 1 case and
apply the unit root test to the data. The frequencies of the rejection of the null
hypothesis using the size-adjusted critical value are reported in Tables 6—8. The
four main findings from the tables are as follows. First, in agreement with the
local asymptotic power result, the finite-sample size-adjusted power of the test
with I is much lower than that of the tests with CO, CC, and CI. For example,
when the error is i.i.d., the power of the standard, demeaned, and detrended
tests is only 0.76, 0.53, and 0.25, respectively, even for the large sample with
T = 500. For the same sample size, the power of other tests is 1.00 or at least
close to 1.00. Second, the difference among the size-adjusted power of tests
with CO, CC, and CI is modest compared to the much lower power of the II
case. Among the group of C0O, CC, and CI, the test with CC performs some-
what better than the other two when the error is negatively correlated, namely,
AR(1) error with p = —0.8,—0.5 and MA(1) errors with § = —0.8,—0.5. Third,
with the exception of the detrended test with a large sample (7 = 250, 500), the
test based on CI shows reasonably good finite-sample power very close to the
power of the tests based on CO and CC. This fact is interesting given the find-
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TABLE 6. Size-adjusted power of the standard test with 5% level

AR(1) error MA(1) error
Band-  i.i.d.

T width  error p=-0.8 —0.5 0.5 0.8 0=-08 —-05 05 0.8

25 Cco 0.15 0.11 0.13  0.14 0.10 0.12 0.13  0.14 0.14
CC 0.15 0.13 0.15  0.12  0.05 0.14 0.14  0.13  0.13
CI 0.13 0.13 0.13  0.12  0.09 0.14 0.13 0.14 0.13
1I 0.10 0.11 0.11 0.09 0.07 0.15 0.rr 0.09 0.10
50 Cco 0.30 0.21 0.27 026 0.19 0.18 025 028 0.28
CC 0.30 0.27 029 025 0.15 0.31 029 027 0.27
CI 0.27 0.24 0.25 023 0.18 0.30 026 025 0.25
1I 0.15 0.20 0.17 0.13  0.09 0.27 0.19 0.14 0.14
100 CO 0.75 0.45 0.65 0.63 047 0.46 0.65 0.68 0.66
CC 0.75 0.65 0.68 0.61 043 0.76 0.70  0.67 0.65
CI 0.58 0.49 0.52 048 0.38 0.65 0.57 051  0.51
11 0.26 0.34 0.28 024 0.18 0.55 033 026 0.25
250 CO 1.0 0.97 1.0 1.0 0.97 0.98 1.0 1.0 1.0
CcC 1.0 1.0 1.0 1.0 0.97 1.0 1.0 1.0 1.0
CI 0.98 0.92 095 094 0.84 0.99 097 096 0.95
1I 0.54 0.67 0.59 049 040 0.91 0.66 051 0.52
500 CO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CcC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CI 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0
1I 0.76 0.86 0.80 0.72  0.63 0.99 0.85 0.75 0.75

Note: Empirical rejection rate of 5% level tests based on size-adjusted critical values when data are generated by
(1) with @ = 0.9. The data-based bandwidth selection method of Andrews (1991) is applied to the first differ-
enced series for CO, CC, and CI. Results are based on 10,000 replications.

ing of the previous section that the test with CI has a much better size property
than tests based on CO and CC. Fourth, for a large sample, the power of the BR
test is higher than the power of the demeaned test with II but is lower than the
power of the other demeaned tests.

The summary of this section follows. Both the local asymptotic power and
the size-adjusted finite-sample power of the long-run variance ratio tests based
on the pair of inconsistent estimators (II) are found to be dramatically lower
than those of the test based on the pair of consistent estimators (CO and CC).
This suggests that the stability of size in the II case seems to be too costly to
justify the usefulness of the inconsistent long-run variance estimator in the
long-run variance ratio test for a unit root. However, at the same time, the
tests based on the combination of consistent and inconsistent long-run vari-
ance estimators (CI) are found to have reasonable power and also a good size.
Therefore, among the various pairs of bandwidth growth rates in the long-run
variance ratio, the choice of CI may have some practical use in testing for a
unit root.
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TABLE 7. Size-adjusted power of the demeaned test with 5% level

AR(1) error MA(1) error
Band-  i.i.d.

T width  error p=-0.8 —0.5 0.5 0.8 0=-08 —-05 05 0.8

25 Cco 0.12 0.05 0.07  0.09 0.09 0.04 0.07  0.10 0.10
CC 0.12 0.08 0.09 0.06 0.03 0.05 0.08 0.08 0.07
CI 0.11 0.08 0.09 0.10 0.10 0.05 0.09 0.10 0.10
1I 0.06 0.07 0.07  0.06 0.08 0.02 0.06  0.06 0.06
BR 0.10 0.10 0.11  0.10 0.11 0.07 0.10  0.10 0.10
50 Cco 0.22 0.08 0.14 0.18 0.15 0.05 0.12  0.20 0.19
CC 0.22 0.14 0.17  0.15 0.07 0.09 0.15 019 0.17
CI 0.19 0.15 0.17 0.17  0.15 0.11 0.15 0.17  0.17
1I 0.07 0.09 0.08 0.07 0.08 0.05 0.08 0.07 0.07
BR 0.17 0.17 0.17  0.15 0.14 0.12 0.16 0.16 0.16
100 CO 0.52 0.17 0.37 041 0.31 0.15 035 046 044
CC 0.52 0.38 044 038 021 0.32 045 044 041
CI 0.41 0.33 036 035 0.27 0.30 0.37 037 0.37
11 0.11 0.17 0.12  0.10  0.09 0.17 0.14  0.10 0.10
BR 0.30 0.34 032 028 0.24 0.31 034 029 0.29
250 CO 1.0 0.72 0.97 097 0.87 0.72 0.98 098 0.98
CC 1.0 0.96 098 097 0.82 0.98 0.99 098 0.98
CI 0.92 0.79 0.85 0.82 0.68 0.88 0.88 0.86 0.84
1I 0.30 0.43 034 026 0.20 0.62 0.40 0.28 0.28
BR 0.64 0.74 0.68 0.59 0.52 0.84 0.73  0.62 0.62
500 CO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CcC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CI 1.0 0.98 099 099 095 1.0 1.0 1.0 0.99
1I 0.53 0.68 0.58 048 0.39 0.91 0.66 051 0.1
BR 0.86 0.93 0.89 0.83 0.77 0.99 092 085 0.85

Note: Empirical rejection rate of 5% level tests based on size-adjusted critical values when data are generated by
(1) with @ = 0.9. The data-based bandwidth selection method of Andrews (1991) is applied to the first differ-
enced series for CO, CC, and CI. Results are based on 10,000 replications.

5. EXTENSIONS
5.1. Response Surface Analysis

In the previous section, some specific rates of the bandwidth growth were cho-
sen to represent the tests with consistent and inconsistent long-run variance esti-
mators. For the case of the numerator of the test statistics, the bandwidth can
be generally written as

K = kT?, 9

where k£ > 0 and 0 < 6 = 1. In particular, 6 = 1 is used in CO, CC, and CI to
represent the rate for the consistent estimator. This rate is known to minimize
the mean square error of the long-run variance estimator when k = 1.1447 X
(fO/f )2 where £ is the ith derivative of the spectral density of u, at fre-
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TABLE 8. Size-adjusted power of the detrended test with 5% level

AR(1) error MA(1) error
Band-  i.i.d.

T width  error p=-0.8 —0.5 0.5 0.8 0=-08 —-05 05 0.8

25 Cco 0.07 0.05 0.06  0.06 0.06 0.05 0.06  0.06 0.06
CC 0.07 0.06 0.06 0.05 0.03 0.06 0.06  0.06 0.05
CI 0.06 0.06 0.06  0.06 0.06 0.06 0.06  0.07 0.07
1I 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05
50 Cco 0.11 0.06 0.08 0.10 0.08 0.05 0.07  0.10 0.10
CC 0.11 0.08 0.10  0.09 0.06 0.08 0.10  0.10  0.09
CI 0.10 0.08 0.09  0.09 0.08 0.08 0.09 0.10 0.09
1I 0.05 0.07 0.06 0.05 0.05 0.05 0.06  0.05 0.05
100 CO 0.27 0.09 0.18 023 0.17 0.09 0.17 024 024
CC 0.27 0.20 023 020 0.12 0.18 023 023 022
CI 0.21 0.16 0.17  0.17 0.14 0.14 0.19  0.18 0.18
11 0.06 0.09 0.07 0.05 0.05 0.08 0.08 0.06 0.06
250 CO 0.91 0.37 0.75 0.79 0.63 0.40 0.76  0.84 0.81
CcC 0.91 0.73 0.82 0.78 0.56 0.71 0.83 0.83 0.80
CI 0.58 0.41 049 050 0.39 0.36 050 052 051
1I 0.13 0.19 0.15  0.10 0.08 0.22 0.18 0.12  0.12
500 CO 1.0 0.88 1.0 1.0 0.97 0.91 1.0 1.0 1.0
CcC 1.0 0.98 1.0 1.0 0.97 0.96 1.0 1.0 1.0
CI 0.86 0.62 0.74 0.78 0.67 0.55 0.74 079 0.77
1I 0.25 0.30 027 023 0.18 0.34 0.29 024 0.25

Note: Empirical rejection rate of 5% level tests based on size-adjusted critical values when data are generated by
(1) with @ = 0.9. The data-based bandwidth selection method of Andrews (1991) is applied to the first differ-
enced series for CO, CC, and CI. Results are based on 10,000 replications.

quency zero (Andrews, 1991). Theoretically, as long as the selected growth rate
of the bandwidth provides a consistent long-run variance estimator, the limit-
ing distribution of the test statistic under the null and its local asymptotic power
do not depend on the rate or the choice of a constant k. Even so, the choice
may have some effects on the small-sample performance of the test. For the
case of the inconsistent long-run variance estimator in II, the choice of 6 = 1
and k = 1 (K = T) is used because it has the simplest form in the sense that it
does not require any truncation in the kernel estimation. Unlike the consistent
case, however, even with a common growth rate 7, the test statistics based on
K = kT, with 0 < k < 1, will have different limiting distribution (and thus
local asymptotic power) depending on the choice of a constant k. For these
reasons it is of interest to see the sensitivity of the simulation results to the
choice of parameters & and & in (9). A similar argument can also be made with
the choice of bandwidth M in the denominator of the test statistics. Here we
conduct a simple response surface analysis of the (finite-sample) power of the
test with various bandwidths that includes the cases of CC and II.

The simulation design is identical to the one used for the analysis of the
finite-sample power in Section 4. For simplicity, we use the same bandwidth

https://doi.org/10.1017/5026646660606018X Published online by Cambridge University Press


https://doi.org/10.1017/S026646660606018X

364 YE CAI AND MOTOTSUGU SHINTANI

FIGURE 4. Size-adjusted power: demeaned test (7 = 100).

for the numerator and denominator (K = M) and report only the results for the
demeaned test in the case of 7= 100 and i.i.d. error. Both parameters, 6 and %,
vary from 0.05 to 1.0. Figure 4 shows the size-adjusted power of the test as a
function of 6 and k.

The power turns out to be the lowest at 0.11 when both 6 and & are the larg-
est (6 = 1 and k = 1). Note that this number corresponds to the case of II with
T =100 and i.i.d. error in Table 7. For a fixed value of 8, the power increases
as k decreases. Similarly, for a fixed value of k, the power increases monoton-
ically as 6 decreases. Finally, it also shows that no combination of 6 and &
provides a power higher than 0.52, the value obtained in Table 7 for the case
of CC.

5.2. Cointegration

The long-run variance ratio test for a unit root can be generalized to test for
cointegration (or cointegrating rank) in a multivariate system. Let ﬂ(xr, K) be
the long-run variance covariance matrix of an n-dimensional vector x,, a multi-
variate generalization of (2). The test statistic for the null hypothesis of r cointe-
gration in an n X 1 vector of time series y, then can be constructed by using the
sum of the (n — r) smallest eigenvalues of MT[Q(Ay,, K)Q(y,,M)~"]. With a
bandwidth growth rate that provides a consistent long-run covariance matrix
estimator, both theoretical and small-sample properties of the test have already
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been considered in several studies, including Shintani (2001) and Harris and
Poskitt (2004). For example, in the case of the demeaned test for no cointegra-
tion (r = 0), the statistic under the null weakly converges to a random variable
tr{(fy W,(s)W,(5)" ds)'} where W, (s) = W(s) — [, W(u) du and W(s) is
n-vector standard Brownian motion. Limiting distribution of the test statistic
based on the inconsistent long-run covariance matrix estimator can also be
obtained as a multivariate generalization of Theorem 1. Again, for the demeaned
test, random variables in the limit are tr{(2 fol ‘_VM(S)‘_NM(S), ds)"'} and

“{( f [W(s)W(s)' + (W(s) = W(1))(W(s) — W(l))’]ds)

X <2J1Wﬂ(s)wu(s)’ds>l},

respectively, for CI and II, where \_’Vﬂ(s) = Jo W, (u) du. In this section, we
investigate how the findings for the univariate case obtained in the previous
sections can be generalized to the multivariate case. In particular, we are inter-
ested in the effect of introducing the inconsistent estimator on the determina-
tion of the cointegrating rank in finite samples.

We follow Harris and Poskitt (2004) in simulation design and generate five-
dimensional vector series y, = (y1,, Y2/, Y31, Yas» ¥5,)' from a vector autoregres-
sive (VAR) model,

A(L)y, = ¢, (10)

where A(L) = diag[1 — aL,1 — aL,1 — aL,1 — L,1 — L] with || =1 and
g, = (&1,,&2,, &3, a1, €5,)  1s an i.i.d. multivariate normal random variable. An
equicorrelation matrix with correlation coefficient 0.8 is used as a variance
covariance matrix of g,, and a vector of 0’s is used as an initial value y,.
Because all the test statistics we consider here are invariant to any transfor-
mation of the form By, where B is any 5 X 5 nonsingular matrix, the simula-
tion results based on (10) cover a fairly general case of cointegration, including
a linear transformation considered by Harris and Poskitt (2004). However, in
general, the bandwidth selected by the automatic procedure is not invariant to
a linear transformation. For this reason, we employ here a fixed rule for select-
ing bandwidth in long-run covariance matrix estimation. In particular, we fol-
low Schwert (1989) and use K = [4(7/100)'/3] where [x] is an integer part of
x. The sample size T varies from 25 to 500 as in the univariate case. The
cointegrating rank is determined by successively testing from the hypothesis
of r = 0 to the hypothesis of » = 4 in case each hypothesis is not rejected.
The asymptotic critical values for the multivariate version of the demeaned
tests based on CO, CC, CI, II, and BR are obtained by approximating the lim-
iting distribution using a multivariate normal random variable with 1,000 steps
and 10° iterations.
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TABLE 9. Cointegrating rank selection using the demeaned test with 5% level

a=1.0 a=038
Band-
T width r=0 1 2 3 4 5 r=0 1 2 3 4 5
25 Co 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
cc 0.55 0.43 0.02 0.0 0.0 0.0 0.51 0.45 0.04 0.0 0.0 0.0
CI 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
1 0.96 0.04 0.0 0.0 0.0 0.0 0.97 0.03 0.0 0.0 0.0 0.0
BR 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
50 Co 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
cc 0.72 0.27 0.01 0.0 0.0 0.0 0.44 0.48 0.08 0.0 0.0 0.0
CI 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
)i 0.95 0.05 0.0 0.0 0.0 0.0 0.97 0.03 0.0 0.0 0.0 0.0
BR 0.98 0.02 0.0 0.0 0.0 0.0 0.93 0.06 0.0 0.0 0.0 0.0
100 Co 1.0 0.0 0.0 0.0 0.0 0.0 0.99 0.01 0.0 0.0 0.0 0.0
cc 0.88 0.12 0.0 0.0 0.0 0.0 0.13 0.53 0.31 0.03 0.0 0.0
CI 0.99 0.01 0.0 0.0 0.0 0.0 0.92 0.07 0.01 0.0 0.0 0.0
)i 0.95 0.05 0.0 0.0 0.0 0.0 0.95 0.05 0.0 0.0 0.0 0.0
BR 0.96 0.04 0.0 0.0 0.0 0.0 0.65 0.30 0.04 0.0 0.0 0.0
250 Co 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14 0.71 0.15 0.0 0.0
cc 0.91 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.21 0.78 0.01 0.0
CI 0.98 0.02 0.0 0.0 0.0 0.0 0.06 0.28 0.41 0.24 0.01 0.0
I 0.95 0.05 0.0 0.0 0.0 0.0 0.77 0.23 0.01 0.0 0.0 0.0
BR 0.95 0.05 0.0 0.0 0.0 0.0 0.03 0.31 0.49 0.16 0.01 0.0
500 Co 0.99 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.01 0.0
cc 0.93 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.02 0.0
CI 0.97 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.02 0.0
I 0.95 0.05 0.0 0.0 0.0 0.0 0.28 0.54 0.17 0.02 0.0 0.0
BR 0.95 0.05 0.0 0.0 0.0 0.0 0.0 0.02 0.35 0.62 0.02 0.0

Note: The relative frequencies of the selected cointegrating rank using sequential procedure. Frequencies of selecting the true cointe-
grating rank are shown in bold font. Results are based on 10,000 replications.

Table 9 reports the relative frequencies of selected cointegrating ranks by
sequentially applying the asymptotic 5% level tests in 10,000 replications. The
left side of the table shows the result with @ = 1, the case of no cointegration
(r = 0). The right side of the table shows the result with @ = 0.8, the case when
the cointegrating rank is three (r = 3). The asymptotic theory predicts that the
probability of selecting the true cointegrating rank converges to 95% whereas
the probability of selecting the smaller rank converges to zero.

When a = 1, all the tests, except the one based on CC, select the true cointe-
grating rank (r = 0) with a very high frequency for all the sample sizes under
consideration. Among all the tests, the one based on II stands out as the fre-
quency of selecting rank zero is closest to the theoretical value 95%, even if
the sample size is as small as 7= 25 or 50. The BR test shows the second-best
finite-sample performance. The test based on CC often selects » = 1 for the
sample sizes of T = 25 and 50, but the frequency of selecting r = 0 dramati-
cally increases for a larger sample size. The notable difference in the finite-
sample performance reveals the fact that the good size property of the test based
on an inconsistent estimator (II) and size distortion in the test based on a con-
sistent estimator (CC) observed in the univariate case are also present in the
five-dimensional case.
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When o = 0.8, no test selects the true cointegrating rank (r = 3) when the
sample size is less than 7 = 100. The frequencies of selecting » = 3 increase as
the sample size increases. In particular, the tests based on CO, CC, and CI per-
form reasonably well when the sample size becomes as large as 7= 500. Among
these three tests, the one based on CC dominates the other two and selects the
true rank more than three times as often as other tests when 7' = 250. In con-
trast, the test based on II underestimates r for almost all the cases. This poor
performance of the test based on II can be explained by its low power to reject
the null when the value of r in the hypothesis is smaller than its true value,
which occurs in the early stage of the sequential cointegrating rank selection
procedure. The BR test performs better than the II case but is dominated by
other tests.

From this additional experiment on cointegration, we find that the better finite-
sample property associated with lower finite-sample power in the unit root test
using an inconsistent long-run variance estimator can be well generalized to
the multivariate case.

6. CONCLUSION

In this paper, we investigated the properties of the long-run variance ratio tests
for a unit root, a generalization of a test based on the VN ratio. Our main inter-
est was in evaluating the effect of introducing inconsistent long-run variance
estimation on the size and power of the test for a unit root.

Based on the results of the Monte Carlo simulation designed to evaluate the
finite-sample property, the unit root tests with an inconsistent long-run vari-
ance estimator were found to have much less size distortion compared to the
tests with a conventional consistent long-run variance estimator. This finite-
sample size improvement, however, came at the cost of a loss in power. The
finite-sample power, in addition to the local asymptotic power, of the tests with
an inconsistent long-run variance estimator was shown to be much lower than
in tests with a consistent estimator. A further simulation experiment was con-
ducted by sequentially applying a multivariate version of the long-run variance
ratio test to determine the cointegrating rank. When an inconsistent long-run
variance estimator was used, the frequency of selecting the true cointegrating
rank was found to be dramatically lower than in the conventional test, reflect-
ing the low power to reject the null hypothesis with a value that was less than
the true cointegrating rank.

These findings resemble the case of the autocorrelation robust test in the stan-
dard regression context, where the test with a better size property, proposed by
Kiefer et al. (2000), has a lower power compared to the test based on the con-
ventional HAC asymptotics. However, in the context of the long-run variance
ratio test for a unit root, our simulation result showed that a test that combines
consistent and inconsistent estimators improves the power while maintaining
the good size property of the test based only on inconsistent estimators. Alter-
natively, although not pursued in this paper, (i) the introduction of generalized
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least squares detrending (Elliott, Rothenberg, and Stock, 1996), (ii) the use of
an AR spectral density estimator instead of a kernel-based estimator (Berk, 1974;
Perron and Ng, 1996), and (iii) the investigation of the role of higher order
terms using an asymptotic expansion (Jansson, 2004) seem to comprise a prom-
ising direction in which to extend the analysis of the effect of introducing an
inconsistent long-run variance estimator on the size and power of the long-run
variance ratio test.

NOTES

1. Recently, Miiller (2005) also considered the effect of an inconsistent long-run variance esti-
mator in his analysis of the test of stationarity. We do not consider his test here because its null
hypothesis is not a unit root.
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APPENDIX: Proofs

Proof of Lemma 1. By using a similar argument as in the derivation of equation (1)
of Kiefer and Vogelsang (2002), we have

(;)2()(”7«) = 7! i i(l _ |i_j>xl-x-_T1 Exié(l _ i_j>xj

i=1j=1 T =1 j=1 T
T T71|i_'_1|_‘i_-|
= lext{ ! ! S] _ST
i=1 j=1 T
r T 2X 1,y —1 1 ;
{i=j} 12
R D L R D E = Ly Sy ARy
;1 {gl T orttr T}
T T T
=T 2382 xQ2 X Ly — 1) = T 23+ T728, 3 ix;
j=1 =1 =

i=1

T T
=T 28,028, —S;) — T 257+ T8, > ix;
Jj=1

T T T
=272 87— T 257+ T’ZST<2 ix; — >, Sj)
Jj=1

j= i=1 j=1

T T
=2T 2> 87— T 287 + T—ZST<(T+ DS, —2> S,)
j=1

j=1
T T
=2T 22 8P+ T 'S;—2T728, X, S;,
Jj=1 Jj=1
where 1, is an indicator function that takes one when A is true and zero otherwise. H

Proof of Theorem 1. In the proof, the limits on integrals over the unit interval are
omitted. For example, |, 01 W(s)? ds is written as [ W 2. For the proof of part (a), we first
investigate the asymptotic properties of the numerator of the long-run variance ratio.
Under Assumption 1, we have ®@2(Ay,, kT '/3) £ w?. For the case of the inconsistent
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rate K = T, applying Lemma 1 to x, = Ay, and §, = E}ZI Ay; =y, yields

T T
@*(Ay,, T)=2T2 Xy + T 'y = 2T 2y, Xy, (A.1)
=1

=1

= w? {2fW2 + W(1)% - 2W(1)fW},

where the joint weak convergence results 7 22! | y2 = w2 W2 y, /NT = oW(1),
and 73237 |y, = w [W follow from Lemma 2.1 of Park and Phillips (1988) For the
asymptotic properties of the denominator, first note that 7' &%(y,,1) =T 22, y? =
w?f} W2, For @*(y,,M) with M/T — 0, we have

M—1 T
MT)'@*(y,M)=M"" X (A—j/MDT? 3 vy
j=—(M—1) =jl+1
M—1
=M X (A-|jM)T" ZEy, +0,(M/T)
j=—(M-1)

= ([ a-rnar)or [(we=e ['we

where the second equality follows from

T T—j T—j T—j J
T2 X vy =T 2 2y y =T 2 20+ T2 2y, 2wy
Pl =1 =1 =1 s=1
T—j
=772y +0,(M/T)

=1

for any j = 1,...,M — 1 because T~ 3/ y,u,.; = (0*/2){W(1)2 — 1} — X/_, y, for
any j = 1,...,M — 1. Finally, for ®@>(y,,T), applying Lemma 1 to x, = y, and S, =
-1y, yields

T T
T20%(y,,T) =2T"* > S2+ T382—2T74S, > S,
1

=1

oo (o) (o) 15}

where the joint weak convergence results for the 1(2) process 774 27, 52 = w2 W?2
and 732 1S, = W are from Lemma 2.1 of Park and Phillips (1989) and
T7328; = T = E, 1 ¥; = o [W. The required results for part (a) can be obtained by
combining the appropriate results under CO, CC, CI, and II, because the convergence of
the numerator and the denominator holds jointly and the nuisance parameter w? cancels
out for any combination.

For the proof of part (b), let us first note that the numerator of the demeaned test
statistic R,, is identical to that of the standard test statistic R and thus its asymptotic
property is already provided in the proof of part (a). For the denominator of R, with
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M = T, the formula in Lemma 1 simplifies to 27727, 52 because S = 0 for the
demeaned series x; =y, — y. The rest of the proof is similar to part (a) with the standard
Brownian motion replaced by the demeaned Brownian motion. The proof of (c) is entirely
analogous to that of parts (a) and (b) except for the use of the demeaned Brownian
bridge. |

Proof of Theorem 2. We show only the consistency of the R test because the re-
sults for R, and R, can be obtained using a similar argument. Let us write ,(j) =
T3 ;415 Y. ; and maintain the assumption on the initial value y, = 0. Then,
under the fixed alternative, the limiting behavior of the numerator for the overdiffer-
enced series when K/T — 0 is given by

K—1

> —ljhr~! 2 e = V=) =) = Yempji=1)

A/':—(K—l) =jl+1

Kd?(Ay,, K)

K—1 T
> IJI){T' E YoV =T ; Vi1 Yie|j]
t=|j|+1

./':*(K*I) r=[jl+1

T T
-7 E )’ryz—\j\—1+T_l E )’z—l)’z—m—l}

t=|j|+1 t=jl+1

K—1

> (K= 1D UD = 3,71 =D+ T ey L jeoy
j=—(K—1)

=3l + D+ 9,7 = T yryr 1}

:22%(1)—22%(1)+T yT{KyT 2 > yj}

j=T—K+1

T

=2(9,(0) = §,(K)) + (K/T)y; =2y, T~" Xy ->207>0,

j=T—K+1

where 02 = 372,(Zi_ya'7c;)?02. For the inconsistent rate with K = 7, (A.1) in the
proof of Theorem 1 can be also used to obtain

T
T&*(Ay,, T) = 2T X y2 + y7 = 29,5 > 20, + y2, > 0.

=1

For the denommator because y, is stationary, we have @2(y;,1) N 0'2 and

@*(y,,mT ") 25 2. Finally, for the inconsistent rate with M = T, applying Lemma 1
to x, =y, yields

T T
&y, T)=2T"2D 82+ T7'S2—-2T728,; > S,

=1 =1

w? {ZfWZ +W(1)? — 2W(1)fw}
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because S; = Ej'-zl y; is an I(1) process. Combining the all the results yields
TR 252k~ >0 for CO,

T7'R-52mk'olw;?>0 for CC,

-1
TR =2k "0 w,? {2fw2 + W(1)? - 2W(l)fW} >0 forCI, and

-1
T'R= (207 +y2) {ZJWZ + W(1)? —2W(1)fW} >0 forll

Therefore, all the test statistics diverge in the positive direction as required.
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