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When an acoustic wave impinges on an aerofoil cascade, a convective vorticity mode
is generated giving rise to transverse velocity perturbations. This mode conversion
process is investigated to explain the flow dynamics observed when swirlers are
submitted to incident acoustic disturbances. The phenomenon is first studied in the
case of a two-dimensional aerofoil cascade using a model derived from an actuator
disk theory. The model is simplified to deal with low-Mach-number flows. The
velocity field on the downstream side of the cascade features two components, an
axial perturbation associated with the transmitted acoustic wave and a transverse
disturbance corresponding to the vorticity wave generated at the cascade trailing
edge. The model provides the amplitude of both components and defines their phase
shift. Numerical simulations are carried out in a second stage to validate this model
in the case of a cascade operating at a low Reynolds number Rec = 2700 based on
the chord length. Space–time diagrams of velocity perturbations deduced from these
simulations are used to retrieve the two types of modes. Experiments are then carried
out in the case of an axial swirler placed in a cylindrical duct and submitted to
plane acoustic waves emitted on the upstream side of the swirler. The amplitude and
phase of the two velocity components measured in the axial and azimuthal directions
are found to be in good agreement with theoretical estimates and with numerical
calculations. This analysis is motivated by combustion dynamics observed in flames
stabilized by aerodynamic swirlers in continuous combustors.

Key words: acoustics, aerodynamics, compressible flows

1. Introduction
Mode conversion is a mechanism where one type of propagating disturbance

generates another type of wave. This involves convective modes (entropy and vorticity)
and acoustic modes and takes place in many situations in fluid dynamics. The present
investigation is concerned with one such mechanism whereby an acoustic wave is
incident on an aerofoil cascade producing a vorticity wave in the downstream flow. At
this point, it is worth putting this problem in perspective by reviewing configurations
of fundamental and practical interest where mode conversion is important.

In figure 1(a), entropy waves, generally hot spots, convected through a nozzle
generate acoustic pressure waves which are radiated to the far field. This mechanism

† Email address for correspondence: paul.palies@em2c.ecp.fr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

61
42

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006142


546 P. Palies, D. Durox, T. Schuller and S. Candel

s′/cp

s′/cp

s′/cp

p′

v′

p′

p′
p′

p′

p′

p′

p′

v′

v′

v′

Nozzle

(a)

(c)

(e)

(g)

( f )

(d)

(b)

Cavity
Shear
layer

Diaphragm

Solid propellant Nozzle

Cascade

Duct

Entropy wave

Acoustic wave

Convective wave

Figure 1. Review of mode conversion mechanisms. (a) Entropy waves, generally hot spots,
convected through a nozzle generate acoustic pressure waves which are radiated to the far
field. (b) Entropy waves impinging on a blade row. (c) Vortices shed from the upstream
side of a cavity exposed to a uniform flow. (d ) Vortices shed from baffles separating the
propellant segments and protruding in the gas stream or from the edge of the propellant block.
(e) Acoustic waves are impinging the diaphragm and vortices are then generated. (f ) Modulated
jet exhausted from a nozzle or a channel into a quiescent atmosphere. (g) Conical flame
submitted to acoustic modulations.

designated as ‘entropy noise’ or indirect combustion noise initially considered by
Candel (1972) and Marble & Candel (1977) has been examined extensively in relation
with aeroacoustic applications by Morfey (1973a), Ffwocs-Williams & Howe (1975),
Howe (1975), Bake et al. (2009) and Leyko, Nicoud & Poinsot (2009). A related
problem considered by Cumpsty & Marble (1977a) is that of entropy waves impinging
on a blade row sketched in figure 1(b). The cascade acts like a nozzle and the incident
entropy waves are accelerated in the flow generating acoustic waves propagating in the
upstream and downstream directions. This again constitutes a source of core noise in
gas turbines studied by Cumpsty & Marble (1977b). In the third configuration shown
in figure 1(c), the coupling results from vortices shed from the upstream side of a cavity
exposed to a uniform flow. The vortices impinge on the downstream cavity lip and
generate acoustic waves which, in turn, synchronize the vortex shedding mechanism at
the cavity leading edge (see, for example, the review by Rockwell & Naudascher 1979).
Characteristic frequencies can be estimated with an expression due to Rossiter (1964).
A related problem found in solid propellant rocket engines is shown in figure 1(d ).
Here, vortices are shed from baffles separating the propellant segments and protruding
in the gas stream or from the edge of the propellant block as exemplified in this
subfigure. The vortices impinge on the nozzle radiating an acoustic wave which may
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Figure 2. Mode conversion mechanisms studied in the present work. (a) Acoustic waves
impinging on an aerofoil cascade. (b) Acoustic waves impinging on a swirler in a duct.

couple with the vortex shedding mechanism giving rise to self-sustained oscillations. In
solid rocket engines, this mechanism is responsible for troublesome thrust oscillations
augmenting the vibrational levels on the payload as studied by Dotson, Koshigoe &
Pace (1997). A simplified version of the previous case is shown in figure 1(e) where
a diaphragm blocks the flow in a channel. When an acoustic wave impinges on this
constriction, vortices are generated. The mode conversion process taking place in
this geometry is studied in a recent article by Noiray et al. (2009). Another situation
of interest is that of a jet exhausted from a nozzle or a channel into a quiescent
atmosphere as shown in figure 1(f ). An acoustic wave propagating in the upstream
flow and interacting with a channel exhaust produces a convective mode in the free
jet when the Strouhal number is sufficiently low meaning that the oscillation is in
the low-frequency range. This process has received considerable attention in the past
and is the subject of a classical article by Crow & Champagne (1971). Birbaud et al.
(2007) provide many additional references and map the various modes of interactions
in a diagram. A related process takes place in a flame stabilized on a burner equipped
with a driver unit as in figure 1(g). In the low-frequency range, the acoustic wave is
transformed into a convective mode which modulates the flame. This type of mode
conversion has been studied, for example, by De Soete (1964), Boyer & Quinard
(1990), Baillot, Durox & Prudhomme (1992), Bourhela & Baillot (1998), Schuller,
Durox & Candel (2003), Birbaud, Durox & Candel (2006), Kornilov et al. (2007) and
Shanbhogue et al. (2009).

The present article is concerned with the problem shown in figures 2(a) and 2(b).
An acoustic wave impinges on an aerofoil cascade or a swirler placed in a duct. The
motivation for this analysis lies in the domain of combustion dynamics. In many
combustors operating in a continuous mode, the flame is stabilized in a swirling flow
generated by axial or radial vanes. Typical gas turbine combustors rely on radial
swirlers which impart rotation to the incoming air producing an inner recirculation
zone filled with hot gases and anchoring the flame in the vicinity of the injection
plane. Under unstable operation coupling acoustics and combustion, the swirlers are
submitted to incident acoustic perturbations. It is interesting to examine this situation
and specifically analyse the possible generation of a vorticity wave and the associated
velocity perturbations on the downstream side of the swirler. At this point, it is
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worth briefly reviewing the literature dealing with the interaction of perturbations
with blade rows. This problem covered in the classical textbooks of Horlock (1978)
and Greitzer, Tan & Graf (2004) has been extensively investigated in the domain of
turbomachinery, for example, by Kaji & Okazaki (1970), Koch (1971) and Morfey
(1973b) in early works and more recently by Peake & Kerschen (1997) and Glegg
(1999). It is important because such interactions induce fluctuating forces on the blades
generating noise and undesirable vibrations. Conversion of entropy fluctuations by
a cascade has been worked out analytically by Cumpsty & Marble (1977b) and was
pursued by Cumpsty (1979). It is shown that the interaction gives rise to acoustic
pressure waves. These studies are used as starting points of the model developed in
the present article. Most of these studies consider high-Mach-number flows found in
axial compressors or turbines, the case of low Mach flows is less well documented.

The response of a cascade to unsteady perturbations can be studied with numerical
simulations as exemplified by Paynter (1997). The case of swirlers interacting with
acoustic perturbations has recently been examined by Wang & Yang (2005) using
large eddy simulations (LES). Consequences on the dynamics of swirling flames are
discussed in a recent review by Huang & Yang (2009). It is deduced from simulations
that axial and azimuthal velocity disturbances propagate at different velocities on
the downstream side of the swirler. This is also inferred by Hirsch et al. (2005)
and Komarek & Polifke (2010). While the presence of the convective component
is recognized by these authors, there are no direct measurements of the axial and
azimuthal velocity components which support this conclusion and no theoretical
attempt is made to estimate the respective levels of the various perturbations, except
perhaps in a study carried out by Sajben & Said (2001) where the strength of the
vorticity wave is estimated.

This article is organized as follows. A theoretical formulation is first derived from
the analysis of Cumpsty & Marble (1977b) to deal with situations where the Mach
number is low corresponding to standard operation of swirlers (§ 2). The blade
row is assumed to operate in the low-velocity range and interacts with an incident
acoustic wave giving rise to a perturbed velocity field downstream of the cascade.
Amplitudes of the downstream perturbations are determined. The model is derived
in two dimensions, a standard assumption used in turbomachinery analysis, where
the flow is described on a median cylindrical surface located at equal distances from
hub and tip. The underlying equations are based on an actuator disk description.
Numerical simulations are carried out with a Navier–Stokes unsteady flow solver (§ 3).
Simulations are performed in a two dimensional (2D) cascade which is consistent with
the 2D theory. The modulation-free flow established in a group of aerofoils is obtained
in a first step. In this simulation, the wakes formed at the aerofoil trailing edges give
rise to a shear layer instability which develop into a Kármán street of vortices. The flow
is then modulated by an axial acoustic wave which propagates towards the cascade.
Two modulation frequencies are considered f = 60 and f = 100 Hz corresponding to
two Strouhal numbers based on the chord length, respectively equal to 0.15 and 0.25
for two amplitudes of the inlet velocity fluctuation u′

∞ = 0.1 m s−1 and u′
∞ =1ms−1.

These simulations are used to extract the velocity component amplitudes. Space–time
diagrams are plotted highlighting the axial and azimuthal modes of propagation. The
problem is then examined experimentally by making use of a ducted swirler submitted
to a plane acoustic wave (§ 4). This axisymmetric geometry is easier to consider for the
experiments. The situation is close to that found in turbomachinery analysis where
calculations are carried out in 2D cascade configurations while the real geometry has
a rotational symmetry. The objective is not so much to reproduce simulations through
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Figure 3. Geometry of the aerofoils cascade.

an experiment but to reveal a mechanism and for this one may use the geometry
which is easiest to explore. The perturbed velocity field on the downstream side of
the swirler is characterized and these data are compared with theoretical estimates
and numerical calculations (§ 5).

2. Theoretical model
This analysis is concerned with the interaction taking place between a swirler

and incident acoustic perturbations. This problem is easier to tackle theoretically by
considering the 2D geometry of a cascade as plotted in figure 3. The incoming flow
velocity w1 is oriented in the axial direction while the outgoing flow w2 makes an
angle θ 2 with respect to the axis. One assumes that the flow velocities remain in the
low-Mach-number range. The characteristic size of the cascade (the blade chord) is
small compared to the acoustic wavelengths considered. The ratio is typically of the
order of 0.01. One may then consider that it is compact with respect to the incident
wave field and use an actuator disk to represent the blade row. The swirler can then
be treated as a discontinuity for these perturbations and operates like an actuator
disk.

To relate perturbations on the upstream and downstream sides of this cascade, one
may use jump conditions provided by Cumpsty & Marble (1977b) which are adapted
to a low-Mach-number flow:

s ′
1 = s ′

2, (2.1)

ρ ′
1

ρ1

+
w′

1

w1

− θ ′
1 tan θ 1 =

ρ ′
2

ρ2

+
w′

2

w2

− θ ′
2 tan θ 2, (2.2)

p′
1

γp1

+
s ′
1

(γ − 1)cp

=
p′

2

γp2

+
s ′
2

(γ − 1)cp

, (2.3)

where s ′ is the entropy fluctuation and ρ ′/ρ the relative density fluctuation. Subscripts
1 and 2 refer to inlet and outlet of the cascade vanes. The ratios w′

1/w1 and w′
2/w2

are the relative velocity fluctuations on each side of the cascade, θ ′
1 is the fluctuation

of the angle of incidence θ1, θ ′
2 is the fluctuation of the angle θ2 at the trailing edge, p′

refers to the fluctuation in pressure, γ is the specific heat ratio and cp is the specific
heat of the working fluid. At the trailing edge, the Kutta condition implies that the
flow should leave the blade in a direction tangent to the mean camber line so that
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the perturbation angle vanishes θ ′
2 = 0. In region 1, the pressure field is formed by

incident and reflected acoustic waves which are taken as plane waves propagating in
the axial direction:

p′
1 = A exp i(kx − ωt) + AR exp i(−kx − ωt), (2.4)

where A is the amplitude of the incident acoustic wave, R is the reflection coefficient of
this wave and k = ω/c designates the acoustic wavenumber. The velocity fluctuation
corresponding to this field is expressed as

u′
1 =

A

ρ1c1

exp i(kx − ωt) − AR

ρ1c1

exp i(−kx − ωt), (2.5)

where ρ1 and c1 are the density and the speed of sound in region 1. It is assumed in
the present analysis that the mean density and speed of sound are the same on both
sides of the swirler : ρ1 = ρ2 = ρ and c1 = c2 = c. In region 2, the transmitted acoustic
pressure also propagating in the axial direction can be written as

p′
2 = AT exp i(kx − ωt), (2.6)

where T is the transmission coefficient and the corresponding acoustic velocity
component is (subscript a):

(u′
2)a =

AT

ρ c
exp i(kx − ωt). (2.7)

A vorticity wave (subscript v) is also generated at the swirler. This is required to
satisfy the set of jump conditions. The incident acoustic field has a wavevector which is
perpendicular to the actuator disk. This field of plane waves and those corresponding
to the reflected and transmitted acoustic waves have a zero wavevector projection in
the transverse direction. As a consequence, the vorticity wave must also have a zero
wavevector projection in the transverse direction to be compatible with the other
wave fields. The vorticity wave corresponds to a convective velocity fluctuation which
is transverse to the direction of propagation. There are no velocity perturbations in
the x-direction to satisfy conservation of mass. The vorticity wave must then have a
zero wavenumber in the transverse direction y and it is convected by the mean flow
in the replace by x-direction with a velocity u2 = w2 cos θ2 which is also equivalent
to v2 = u2 tan θ2. This wave comprises a single velocity component of amplitude B in
the transverse direction:

(v′
2)v = B exp i

[
ωx

w2 cos θ2

− ωt

]
. (2.8)

Velocity perturbations on the downstream side of the swirler have the following
components:

w′
2 = (u′

2)aex + (v′
2)vey. (2.9)

In what follows, one may drop indices a and v but it is important to remember that
the axial and transverse velocity components, respectively correspond to an acoustic
wave propagating at the speed of sound c and to a vorticity wave convected at
the flow velocity u2 = w2 cos θ2 in the axial direction. It is interesting to determine
fluctuations in the modulus of the downstream flow velocity w′

2 = u′
2ex + v′

2ey and in
the angle θ ′

2. We begin with

w2 + w′
2 =

[
(u2 + u′

2)
2 + (v2 + v′

2)
2
] 1

2 . (2.10)
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Neglecting second-order terms, this last expression can be written as

w2 + w′
2 =

(
u2

2 + v2
2

) 1
2

[
1 + 2

(
u2u

′
2 + v2v

′
2

)
u2

2 + v2
2

] 1
2

. (2.11)

Expanding the square root to first-order, one finds

w2 + w′
2 = w2

[
1 +

(
u2u

′
2 + v2v

′
2

)
w2

2

]
(2.12)

and the fluctuation in modulus may be written as

w′
2 =

u2

w2

u′
2 +

v2

w2

v′
2. (2.13)

This can be cast in the following form for w′
2:

w′
2 = cos θ2u

′
2 + sin θ 2v

′
2. (2.14)

Some straightforward calculations also lead to

θ ′
2 = sin θ 2 cos θ 2

[
v′

2

v2

− u′
2

u2

]
. (2.15)

Noting that the change in pressure and density across the swirler is small (p1 � p2,
ρ1 � ρ2), one easily deduces from the previous set of jump conditions that:

p′
1 = p′

2, (2.16)

w′
1

w1

− θ ′
1 tan θ 1 =

w′
2

w2

− θ ′
2 tan θ2, (2.17)

Now, the fluctuation in angle on the downstream side of the swirler must vanish
to satisfy the unsteady Kutta condition θ ′

2 = 0. Since fluctuations on the upstream
side are only axial w′

1 = u′
1, one deduces that there are no angular fluctuations at the

leading edge θ ′
1 = 0. The jump conditions for the perturbations simplify to

p′
1 = p′

2, (2.18)

u′
1

w1

=
u′

2 cos θ2 + v′
2 sin θ 2.

w2

(2.19)

Inserting (2.4)–(2.8) in these last expressions, one obtains

A(1 + R) = T , (2.20)

A

ρ c

1

w1

(1 − R) =
AT

ρ c

1

w2

cos θ2 +
B sin θ 2

w2

. (2.21)

Noting that the steady state mass balance requires that w1 =w2 cos θ 2, the previous
expression becomes

A(1 − R) = cos2 θ2AT + ρc sin θ 2 cos θ 2B. (2.22)

From the Kutta condition θ ′
2 = 0 (2.15), one also deduces that v′

2 = u′
2 tan θ 2 which

yields

B =
AT

ρ c
tan θ 2. (2.23)

Inserting this expression in (2.22), one obtains

A(1 − R) = AT. (2.24)
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This relation combined with (2.20) finally yields

R = 0 and T = 1. (2.25)

Assumptions of equality of mean pressure and density on the two sides of the swirler
lead to a zero reflection coefficient and to a unit value for the transmission coefficient.
One also finds from this analysis that the transverse velocity is directly proportional
to the axial acoustic velocity component and that tan θ 2 defines the proportionality
between these two components. This result is in agreement with previous findings by
Sajben & Said (2001). It is thus possible to write the velocity components on the
downstream side of the swirler in the following form:

u′
2 =

A

ρ c
exp i

[ω

c
x − ωt

]
, (2.26)

v′
2 =

A

ρ c
tan θ 2 exp i

[
ω

u2

x − ωt

]
. (2.27)

The axial velocity perturbation propagates at the speed of sound while the transverse
velocity component is convected at the local flow velocity u2 = w2 cos θ2 in the axial
direction. The previous calculations indicate that the swirler acts as a mode converter.
When it is submitted to axial acoustic waves, it generates a vorticity wave which is
convected by the flow in the axial direction. This convective wave is characterized
by a velocity component in the transverse direction. The relative amplitude of this
component is equal to the relative amplitude of the axial velocity perturbation
v′

2/v2 � u′
2/u2. These conclusions were obtained from a 2D actuator disk theory

because it provides essential results without the complications encountered in a 3D
configuration. Such 2D analyses are found in turbomachinery flow investigations (see,
for example, Cumpsty & Marble 1977b). The reasoning is easy to follow in 2D because
the algebra is simplified by using a well-established actuator disk framework. The
analysis in 3D is more complex because of the radial velocity component. However,
3D numerical simulations carried out recently by our team in Palies et al. (2011)
indicate that the mode conversion is confirmed and that the amplitude of the radial
component is less important by an order of magnitude than the axial and azimuthal
components. It is then reasonable to apply the previous results to a swirler and
consider that the azimuthal velocity fluctuation can be approximately identified to
the transverse component determined previously.

3. Numerical simulation
Simulation is now used to examine the unsteady flow interaction with a cascade.

It is convenient to examine the process with 2D configurations. The computational
requirements are reduced and calculations can be repeated. Simulations are carried
out with the AVBP code (Schonfeld & Rudgyard 1999), a compressible Navier–
Stokes flow solver operating on structured and unstructured meshes. AVBP solves
the laminar and turbulent compressible Navier–Stokes equations in two or three space
dimensions. The last effort on this code was put on modelling unsteady turbulent
reactive flows motivated by activities in the field of unsteady turbulent combustion
as reported by Selle et al. (2006) or Staffelbach et al. (2009). This code is used in
the present context because it has a good degree of precision with a third order in
space and in time discretization and suitably describes acoustic flow interactions. The
filtered compressible equations exhibit subgrid-scale tensors and vectors describing
the interaction between the resolved and subgrid motions.
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The filtered quantity f is resolved in the numerical simulation whereas f ′ = f − f

is the subgrid-scale part due to the unresolved flow motion. For variable density ρ, a
mass-weighted Favre filtering is introduced such as

ρf̃ = ρf . (3.1)

The balance equations for LES are obtained by filtering the instantaneous balance
equations and give

∂ρ ũi

∂t
+

∂

∂xj

(ρ ũi ũj ) = − ∂

∂xj

[
P δij − τij − τij

t
]
, (3.2)

where ρ refers to the density, u to the velocity, p to the pressure, δ the Kronecker
symbol and τij and τij

t are, respectively the laminar and turbulent filtered stress
tensors. Subscripts i, j and l refer to the three spatial dimensions while t denotes for
turbulence

∂ρ Ẽ

∂t
+

∂

∂xj

(
ρ Ẽ ũj

)
= − ∂

∂xj

[
ui (P δij − τij ) + qj + qj

t
]
+ ω̇T + Qr. (3.3)

In this equation, E denotes the total energy per unit mass, qj and qj
t are, respectively

the resolved filtered and the subgrid-scale heat flux vectors, ω̇T is the chemical source
term and Qr the radiative source term. Repeated indices imply summation over this
index (Einstein’s rule of summation). For generality, the filtered chemical source terms
(ω̇T and Qr ) are mentioned here but are not used in the present study.

In (3.2) and (3.3), one recognizes standard resolved parts including laminar stress
and flux terms and an unresolved part featuring turbulent stresses and fluxes. The
resolved parts are the same as those found in direct numerical simulation (DNS) but
they are expressed in terms of filtered variables. In LES, the unresolved part has to
be modelled. In the limiting case where the unresolved stresses and fluxes vanish, the
code provides quasi-DNS solutions of the Navier–Stokes equations.

In the present analysis, the code is used in this quasi-DNS limit because the cell
size in the region of interest is very small and the Reynolds number based on the
chord length is low (Rec = 2700). It has also been verified that standard boundary
layer structures are well retrieved. Under these circumstances, the physical viscosity is
much larger than the subgrid-scale viscosity. It has been checked that in the cascade
and its near-field (at distances of up to 4 chords), the laminar viscosity is two orders
of magnitude larger than the subgrid-scale viscosity. In order to document the effects
of subgrid-scale viscosity quantitatively, the ratio of the local subgrid-scale viscosity
to the laminar viscosity is plotted in figure 4. To allow more precision, 10 iso-contours
of this ratio are plotted in a range extending from 0 to 0.12. The wake region is
highlighted. This indicates that in this region, this ratio is, on average, around 0.02 and
does not exceed 0.04. Further downstream, the level increases as the computational
cell size increases and this serves to dissipate the vortex structures formed at the
cascade trailing edge. The subgrid-scale stresses are only used in the present context
to dissipate the vortices convected by the flow towards the outlet of the domain. This
can be accomplished with a Smagorinsky model, which is used here to avoid problems
linked with the passage of vortices through the downstream boundary. When the cell
size is increased, dissipation by this model is augmented and the perturbations are
damped in this way. The downstream part of the domain serves as a ‘sponge layer’
and is not used in the analysis. The acoustic motion is also well represented with
the third order in space and time precision of the code. The element sizes are much
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Figure 4. Ratio of the local subgrid-scale viscosity to the laminar viscosity in the wake region.
Ten iso-contours of this ratio are plotted in a range extending from 0 to 0.12. Both results are
extracted from numerical simulations with a modulation frequency f = 60 Hz. (a) Phase 0◦.
(b) Phase 180◦.

Figure 5. Mesh used for numerical simulations.

smaller than the wavelength and the size of the domain of interest is much smaller
than the wavelength. Under these conditions, the system is compact with respect to
the wavelength, the acoustic motion then corresponds to a bulk fluctuation of the
flow variables and the level of dissipation and dispersion are minimal in the region
of interest.

A group of five aerofoils is used to represent the cascade together with periodic
boundary conditions on the upper and lower sides of the domain. The mesh shown in
figure 5 comprises 450 000 cells. The total length of the computational domain is 13 cm
while the transverse size is 3.1 cm corresponding, respectively to 13 and 3.1 chord
lengths. Aerofoils are separated by 6 mm in the transverse direction. Several previous
investigations have been carried out with the AVBP code in which tetrahedral grids
have been used. Considering the growth of a laminar boundary layer over a thin flat
plane, standard expressions give a thickness of nearly 1 mm at the trailing edge. Each
side of the aerofoil is refined with 200 mesh points so that at least 20 points lie in
the boundary layer at the trailing edge. The mesh is sufficiently refined to capture the
boundary layers on the aerofoils suction and pressure sides. The minimum cell size
is 0.03 mm and the typical average cell size is 0.045 mm. Time integration is explicit
with a fixed time step equal to 4.5 × 10−8 s.

The air flow velocity at the numerical domain inlet is fixed to u∞ = 4 m s−1. This
flow impinges on the cascade. Each aerofoil features a NACA 8411 profile which is
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t = 0.45 ms t = 13.5 ms

t = 2.25 ms t = 18 ms

t = 11.25 ms t = 24.75 ms

Figure 6. Vorticity fields of the flow in the absence of acoustic modulation. The maximum
level of vorticity 5000 s−1 is in black while the minimum level −5000 s−1 is in white. The
time instant of each simulation is given below each field in milliseconds. The flow dynamics
goes through three stages : (i) emission of a vortex from the aerofoils trailing edges, (ii)
destabilization of the wake caused by shear layer instability, (iii) fully developed Kármán
vortex street.

also used to design the swirler considered in § 4. The trailing edges make an angle
θ 2 = 25◦ with the horizontal axis. The chord length of the aerofoil is lc =10 mm. No
slip boundary conditions are used on the aerofoils and the upper and lower sides
of the domain are periodic. Non-reflecting boundary conditions for Navier–Stokes
equations are used at the computational domain inlet and outlet and this allows an
easy modulation of the flow at the inlet. The outlet then behaves as a non-reflecting
subsonic condition.

We first investigate the dynamics of the modulation-free flow through the cascade.
There are no incident perturbations and the dynamics observed in this reference
case corresponds to the transient leading to the establishment of the flow in
the aerofoil cascade and in the downstream domain. It is interesting to examine
the vorticity field in the downstream flow shown in figure 6 in the form of successive
maps. The flow is initialized with an axial velocity equal to 4 m s−1 everywhere in
the computational domain. This does not satisfy the boundary conditions in the
cascade and there is an initial adjustment of the flowfield during a short period of
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Figure 7. Space–time diagrams of velocity components beyond the aerofoils cascade. These
diagrams are obtained with raw velocity signals extracted from numerical simulations along
straight lines downstream the cascade. Units of the colorbar are m s−1. (a) u velocity component.
(b) v velocity component.

time. A starting vortex is then shed from the trailing edges to satisfy Kelvin’s theorem.
The circulation in each vortex is opposite to that which develops around each blade.
This can be seen at t = 0.45 ms in figure 6. One distinguishes a vortex shed at the
extremity of each trailing edge. This intense starting vortex is generated to satisfy
the conservation of circulation in the flow as expected from Kelvin’s theorem. From
t = 2.25 to t = 11.25 ms, this primary vortex is convected in the downstream direction
and the wake behind each aerofoil expands in both axial and transverse directions.
The starting vortex intensity is progressively reduced by viscous dissipation. This
vortex is also dissipated by numerical viscosity that is low but non-negligible when
the mesh size increases near the domain outlet. Shear layer instability becomes visible
at t = 13.5 ms. The instability grows up to t = 18 ms. The flow then approaches a
state which satisfies the Navier–Stokes equations and boundary conditions on the
blades and computational domain boundaries. The amplitude of oscillation saturates
for larger times t > 20.25 ms giving rise to well-established Kármán vortex streets
defining a pattern of counter-rotating vortices.

These simulations are carried out at a modest flow velocity and the flow while
unsteady remains laminar but features a periodic pattern of vortices generated by
wake instability. The mode conversion process is also operating under turbulent flow
conditions, a point which is currently investigated with fully 3D simulations of the
flow through a swirler. To obtain a fully-turbulent wake downstream the cascade,
the inlet velocity should be augmented but this is out of the scope of this study. To
make sure that the flow remains laminar, the calculations were carried out for the
modulation-free flow over a long period of 50 ms. It was found that the flow did not
transition to a turbulent state but continuously featured distinct vortex patterns like
those shown in figure 6.

This dynamics is now studied with space–time diagrams describing the temporal
evolution of both axial and transverse velocity components u and v along straight
lines in the axial direction. Data were recorded at points separated by a distance
�x =5 mm over a distance of 50 mm corresponding to five chord lengths and over
a time duration of 35 ms. The aim of the space–time diagrams is to highlight the
behaviour of the flow on the downstream side of the cascade. Figure 7 shows the
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Velocity signal
N data samples

Data duplication to form
a periodic signal with

M = Q N samples

Filtered periodic
signal with
M samples

Filtered periodic
signal with
N samples

FFTM
M-point fast

Fourier transform

FFTM
–1

M-point inverse fast
Fourier transform

Low-pass filtering
cutoff frequency

fc = a fm
α = 1.5

Figure 8. Block diagram detailing the filtering procedure of velocity signals.

space–time diagram corresponding to figure 6. The axial and transverse velocity
signals are analysed as a function of time in the diagram appearing in figure 7.
Figures 7(a) and 7(b), respectively display the axial u(x, t) and transverse v(x, t)
velocity components along this line. From t = 0 to about t = 20 ms, one observes in
figure 7(a) a periodic pattern of alternating high and low velocities convected by
the mean flow and corresponding to the shedding and convection of the starting
vortex described previously. The second pattern observed is the trace of the wake
with a velocity defect as expected. Finally, at t =18 ms, a periodic pattern is formed
reflecting the convection of vortices in the Kármán streets. The same description
applies to the velocity component v displayed in figure 7(b). The first pattern is now
superposed on a zero-velocity region where no transverse velocity exists before the
flow is established in the cascade. The second pattern in this figure corresponds to
the trace of the wake and is characterized by a low-velocity region. Beyond t = 18 ms,
one observes a regular pattern associated with the Kármán vortices at a frequency
f =905 Hz corresponding to a Strouhal number St = f lb/u∞ = 0.25 based on the
blade maximum thickness lb = 1.1mm and the inlet velocity u∞ = 4 m s−1.

3.1. Data analysis for modulated cases

The analysis is now carried out both for low and high amplitudes of modulation.
The objective is to investigate signal amplitudes and acoustic or convective modes.
Some data processing is needed to extract the periodic signals corresponding to
the perturbed motion from the complete velocity signal. This can be done by
noting that the modulation frequency is well separated from the natural vortex
shedding frequency. One may then extract the required information by filtering out
the velocity data. The procedure is detailed in the block diagram in figure 8 and
consists in applying a fast Fourier transform (FFT) algorithm to the perturbed
velocity fields u′ and v′. The signal comprising N samples corresponding to three
periods is first duplicated Q times to form a longer sequence of M =Q N samples.
This sequence is then used to get the Fourier transform with an FFT algorithm.
The duplication operation applied to the data is used to artificially increase the
spectral resolution. The elementary filter size �f is reduced by a factor 1/Q. Spectral
components corresponding to frequencies exceeding a cutoff value fc =αfm, fm being
the modulation frequency (α = 1.5), are then eliminated. This procedure filters out
high-frequency components corresponding to vortex shedding in the aerofoil wakes.
An inverse FFT is then applied to the result. This process corresponds to a rectangular
window in the frequency domain. The transition band is sharp, but the rejection level
is moderate. However, by suitably choosing α, one can essentially eliminate the signals
associated with vortex shedding yielding the low-pass-filtered velocity disturbances.
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Figure 9. Amplitudes of perturbed velocity signals extracted at a distance of 1 chord from
the cascade back-end in the computational domain. Data are obtained for an inlet velocity
modulation u′

∞ = 0.1 m s−1 with f = 100 Hz. (a) Raw signal. (b) After low-pass filtering.

One can then investigate the evolution of the phase shift between both perturbed
velocity signals u′ and v′.

This is obtained by calculating the cross-power spectral densities of the filtered
velocity signals at discrete points separated by regular intervals of 5 mm along a line
perpendicular to the cascade. The phase difference between the signals is deduced from
the complex value of the cross-power spectral density calculated at the modulation
frequency fm. The reference used to establish this phase evolution is the axial velocity
signal u′ measured at the cascade trailing edge located at x = 0 mm.

The starting point of the acoustically modulated cases is a mean flow consisting
of the flow over an aerofoil with a well-established Kármán vortex street. The flow
is unsteady and laminar. After an initial transient of about one period, it is well
established and periodic as can be checked by recording signals at various points in
the domain. The first period in the numerical simulation is not taken into account
in the analysis because the flow is transient. After this initial period, results can be
analysed. The mean flow can then be obtained by summing over time to eliminate
oscillations associated with vortex shedding from the blade trailing edges.

Typical axial and azimuthal velocity signals are displayed in figure 9. These
signals feature a high-frequency component corresponding to the periodic fluctuation
associated with alternating vortices in the wakes and a low-frequency component
induced by the flow modulation. This last component is extracted by the low-pass
filtering method described in figure 8.

3.2. Low amplitude modulation

Two frequencies of modulation are investigated f =60 and f =100 Hz at a low
forcing amplitude. This is used to validate the theoretical model derived in the linear
approximation. The amplitude of the signals and the phase relation between axial
and transverse velocity perturbations are specifically considered.

3.2.1. Signal amplitudes

Figure 10 displays amplitudes of velocity perturbations u′ and v′ at a distance of
1 chord from the cascade back-plane. Subfigures (a) and (b), respectively correspond
to modulations at f = 60 and f = 100 Hz. In both cases, the amplitude of the relative
transverse velocity fluctuation v′ is slightly lower than the relative axial velocity
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Figure 10. Filtered amplitudes of perturbed velocity signals extracted at a distance of 1 chord
from the cascade back-end in the computational domain. Data are obtained for an inlet
velocity modulation u′

∞ = 0.1 m s−1. (a) f = 60 Hz. (b) f = 100 Hz.

0° 180°

Figure 11. Vorticity fields of the flow with an acoustic modulation of amplitude u′
∞ = 0.1 m s−1

at the inlet and for a frequency f = 100 Hz. The maximum level of vorticity 5000 s−1 is in
black while the minimum level −5000 s−1 is in white.

disturbance u′. This is close to what was predicted analytically. One also finds that
the amplitudes of the two signals vary as a function of time indicating that a certain
amount of reflection takes place at the computational domain outlet.

3.2.2. Acoustic and convective mode

The analysis of vorticity fields is carried out by examining figure 11 presented for
f =100 Hz and for two phases in the cycle 0◦ and 180◦. Over one cycle of modulation,
one finds that fully developed Kármán vortice streets are established in the aerofoil
wakes. The global behaviour is identical for each phase of the cycle: the thickness
of the boundary layers around the aerofoil remains almost constant with very small
variations, the frequency of vortex shedding is also constant. It is difficult to identify
a periodic pattern corresponding to the imposed modulation frequency f =100 Hz
for an input level equal to u′

∞ =0.1 m s−1. These results indicate that with a low input
level, it is not possible to detect the vortical mode associated to the modulation
frequency because the amplitude of this mode is too low compared to the amplitude
of the high-frequency Kármán vortices formed in the blade row wakes.

Results of the data filtering are plotted in figure 12 for two modulation frequencies
f =60 and f = 100 Hz and for a small perturbation level u′

∞ = 0.1 m s−1. The figure
gathers the phases determined with signals extracted from numerical simulations at
60 and 100 Hz, respectively in (a) and (b). It serves to identify the two types of
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Figure 12. Evolution of the phase shift between relative fluctuations of velocity u′ and v′ in
the linear regime. Data are extracted from numerical simulations for a modulation amplitude
equal to u′

∞ = 0.1m s−1. (a) f =60Hz. (b) f = 100Hz.

waves propagating in the downstream flow. The axial velocity disturbance has an
essentially constant phase and it is acoustic. The phase shift is negligible because this
wave propagates over a small distance at the speed of sound. One can also say that
the phase shift is small because the distance is a small fraction of the wavelength.
The transverse disturbance is convective as the phase shift increases linearly with
distance and frequency and is inversely proportional to the mean axial flow velocity:
�ϕ = 2πf x/u.

The transverse perturbations v′ are out of phase with axial velocity fluctuations
u′ at the trailing edge location as expected from linear theory v′

2 = tan θ 2u
′
2 (here,

tan θ2 is negative). Results obtained at f = 60 Hz feature some spurious oscillations
which are less visible at f = 100 Hz. This may be attributed to the filtering procedure
which does not fully eliminate the high-frequency components. As the relative forcing
amplitude is weak (u′

∞/u∞ = 0.025), the perturbation signal is low and it is affected
by residual high-frequency fluctuations. Oscillations are more visible on the acoustic
velocity component near the computational domain outlet where some reflections
have already been mentioned. These differences do not, however, scramble the general
trend. It will be seen below that results can significantly be improved by increasing
the modulation level.

3.3. High amplitude modulation

We now examine the dynamics of the modulated flow induced by an intense acoustic
wave with an amplitude u′

∞ = 1 m s−1 at the inlet of the domain. This case is explored
for the same modulation frequencies f = 60 and f = 100 Hz. Amplitudes of velocity
components u′ and v′ are investigated and the acoustic to convective mode conversion
mechanism is highlighted with space–time diagrams.

3.3.1. Signal amplitudes

The amplitude of velocity signals in the downstream flow are extracted from the
numerical fields of u and v. The mean velocity is subtracted to get the fluctuations
u′ and v′. The low-pass filtering procedure described previously is used to separate
the periodic coherent motion due to the modulation. This process is first applied at
a point located at a distance of 1 chord from the cascade back plane. Signals are
plotted in figure 13 for the two modulation frequencies. One finds that the ratio of
amplitudes |v′|/|u′| is close to 0.5 for both frequencies. This is in agreement with
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Figure 13. Filtered velocity signals extracted from the simulations at 1 chord length
downstream of the aerofoil trailing edge for an inlet velocity modulation u′

∞ = 1 m s−1.
(a) f = 60 Hz. (b) f = 100 Hz.

analytical predictions obtained in § 2 which give a value |v′|/|u′| = | tan θ 2| =0.47 for
a trailing edge angle θ 2 = 25◦.

It is also found that the fluctuation amplitude u′ � 1.2 m s−1 is greater than that of
the incident wave amplitude u′

∞ = 1 m s−1. This is because the axial flow is accelerated
due to the presence of the wakes in which the axial velocity is reduced.

3.3.2. Acoustic and convective modes

The dynamics of the flow field is now investigated by examining the vorticity
fields over one cycle of excitation shown in figure 14. The first phase at 0◦ shows
the classical vortex shedding beyond the aerofoil followed by an intense vortex pair.
These two vortices are then convected by the mean flow. At 60◦, a new vortex pair is
formed at the trailing edge of each aerofoil. This induces an increase of the boundary
layer thickness on the suction side near the trailing edge. At 180◦, this pair is shed
and convected by the mean flow. In the remaining part of the cycle, the classical
high-frequency vortex shedding also present in the non-modulated case prevails.

One can now investigate the flow dynamics with space–time diagrams. It is again
necessary to filter out velocity components corresponding to the vortices formed
in the aerofoil wakes. This is accomplished by applying the method described
previously. Because the frequency associated with the Kármán vortices is much
larger than the modulation frequency, the corresponding velocity components can be
filtered out. It is then possible to extract the coherent motion corresponding to the
modulation frequency. Space–time diagrams are obtained for three time periods for
both frequencies such that the total time observed is 50 ms at f = 60 Hz and 30 ms
at f =100 Hz.

For the modulation frequency f = 60 Hz, the space–time diagram is shown in
figure 15. The axial velocity fluctuation u′ is plotted in figure 15(a) while the transverse
fluctuation velocity v′ is displayed in figure 15(b). For the axial velocity, one finds a
pattern of alternating black and white vertical stripes. This means that the propagation
of axial velocity perturbations is nearly instantaneous indicating that propagation
takes place at the speed of sound. For the transverse velocity component, the white
and dark stripes are inclined indicating that this component is convected by the
flow. It it interesting to extract the convective velocity ucv which can be deduced
by estimating the slope of the stripes a =�l/�t � 3.7 m s−1. This value is close to
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Figure 14. Vorticity fields of the flow with an acoustic modulation of amplitude u′
∞ = 1 m s−1

at the inlet and for a frequency f =100 Hz. The maximum level of vorticity 5000 s−1 is in
black while the minimum level −5000 s−1 is in white. The corresponding time (milliseconds)
of each simulation is indicated near each field. The flow is established in three stages: emission
of a starting vortex, destabilization of the aerofoil wakes due to a shear instability and fully
developed Kármán vortex street.
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Figure 15. Space–time diagrams of fluctuating velocity components beyond the aerofoils
cascade for a modulation frequency f = 60 Hz and an amplitude equal to u′

∞ =1ms−1. These
diagrams are obtained by filtering raw velocity signals extracted from numerical simulations
along a straight line downstream the cascade and each 5 mm over three time periods. Units of
the grey scale are m s−1. (a) Axial fluctuation u′. (b) Transverse fluctuation v′.
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Figure 16. Space–time diagrams of fluctuating velocity components on the downstream side
of the cascade for a modulation frequency f = 100 Hz and an amplitude equal to u′

∞ = 1 m s−1.
Theses diagrams are obtained by filtering raw velocity signals extracted from numerical
simulations on a straight line downstream the cascade and each 5 mm over three time periods.
Units of the grey scale are m s−1. (a) Axial fluctuation u′. (b) Transverse fluctuation v′.
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Figure 17. Evolution of the phase between axial and transverse velocity perturbations u′

and v′. Data are extracted from numerical simulations for a modulation amplitude equal to
u′

∞ = 1 m s−1. (a) f = 60 Hz. (b) f = 100 Hz.

the flow velocity u∞ = 4 m s−1 imposed at the numerical domain inlet. These space–
time diagrams confirm that axial and transverse velocity perturbations, respectively
propagate at the speed of sound and at a convective velocity as predicted by the
analytical model derived in § 2.

A similar analysis can be carried out for a modulation frequency f = 100 Hz.
The corresponding space–time diagrams given in figure 16 are quite similar to those
examined previously. Note that the time scale in figures 15 and 16 is slightly different.
One can also determine the convective velocity of transverse velocity perturbations
with a = �l/�t = 4 m s−1 which is again equal to the inlet flow velocity u∞. The
phase shift between the two velocity components is shown in figure 17. In this case
too, the phase evolves in a nearly linear fashion with respect to distance and is
essentially proportional to the modulation frequency and inversely proportional to
the convection velocity. At the origin, the phase shift is equal to π as expected for a
situation where the trailing edge angle θ 2 is negative.
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Loudspeaker

Swirler

Rod

Tube

 Laser 
Beams

D = 22 mm

d = 6 mmX axis

x = 0 mm

Upstream manifold

Figure 18. Experimental set-up used to determine velocity signals behind a swirler. Laser
beams of the laser Doppler velocimeter are used to measure the axial and azimuthal velocity
signals each 5 mm over a 50 mm range downstream the swirler. The first measurement point
is acquired 17 mm downstream this device due to limitation in optical access.

4. Experiments on a ducted swirler
It is now interesting to see if the previous features can be retrieved experimentally.

This is accomplished in a cylindrical configuration where the flow is set in rotation
by an axial swirler. This choice is made because experiments are easier to perform
in an axisymmetric system. Admittedly, a cascade experiment might have been more
consistent with the numerical simulation. However, since we intend to characterize a
mechanism, the change in configuration is reasonable.

4.1. Experimental set-up

The experimental set-up is sketched in figure 18. The system comprises three elements:
a loudspeaker, a convergent unit and a tube containing a swirler. The flow injected
at the base of the convergent unit from two orifices diametrically opposed traverses a
honeycomb to break the largest turbulent scales and produce a laminar flat velocity
flow profile on the upstream side of the swirler. The gas is convected through the
swirler, which imparts a rotating motion to the flow. The swirling flow obtained in
this way evolves in an annular tube made of quartz. A rod is located at the centre of
the tube in this experiment.

The swirler comprises eight vanes periodically spaced. The blades are formed by
NACA 8411 profiles and their stagger angle with respect to the axial direction is 45◦.
Upstream and downstream views of the swirler are displayed in figure 19.

A laser Doppler velocimeter is used to measure the velocity signals in the axial and
azimuthal directions. The data are recorded at 5 mm intervals on a vertical line located
in the middle of the section between the tube and the rod. This set-up was also used
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(a) (b)

Figure 19. Swirler geometry used in the experiment. (a) Upstream side.
(b) Downstream side.
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Figure 20. Experimental phase shift evolution of axial and azimuthal velocity components u′

and v′ for two modulation frequencies. Data are recorded from 17 to 67 mm due to limitations
in optical access downstream of the swirler. The swirler backplane is located at x = 0 mm.
(a) f = 60 Hz. (b) f = 100 Hz.

in experiments on combustion dynamics reported by Palies et al. (2009) and by Palies
et al. (2010a). The bulk velocity in the tube is Ub = 2.67 m s−1 and the fluctuation level
of the axial velocity disturbance was measured downstream the swirler, at a distance
of 17 mm from the swirler backplane, and it is equal to u′

rms/Ub = 0.5.

4.2. Results

Results gathered from measurements are plotted in figure 20 in the form of phase
evolutions for the velocity signals u(x, t) and v(x, t) for two modulation frequencies
f =60 and f = 100 Hz. One immediately observes that the phase of the axial velocity
signal u′ is nearly constant when the distance from the swirler increases. This indicates
that axial disturbances propagate at a high phase velocity that can only be the speed of
sound. An azimuthal component is detected by the laser Doppler velocimeter and this
velocity component v′ features a phase which varies linearly with distance from the
swirler. This reflects the convective character of azimuthal perturbations originating
from the swirler blades trailing edges. Using the slope of the phase function, it is
possible to determine the convection velocity which is found to be ucv = 3.05 m s−1

for f =60 Hz and ucv = 3.19 m s−1 for f = 100 Hz. These two values are of the order
of the bulk velocity in the channel indicating that azimuthal perturbations created
at the swirler are essentially transported by the flow. It is also worth noting that the
phase difference at the aerofoil trailing edges x = 0 mm coincides with the theoretical
prediction �ϕ � 0 by extrapolating the phase curve (black square symbols) to zero.
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Figure 21. Comparison of simulations, theory and experiments with the reduced phase as
a function of the length. Results of simulations indicate that the phase shift at the cascade
trailing edge plane is equal to ϕ0 = π because of the negative value of the blade trailing edge
angle. Results of experiments indicate that ϕ0 � 0 at the swirler backplane.

5. Comparison between theory, numerical simulations and experiments
Analytical results, numerical simulations and experiments are now compared in

figure 21. Black symbols correspond to experiments while open markers pertain
to numerical predictions. The horizontal axis indicates the distance from the
swirler backplane where velocity signals are analysed to determine the phase shift.
Measurements are carried out at points separated by an interval of five millimetres.
The evolution of the phase shift between u′ and v′ is specifically examined. It is
interesting to introduce a reduced phase to collapse the experimental data and
numerical results and compare with theory. This can be accomplished by multiplying
the phase by the convection velocity ucv and dividing by the frequency f :

ϕ∗ = (ϕ − ϕ0)
ucv

2πf
, (5.1)

where ϕ0 is the phase between axial and azimuthal velocity signals at the cascade
back-plane in 2D or at the swirler in 3D and is respectively equal to ϕ0 = π and
ϕ0 = 0. The reduced quantity is plotted in figure 21 as a function of distance from the
cascade (simulations) and from the swirler backplane (experiments). One finds that
numerical simulations and experimental data closely match theory confirming that
the transverse perturbation is well described by the model. Experimental results are in
agreement with simulations in that the phase is found to be proportional to frequency
and distance and inversely proportional to a convection velocity. The convective
velocity is close to the mean flow velocity. Numerical simulations also agree with
theoretical predictions of this phase shift. There are, however, minor differences in the
phase determined experimentally which are most probably due to the fact that the
swirler blades have a variable angle at the trailing edge. This result can be used to
predict the phase of the transverse or azimuthal velocity perturbations with respect
to incident acoustic disturbances but this requires an estimate of ucv which can be
taken equal to the mean flow velocity.
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6. Conclusion
The major point of this study is that swirler units used to set a flow rotation act

as a mode conversion element. When acoustic waves impinge on a swirler unit, they
generate an azimuthal velocity perturbation. When the flow is acoustically perturbed,
interactions with a swirler or an aerofoil cascade generate an azimuthal velocity
disturbance (in the swirler case) or a transverse velocity disturbance (in the 2D
cascade configuration). The main characteristics of this disturbance are documented
in this article. Theory, simulation and experiments are used to show that this wave
is convected by the flow. The theoretical model based on actuator disk theory
provides an estimate of the amplitude of this wave and links its relative level to the
relative axial velocity disturbance. It is then demonstrated that this mode conversion
process is retrieved from numerical simulations of the flow in a 2D cascade and that
the azimuthal velocity disturbance is observed in experiments on an axisymmetric
configuration. It can be concluded that the conversion process will have a profound
effect on the dynamics of the flow downstream of the swirler and that the combination
of axial and azimuthal velocity perturbations will modulate the rate of rotation of the
flow. This, in turn, will affect the downstream flow by changing the rate of rotation
of the flow. Now, it is known that most practical combustors like those found in jet
engines or gas turbines use swirlers to stabilize combustion. The dynamics of the flow
will be influenced by the process described in the present article. It has been shown
in a recent study of swirling flame dynamics that the upstream flow dynamics plays a
central role. The present study focuses on this point and documents this fundamental
process with a combination of theory, numerical simulation and experimentation.
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