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Abstract We propose a geometric method to measure the wild ramification of a smooth étale sheaf
along the boundary. Using the method, we study the graded quotients of the logarithmic ramification
groups of a local field of characteristic p > 0 with arbitrary residue field. We also define the characteristic
cycle of an �-adic sheaf, satisfying certain conditions, as a cycle on the logarithmic cotangent bundle
and prove that the intersection with the 0-section computes the characteristic class, and hence the Euler
number.
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Introduction

Let X be a separated scheme of finite type over a perfect field k of characteristic p > 0.
We consider a smooth �-adic étale sheaf F on a smooth dense open subscheme U ⊂ X
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770 T. Saito

for a prime � �= p. The ramification of F along the boundary X \ U has been studied
traditionally by using a finite étale covering of U trivializing F modulo �. In this paper,
we propose a new geometric method, inspired by the definition of the ramification groups
[1,2,4].

The basic geometric construction used in this paper is the blowing-up at the ramifi-
cation divisor embedded diagonally in the self log product. A precise definition will be
given at the beginning of § 2.3. We will consider two types of blow-up. The preliminary
one, called the log blow-up, is the blow-up (X ×X)′ → X ×X at every Di ×Di where Di

denotes an irreducible component of a divisor D = X \ U with simple normal crossings
in a smooth scheme X over k. The second one is the blow-up (X × X)(R) → (X × X)′

at R =
∑

i riDi, with some rational multiplicities ri � 0, embedded in the log diagonal
X → (X×X)′. This construction globalizes that used in the definition of the ramification
groups in [1] and [2] recalled in § 1.

Inspired by [13], we consider the ramification along the boundary of the smooth sheaf
H = Hom(pr∗

2 F , pr∗
1 F) on the dense open subscheme U × U ⊂ (X × X)(R). We intro-

duce a measure of wild ramification by using the extension property of the identity
regarded as a section of the restriction on the diagonal of the sheaf H, in Definition 2.19.

Let j(R) : U × U → (X × X)(R) denote the open immersion. A key property of the
sheaf H established in Propositions 2.25 and 2.26 is that the restriction of j

(R)
∗ H on

the complement (X × X)(R) \ U × U admits a description by the Artin–Schreier sheaves
defined by certain linear forms. This fact is derived from a groupoid structure of
(X × X)(R) inherited from the natural one on X × X. We prove in Theorem 1.24 that
this property at the generic point of an irreducible component implies the following prop-
erties of the ramification groups conjectured in [4, Conjecture 9.4]: the graded pieces of
the ramification groups, known to be abelian, are killed by p and their character groups
are described by differential forms.

The definition of the measure of the wild ramification in this paper is closely related
to that of the characteristic class in [3]. In Definition 3.6, we propose a definition of the
characteristic cycle of an �-adic sheaf as a cycle of the logarithmic cotangent bundle,
under the conditions (R) and (C) stated in § 3.2. Roughly speaking, the conditions mean
that the ramification is controlled at the generic points of the irreducible components
of the ramification divisor. Consequently, the characteristic cycle in this case does not
have components supported on subvarieties of codimension at least two. We show that its
intersection product with the 0-section computes the characteristic class, in Theorem 3.7.
This is a generalization of Kato’s formula in the rank one case [15].

One expects that the same construction works for D-modules with irregular singular-
ities. It should give another evidence for the analogy between the wild ramification of
�-adic sheaves and irregular singularities of D-modules.

Notation

k denotes a perfect field of characteristic p > 0. A scheme over k is assumed to be
separated of finite type over k. For a locally free OX -module E of finite rank on a scheme
X, E = V (E) denotes the contravariant vector bundle defined by the quasi-coherent
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OX -algebra S•E . Similarly, P (E) denotes the projective space bundle ProjS•E . The dual
of E is denoted by E∨. For a closed subscheme X ⊂ Y defined by the ideal IX ⊂ OY ,
the conormal sheaf IX/I2

X is denoted by NX/Y .
� denotes a prime number invertible in k and Λ denotes a finite local Z�-algebra.

1. Ramification groups

The theory of logarithmic ramification groups of a local field with imperfect residue field
as developed in [1] and [2] relies on rigid geometry and on log geometry in an essential
way. In §§ 1.1–1.3, we give some interpretations purely in terms of schemes, without using
rigid geometry or log geometry. In § 1.3, we state the main result, Theorem 1.24, on the
structure of the graded quotients. We prove it in § 1.4 by computing the nearby cycles.

In this section, K denotes a discrete valuation field, OK denotes the valuation ring,
and mK denotes the maximal ideal. The residue field OK/mK is denoted by F and
vK : K → Z ∪ {∞} denotes the discrete valuation normalized by vK(π) = 1 for a prime
element π. We put S = Spec OK . Throughout the section, a morphism of schemes over
S will mean a morphism over S.

1.1. Basic constructions

Let A be a finite flat OK-algebra. We put T = Spec A. We consider a closed immersion

T → P to a smooth scheme P over S. Let IT = Ker(OP → OT ) be the ideal sheaf

defining the closed subscheme T in P .

For a pair (m, n) of integers m � 0 and n > 0, let Q = P
[m/n]
T → P be the blow-up

at the ideal In
T + mm

KOP and P
(m/n)
T ⊂ P

[m/n]
T be the complement of the support of

(In
T OQ + mm

KOQ)/mm
KOQ. The morphism P

(m/n)
T → P is affine and P

(m/n)
T is defined

by the quasi-coherent OP -subalgebra OP [m−m
K In

T ] ⊂ K ⊗ OP . The maps P
(m/n)
T →

P
[m/n]
T → P induce isomorphisms P

(m/n)
T,K → P

[m/n]
T,K → PK on the generic fibres. For

m = 0, we have P
(0/n)
T = P

[0/n]
T = P . The immersion T → P is uniquely lifted to an

immersion T → P (m/n).

Let d > 0, m′ � 0, n′ > 0 be integers such that m′ � dm and n′ = dn. Then

the inclusion (m−m
K In

T )d ⊃ m
−m′

K In′

T induces a canonical map P
(m/n)
T → P

(m′/n′)
T that

is an isomorphism on the generic fibres. If (m′, n′) = (dm, dn), the canonical map

P
(m/n)
T → P

(m′/n′)
T is finite.

For a rational number r = m/n � 0, let P
(r)
T be the normalization of P

(m/n)
T . For

r > 0, let P̂
(r)
T be the formal completion of P

(r)
T along the closed fibre P

(r)
T,F . For r′ � r,

the canonical maps P
(r)
T → P

(r′)
T of schemes and

P̂
(r)
T → ̂

P
(r′)
T

of affine formal schemes are induced.
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772 T. Saito

We compare the construction above to those in [1] and [2].

Example 1.1. Assume K is complete.

(1) Let Z = (z1, . . . , zn) be a system of generators of a finite flat OK-algebra A and

consider the closed immersion T = Spec A → P = Spec OK [X1, . . . , Xn] defined

by Z. Then, the affinoid variety Xa
Z in [1, 3.1] is defined by the formal OK-scheme

P̂
(r)
T for a = r.

(2) Let T → P be a closed immersion of a finite flat OK-scheme T to a smooth scheme

P and let Spf A be the formal completion P̂ |T of P along the closed subscheme T .

Then the affinoid variety Xj(A → A) in [2, Definition 1.5] is defined by the formal

OK-scheme P̂
(r)
T for j = r.

Lemma 1.2. Let T be a finite flat scheme over S and T → P and T → Q be closed
immersions to smooth schemes over S. Let P → Q be a smooth morphism over S such
that the diagram

T ��

���
��

��
��

P

��
Q

is commutative. Then, for a positive integer r > 0, the map P → Q induces a smooth
map P

(r)
T → Q

(r)
T and an isomorphism

P
(r)
T,F → Q

(r)
T,F ×TF

V (m−r
K ⊗OK

Ω1
P/Q ⊗OP

OTF
).

Proof. It suffices to show the assertions with (r) replaced by (r/1). We show the map
P

(r/1)
T → Q

(r/1)
T is smooth. Let t ∈ T be a closed point and d be the relative dimension

of P → Q at the image of t. The section defined by T → P of the smooth morphism
P ×Q T → T is a regular immersion of codimension d. By choosing a minimal set
of generators of the ideal and by lifting them, we find a neighbourhood V ⊂ P of
the image of t and an étale morphism V → Ad

Q = Q[X1, . . . , Xd] inducing an open
immersion T ∩ V → T ⊂ T ×Q Ad

Q to the 0-section. Then, P
(r/1)
T ×P V is isomorphic to

V ×Ad
Q

Q
(r/1)
T [X1/πr, . . . , Xd/πr] and is smooth over Q

(r/1)
T .

Since the map Q
(r/1)
T,F → QT,F factors through the closed immersion TF → QT,F , the

isomorphism
P

(r/1)
T ×P V → V ×Ad

Q
Q

(r/1)
T [X1/πr, . . . , Xd/πr]

above induces an open immersion P
(r/1)
T,F ×P V → Q

(r/1)
T,F [X1/πr, . . . , Xd/πr]. Since

Q
(r/1)
T,F [X1/πr, . . . , Xd/πr] is canonically identified with

Q
(r/1)
T,F ×TF

V (m−r
K ⊗OK

Ω1
P/Q ⊗OP

OTF
),

the assertion follows. �
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Let T̄ denote the normalization of T . For positive integers m, n > 0 and for r =
m/n, the immersion T → P induces an immersion T → P

(m/n)
T and hence a finite map

T̄ → P
(r)
T . The latter further induces a map on the formal completions.

Lemma 1.3. Let T = Spec A be a finite flat scheme over S and T → P be a closed
immersion to a smooth scheme over S. Assume that TK is isomorphic to the disjoint
union of finitely many copies of Spec K. Then there exists an integer r > 0 such that the
map T̄ → P

(r)
T is a closed immersion.

Proof. By the assumption on TK , the semi-local ring A is the product of finitely many
local rings and the normalization of A is generated over OK by the idempotents in
A ⊗OK

K. Hence, we may assume P = Spec R is affine and hence P
(r)
T = Spec R(r) is

also affine. It is sufficient to show that, for every idempotent e ∈ A ⊗OK
K, there exists

an integer r > 0 such that e is in the image of R(r) → A ⊗OK
K. Take a non-zero element

a ∈ mK such that ae ∈ A. We show that r = 2vK(a) satisfies the condition.
Take a lifting f ∈ R of ae ∈ A. Then g = f2 − af is in the kernel I = Ker(R → A).

Since g/a2 is in R(r/1), the solution f/a ∈ R(r/1) ⊗OK
K of the equation X2 −X = g/a2

lies in R(r). �

We study the relation of the basic construction with a base change of discrete valuation

rings. Let T → P be a closed immersion of a finite scheme to a smooth scheme over

S = Spec OK as above. Let S′ = Spec OK′ → S be a surjection of spectra of discrete

valuation rings of ramification index e. Then, the base change T ′ = T ×S S′ → P ′ =

P ×S S′ is a closed immersion of a finite flat scheme to a smooth scheme over S′. For

integers m, n > 0, the induced map P
′[em/n]
T ′ → P

[m/n]
T ×S S′ is an isomorphism. Hence,

for r = m/n, the scheme P
′(er)
T ′ is the normalization of P

(r)
T ×S S′ and the formal scheme

̂
P

′(er)
T ′ is the normalization of P̂

(r)
T ×Ŝ Ŝ′. Note that we need not assume that the fraction

field extension nor the residue field extension is finite.

We prepare some facts on the properties (Sk) and (Rk) of locally noetherian schemes

[11, Chapter IV, §§ 5.7, 5.8].

Lemma 1.4. Let f : X → S be a flat scheme of finite type over a regular noetherian
scheme S. For a point s ∈ S, we put c(s) = dimOS,s. Let k � 0 be an integer.

(1) The following conditions are equivalent.

(a) For every point s ∈ S, the fibre Xs satisfies the condition (Sk−c(s)).

(b) X satisfies the condition (Sk).

(2) Condition (a) implies condition (b).

(a) For every point s ∈ S, the fibre Xs satisfies the condition (Rk−c(s)).

(b) X satisfies the condition (Rk).
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Proof. (1) Let x ∈ X be a point and put s = f(x) ∈ S. Let t1, . . . , tc ∈ ms be a regular
system of parameters where c = c(s). Since f : X → S is flat, f∗t1, . . . , f

∗tc ∈ mx is a
regular sequence of OX,x and OXs,x = OX,x/(f∗t1, . . . , f

∗tc). Hence, we have equalities
dim OXs,x = dimOX,x − c(s) [11, Chapter 0, Proposition (16.3.7)] and prof OXs,x =
prof OX,x − c(s) [11, Proposition (16.4.6) (ii)] and the assertion follows.

(2) Further, OX,x is regular if OXs,x is regular [11, Proposition (17.3.3) (ii)]. �

Corollary 1.5. Let S = Spec OK be the spectrum of a discrete valuation ring and
f : X → S be a normal scheme of finite type with smooth generic fibre.

(1) Assume X → S has geometrically reduced fibres. Then, for any surjection S′ → S

of spectra of discrete valuation rings, the base change X ×S S′ is normal.

(2) There exists a surjection of spectra S′ = Spec OK′ → S of discrete valuation rings
such that K ′ is a finite extension of K and that the normalization X ′ of X ×S S′

has geometrically reduced fibres over S′.

Proof. (1) Since the closed fibre of XS′ is reduced, it satisfies the conditions (R0) and
(S1). Since the generic fibre is regular, XS′ satisfies the conditions (R1) and (S2) by
Lemma 1.4.

(2) We may assume that the residue field F is algebraically closed since there exists an
inductive system (OKi)i∈I of finite extensions of discrete valuation rings of ramification
index 1 such that the limit lim−→i

Fi of the residue fields is an algebraic closure of F . We
apply a variant [19, Appendix, Théorème 2] of Epp’s theorem [9] corrected in [18] to
the generic points of the irreducible components of the closed fibre of X → S. Then, we
find a surjection S′ = Spec OK′ → S of spectra of discrete valuation rings and an open
subscheme U of the normalization X ′ of the base change X ×S S′ such that K ′ is a finite
extension of K and that U is smooth over S′ and contains the generic point of every
irreducible component of the closed fibre.

We show that X ′ has geometrically reduced fibres. Since the generic fibre is smooth,
it suffices to show that the geometric closed fibre is reduced. Since X ′ is normal, it
satisfies the condition (S2). By Lemma 1.4 (1), the closed fibre satisfies (S1) and hence
the geometric closed fibre also satisfies (S1). Since the geometric closed fibre has a dense
open subscheme smooth over the base field, it also satisfies the condition (R0). Hence
the geometric closed fibre is reduced. �

Let X be a normal scheme of finite type over S = Spec OK . Assume that the generic
fibre of X is smooth and that the closed geometric fibre is reduced. Then, the formal
completion X̂ along the closed fibre is the stable integral model of the affinoid variety
defined by X̂ itself. Thus, Corollary 1.5 implies the finiteness theorem of Grauert and
Remmert [6, Theorem 1.2] for algebraizable formal schemes.

Applying Corollary 1.5 to P
(r)
T → S, we obtain the following.

Corollary 1.6. Let T → P be a closed immersion of a finite flat scheme to a smooth
scheme over S = Spec OK and r > 0 be a rational number.
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(1) There exists a surjection of spectra S′ = Spec OK′ → S of discrete valuation rings
of ramification index e such that K ′ is a finite extension of K and that P

′(er)
T ′ → S′

has geometrically reduced fibres.

(2) Assume P
(r)
T → S has geometrically reduced fibres. Then, for any surjection S′ → S

of spectra of discrete valuation rings of ramification index e, the canonical map
P

′(er)
T ′ → P

(r)
T ×S S′ is an isomorphism.

Definition 1.7. Let T be a finite flat scheme over S and T → P be a closed immersion
to a smooth scheme over S. Let r > 0 be a rational number and S′ → S be a surjection
of spectra of discrete valuation rings of ramification index e.

We say P
′(er)
T ′ → S′ is a stable model of P

(r)
T if its geometric fibres are reduced. If

P
′(er)
T ′ → S′ is a stable model, we call P

′(er)
T ′ ×S′ Spec F̄ the stable closed fibre and write

it by P̄
(r)
T,F̄

.

By Corollary 1.6 (1), there exists an S′ such that P
′(er)
T ′ → S′ is a stable model. By

Corollary 1.6 (2), the stable closed fibre P̄
(r)
T,F̄

is independent of the choice of such S′. The
finite map P

′(er)
T ′ → P

(r)
T ×S S′ induces a finite map P̄

(r)
T,F̄

→ P
(r)
T,F̄

.
Similarly as the stable closed fibre P̄

(r)
T,F̄

, we define T̄F̄ for a finite flat scheme T such
that TK is étale over K as follows. For S′ = Spec OK′ → S such that T ×S Spec K ′ is
the disjoint union of finitely many copies of SpecK ′, the geometric fibre T ×S S′ ×S′ F̄

of the normalization is independent of the choice of S′. We write it by T̄F̄ . The condition
that T ×S Spec K ′ is the disjoint union of finitely many copies of SpecK ′ implies that
the normalization T ×S S′ is the disjoint union of finitely many copies of S′.

Definition 1.8. Let T be a finite flat scheme over S such that TK is étale over K.

(1) Let r > 0 be a rational number. Let T → P be a closed immersion to a smooth
scheme over S and S′ = Spec OK′ → S be a surjection of spectra of discrete
valuation rings of ramification index e satisfying the following conditions: the étale
covering TK → Spec K splits over K ′ and hence the normalization T̄S′ of T ×S S′

is isomorphic to the disjoint union of finitely many copies of S′; the product er is
an integer and the geometric fibres of P

(er)
T,S′ → S′ are reduced.

We say the ramification of T over S is bounded by r if, the map T̄S′ → P
(er)
T,S′ induces

an injection
T̄F̄ → π0(P̄

(r)
T,F̄

)

of finite sets.

(2) Let r � 0 be a rational number. We say the ramification of T over S is bounded
by r+ if the ramification of T is bounded by every rational number s > r.

By Lemma 1.2, the map T̄F̄ → π0(P̄
(r)
T,F̄

) is independent of P . Let T be a finite flat
scheme over S and S′ → S be a surjection of spectra of discrete valuation rings of
ramification e. Then, it is clear from the definition that the ramification of T over S is
bounded by r if and only if the ramification of T ×S S′ over S′ is bounded by er.
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We will see later that Definition 1.8 is equivalent to the definition in [1, Definition 6.3]
for finite flat OK-algebra locally of complete intersection.

Lemma 1.9. For a finite flat scheme T over S, the following conditions are equivalent.

(1) T is locally of complete intersection.

(2) There exists a Cartesian diagram

T −−−−→ Q⏐⏐� ⏐⏐�
S −−−−→ P

(1.1)

of schemes over S satisfying the following condition.

(CI) The vertical arrows are quasi-finite flat and the horizontal arrows are closed
immersions; the schemes P and Q are smooth over S.

Proof. (1) ⇒ (2). Take a surjection OK [X1, . . . , Xd] → A and let I denote the kernel.
The closed immersion T → Q = Ad

S is regular of codimension d and the OT -module I/I2

is free of rank d. By lifting a basis, we find elements f1, . . . , fd ∈ I such that (f1, . . . , fd) =
I on a neighbourhood of T . We define a map Q → P = Ad

S by f1, . . . , fd and consider
the 0-section S → P . Then, shrinking Q if necessary, the diagram (1.1) is Cartesian and
the map Q → P is quasi-finite and flat by [11, Chapter 0, Proposition (15.1.21)].

(2) ⇒ (1). Since the immersion S → P is regular, the immersion T → Q is also regular
and T is locally of complete intersection over S. �

We compute the scheme P
(r)
T explicitly in the case where T = S → P is a section of

a smooth scheme P → S of relative dimension d. The conormal sheaf NS/P = IS/I2
S is

canonically identified with the free OK-module Ω1
P/S ⊗OP

OS of rank d.

Lemma 1.10. Let S → P be a section of a smooth scheme P → S and r > 0 be a
rational number. Let j : PK = P ×S K → P be the open immersion and IS ⊂ OP be
the ideal sheaf of S regarded as a subscheme of P by the section s : S → P .

(1) The affine P -scheme P
(r)
S is defined by the quasi-coherent OP -algebra∑

l�0

m
−[lr]
K · Il

S ⊂ j∗OPK
, (1.2)

where [lr] denotes the integral part.

(2) Assume r is an integer. Then P
(r)
S = P

(r/1)
S is smooth over OK . Further, by O

P
(r)
S

=
OP [m−r

K · IS ] ⊂ j∗OPK
, the closed fibre P

(r)
S,F is identified with the F -vector space

V (Ω1
P/S ⊗OP

F ⊗F m
−r
K /m

−r+1
K ) = Spec S•

F (Ω1
P/S ⊗OP

F ⊗F m
−r
K /m

−r+1
K ).
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Proof. (1) Let n � 1 be an integer such that m = nr is an integer. Then, P
(r)
S is defined

by the normalization A of the quasi-coherent OP -algebra OP [m−m
K · In

S ] ⊂ j∗OPK
. Since

(m−[lr]
K · Il

S)n ⊂ m
−ml
K · Inl

S ⊂ OP [m−m
K · In

S ] for l � 0, we have an inclusion∑
l�0

m
−[lr]
K · Il

S ⊂ A.

We show the inclusion is an equality. It suffices to show that
∑

l�0 m
−[lr]
K · Il

S is normal.
Since the question is étale local on P , we may assume that P is isomorphic to An

S

and that S → P is the 0-section. Or equivalently, we may assume that S → P is the
0-section of the vector bundle P = V (E) = SpecS•

OK
(E) associated to a free OK-

module of finite rank. By taking a basis of E, we identify the symmetric algebra S•
OK

(E)
with the monoid algebra OK [M ] where M is a free commutative monoid with a basis
e1, . . . , eq. Let σ : M → N denotes the map of monoids sending e1, . . . , eq to 1 and
let e0 ∈ N denote the basis 1. Then the saturation M̃r = {(a, b) ∈ Z × M | a + r ·
σ(b) � 0} of the submonoid 〈e0, ne1 − me0, . . . , neq − me0〉 ⊂ M × Z is equal to the
union

∐
l�0{(a, b) ∈ Z × M | a � −[lr], σ(b) = l}. For a prime element π of K, the ring

OK [M̃r]/(e0 − π) is normal and we have OK [M̃r]/(e0 − π) =
⊕

l�0 m
−[lr]
K Sl(E). Thus

the assertion follows.

(2) We show P
(r)
S = P

(r/1)
S is smooth over OK . Since the question is étale local on P , we

may assume P = V (E) = Spec S•(E) as above. Then, P
(r)
S = P

(r/1)
S = Spec S•(m−r

K E)
is smooth over OK .

We show that the closed immersion P
(r)
S,F = P

(r/1)
S,F → Spec S•(m−r

K ⊗OK
NS/P ⊗OK

F )
is an isomorphism. We conclude by reducing to the case P = V (E) = Spec S•(E) as
above. �

Let v : K̄ → Q ∪ {∞} be the extension of the normalized discrete valuation v : K →
Z∪{∞} to a separable closure. For a rational number r, we put mr

K̄
= {a ∈ K̄ | v(a) � r}

and m
r+
K̄

= {a ∈ K̄ | v(a) > r}.

Corollary 1.11. Let m, n > 0 be positive integers such that r = m/n and (m, n) = 1.
Then for the reduced closed fibre (P (r)

S,F )red, we have a commutative diagram

P̄
(r)
S,F̄

−−−−→ V (Ω1
P/S ⊗OP

F̄ ⊗F̄ m
(−r)
K̄

/m
(−r)+
K̄

)

= Spec S•(Ω1
P/S ⊗OP

F̄ ⊗F̄ m
(−r)
K̄

/m
(−r)+
K̄

)⏐⏐� ⏐⏐�
(P (r)

S,F )red −−−−→ Spec
⊕
l�0

SnlΩ1
P/S ⊗OP

F ⊗F m
−ml
K /m

−ml+1
K

(1.3)

The horizontal arrows are isomorphisms induced by (1.2) and the right vertical arrow is
induced by the natural inclusion.

Proof. We show that the lower horizontal arrow is induced by the surjection

O
P

(r)
S

=
∑
l�0

m
−[lr]
K · Il

S → O
P

(r)
S,F

.
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If [lr] < lr, the image of m
−[lr]
K · Il

S is nilpotent. Similarly, the image of m
−[lr]
K · Il+1

S ⊂
m

−[(l+1)r]
K · Il+1

S is also nilpotent. Thus, it induces a surjection⊕
l�0, lr∈N

m
−lr
K · Il

S/Il+1
S ⊗OK

F =
⊕

l�0, lr∈N

SlΩ1
P/S ⊗OP

F ⊗F m
−lr
K /m

−lr+1
K → O

P
(r)
F,Sred

and define the lower horizontal arrow as a closed immersion.
The upper horizontal arrow is defined as the lower one for the base change to a finite

extension of K of ramification index e such that er is an integer. It is an isomorphism by
Lemma 1.10 (2). The commutativity of the diagram is clear. Since the right vertical arrow
is defined by an injection of a ring, the lower horizontal arrow is an isomorphism. �

We consider a Cartesian diagram (1.1) satisfying the condition (CI) in Lemma 1.9. For
positive integers m, n > 0, the diagram

Q
(m/n)
T −−−−→ Q⏐⏐� ⏐⏐�

P
(m/n)
S −−−−→ P

(1.4)

is Cartesian. Hence the canonical map Q
(m/n)
T → P

(m/n)
S is also quasi-finite and flat and

induces a finite map Q
(m/n)
T,F → P

(m/n)
S,F on the closed fibres. For r = m/n, we have a quasi-

finite morphism Q
(r)
T → P

(r)
S of schemes and a finite morphism of

Q̂
(r)
T → P̂

(r)
S

of affine formal schemes over Ŝ = Spf ÔK . If Q → P is étale, the diagram (1.4) with
(m/n) replaced by (r) is also Cartesian.

A diagram (1.1) satisfying the condition (CI) in Lemma 1.9 naturally arises in the
following ways.

Example 1.12.

(1) Let A be a finite flat OK-algebra locally of complete intersection and let
OK [T1, . . . , Tn]/(f1, . . . , fn) → A be an isomorphism over OK . We define a
closed immersion T = Spec A → Q = Spec OK [T1, . . . , Tn] by the surjection
OK [T1, . . . , Tn] → A. We also define a section S → P = Spec OK [S1, . . . , Sn]
by S1, . . . , Sn 
→ 0. Then, by defining Q → P by Si 
→ fi, we obtain a Cartesian
diagram (1.1) satisfying the condition (CI) in Lemma 1.9 on a neighbourhood of T .

(2) Let X be a smooth scheme over k and D be a smooth irreducible divisor of X. We
consider the local ring OK = OX,ξ at the generic point ξ of D. Let f : Y → X be
a quasi-finite flat morphism of smooth schemes over k and assume V = Y ×X U →
U = X \ D is étale. We assume T = Y ×X S is finite over S. We put P = X ×k S

and Q = Y ×k S and let Q → P be f × 1S . We consider the immersions S → P

and T → Q defined by the natural maps S → X and T → Y . Then we obtain a
Cartesian diagram (1.1) satisfying the condition (CI) in Lemma 1.9.
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Lemma 1.13. Let T be a finite flat scheme over S of degree d such that TK is étale
over K. We consider a Cartesian diagram

T −−−−→ Q⏐⏐� ⏐⏐�
S −−−−→ P

satisfying the condition (CI) in Lemma 1.9. We consider the following conditions.

(1) The ramification of T is bounded by r.

(2) The number of connected components of the scheme Q
(r)
T,F̄

is d.

(3) The scheme Q
(r)
T,F̄

over P
(r)
S,F̄

is isomorphic to the disjoint union of d copies of P
(r)
S,F̄

.

(4) The map Q
(r)
T,F̄

→ P
(r)
S,F̄

is finite and étale.

(5) The induced map T̄ → Q
(r)
T is a closed immersion.

(6) The ramification of T is bounded by r+.

Then, we have implications (1) ⇔ (2) ⇔ (3) ⇒ (4) ⇒ (5) ⇒ (6). If QK → PK is
finite étale, we have (4) ⇔ (5).

Proof. (1) ⇒ (3). We may assume that the map Q
(r)
T → P

(r)
S is finite flat of degree d

on the generic fibre. Assume the ramification of T is bounded by r. For each t ∈ T̄F̄ , let
Q

(r),t
T,F̄

denote the connected component containing the image of t by the map T̄ → Q
(r)
T .

Then, we have an open and closed immersion∐
t∈T̄F̄

Q
(r),t
T,F̄

→ Q
(r)
T,F̄

.

Since the number of the points in every geometric fibre of the map Q
(r)
T → P

(r)
S is at

most d, we obtain an equality ∐
t∈T̄F̄

Q
(r),t
T,F̄

= Q
(r)
T,F̄

and the map Q
(r),t
T,F̄

→ P
(r)
S,F̄

is finite flat of degree 1 for every t ∈ T̄F̄ .

(3) ⇒ (2). It follows from the fact that P
(r)
S,F̄

is connected.

(2) ⇒ (1). By [7, Chapter V, § 2.4, Theorem 3], the image of every connected component
of Q̄

(r)
T,F̄

is P̄
(r)
S,F̄

. Hence the inclusion T̄F̄ → Q̄
(r)
T,F̄

of the inverse image of 0 ∈ P̄
(r)
S,F̄

defines a
surjection T̄F̄ → π0(Q̄

(r)
T,F̄

). Since the cardinalities are the same, it is a bijection.

(3) ⇒ (4). Clear.
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(4) ⇒ (5). We may assume that the map Q
(r)
T → P

(r)
S is finite étale. Then, the diagram

T̄ −−−−→ Q
(r)
T⏐⏐� ⏐⏐�

S −−−−→ P
(r)
S

(1.5)

is Cartesian and the upper horizontal arrow is a closed immersion.

(5) ⇒ (6). Let s > r be a rational number. Then, we have a commutative diagram

T̄F̄ −−−−→ (Q(s)
T,F̄

)red −−−−→ T̄F̄ −−−−→ Q
(r)
T⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�

Spec F̄ −−−−→ P
(s)
S,F̄

−−−−→ Spec F̄ −−−−→ P
(r)
S

Since the composition of the left two upper horizontal arrows is the identity, the map
T̄F̄ → π0(Q

(s)
T,F̄

) is an injection.

(5) ⇒ (4). If QK → PK is finite étale, the condition (5) implies that the map Q
(er)
T ′ →

P
(er)
S′ of stable models is finite étale on a neighborhood of the image of T̄ . Hence the

assertion follows from the purity of Zariski–Nagata. �

The equivalence (1) ⇔ (2) means that Definition 1.8 (1) is equivalent to that in [1,
Definition 6.3] if A is locally of complete intersection. Under the assumption that QK →
PK is finite étale, we have an equivalence (4) ⇔ (5) ⇔ (6) (cf. [2, Corollary 4.12]).
The author does not know how to prove the implication (6) ⇒ (4) without using rigid
geometry.

Corollary 1.14. Let T be a finite flat scheme locally of complete intersection over S

and T → P a closed immersion to a smooth scheme over S. Assume TK is étale over K.
Then, there exists a positive rational number r such that the ramification of T over S is
bounded by r.

Proof. By Lemma 1.13 (5) ⇒ (6), it is a consequence of Lemma 1.3. �

1.2. Logarithmic variant

We keep the notation in the previous subsection. We consider a logarithmic variant
of the constructions in the previous section, without using log geometry. We work with
Cartier divisors to replace log structures.

Let DS ⊂ S = Spec OK be the Cartier divisor SpecF . Let T be a flat scheme of finite
type over S and DT be a Cartier divisor of T satisfying the following condition.

(D) For each t ∈ T , there exists an integer et � 1 such that the pull-back of DS is equal
to etDT on a neighbourhood of t.
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The condition (D) implies that the complement T \ DT is equal to the generic fibre
TK . If P is a regular flat scheme of finite type over S and if the reduced closed fibre
DP = (P ×S DS)red is regular, then the Cartier divisor DP satisfies the condition (D). For
(T, DT ) satisfying the condition (D), let eT denote the least common multiple lcmt∈T et.
The condition eT = 1 is equivalent to that DT is the pull-back of DS .

Let T be a flat scheme of finite type over S and DT be a Cartier divisor of T satisfying
the condition (D). For a surjection S′ = Spec OK′ → S of the spectra of discrete valuation
rings of ramification index e′ = eK′/K , we define the log base change or the log product
T ′ = T ×log

S S′ as follows. First, we consider the case where we have et = e for every
t ∈ T and there exists a generator f of the ideal of DT . Let π′ be a prime element of
K ′. We define u ∈ Γ (T, O×

T ) and v ∈ O×
K′ by π = ufe and π = vπ′e′

and a morphism
T ×S S′ → Spec Z[X, Y, U±1, V ±1]/(UXe − V Y e′

) by X 
→ f , Y 
→ π′, U 
→ u, V 
→ v.
Let d = (e, e′) be the greatest common divisor and put e = de1 and e′ = de′

1. Let a and
b be integers satisfying d = ae + be′. We define

T ×log
S S′ = (T ×S S′) ×Spec Z[X,Y,U±1,V ±1]/(UXe−V Y e′ ) Spec Z[Z, W±1, U±1]

= (T ×S S′)[Z, W±1]/(f − Ze′
1W a, π′ − Ze1W−b, v − uW d), (1.6)

where Z[X, Y, U±1, V ±1]/(UXe − V Y e′
) → Z[Z, W±1, U±1] is defined by X 
→ Ze′

1W a,

Y 
→ Ze1W−b, V 
→ UW d. This is independent of the choices and is well defined. In the
general case, we define T ×log

S S′ by patching.
The canonical map T ′ = T ×log

S S′ → T ×S S′ is finite. If eT = 1, the canonical map
T ′ = T ×log

S S′ → T ×S S′ is an isomorphism.
If T ′ is flat over S′, we define a Cartier divisor DT ′ locally to be that defined

by Z in (1.6). Then, the divisor DT ′ satisfies the condition (D) by putting et′ =
et/gcd(et, eK′/K) for t′ ∈ T ′ above t ∈ T . We have eT ′ = eT /gcd(eT , eK′/K). In par-
ticular, if eK′/K is divisible by eT , we have eT ′ = 1 and the divisor DT ′ is the pull-back
of DS′ .

Definition 1.15. Let K be a discrete valuation field and let DS be the Cartier divisor
Spec F of S = Spec OK .

(1) Let T be a flat scheme of finite type over S and DT be a Cartier divisor of T

satisfying the condition (D). We say (T, DT ) is log flat over S, if, for an arbitrary
surjection S′ = Spec OK′ → S of the spectra of discrete valuation rings, the log
base change T ′ = T ×log

S S′ → S′ is flat.

(2) Let P be a regular flat scheme of finite type over S such that the reduced closed
fibre DP = (P ×S DS)red is regular. We say P is log smooth over S, if étale locally
on P , there exists a smooth map P → Pe for some e � 1 where

Pe =

{
Spec OK [t]/(te − π) if e ∈ O×

K ,

Spec OK [t, u±1]/(ute − π) otherwise,

and π is a prime element of K.
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(3) Let T → P be a closed immersion of flat schemes over S and DT and DP be Cartier
divisors satisfying the condition (D). If DT = DP ×P T , we say T → P is an exact
closed immersion.

Lemma 1.16. Let P be a regular flat scheme of finite type over S such that
DP = (P ×S DS)red is regular and that P is log smooth over S. Let S′ = Spec OK′ → S

be a surjection of the spectra of discrete valuation rings. We put P ′ = P ×log
S S′.

(1) The scheme P ′ is regular and flat over S′, DP ′ = (P ′ ×S′ DS′)red is regular and P ′

is log smooth over S′. If the ramification index e′ = eK′/K is divisible by eP , the
map P ′ → S′ is smooth.

(2) Let T be a finite flat scheme over S and T → P be a regular exact closed immersion.
Then, T is log flat and T ′ = T ×log

S S′ → P ′ is also a regular exact closed immersion.

Proof. (1) It suffice to prove the case where P = Pe for an integer e � 1. If e is invertible
in OK , in the notation of (1.6), the log product Pe ×log

S S′ is given by

Spec OK′ [t]/(te − π)[Z, W±1]/(t − Ze′
1W a, π′ − Ze1W−b, v − W d)

= Spec OK′ [W, Z]/(W d − v, Ze1 − W bπ′).

Since W bπ′ is a prime element of the unramified extension OK′ [W ]/(W d − v), the asser-
tion follows. Assume e is not invertible in OK . Then, in the notation of (1.6), Pe ×log

S S′

is given by

Spec OK′ [t, u±1]/(ute − π)[Z, W±1]/(t − Ze′
1W a, π′ − Ze1W−b, v − uW d)

= Spec OK′ [Z, W±1]/(W−bZe1 − π′).

First, we consider the case where e1 is invertible in OK . In this case, the étale covering
Pe ×log

S S′[V ]/(V e1 − W ) = Spec OK′ [Z, V ±1]/((V −bZ)e1 − π′) of Pe ×log
S S′ is smooth

over P ′
e1

= OK′ [T ]/(T e1 − π′). Assume e1 is not invertible in OK . Then, by the
definition of b, we have (b, e1) = 1 and b is invertible in OK . Hence Pe ×log

S S′ =
Spec OK′ [Z, W±1]/(W−bZe1 − π′) is étale over P ′

e1
= Spec OK′ [Z, V ±1]/(V Ze1 − π′).

If e′ divides e, we have e1 = 1 and Pe ×log
S S′ is smooth over P ′

1 = S′.

(2) By the definition of the base change, the map T ′ → P ′ is a closed immersion and T ′

is finite over S′. Since the ideal IT ′ ⊂ OP ′ is locally generated by d elements where d

is the relative dimension of P ′ over S′, the immersion T ′ → P ′ is regular and T ′ is flat
over S′. By the definition of DT ′ , the immersion T ′ → P ′ is a regular and exact closed
immersion. �

Corollary 1.17. Let P be a regular flat scheme of finite type over S such that
DP = (P ×S DS)red is irreducible and regular and that P is log smooth over S. Let
S′ = Spec OK′ → P be the localization at the generic point ξ of DP .

Let L be a finite separable extension of K, T = Spec OL and DT = (T ×S DS)red.
Then, T ′ = T ×log

S S′ is equal to Spec OL⊗KK′ and we have DT ′ = (T ′ ×S′ DS′)red.
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Proof. It suffices to show that T ′ = T ×log
S S′ is regular and that DT ′ is defined by the

reduced closed point at each closed point ξ′ ∈ T ′. Let t ∈ T be the image of ξ′ and Tt

be the localization at t. Then, the localization of T ′ at ξ′ is equal to a localization of
P ×log

S Tt and the assertion follows from Lemma 1.16 (1). �

For the convenience of a reader familiar with the terminologies on log geometry as
in [16, § 4], we include a lemma, not used in the sequel, showing that the Definition 1.15
above is a special case of the standard definitions.

Lemma 1.18. We consider S = Spec OK as a log scheme with the log structure defined
by DS .

(1) Let T be a flat scheme of finite type over S and DT be a Cartier divisor satisfying
the condition (D). Then, the following conditions are equivalent.

(a) The log scheme T with the log structure defined by DT is log flat over S.

(b) (T, DT ) is log flat over S in the sense of Definition 1.15 (1).

(2) Let P be a regular flat scheme of finite type over S such that the reduced closed
fibre DP = (P ×S DS)red is regular. Then, the following conditions are equivalent.

(a) The log scheme P with the log structure defined by DP is log smooth over S.

(b) (P, DP ) is log smooth over S in the sense of Definition 1.15 (2).

Proof. (1) (a) ⇒ (b). Let S′ = Spec OK′ → S be a surjection of the spectra of discrete
valuation rings and we show that the base change T ′ = T ×log

S S′ → S′ is flat at each
closed point t′ ∈ T ′. We put e′ = et′ . Let S′

1 be the localization of Pe′ over S′ and
consider the Cartesian diagram

T ′ ←−−−− T ′
1 = T ′ ×log

S′ S′
1⏐⏐� ⏐⏐�

S′ ←−−−− S′
1

(1.7)

Since e′ = et′ , the map T ′
1 → S′

1 is strict on a neighbourhood V ′
1 of the inverse image

of t′. Since T ′ → S′ is log flat, the map V ′
1 → S′

1 is log flat and strict and hence is flat.
Since S′

1 → S is log flat, the map V ′
1 → T ′ is also log flat and strict and hence is flat.

Hence the map T ′ → S′ is flat.
(b) ⇒ (a). Let t ∈ T be a closed point and put e = et. Let S1 be the localization of

Pe and consider the Cartesian diagram (1.7) with ′ removed everywhere. Then, as above,
there exists an open neighbourhood V1 ⊂ T1 of the inverse image of t such that V1 → T

and V1 → S1 are flat. Hence by [16, Proposition 4.3.10], the map T → S is log flat.

(2) (b) ⇒ (a). Since Pe is log smooth over S, the assertion follows.
(a) ⇒ (b) We consider the ring homomorphism Z[N] → OK sending 1 ∈ N to a prime

element π. The question is étale local. Hence, we may assume that P = Spec OK ⊗Z[N]

Z[M ] for a morphism N → M of fs-monoids such that the map Z → Mgp is an injection
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and that the order of the torsion part of the cokernel is invertible in OK . Further M̄ =
M/M× is isomorphic to N. We may assume Mgp is torsion free.

If the order e of the cokernel of Z → M̄gp is invertible in OK , we may assume M = N.
In this case, we have P = Pe. Assume e is not invertible. In this case, we may assume
M = N × Z and the map N → M sends 1 to (e, 1). Then, we also have P = Pe. �

In this subsection, T denotes a finite flat scheme over S and DT denotes a Cartier
divisor of T satisfying the condition (D) such that (T, DT ) is log flat over S. Recall that
eT denotes the least common multiple of the integers et � 1 for closed points t ∈ T .

Definition 1.19. Let T be a finite flat scheme over S such that TK is étale over K and
let DT denote a Cartier divisor of T satisfying the condition (D) such that (T, DT ) is log
flat over S.

(1) For a rational number r > 0, we say that the log ramification of (T, DT ) over S

is bounded by r if, for one (and hence for any) surjection S′ = Spec OK′ → S

of spectra of discrete valuation rings such that e = eK′/K is divisible by eT , the
ramification of the finite flat scheme T ×log

S S′ over S′ is bounded by er.

(2) For a rational number r � 0, we say that the log ramification of (T, DT ) over S is
bounded by r+ if the log ramification of (T, DT ) over S is bounded by s for every
rational number s > r.

(3) Let L be a finite étale K-algebra, T = Spec OL and DT = Spec(OL ⊗OK
F )red.

Then, we say that the log ramification of L over K is bounded by r (respectively
by r+) if the log ramification of (T, DT ) is bounded by r (respectively by r+).

Let (T, DT ) be as in Definition 1.19 and S′ → S be a surjection of spectra of discrete
valuation rings of ramification index e. Then, it is clear from the definition that the log
ramification of T over S is bounded by r if and only if the ramification of T ×log

S S′ over
S′ is bounded by er.

Lemma 1.20. Let P be a regular flat scheme of finite type over S such that
DP = (P ×S DS)red is irreducible and regular and that P is log smooth over S and
let ξ be the generic point of DP . We put OK′ = OP,ξ and consider the surjection
S′ = Spec OK′ → S of ramification index e.

Then, for a finite separable extension L of K, the log ramification of L over K is
bounded by r if and only the log ramification of L ⊗K K ′ over K ′ is bounded by er.

Proof. Clear from Corollary 1.17 and the above remark. �

Let T be a finite flat scheme over S and let DT be a Cartier divisor satisfying the

condition (D). We consider an exact closed immersion T → P to a log smooth scheme P

over S. Let S′ = Spec OK′ → S be a surjection of spectra of discrete valuation rings of

ramification index e. Then, the base change T ′ = T ×log
S S′ → P ′ = P ×log

S S′ is an exact

closed immersion to a log smooth scheme over S′. Assume e is divisible by the integer
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eP . Then, the map P ′ → S′ is smooth. Thus for positive integers m, n > 0 and r = m/n,

we apply the construction in § 1.1 to define P
′[em/n]
T ′ , P

′(em/n)
T ′ , P

′[er]
T ′ , P

′(er)
T ′ , ̂

P
′(er)
T ′ , etc.

Example 1.21. Assume K is complete.

(1) Let L be a finite separable extension of K and OK [X1, . . . , Xn]/(f1, . . . , fn) → OL

be an isomorphism. Let m � n be an integer such that the images z1, . . . , zm

of X1, . . . , Xm are non-zero and that zi is a prime element of L for some 1 �
i � m. We define a map Nm+1 → N by sending the standard basis of Nm+1 to

eL/K , vL(z1), . . . , vL(zm). Let M be the inverse image of N by the induced map

Zm+1 → Z. We define Nm+1 → OK [X1, . . . , Xn] by sending the standard basis to

π, X1, . . . , Xm where π is a prime element of K.

We put P = Spec OK [X1, . . . , Xn] ⊗Z[Nm+1] Z[M ]. Then, P is regular, the reduced

closed fibre of P is regular and P is log smooth over S. Further the iso-

morphism OK [X1, . . . , Xn]/(f1, . . . , fn) → OL induces an exact closed immersion

T = Spec OL → P . For a finite extension K ′ over K with ramification index

e divisible by eL/K , the affinoid variety over K ′ defined by the formal OK′ -

scheme ̂
P

′(er)
T ′ is the affinoid variety Y a

Z,I,P defined in [1, 3.1] for a = r and

I = {1, . . . , n} ⊃ P = {1, . . . , m}.

(2) Assume Spf A is the completion of P at T = Spec A. For a finite extension K ′

over K with ramification index e divisible by eL/K , the affinoid K ′-variety defined

by the formal OK′ -scheme ̂
P

′(er)
T ′ is the affinoid variety Xj

log(A → A)′
K defined

in [2, § 4.2] for j = r.

We consider a Cartesian diagram

T −−−−→ Q⏐⏐� ⏐⏐�
S −−−−→ P

(1.8)

of schemes over S satisfying the following condition.

(LCI) The vertical arrows are quasi-finite and flat and the horizontal arrows are
closed immersions. The scheme P is smooth over S, Q is regular flat over S,
DQ = (Q ×S DS)red is smooth over F and Q is log smooth over S.

We consider the Cartier divisor DT = DQ ×Q T . Then, by Lemma 1.16 (2), the pair
(T, DT ) is log flat over S.

Let S′ → S be a surjection of the spectra of discrete valuation rings of ramification
index e. We assume that eQ divides e. Then by Lemma 1.16, the log product Q′ =
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Q ×log
S S′ is smooth and the immersion T ′ = T ×log

S S′ → Q′ is a regular immersion.
Hence the Cartesian diagram

T ′ −−−−→ Q′⏐⏐� ⏐⏐�
S′ −−−−→ P ′= P ×S S′

(1.9)

satisfies the condition (CI) in Lemma 1.9.

1.3. Logarithmic ramification groups

In [1, Definitions 3.4 and 3.12], we introduced two filtrations, the non-logarithmic one
and the logarithmic one, by ramification groups of the absolute Galois group. In this
paper, we will only be interested in the logarithmic filtration.

Assume K is a henselian discrete valuation field. Let K̄ be a separable closure and
GK = Gal(K̄/K) be the absolute Galois group. In [1, Definition 3.12], we define a
decreasing filtration by logarithmic ramification groups Gr

K,log ⊂ GK indexed by positive
rational numbers r � 0. By Example 1.2.7.1, for a finite étale algebra L over K, the
logarithmic ramification of L is bounded by r in the sense of Definition 1.19 (3) if and
only if the action of Gr

K,log on the finite set HomK(L, K̄) is trivial. We put

Gr+
K,log =

⋃
q>r

Gq
K,log and Grr

log GK = Gr
K,log/Gr+

K,log.

For r = 0, G0+
K,log ⊂ G0

K,log are equal to the inertia subgroup and its pro-p Sylow subgroup
P ⊂ I.

We consider the opposite category (FE /K) of finite étale K-algebras. We identify
the category (FE /K) with that of finite discrete sets with continuous action of the
absolute Galois group GK by the fibre functor X 
→ X(K̄). For a rational number
r � 0, the étale K-algebras L such that the log ramification is bounded by r+ form a
Galois subcategory (FE /K)r+ of (FE /K) corresponding to a normal closed subgroup
Gr+

K,log ⊂ GK = Gal(K̄/K). For an extension of discrete valuation field K ′ over K of
ramification index e, the natural map GK1 → GK sends Ger

K′,log into Gr
K,log.

In the rest of this section, we assume that K satisfies the following condition.

(Geom) There exist a smooth scheme X over k, an irreducible divisor D smooth over k

with the generic point ξ and an isomorphism S → Spec Oh
X,ξ to the henselization

of the local ring.

Let Ω1
F (log) denote the F -vector space Ω1

X/k(log D)ξ ⊗OX,ξ
F . It fits in an exact

sequence 0 → Ω1
F/k → Ω1

F (log) res−−→ F → 0. We extend the normalized discrete val-
uation vK : K → Z ∪ {∞} to vK : K̄ → Q ∪ {∞}. Let r > 0 be a rational number. We
put mr

K̄
= {a ∈ K̄ | vK(a) � r} and m

r+
K̄

= {a ∈ K̄ | vK(a) > r}. Let Θ
(r)
log = Θ

(r)
F,log

denote the F̄ -vector space V (Ω1
F (log) ⊗F m

(−r)
K̄

/m
(−r)+
K̄

).
Let P ′ = (X ×k S)′ be the blow-up of X ×k S at D ×k DS and define the log product

P = (X ×k S)∼ ⊂ P ′ to be the complement of the proper transforms of D ×k S and of
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X ×k DS . Then, P is smooth over S and the canonical map S → X induces a section
S → P . Thus, for a rational number r > 0, applying the construction in § 1.1, we
define the schemes P

(r)
S , P̄

(r)
S,F̄

, etc. Since NS/P = Ω1
X/k(log D)ξ, we have a canonical

isomorphism
P̄

(r)
S,F̄

→ Θ
(r)
log (1.10)

by Lemma 1.10.
Under the condition (Geom), a canonical surjection πab

1 (Θ(r)
log) → Grr

log GK is defined
in [2, (5.12.1)]. We recall the construction. Let L be a finite étale algebra over K. After
replacing X by an étale neighbourhood of ξ if necessary, there exists a finite flat morphism
f : Y → X of smooth schemes over k such that V = Y ×X U → U = X \ D is étale
and that Y ×X S = T = Spec OL. We also assume that V ⊂ Y is the complement of a
smooth divisor E.

Similarly as the construction of P = (X ×k S)∼, let Q′ = (Y ×k S)′ be the blow-up of
Y ×k S at E×k DS and Q = (Y ×k S)∼ ⊂ Q′ be the complement of the proper transforms
of E×k S and of Y ×k DS . We consider the immersions S → P and T → Q defined by the
natural maps S → X and T → Y . Then we obtain a Cartesian diagram (1.8) satisfying
the condition (LCI).

Let K ′ be a finite extension such that the ramification index e′ is divisible by eL/K .
We put S′ = Spec OK′ and consider the diagram

T ′ = T ×log
S S′ ��

��

Q′ = Q ×log
S S′

��
S′ �� P ′ = P ×S S′

satisfying the condition (CI). Assume that the log ramification of L over K is bounded
by r+. Then, the conditions (4) and (6) in Lemma 1.13 are equivalent in this case and
the induced map

Q̄
′(er)
T ′,F̄

→ P̄
′(er)
S′,F̄

= Θ
(r)
F,log (1.11)

is finite étale. This construction defines a functor (FE /K)r+ → (FE /Θ
(r)
log) to the cat-

egory of finite étale schemes over Θ
(r)
log and hence a morphism π1(Θ

(r)
log) → GK/Gr+

K,log.
In [2, Theorem 5.12.1], it is proved that it factors through the abelian quotient and
induces a surjection

πab
1 (Θ(r)

log) → Grr
log GK . (1.12)

The surjectivity is a consequence of the fact that the surjection T̄F̄ → π0(Q̄
′(er)
T ′,F̄

) induces a
bijection T̄F̄ /Gr+

K,log → π0(Q̄
′(er)
T ′,F̄

), as in the proof of [2, Theorem 2.15]. In Theorem 1.24,
we will give a refinement of the surjection (1.12).

We give a compatibility of the map (1.12) with a log smooth base change. Let S → X

be as above. Let t be a uniformizer of D ⊂ X and e1 � 1 be an integer. Let X1 be a
scheme smooth over

Ze1 =

{
X[T ]/(T e1 − t) if e1 is invertible in k,

X[T, U±1]/(UT e1 − t) if e1 is 0 in k,
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and assume D1 = (D ×X X1)red is irreducible. Let OK1 be the henselization Oh
X1,ξ1

at
the generic point ξ1 of D1.

Lemma 1.22. Let S1 = Spec OK1 → S = Spec OK be the surjection of the spectra of
discrete valuation rings of ramification index e1 above and let r > 0 be a rational number.
Let F1 denote the residue field of K1 and let π : Θ

(e1r)
F1,log → Θ

(r)
F,log be the map induced by

F1 ⊗F ΩF (log) → ΩF1(log).
Then, the map Gre1r

log GK1 → Grr
log GK induced by the canonical map Ge1r

K1,log → Gr
K,log

is a surjection and the diagram

πab
1 (Θ(e1r)

F1,log)
π∗−−−−→ πab

1 (Θ(r)
F,log)⏐⏐� ⏐⏐�

Gre1r
log GK1 −−−−→ Grr

log GK

(1.13)

is commutative.

Proof. The natural map F1 ⊗F ΩF (log) → ΩF1(log) is injective and hence π : Θ
(e1r)
F1,log →

Θ
(r)
F,log ×F̄ F̄1 is a surjection of vector spaces and admits a section. Thus, it induces a

surjection π∗ : πab
1 (Θ(e1r)

F1,log) → πab
1 (Θ(r)

F,log). Hence, it suffices to show the commutativity
of the diagram (1.13).

Let Y → X and Q = (Y × S)∼ → P = (X × S)∼ be finite coverings and S′ → S be a
finite surjection that appeared in the construction of the map (1.11). The normalization
Y1 of the fibre product Y ×X X1 is smooth over k and V1 = V ×U U1 is the complement of
a smooth divisor DY1 ⊂ Y1. By Corollary 1.17, the log product S′ ×log

S S1 is normal and
is a finite disjoint union of spectra of discrete valuation rings. Let S′

1 = Spec OK′
1

be a
connected component and e′ be the ramification index eK′

1/K . Applying the construction
of the map (1.11) to Y1 → X1 and S′

1 → S1, we obtain a finite étale covering

Q̄
′(e′r)
T ′

1,F̄1
→ P̄

′(e′r)
S′

1,F̄1
= Θ

(e′r)
F1,log. (1.14)

It suffices to show that the diagram

Q̄
′(e′r)
T ′

1,F̄1
−−−−→ P̄

′(e′r)
S′

1,F̄1⏐⏐� ⏐⏐�
Q̄

′(er)
T ′,F̄

−−−−→ P̄
′(er)
S′,F̄

is Cartesian.
By the construction, it suffices to show that the map P1 → P ×S S1 is smooth.

Since P1 = (X1 × S1)∼ → (Ze1 × S1)∼ is smooth, it is reduced to the case where
X1 = Ze1 . First, we consider the case e1 is invertible in k. Let π ∈ OK be the
image of t and π1 ∈ OK1 be the image of T . Then, P1 = (X[T ]/(T e1 − t) × S1)∼ =
X × S1[T ]/(T e1 − t)[V ±1](T − V π1) equals X × S1[V ±1]/(V e1π − t). This is étale over

P ×S S1 = (X × S)∼ ×S S1 = X × S1[W±1]/(t − Wπ).
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We assume e1 is not invertible in k. Let π ∈ OK be the image of t and let π1, u ∈ OK1

be the image of T , U . Then, P1 = (X[T, U±1]/(UT e1 − t) × S1)∼ equals

X × S1[T, U±1]/(UT e1 − t)[V ±1](T − V π1) = X × S1[U±1, V ±1]/(UV e1πe1
1 − t).

This is smooth over P ×S S1 = X × S1[W±1]/(t − Wπ). �

For an F̄ -vector space V of finite dimension, we introduce a quotient πalg
1 (V ) of πab

1 (V )
annihilated by p. We regard V as a smooth group scheme Spec S•V ∨ over F̄ . For a finite
abelian group A, we identify the group H1(V, A) of isomorphism classes of A-torsors with
Hom(πab

1 (V ), A) and the extension group Ext(V, A) in the category of smooth algebraic
groups over F̄ as a subgroup of H1(V, A). Then, the quotient πalg

1 (V ) is defined by the
equality Hom(πalg

1 (V ), A) = Ext(V, A) ⊂ H1(V, A) for finite abelian groups A (cf. [20,
§ 6.3, Proposition 6]). The pro-finite group πalg

1 (V ) is the Pontrjagin dual of Ext(V, Fp).
The definition of the quotient πalg

1 (V ) can be rephrased as follows. Let (FE /V )alg be
the full subcategory of (FE /V ) whose objects are finite étale morphisms f : X → V such
that there exists a structure of commutative algebraic group scheme on X and that f is
a morphism of algebraic groups. Then πalg

1 (V ) is the quotient of πab
1 (V ) corresponding

to the subcategory (FE /V )alg.
The map V ∨ = HomF̄ (V, F̄ ) → Ext(V, Fp) sending a linear form f : V → A1

F̄
to the

pull-back by f of the Artin–Schreier sequence 0 → Fp → A1
F̄

t�→tp−t−−−−−→ A1
F̄

→ 0 is an iso-
morphism by [20, § 8.3, Proposition 3]. Thus we have defined a canonical isomorphism

V ∨ → Hom(πalg
1 (V ), Q/Z) = Ext(V, Fp). (1.15)

Lemma 1.23. Let V be an F̄ -vector space of finite dimension. For a continuous character
χ : πab

1 (V ) → Q/Z of finite order, the following conditions are equivalent.

(1) χ factors through the quotient πalg
1 (V ).

(2) −∗χ = pr∗
1 χ − pr∗

2 χ in Hom(πab
1 (V × V ), Q/Z).

Proof. (1) ⇒ (2). If [χ] ∈ Ext(V, Q/Z) denotes the corresponding extension class, we
have −∗[χ] = pr∗

1[χ] − pr∗
2[χ].

(2) ⇒ (1). Let χ : πab
1 (V ) → Q/Z be a character satisfying −∗χ = pr∗

1 χ − pr∗
2 χ.

Taking the pull-back by the injection into the second component V → V × V , we obtain
(−1)∗χ = −χ. Hence we have +∗χ = pr∗

1 χ + pr∗
2 χ. By induction on n, we have n · χ =

[n]∗χ. Hence, we have p · χ = 0.
Let f : X → V be the Fp-torsor corresponding to χ. By +∗χ = pr∗

1 χ + pr∗
2 χ, we have

an isomorphism (X × X)/Fp → X ×V (V × V ) of Fp-torsors on V × V . We consider the
composition +̃ : X ×X → (X ×X)/Fp → X ×V (V ×V ) → X. Take a point 0̃ ∈ f−1(0).
By shifting by the Fp-action, we may assume 0̃ +̃ 0̃ = 0̃. Then we can easily verify that
+̃ defines a group structure on X and the map f : X → V is compatible with the group
structure. �

We will prove the following theorem in the next subsection.
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Theorem 1.24. Let K be a henselian discrete valuation field satisfying the condition
(Geom). The graded quotient Grr

log GK is annihilated by p and the surjection (1.12)
induces a surjection

πalg
1 (Θ(r)

log) → Grr
log GK . (1.16)

By the isomorphism (1.15), Theorem 1.24 has the following corollary.

Corollary 1.25. The dual of the surjection πab
1 (Θ(r)

log) → Grr
log GK defines an injection

rsw : Hom(Grr
log GK , Fp) → Hom(πab

1 (Θ(r)
log), Fp) = Ω1

F (log) ⊗F m
(−r)
K̄

/m
(−r)+
K̄

.

For a character χ : Grr
log GK → Fp, we call the image rsw χ ∈ Ω1

F (log)⊗F m
(−r)
K̄

/m
(−r)+
K̄

the refined Swan character of χ. This definition generalizes that of Kato in the abelian
case in [14, Definition (5.3)] and [15, (3.4.2)].

Theorem 1.24 implies the prime-to-p part of the Hasse–Arf theorem. Let V be an �-adic
representation V of GK . Since P = G0+

K,log is a pro-p group, there exists a unique direct
sum decomposition V =

⊕
q�0,q∈Q V (q) by GK-submodules such that the Gr+

K,log-fixed
part is given by V Gr+

K,log =
⊕

q�r V (q). We put SwK V =
∑

r r · rankV (r) ∈ Q.

Corollary 1.26.

SwK V ∈ Z

[
1
p

]
.

Proof. It suffices to show that dim V · r ∈ Z[1/p] assuming V = V (r). This is equiva-
lent to that dimV is divisible by the prime-to-p part m of the denominator of r. Let
χ : Grr

log GK → µp ⊂ Q̄×
� be a character appearing in the restriction of V to Gr

K,log.
The injection Hom(Grr

log GK , Fp) → HomF̄ (mr
K̄

/m
r+
K̄

, Ω1
F (log) ⊗ F̄ ) is compatible with

the action of I ⊂ GK on Grr
log GK by the conjugacy. Since the action of I on mr

K̄
/m

r+
K̄

is by the multiplication through the quotient I → µm, there are m conjugates of χ

appearing with the same multiplicities in V . Thus the assertion follows. �

By the same limit argument as in the proof of [2, Theorem 2.15], Theorem 1.24 and
Corollary 1.26 imply the following.

Corollary 1.27. Let K be an arbitrary henselian discrete valuation field K of charac-
teristic p > 0.

(1) The pro-finite abelian group Grr
log GK is annihilated by p.

(2) For an �-adic representation V of GK , we have SwK V ∈ Z[1/p].

In the mixed characteristic case, one can prove results analogous to Theorem 1.24 and
Corollaries 1.25 and 1.26. The author plans to discuss them in a paper in preparation.
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1.4. Nearby cycles

Let X be a smooth scheme over k, D be a smooth irreducible divisor of X and U =
X \ D be the complement. Let ξ be the generic point of D and OK = Oh

X,ξ be the
henselization of the local ring at ξ. We put S = Spec OK and let η = Spec K be the
generic point. We consider the log product P = (X ×k S)∼ as in the last subsection and
the section S → P induced by the canonical map S → X.

For a rational number r � 0, we consider the Cartesian diagram

P
(r)
S,F

i(r)
��

��

P
(r)
S

p(r)

��

P
(r)
S,η = U × η

j(r)
�� pr1 ��

pr2

��

U

Spec F
i �� S η = Spec K

j��

Let s(r) : S → P
(r)
S be the section induced by S → P . By abuse of notation, we will also

write p(r) : P
(r)
S,F → Spec F and s(r) : Spec F → P

(r)
S,F for the maps induced on the closed

fibres. For r = 0, we have P
(0)
S = P = (X ×k S)∼. Let ψ(r) be the nearby cycle functor

Rψ for p(r) : P
(r)
S → S and ψ be the nearby cycle functor for the identity S → S. For a

sheaf Fη on η, we identify ψ(Fη) with the GK-module Fη̄.

Definition 1.28. Let F be a locally constant constructible sheaf of Λ-modules on U =
X \ D. The stalk Fη̄ defines a representation of the absolute Galois group GK .

For a rational number r > 0, we say that the log ramification of F at ξ along D is
bounded by r if Gr

K,log acts trivially on Fη̄. Similarly, for a rational number r � 0, we say
that the log ramification of F along D is bounded by r+ if Gr+

K,log acts trivially on Fη̄.

Since P = G0+
K,log is a pro-p group, there exists a unique direct sum decomposition

Fη̄ =
⊕

q�0, q∈Q

F (q)
η̄ (1.17)

by GK-submodules such that the Gr+
K,log-fixed part is given by

FGr+
K,log

η̄ =
⊕
q�r

F (q)
η̄ .

Replacing X by an étale neighbourhood of ξ if necessary, we may assume that there
exists a direct sum decomposition F =

⊕
q�0 F (q) inducing (1.17).

We identify the stable closed fibre P̄
(r)
S,F̄

with the F̄ -vector space Θ
(r)
log by the isomor-

phism in Corollary 1.11.

Proposition 1.29. Let r > 0 be a rational number and let π(r) : P̄
(r)
S,F̄

→ P
(r)
S,F̄

be the
canonical map. Let F be a smooth sheaf on U . We assume that Fη̄ = F (q)

η̄ for a rational
number q � 0.

(1) Assume q = r. Let Fη̄ =
⊕

χ F (χ)
η̄ be the decomposition by characters χ :

Grr
log GK → Λ×. Let Lχ be the smooth sheaf of rank 1 on P̄

(r)
S,F̄

= Θ
(r)
log defined

by the composition π1(Θ
(r)
log)

ab → Grr
log GK → Λ×.
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Then, there exists a canonical isomorphism

ψ(r)(pr∗
1 F) →

⊕
χ

π
(r)
∗ Lχ ⊗ p(r)∗F (χ)

η̄ (1.18)

on P
(r)
S,F̄

.

(2) If q < r, then there exists a canonical isomorphism

ψ(r)(pr∗
1 F) → π

(r)
∗ Λ ⊗ p(r)∗ψ(Fη) (1.19)

on P
(r)
S,F̄

.

Proof. Let V → U be the finite étale covering trivializing F . Replacing X by an étale
neighbourhood of ξ, we may assume that V is the complement of a smooth irreducible
divisor of the normalization Y of X in V as in the previous subsection. We put T =
Y ×X Spec OK = Spec OL. By the assumption, the log ramification of L is bounded
by q+.

We consider the diagram (1.8). Since q � r, there exists a finite extension K ′ of
K of ramification index e such that er is an integer and that, for the base change by
S′ = Spec OK′ → S, the map Q

(er)
T ′ → P

(er)
S′ is finite étale by Lemma 1.13. Further, if

q < r, the finite étale covering Q
(er)
T ′,F̄

→ P
(er)
S′,F̄

is trivial.
The pull-back of pr∗

1 F to U × Spec K ′ ⊂ P
(er)
S′ is trivialized by the restriction of the

finite étale covering Q
(er)
T ′ → P

(er)
S′ . Hence, it is extended to a smooth sheaf G on P

(er)
S′ .

By the definition of the surjection π1(Θ
(r)
log)

ab → Grr
log GK , the pull-back of G to Θ

(r)
log =

P̄
(r)
S,F̄

= P
(er)
S′ ×S′ F̄ is defined by the induced action of π1(Θ

(r)
log)

ab on Fη̄ =
⊕

χ F (χ)
η̄ .

Hence, it is isomorphic to
⊕

χ Lrank F(χ)

χ if q = r. If q < r, the pull-back of G to P̄
(r)
S,F̄

is
constant.

We consider the nearby cycle functor ψ′ for the smooth map p′(er) : P
(er)
S′ → S′. Let

s′ : S′ → P
(er)
S′ be the section induced by S → P

(r)
S . Then ψ′(pr∗

1 F) is the restriction of
G on P

(er)
S′,F̄

and the base change map

s′∗ψ′(pr∗
1 F) = G0 → ψ(F) (1.20)

is an isomorphism, where 0 ∈ Θ
(r)
log denotes the origin. Thus we obtain a canonical iso-

morphism

ψ′(pr∗
1 F) →

⎧⎪⎨⎪⎩
⊕

χ

Lχ ⊗ p′(er)∗F (χ)
η̄ if q = r,

p′(er)∗ψ(Fη) if q < r.

(1.21)

Since ψ(r)(pr∗
1 F) = π

(r)
∗ ψ′(pr∗

1 F), the isomorphism (1.21) induces isomorphisms (1.18)
and (1.19). �

Corollary 1.30. Let r � 0 be a rational number.

(1) If the log ramification of F is bounded by r+, then the base change map

s(r)∗ψ(r)(pr∗
1 F) → ψ(Fη) (1.22)

is an isomorphism.
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(2) The base change map (1.22) induces an isomorphism

s(r)∗R0ψ(r)(pr∗
1 F) → FGr+

K,log
η̄ ⊂ Fη̄ = ψ(Fη) (1.23)

from the degree 0-part to the Gr+
K,log-fixed part.

Proof. (1) We may assume F = F (q) for some rational number 0 � q � r. First, we
consider the case r > 0. We use the notation of the proof of Proposition 1.29. Since the
inverse image π(r)−1(0) of 0 ∈ Θ

(r)
log = P̄

(r)
S,F̄

consists of the image of the geometric closed
point by the section S → P

(r)
S , the isomorphism (1.20) shows that the base change map

(1.22) is an isomorphism.
Assume r = q = 0. Then, the smooth sheaf pr∗

1 F on U × η ⊂ P = P
(0)
S is tamely

ramified along P ×S Spec F . By Abhyankar’s lemma, the projections U × η → U and
U × η → η induce isomorphisms on the tame inertia. Hence, étale locally on P , it is
isomorphic to the pull-back of a sheaf on η. Since P is smooth over S, the assertion
follows.

(2) We may assume F = F (q) for some rational number q � 0. By 1, it suffices to consider
the case q > r. Since the base change map R0ψ(r)(pr∗

1 F)s̄ → R0ψ(Fη) is injective, it
suffices to show that the base change map is the 0-map.

Let frq : P
(q)
S → P

(r)
S be the canonical map. The sheaf ψ(q)(pr∗

1 F) has no non-trivial
geometrically constant subsheaf, by Proposition 1.29. Since the image frq(P

(q)
S,F̄

) is a
point, the base change map f∗

rqψ
(r)(pr∗

1 F) → ψ(q)(pr∗
1 F) is the 0-map. Thus the com-

position ψ(r)(pr∗
1 F)s̄ → ψ(q)(pr∗

1 F)s̄ → ψ(Fη) is also the 0-map as required. �

We consider H = Hom(pr∗
2 Fη, pr∗

1 F) on P
(r)
S,η = U × η and the base change map with

respect to the diagram

U × η
j(r)

−−−−→ P
(r)
S�⏐⏐ �⏐⏐s(r)

η
j−−−−→ S

Corollary 1.31. Let r � 0 be a rational number.

(1) The following conditions are equivalent.

(a) The log ramification of F is bounded by r+.

(b) The base change map
s(r)∗j

(r)
∗ H → j∗ End(Fη)

is an isomorphism.

(c) The identity 1 ∈ EndGK
(Fη̄) = Γ (S, j∗ End(Fη)) is in the image of the base

change map
Γ (S, s(r)∗j

(r)
∗ H) → Γ (S, j∗ End(Fη)).

(2) Assume that the Gr+
K,log-fixed part FGr+

K,log
η̄ is 0. Then we have i∗s(r)∗j

(r)
∗ H = 0.
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Proof. (1) (a) ⇒ (b). It suffices to show the isomorphism for the geometric closed fibre
at s̄ = Spec F̄ → S. By the assumption (a), we have

Fη̄ = FGr+
K,log

η̄

and the base change map (1.23) induces an isomorphism

s(r)∗R0ψ(r)(H)s̄ = Hom(ψ(Fη), s(r)∗R0ψ(r)(pr∗
1 F))

→ Hom(ψ(Fη), ψ(Fη)) = End(ψ(Fη)).

Taking the fixed parts by the inertia subgroup I ⊂ GK , we obtain an isomorphism

(s(r)∗j
(r)
∗ H)s̄ = s(r)∗R0ψ(r)(H)I → EndI(ψ(Fη)) = (j∗ End(Fη))s̄

as required.
(b) ⇒ (c). Clear.
(c) ⇒ (a). We consider the direct sum decomposition Fη̄ =

⊕
q F (q)

η̄ . It suffices to
show that the identity is not in the image assuming F (q)

η̄ �= 0 for some q > r. Thus it is
reduced to the assertion (2).

(2) Assume FGr+
K,log

η̄ = 0. Then, similarly as in the proof of (1) (a) ⇒ (b) above, we have
(s(r)∗j

(r)
∗ H)s̄ = s(r)∗R0ψ(r)(H)I = 0. �

Corollary 1.32. Assume that r > 0 is an integer and that the restriction to Gr
K,log of

the action on Fη̄ is by the multiplication by a character χ : Grr
log GK → Λ×.

(1) There exists a canonical isomorphism

ψ(r)(pr∗
1 F) → Lχ ⊗ p(r)∗ψ(Fη) (1.24)

on P
(r)
S,F̄

.

(2) There exists a canonical isomorphism

i(r)∗j
(r)
∗ H → Lχ ⊗ p(r)∗i∗j∗ End(Fη) (1.25)

on P
(r)
S,F .

Proof. (1) Clear from Proposition 1.29 (1).

(2) By (1), we have an isomorphism

Hom(p(r)∗ψ(Fη), ψ(r)(pr∗
1 F)) = ψ(r)(H)⏐⏐�

Hom(p(r)∗ψ(Fη),Lχ ⊗ p(r)∗ψ(Fη)) = Lχ ⊗ p(r)∗ψ(End(Fη))

(1.26)

We have canonical isomorphisms RΓ (I, ψ(r)) → i(r)∗Rj
(r)
∗ and RΓ (I, ψ) → i∗Rj∗ of

functors. Thus, we obtain the isomorphism (1.25) by taking the inertia fixed parts
in (1.26). �
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The following geometric construction is crucial in the proof of Theorem 1.24. Let
(X × X)′ → X × X be the blow-up at D × D and let (X × X)∼ ⊂ (X × X)′ be the
complement of the proper transforms of D × X and of X × D. We call the immersion
δ̃ : X → (X × X)∼ induced by the diagonal δ : X → X × X the log diagonal. Let
JX ⊂ (X × X)∼ be the ideal defining the log diagonal and let j̃ : U × U → (X × X)∼

be the open immersion. For an integer r � 0, we define a scheme (X × X)(r) affine over
(X × X)∼ by the quasi-coherent O(X×X)∼ -algebra

∑
l�0 I−lr

D · J l
X ⊂ j̃∗OU×U .

The fibre product (X × X)(r) ×X D with respect to the second projection is canoni-
cally identified with the vector bundle V (Ω1

X(log D)(rD)) ×X D, similarly as in Corol-
lary 1.11. Hence the map (X × S)(r) → (X × X)(r) defined by the canonical map S → X

induces an isomorphism

(X × S)(r) ×X Spec F̄ = Θ
(r)
log⏐⏐�

(X × X)(r) ×X Spec F̄ = V (Ω1
X(log D)(rD)) ×X Spec F̄

(1.27)

Lemma 1.33. Let r > 0 be an integer.

(1) There exists a unique map µ : (X × S)(r) ×S (X × S)(r) → (X × X)(r) that makes
the diagram

(X × S)(r) ×S (X × S)(r)
µ−−−−→ (X × X)(r)⏐⏐� ⏐⏐�

(X × S) ×S (X × S) = X × X × S
pr12−−−−→ X × X

(1.28)

commutative.

(2) Under the identification (1.27) (X × X)(r) ×X Spec F̄ = Θ
(r)
log, the map

µ : (X × S)(r) ×S (X × S)(r) → (X × X)(r)

induces the difference − : Θ
(r)
log ×F̄ Θ

(r)
log → Θ

(r)
log on the fibre over Spec F̄ .

Proof. (1) We put P = (X × S)∼ ×S (X × S)∼. Applying the basic construction to the
smooth scheme P and the diagonal section S → P , we define q : P

(r)
S → P and a section

s(r) : S → P
(r)
S . The projections P → (X ×S)∼ induce P

(r)
S → (X × S)(r). We show that

the product
P

(r)
S → (X × S)(r) ×S (X × S)(r) (1.29)

is an isomorphism. The ideal defining the closed subscheme S ⊂ P is generated by the
two pull-backs of the ideal defining the closed subscheme S ⊂ (X ×S)∼. Hence, the map
(1.29) is a closed immersion. Since both P

(r)
S and (X × S)(r) ×S (X × S)(r) are smooth

over S of the same dimension, the closed immersion (1.29) is an open immersion. Since
the map (1.29) is an isomorphism on each fibre, it is an isomorphism.
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Let D(X×S)∼ ⊂ (X × S)∼ be the pull-back pr∗
1 D = pr∗

2 DS . Since pr∗
1 D(X×S)∼ =

pr∗
2 D(X×S)∼ on P , there exists a unique map λ : P → (X × X)∼ that makes the

diagram (1.28) with µ : P (r) = (X × S)(r) ×S (X × S)(r) → (X × X)(r) replaced by
λ : P → (X × X)∼ commutative. By the commutative diagram

S −−−−→ X⏐⏐� ⏐⏐�
P

λ−−−−→ (X × X)∼

the pull-back λ∗(I−lr
D · J l

X) is contained in m
−lr
K · Il

S . Hence the assertion follows.

(2) Let JX ⊂ O(X×X)∼ and JS ⊂ O(X×S)∼ be the ideals defining the closed subschemes
X ⊂ (X × X)∼ and S ⊂ (X × S)∼ respectively. By the identification in Corollary 1.11,
the map Θ

(r)
log ×F Θ

(r)
log → Θ

(r)
log ⊂ (X × X)(r) is defined by I−r

D JX → m
−r
K ·JS ⊕m

−r
K ·JS .

Hence, it is a linear map of vector bundles. Thus it suffices to show that the composition
with the injections i1, i2 : Θ

(r)
log → Θ

(r)
log ×F Θ

(r)
log of the two factors are the identity of Θ

(r)
log

and the multiplication by −1 respectively.
Let s : S → (X × S)(r) be the map induced by the canonical map S → X. We con-

sider the map ι1 = (id(X×S)(r) , s ◦ pr2) : (X × S)(r) → (X × S)(r) ×S (X × S)(r). Then,
its restriction Θ

(r)
log → Θ

(r)
log ×F̄ Θ

(r)
log to the closed fibre is the injection into the first com-

ponent. The composition µ ◦ ι1 is the map (X × S)(r) → (X × X)(r) induced by the
canonical map S → X. Hence the composition µ ◦ i1 is the identity of Θ

(r)
log. Similarly,

we consider the map ι2 = (s ◦ pr2, id(X×S)(r)) : (X × S)(r) → (X × S)(r) ×S (X × S)(r).
Then the composition µ ◦ ι2 : (X × S)(r) → (X × X)(r) is the composition of the canoni-
cal map (X × S)(r) → (X × X)(r) and the map (X × X)(r) → (X × X)(r) switching the
two factors. Hence the composition µ ◦ i2 is the multiplication by −1 of Θ

(r)
log. Hence the

assertion is proved. �

Proof of Theorem 1.24. We start with some reduction steps. For each non-trivial
character χ : Grr

log GK → Λ×, the surjection (1.12) defines a locally constant sheaf Lχ of
Λ-modules of rank 1 on Θ

(r)
log. By Lemma 1.23, in order to prove Theorem 1.24, it suffices

to show that, for every character χ : Grr
log GK → Λ×, there exists an isomorphism

−∗Lχ → Hom(p∗
2Lχ, p∗

1Lχ) assuming Λ is a finite field.
We reduce it to the case where r is an integer. Let e > 0 be an integer such that er is an

integer and let K1 be an extension of K of ramification index e as in Lemma 1.22. Then
the construction of Lχ commutes with the base change K → K1. Hence, it is reduced to
the case where r is an integer.

We further reduce it to the case where the restriction to Gr
K,log of the action on Fη̄

is by the multiplication by a character χ : Grr
log GK → Λ×. By the same argument as

in the last paragraph, we may replace K by a tamely ramified extension. Hence we may
assume the restriction to G0+

K,log is irreducible. By [2, Theorem 5.12.1], Grr
log GK is in the

centre of G0+
K,log/Gr+

K,log. Hence, the action on Fη̄ to Gr
K,log is by the multiplication by a

character χ : Grr
log GK → Λ×.
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We assume that r > 0 is an integer and the restriction of Fη̄ to Gr
K,log is the mul-

tiplication by a non-trivial character χ : Grr
log GK → Λ×. We consider the commutative

diagram

Θ
(r)
log ×F Θ

(r)
log

i−−−−→ (X × S)(r) ×S (X × S)(r)
j←−−−− (U × η) ×η (U × η)

−
⏐⏐� = U × U × η

Θ
(r)
log

µ

⏐⏐� ⏐⏐�pr12⏐⏐�
(X × X)(r) ×X D

i′
−−−−→ (X × X)(r)

j′

←−−−− U × U

The left square is commutative by Lemma 1.33 (2). We consider the base change map

−∗((i′∗j′
∗H)|

Θ
(r)
log

) → i∗j∗ pr∗
12 H (1.30)

for H = Hom(pr∗
2 F , pr∗

1 F) on U × U .
First, we compute i∗j∗ pr∗

12 H. We have ψ(pr∗
12 H) = ψ(Hom(pr∗

2 F , pr∗
1 F)) where

pri : U × U × η → U denote the projections. Further, we have

ψ(Hom(pr∗
2 F , pr∗

1 F)) = Hom(ψ(pr∗
2 F), ψ(pr∗

1 F)) = Hom(pr∗
2 ψ(r)F , pr∗

1 ψ(r)F),

where pri : Θ
(r)
log × Θ

(r)
log → Θ

(r)
log denote the projections in the right-hand side. By Propo-

sition 1.29, it is further identified with

Hom(pr∗
2 Lχ ⊗ ψ(Fη), pr∗

1 Lχ ⊗ ψ(Fη)) → Hom(pr∗
2 Lχ, pr∗

1 Lχ) ⊗ ψ(End(Fη)).

Here and in the following, ψ(Fη), etc., on the base also denote their pull-backs by abuse
of notation. Thus, similarly as Corollary 1.32, we obtain an isomorphism i∗j∗ pr∗

12 H →
Hom(p∗

2Lχ, p∗
1Lχ) ⊗ EndI(Fη) by taking the inertia fixed parts.

Next, we compute the restriction (i′∗j′
∗H)|

Θ
(r)
log

. This is the same as i∗j
(r)
∗ H computed

in Corollary 1.32. Hence it is canonically isomorphic to Lχ ⊗ EndI(Fη). Hence, the map
(1.30) induces a map

−∗Lχ ⊗ EndI(Fη) → Hom(p∗
2Lχ, p∗

1Lχ) ⊗ EndI(Fη)

of smooth sheaves. Since, this is an isomorphism at the origin, it is an isomorphism on
Θ

(r)
log ×F Θ

(r)
log. By evaluating at the identity of Fη, we obtain an isomorphism −∗Lχ →

Hom(p∗
2Lχ, p∗

1Lχ) as required. �

2. Ramification along a divisor

We introduce the notion of additive sheaves on vector bundles and its generalization
in § 2.1. In § 2.2, we study a global variant of the basic construction in § 1.1. After these
preliminaries, we study the ramification of smooth sheaves on the complement of a divisor
with normal crossings along the divisor in § 2.3.
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2.1. Additive sheaves on vector bundles and generalizations

We recall the definition of the Fourier–Deligne transform [17]. Let X be a scheme over
Fp. Let E = V (E) → X be a vector bundle of rank d and let E∨ = V (E∨) → X be
the dual. The canonical pairing defines a map 〈· , ·〉 : E ×X E∨ → A1. We consider the
diagram

E
pr1←−−−− E ×X E∨ 〈·,·〉−−−−→ A1

pr2

⏐⏐�
E∨

where pri denote the projections.
We fix a non-trivial character ψ : Fp → Λ× and let Lψ be the smooth rank 1 Artin–

Schreier sheaf on A1 = Spec k[t] defined by the Fp-torsor A1 → A1 : t 
→ tp − t and
by ψ. For a sheaf G on the dual E∨ of a vector bundle E, we define the naive Fourier
transform Fψ(G) on E by

Fψ(G) = R pr1!(pr∗
2 G ⊗ 〈· , ·〉∗Lψ).

For a sheaf H on E, we define the inverse Fourier transform F ′
ψ′(H) by

F ′
ψ′(H) = R pr2!(pr∗

1 H ⊗ 〈· , ·〉∗Lψ′)(d)[2d],

where ψ′ : Fp → Λ× denotes the inverse of ψ.
We have canonical isomorphisms

H → FψF ′
ψ′H, G → F ′

ψ′FψG. (2.1)

Let f : E → F be a linear morphism of vector bundles over X and f∨ : F∨ → E∨ be
the dual. Then, we have a canonical isomorphism

f∗FψG → FψRf∨
! G (2.2)

for a sheaf G on F∨. Similarly, we have a canonical isomorphism

Fψf∨∗G → Rf!FψG (2.3)

for a sheaf G on E∨. Dually, we have a canonical isomorphism

Rf∗FψG → FψRf∨!G (2.4)

for a sheaf G on E∨.
We introduce the notion of additive sheaves on vector bundles.

Definition 2.1. Let E = V (E) be a vector bundle over a scheme X over k and let H be
a constructible sheaf on E. Let G = F ′

ψ′H be the inverse Fourier transform and define a
constructible subset S ⊂ E∨ to be the support of G.

We say H on E is additive if, for every point x of X, the fibre S ×X x is finite. For
an additive constructible sheaf H on E, we call the support S = SH ⊂ E∨ of the inverse
Fourier transform G = F ′

ψ′H the dual support of H. We say an additive constructible
sheaf is non-degenerate if the intersection of the closure of the dual support SH with the
0-section is empty.
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Example 2.2. Let f be a linear form on a vector bundle E → X and H be the Artin–
Schreier sheaf on E defined by the equation T p − T = f and by ψ. Then, H is the naive
Fourier transform Fψ(ΛS) of the constant sheaf on the image S of the corresponding
section X → E∨. Hence H is additive and its dual support is S. It is non-degenerate if
and only if the intersection of S with the 0-section is empty.

A constructible sheaf H on a vector bundle E is additive if and only if, for every
geometric point x̄ → X, the pull-back H|Ex̄ is additive, by the proper base change
theorem. If X = Spec F̄ is the spectrum of an algebraically closed field, a constructible
sheaf H on a vector space E is additive if and only if H is a direct sum of rank 1
Artin–Schreier sheaves defined by linear forms by the isomorphism (2.1). A constructible
subsheaf H′ of an additive constructible sheaf H is additive if and only if it is smooth on
each fibre.

We have the following elementary properties on additive sheaves.

Lemma 2.3.

(1) Let f : E′ → E be a linear map of vector bundles over X and f∨ : E∨ → E′∨ be
the dual. If H is additive, then f∗H is additive and we have Sf∗H = f∨(SH).

Assume f : E′ → E is surjective and identify E∨ with the image f∨(E∨) by the
closed immersion f∨ : E∨ → E′∨. Then, conversely, H is additive if f∗H is additive.

(2) Let f : E → X be a vector bundle and let H be an additive constructible sheaf. If
H is non-degenerate, we have Rf∗H = Rf!H = 0.

Proof. (1) Clear from (2.2).

(2) Clear from (2.2) and (2.4). �

An additive sheaf is uniquely determined by the restriction to the complement of the
0-section.

Proposition 2.4. Let E be a vector bundle over X and H be an additive sheaf on E.
Let E0 = E \ 0(X) be the complement of the 0-section and g : E0 → E be the open
immersion. Then, the canonical map H → g∗g

∗H is an isomorphism.

Proof. By devissage, we may assume that the dual support S = SH ⊂ E∨ is locally
closed and normal and that the inverse Fourier transform G = F ′

ψ′(H) is locally con-
stant on S. We have an isomorphism H → pr1!(pr∗

2 G ⊗ µ∗Lψ) where µ denote the
composition of the inclusion E ×X S → E ×X E∨ with 〈· , ·〉 : E ×X E∨ → A1.
Since the canonical map pr∗

2 G → (g × 1)∗(g × 1)∗ pr∗
2 G is an isomorphism, the map

pr∗
2 G ⊗ µ∗Lψ → (g × 1)∗(g × 1)∗(pr∗

2 G ⊗ µ∗Lψ) is also an isomorphism.
Since S → X is quasi-finite, there exists a normal scheme S̄ finite over X and containing

S as a dense open subscheme, by Zariski’s main theorem. Let j : S → S̄ denote the open
immersion. Then, the isomorphism pr∗

2 G ⊗ µ∗Lψ → (g × 1)∗(g × 1)∗(pr∗
2 G ⊗ µ∗Lψ) is

extended to an isomorphism (1 × j)!(pr∗
2 G ⊗ µ∗Lψ) → (g × 1)∗(g × 1)∗(1 × j)!(pr∗

2 G ⊗
µ∗Lψ). Hence the assertion follows by the proper base change theorem for the finite map
pr1 : E ×X S̄ → E. �
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Proposition 2.5. Let X be a scheme over k and E → X be a vector bundle. For a
constructible sheaf H on E, the following conditions are equivalent.

(1) H is additive.

(2) For every geometric point x̄ ∈ X and for every closed point a ∈ Ex̄, there exists an
isomorphism (+a)∗(H|Ex̄

) → H|Ex̄
.

Proof. We may assume k is algebraically closed and X = Spec k. Let G = F ′
ψ′H be the

inverse Fourier transform and S ⊂ E∨ be the support of G. A closed point a ∈ E defines
a linear form 〈a, ·〉 : E∨ → A1. The conditions (1) and (2) are equivalent to the following
conditions respectively.

(1′) For every closed point a ∈ E, the image of S by the map 〈a, ·〉 : E∨ → A1 is finite.

(2′) For every closed point a ∈ E, there exists an isomorphism G ⊗ 〈a, ·〉∗Lψ → G.

The condition (1′) implies (2′) since the restriction of 〈a, ·〉∗Lψ on S is constant. We
show that (2′) implies (1′). Let U ⊂ E∨ be a normal integral locally closed subscheme
supported in S such that the restriction G|U is locally constant. Let π : V → U be a
connected finite étale covering such that π∗G|U is constant. Then, by the condition (2′),
π∗〈ca, ·〉∗Lψ is constant on V for every a ∈ E and c ∈ k. Namely, the Artin–Schreier
coverings T p − T = ct of A1 = Spec k[t] for all c ∈ k are trivialized by the pull-back
by the map 〈a, ·〉 ◦ π : V → A1. If this map was dominant, the function field k(V )
would contain infinitely many linearly disjoint extensions of k(t). Therefore, the image
of 〈a, ·〉 ◦ π : V → A1 collapses to a point. Hence the condition (2′) implies (1′). �

For a vector bundle E over X let + : E ×X E → E denote the sum. Its dual is the
diagonal map δ : E∨ → E∨ ×X E∨.

Proposition 2.6. Let X be a scheme over k and E → X be a vector bundle. Let H
be an additive constructible sheaf on E and K be a constructible sheaf on E. Let H|0
denote the restriction on the 0-section X ⊂ E and let e ∈ Γ (X, H|0) be a section. Let
u : H � K → +∗K be a map such that the composition

u|0×E ◦ (e ⊗ 1K) : K → H|0 ⊗ K → K (2.5)

is the identity of K. Then K is additive and the support SM ⊂ E∨ of M = FψK is a
subset of the support SG ⊂ E∨ of G = FψH.

Proof. We regard e as a global section e ∈ Γ (E∨,G) = Γ (X, H|0). By (2.3), the map u

induces G�M → δ∗M on the Fourier transform and hence a bilinear map v : G⊗M → M
by adjunction. We show that the composition

v ◦ (e ⊗ 1M) : M → G ⊗ M → M (2.6)

is the identity of M. Let ẽ : ΛX(−d)[−2d] → H be the cup product of e : ΛX → H|0
with the map ΛX(−d)[−2d] → ΛE defined by the cycle class of the 0-section X ⊂ E. We
consider the map

u ◦ (ẽ � 1K) : ΛX(−d)[−2d] � K → H � K → +∗K. (2.7)
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By the assumption that the composition of (2.5) is the identity, the induced map
+∗(ΛX(−d)[−2d] � K) = K(−d)[−2d] → +∗ +∗ K = K(−d)[−2d] is the identity map.
Therefore, the Fourier transform

Fψu ◦ (e � 1M) : ΛE � M → G � M → δ∗M

of (2.7) induces the identity in (2.6).
Since the composition in (2.6) is the identity of M, the support SM is a subset of the

support of e ∈ Γ (E∨,G). Hence we have SM ⊂ SG and K is additive. �

Lemma 2.7. Let X be a normal scheme over k and E → X be a vector bundle. Let H be
a constructible sheaf on E satisfying the following condition: for every point x ∈ X, the
restriction H|Ex is locally constant and there exists a dense open subscheme U ⊂ X such
that, if j : EU = E ×X U → E denotes the open immersion, the pull-back HU = j∗H is
an additive locally constant sheaf and that the canonical map H → j∗j

∗H is injective.
Then, the sheaf H is additive and we have SH ⊂ SHU

⊂ E∨.

Proof. Let S ⊂ E∨ be the support of F ′
ψ′H. It suffices to show that, for each x ∈ X \U ,

the fibre Sx is a finite set and that we have Sx ⊂ SHU
. Let f : X ′ → X be the

normalization of the blowing-up of X at the closure {x} and j′ : U ′ = f−1(U) → X ′ be
the open immersion. Let H′ be the pull-back of H on E′ = E ×X X ′ and S′ ⊂ E′∨ be the
support of F ′

ψ′H′. Then we have S′ = f−1(S) and S = f(S′) where f : E′∨ → E∨ also
denotes the induced map by abuse of notation. Since the base change map f∗j∗j

∗H →
j′
∗j

′∗H′ is injective by Lemma 2.9 below, the canonical map H′ → j′
∗j

′∗H′ is also injective.
Hence, it suffices to show the assertion for the generic point of the exceptional divisor
and we may assume OX,x is a discrete valuation ring.

We may assume X is integral. Let η be the generic point of X and K = κ(η) be the
fraction field of X. By replacing X by the normalization in a finite extension of K, we
may assume that the fibre Sη ⊂ E∨

η consists of finitely many K-rational points. Then,
we may assume HU =

⊕
f∈Sη

Lf ⊗ Ff is the direct sum of the tensor product of the
rank one sheaves Lf defined by the Artin–Schreier equations T p −T = f for linear forms
f ∈ Sη on EU with a constant sheaf Ff . Let Sη,x ⊂ Sη denote the subset consisting of
the linear forms regular at x and, for f ∈ Sη,x, let f̄ denotes the reduction at x. Then,
the following lemma and the purity imply that the restriction j∗j

∗H|Ex on the fibre is⊕
f∈Sη,x

Lf̄ ⊗ Ff . Since H|Ex is a smooth subsheaf of j∗j
∗H|Ex =

⊕
f∈Sη,x

Lf̄ ⊗ Ff , it
is reduced to the following lemma.

Lemma 2.8. Let K be a discrete valuation field of characteristic p > 0 and we consider
the valuation vL of L = K(t1, . . . , tn) defined by the prime ideal mK · OK [t1, . . . , tn] of
the polynomial ring. Then, for a linear form f ∈ Kt1 + · · ·+Ktn ⊂ L, the Artin–Schreier
extension of L defined by T p − T = f is unramified with respect to vL if and only if
f ∈ OKt1 + · · · + OKtn.

Proof. It suffices to show that the Artin–Schreier extension is ramified assuming
vL(f) = −m < 0. If p � m, it is a totally ramified extension. If p|m, the residue field
extension is the purely inseparable extension generated by the pth root of the non-zero
linear form πm/pf . �
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Lemma 2.9. Let f : X → Y be a morphism of normal schemes and V ⊂ Y be a dense
open subscheme such that U = X ×Y V ⊂ X is a dense open subscheme. Let j : V → Y

and j′ : U → X be open immersions and f ′ : U → V be the restriction of f . Then, for a
locally constant sheaf on V , the base change map f∗j∗F → j′

∗f
′∗F is an injection.

Proof. Exercise. �

We introduce a generalization of vector bundles.

Definition 2.10. Let X be a scheme and let L and E be an invertible OX -module and
a locally free OX -module of finite rank, respectively, and let n � 1 be an integer. We call
the vector bundloid of degree n associated to (E ,L) the affine X-scheme

E = Vn(E ,L)

defined by the quasi-coherent OX -algebra
⊕

l�0 SnlE ⊗ L⊗l. We call E∨ = Vn(E∨,L∨)
the dual of E.

The grading defines a natural action of the multiplicative group Gm on Vn(E ,L). For
n = 1, we have V1(E ,L) = V (E ⊗ L). For m = nr, the inclusion

⊕
l�0 SnrlE ⊗ L⊗rl ⊂⊕

l�0 SnlE ⊗ L⊗l defines a finite surjection

πmn : Vn(E ,L) → Vm(E ,L⊗r).

It induces an isomorphism Vn(E ,L)/µr → Vm(E ,L⊗r) with respect to the action
restricted to the group µr ⊂ Gm of rth roots of unity. If X is a scheme over Fp and
if r is a power of p, the map πmn : Vn(E ,L) → Vm(E ,L⊗r) induces an isomorphism
on the étale site. If L → OX is an isomorphism, the map πn1 defines a finite surjection
V (E) = V1(E ,OX) → Vn(E ,OX) → Vn(E ,L). If E = OX , we have Vn(OX ,L) = V (L).

We call the section X → E = Vn(E ,L) defined by the augmentation
⊕

l�0 SnlE ⊗
L⊗l → OX the 0-section of E. We identify X with a closed subscheme of E by the
0-section. On the complement E0 = E \ X of the 0-section, we have a natural map

ϕ : E0 → P (E) = Proj(S•E)

since P (E) is canonically identified with Proj(
⊕

l�0 SnlE ⊗ L⊗l). It induces an isomor-
phism E0/Gm → P (E). The finite map πmn : Vn(E ,L) → Vm(E ,L⊗r) is compatible
with the map ϕ : E0 → P (E).

Lemma 2.11. Let O(n) be the tautological sheaf on P (E). Then, there exists a canonical
isomorphism ϕ∗O(n) → L∨ on E0.

Proof. The invertible sheaf O(n) on P (E) is the pull-back of O(1) on P (SnE) by the
Veronese embedding P (E) → P (SnE). We put E = Vn(E ,L) and let p : E → X denote
the projection. Then, we have a tautological map p∗(SnE ⊗ L) → OE . On E0, this is a
surjection and defines a surjection p∗SnE → p∗L∨. Since the composition E0 → P (E) →
P (SnE) is defined by the surjection p∗SnE → p∗L∨, the assertion follows. �
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Lemma 2.12. Let E = Vn(E ,L) → X be a vector bundloid on a scheme X over k.
Let M be an invertible OX -module and L → M⊗n be an isomorphism and let π : Ẽ =
V (E ⊗ M) = V1(E ,M) → E = Vn(E ,L) be the induced map. Let g : E0 = E \ X → E

and g̃ : Ẽ0 = Ẽ \ X → Ẽ be the open immersions of the complements of the 0-section
and π0 : Ẽ0 → E0 be the restriction of π : Ẽ → E. We consider the following condition
on a constructible sheaf H on E.

(P) The canonical map H → g∗g
∗H is an isomorphism and the sheaf g̃∗π

0∗g∗H on Ẽ

is additive.

(1) Let M′ be another invertible OX -module and L → M′⊗n be an isomorphism. We
define π′ : Ẽ′ → E etc. as above. Then the condition (P) for H with respect to
π : Ẽ → E is equivalent to that for π′ : Ẽ′ → E.

Assume H satisfies the equivalent conditions and put H̃ = g̃∗π
0∗g∗H on Ẽ and

H̃′ = g̃′
∗π

′0∗g′∗H on Ẽ′. Then SH̃ ⊂ Ẽ∨ and SH̃′ ⊂ Ẽ′∨ have the same images
in E∨.

(2) Let n′ be the prime-to-p part of n and assume that k contains a primitive n′th root
of 1. We consider the natural action of G = µn′ on Ẽ over E. Then, the condition
(P) for H is equivalent to the following condition.

(P′) There exist an additive constructible sheaf H̃ on Ẽ with an action of G and an
isomorphism H → (π∗H̃)G.

Proof. (1) The assertion is étale local on X. Let n = n′n′′ be the decomposition into
the prime-to-p part and the p-primary part. Replacing X by the covering defined by the
equation Tn′′ − u for a unit u does not change the étale topology. Hence, we may assume
there exists an isomorphism M → M′ compatible with L → M⊗n and L → M′⊗n.
Then the assertion is clear.

(2) On the restriction on E0, the canonical map g∗H → (π0
∗π0∗g∗H)G to the G-fixed

part is an isomorphism. Hence, it induces an isomorphism

g∗g
∗H → (g∗π

0
∗π0∗g∗H)G → (π∗g̃∗π

0∗g∗H)G. (2.8)

(P) ⇒ (P′). We put H̃ = g̃∗π
0∗g∗H. Then, if the canonical map H → g∗g

∗H is an
isomorphism, we obtain an isomorphism H → (π∗H̃)G by the isomorphism (2.8).

(P′) ⇒ (P). Let H → (π∗H̃)G be an isomorphism. Then, it induces an isomorphism
π0∗g∗H → g̃∗H̃ compatible with the G-action. By Proposition 2.4, it induces an iso-
morphism g̃∗π

0∗g∗H → H̃ and g̃∗π
0∗g∗H is additive. By the isomorphism (2.8), the

isomorphism H → (π∗H̃)G implies that the canonical map H → g∗g
∗H is an isomor-

phism. �

We generalize the notion of additive sheaves on vector bundloids.
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Definition 2.13. Let E = Vn(E ,L) → X be a vector bundloid of degree n over a scheme
X over k. We say a constructible sheaf H on E is potentially additive if it satisfies the
condition (P) in Lemma 2.12 Zariski locally on X.

Let H be a potentially additive constructible sheaf on E. Then, we define a con-
structible subset SH of the dual E∨ as the image of the dual support SH̃ of the additive
sheaf H̃ = g̃∗π

0∗g∗H in the notation of Lemma 2.12 Zariski locally on X and call SH
the dual support of H. We say a potentially additive constructible sheaf H on E is
non-degenerate if the intersection of the closure of SH ⊂ E∨ with the 0-section is empty.

Lemma 2.14. Let p : E = Vn(E ,L) → X be a vector bundloid of degree n over a
scheme X over k. Let H be a potentially additive constructible Q�-sheaf on E. If it is
non-degenerate, then we have Rp!H = Rp∗H = 0.

Proof. Since the assertion is Zariski local on X, we may use the notation in Lemma 2.12.
Let p̃ : Ẽ → X denote the structural map. Since H is assumed non-degenerate, we
have Rp̃!H̃ = Rp̃∗H̃ = 0 by Lemma 2.3 (2). Therefore, Rp!H = (Rp̃!H̃)G and Rp∗H =
(Rp̃∗H̃)G are 0. �

2.2. Global basic construction

We study the basic construction in § 1.1 in a global setting. Let X be a smooth scheme
over k, D be a divisor with simple normal crossings and j : U = X \ D → X be the
open immersion of the complement. Let p : P → X be a smooth morphism of relative
dimension d and s : X → P be a section. By the section s, we regard X as a closed
subscheme of P .

Let D1, . . . , Dm be the irreducible components of D. We consider an effective divisor
R = r1D1 + · · · + rmDm with rational coefficients r1, . . . , rm � 0. For an integer l � 0,
let [lR] denote the integral part of lR and I[lR] ⊂ OX be the ideal sheaf of the effective
divisor [lR]. Let IX ⊂ OP be the ideal sheaf of X ⊂ P and jP : PU = P ×X U → P be
the open immersion. We define an affine P -scheme q : P (R) → P by the quasi-coherent
OP -algebra ∑

l�0

p∗I−1
[lR] · Il

X ⊂ jP∗OPU
. (2.9)

Let p(R) : P (R) → X be the canonical map and s(R) : X → P (R) be the section induced
by s : X → P . We also regard D ⊂ X as closed subschemes of P (R) by the section s(R).

Here is an alternative construction of q : P (R) → P . Let n > 0 be an integer such
that M = nR has integral coefficients. Let q̄ : P [M/n] → P be the blow-up by the
ideal p∗IM + In

X ⊂ OP and P (M/n) ⊂ P [M/n] be the complement of the support of
q̄∗(p∗IM + In

X)/q̄∗p∗IM . The morphism P (M/n) → P is affine and P (M/n) is defined
by the quasi-coherent OP -subalgebra OP [p∗I−1

M · In
X ] ⊂ jP∗OPU

. Then, similarly as
Lemma 1.10 (1), P (R) is identified with the normalization of P (M/n).

We put I+ = {i | 1 � i � m, ri > 0} and D+ =
∑

i∈I+ Di. We describe the structure
of the inverse image E+ = P (R) ×X D+ in terms of vector bundloids introduced in the
previous subsection.
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Lemma 2.15. Let D1, . . . , Dm be the irreducible components of D and put I+ = {i |
1 � i � m, ri > 0}.

(1) Let I ⊂ I+ be a non-empty subset and nI � 1 be the minimum integer n such that
the coefficients in nR of Di are integers for all i ∈ I. Let DI be the intersection⋂

i∈I Di and put D◦
I = DI \

⋃
i∈I+\I(Di ∩ DI).

Then, there exists a canonical isomorphism

E◦
I = (P (R) ×X D◦

I )red → VnI
(NX/P ,O(nIR)) ×X D◦

I

over D◦
I . The restriction D◦

I → E◦
I of the section s(R) : X → P (R) corresponds to

the 0-section of the right-hand side.

(2) Let R∗ = X ×P (P (R) \ X) be the inverse image of X = s(X) ⊂ P by the restriction
of the canonical map q : P (R) → P on the complement P (R) \ X of the section s(R).
Then R∗ is a divisor of P (R) \ X and satisfies R∗ = p(R)∗R.

(3) Assume the coefficients of R are integers. Then, the map p(R) : P (R) → X is smooth.
The inverse image E+ = P (R) ×X D+ of D+ =

∑
i∈I+ Di is canonically isomorphic

to the vector bundle V (NX/P ⊗ O(R)) ×X D+.

Proof. (1) We may assume I = I+. Similarly as the definition of the lower horizontal
arrow of (1.3), a surjection⊕

l�0, nI |l
(O(lR) ⊗ SlNX/P ) ⊗OX

OD◦
I

→ OE◦
I

is defined by using the definition (2.9) of P (R). In other words, we have a closed immersion
E◦

I → VnI
(NX/P ,O(nIR)) ×X D◦

I . We show this is an isomorphism. Since the question
is étale local on P , we may assume P = V (E) is a vector bundle defined by a locally
free OX -module E of rank d and s : X → P is the 0-section. Then P (R) is the affine
scheme over X defined by the OX -algebra

⊕
l�0 SlE ⊗ O([lR]). Since the image of the

l-component in OE◦
I

is 0 unless [lR] = lR, the assertion follows.

(2) Let n > 0 be an integer such that M = nR has integral coefficients. Since the question
is local on P , we may assume the ideal IX ⊂ OP is generated by d sections e1, . . . , ed and
InR has a basis l. Then, on the open subscheme of P (R) where fi = l−1en

i is invertible, the
pull-back of the ideal IX = (e1, . . . , ed) is generated by ei since ej = ei · l−1eje

n−1
i /fi.

Since the support of the closed subscheme of P (R) defined by the ideal (f1, . . . , fd) is
s(R)(X), the assertion follows.

(3) We show that the scheme P (R) is smooth over X. Since the question is étale local on
P , we may assume P = V (E) is a vector bundle defined by a locally free OX -module E
of rank d and s : X → P is the 0-section as in the proof of (1). Then P (R) is the vector
bundle V (E ⊗ O(R)) and the assertion follows.

Similarly as in the proof of (1), we obtain a closed immersion E+ = E ×X D+ →
V (NX/P ⊗ O(R)) ×X D+ and we see that this is an isomorphism. �
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We have the following functoriality of the construction of P (R).

Lemma 2.16. We consider a commutative diagram

Y
t−−−−→ Q

q−−−−→ Y

f

⏐⏐� g

⏐⏐� ⏐⏐�f

X
s−−−−→ P

p−−−−→ X

of smooth schemes over k. We assume that s : X → P and t : Y → Q are sections of
smooth maps p : P → X and q : Q → Y respectively. Let D be a divisor of X with
simple normal crossings. Assume that the divisor DY = (D ×X Y )red has simple normal
crossings. Let R =

∑
i riDi � 0 be an effective divisor with rational coefficients ri � 0

and let RY = f∗R be the pull-back.

(1) There exists a unique map g(R) : Q(RY ) → P (R) lifting g : Q → P .

(2) Suppose that the coefficients of R are integral. Let D+ and D+
Y be the supports

of R and of RY respectively. We identify E+ = P (R) ×X D+ with V (NX/P ⊗
O(R)) ×X D+ and E+

Y = Q(RY ) ×Y D+
Y with V (NY/Q ⊗ O(RY )) ×Y D+

Y as in
Lemma 2.15 (1). Then the restriction

E+
Y = V (NY/Q ⊗ O(RY )) ×Y D+

Y → E+ = V (NX/P ⊗ O(R)) ×X D+

of g(R) : Q(RY ) → P (R) is the linear map of vector bundles induced by the canonical
map f∗NX/P → NY/Q.

(3) Suppose further that f : Y → X is the identity of X and g : Q → P is smooth.
Then the induced map g(R) : Q(RY ) → P (R) is smooth.

Proof. (1) We have g∗IX ⊂ IY since the left square is commutative. By the inequalities
g∗[lR] � [lRY ] � lg∗R, we have g∗I−1

[lR] ⊂ I−1
[lRY ]. Hence we have g∗(I−1

[lR] ·Il
X) ⊂ I−1

[lRY ] ·Il
Y

and the assertion follows from the definition of Q(RY ).

(2) The restriction E+
Y → E+ is induced by the linear map g∗ : I−1

R · IX → I−1
RY

· IY and
the assertion follows.

(3) On the complements of the inverse images of D+, the maps P (R) → P and Q(R) →
Q are isomorphisms. Hence, the assumption that f : Q → P is smooth implies that
the restriction on the complements of the inverse images of D+ is smooth. Since the
coefficients of R are assumed integral, the maps P (R) → X and Q(R) → X are smooth
by Lemma 2.15 (1). Hence, it suffices to show that the induced map E+′ = Q(R)×X D+ →
E+ = P (R) ×X D+ is smooth by [11, Proposition (17.8.1)].

By (2), it is identified with the map V (NX/Q ⊗O(R))×X D+ → V (NX/P ⊗O(R))×X

D+ of vector bundles induced by the canonical map f∗NX/P → NX/Q. Since Q → P is
assumed smooth, the map f∗NX/P → NX/Q is a locally splitting injection and the map
V (NX/Q ⊗ O(R)) ×X D+ → V (NX/P ⊗ O(R)) ×X D+ is smooth. �
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Corollary 2.17. Let P and Q be smooth schemes over X and s : X → P and t : X → Q

be sections. Similarly as P (R) and Q(R), we define (P ×X Q)(R) by the section (s, t) :
X → P ×X Q.

Assume the coefficients of R are integers. Then the maps (P ×X Q)(R) → P (R) and
(P ×X Q)(R) → Q(R) induces an isomorphism

(P ×X Q)(R) → P (R) ×X Q(R). (2.10)

Proof. The ideal defining the closed subscheme X ⊂ P ×X Q is generated by the pull-
backs of those defining X ⊂ P and X ⊂ Q. Hence the map (2.10) is a closed immersion.
Since the both schemes (P ×X Q)(R) and P (R) ×X Q(R) are smooth of the same dimen-
sion over X, the closed immersion (2.10) is an open immersion. By Lemma 2.15 (3), it
induces an isomorphism on the fibres over D+. Hence the assertion follows. �

We establish some cohomological properties of P (R).

Proposition 2.18.

(1) The cycle class defines an isomorphism

Q�(d)[2d] → Rp(R)!Q�. (2.11)

(2) Define the cycle class [X] ∈ H2d
X (P (R), Q�(d)) to be the inverse image of 1 ∈

H0(X, Q�) = H0
X(P (R), Rp(R)!Q�) by the isomorphism (2.11). Then, for the pull-

back s(R)∗[X] = (X, X)P (R) ∈ H2d(X, Q�(d)), we have

(X, X)P (R) = (X, X)P − (c(NX/P )∗ ∩ (1 + R)−1 ∩ [R])deg d

= (−1)d(cd(NX/P ) + (c(NX/P ) ∩ (1 − R)−1 ∩ [R])deg d). (2.12)

Proof. (1) Since the question is étale local, we may assume there exists a smooth map
X → Am

k such that D is the inverse image of the union of the coordinate hyperplanes.
Let n1, . . . , nm > 0 be integers such that n1r1, . . . , nmrm are integers and let π : X̃ =
X ×Am

k
Am

k → X be the base change by the map Am
k → Am

k defined by ti 
→ tni
i . We

put P̃ = P ×X X̃ and R̃ = π∗R. We consider the commutative diagram

P (R) π←−−−− P̃ (R̃)

p(R)

⏐⏐� ⏐⏐�p̃(R̃)

X
π←−−−− X̃

(2.13)

Here and in the followings, let π also denote the base changes of π by abuse of notation.
The map p̃(R̃) : P̃ (R̃) → X̃ is smooth by Lemma 2.15. Let n′

1, . . . , n
′
m be the prime-to-p

parts of n1, . . . , nm and we consider the action of G = µn′
1
× · · · × µn′

m
on Am by the

multiplication on the coordinates. We also consider the induced actions of G on X̃, P̃ (R̃),
etc. The induced map P̃ (R̃)/G → P (R) defines an isomorphism on the étale sites.

We put KP (R) = Rp(R)!Q� and KP̃ (R̃) = R(p(R) ◦ π)!Q�. The trace map π!π
∗KP (R) =

π∗π
∗KP (R) → KP (R) [8, Théorème 6.2.3] defines its adjoints π∗KP (R) → π!KP (R) = KP̃ (R̃)

https://doi.org/10.1017/S1474748008000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748008000364


808 T. Saito

and KP (R) → π∗KP̃ (R̃) . We also have the adjunction map π∗KP̃ (R̃) = π!π
!KP (R) → KP (R) .

The composition KP (R) → π∗KP̃ (R̃) → KP (R) is the multiplication by the degree
[P̃ (R̃) : P (R)] by [8, Théorème 6.2.3 (Var 4)]. Hence KP (R) is a direct summand of the
G-fixed part (π∗KP̃ (R̃))G.

We consider the commutative diagram

Q�(d)[2d] −−−−→ KP (R)⏐⏐� ⏐⏐�
(π∗Q�(d)[2d])G −−−−→ (π∗KP̃ (R̃))G

where the horizontal arrows are defined by the cycle classes. Since P̃ (R̃) is smooth over
k, the lower horizontal arrow is an isomorphism. Since the left vertical arrow is an iso-
morphism, (π∗KP̃ (R̃))G is a direct summand of KP (R) . Thus the assertion is proved.

(2) First, we reduce it to the case where P is a vector bundle over X and s : X → P

is the 0-section, by the deformation to the normal bundle. We put X̃ = X × A1 and
D̃ = D ×A1. Let P̄ be the blow-up of P ×A1 at X ×{0} and P̃ ⊂ P̄ be the complement
of the proper transform of P × {0}. Then, the map p̃ : P̃ → X̃ is smooth. We consider
the Cartesian diagram

V −−−−→ P̃ ←−−−− P × Gm⏐⏐� p̃

⏐⏐� ⏐⏐�p×id

X −−−−→ X̃ ←−−−− X × Gm⏐⏐� ⏐⏐� ⏐⏐�
{0} −−−−→ A1 ←−−−− Gm

where V = V (NX/P ) denotes the normal bundle.
The section s : X → P induces a section s̃ : X̃ → P̃ . By applying the basic

construction, we define p̃(R) : P̃ (R) → X̃ and p
(R)
0 : V (R) → X and their sections

s̃(R) : X̃ → P̃ (R) and s
(R)
0 : X → V (R). Similarly as s(R)∗[X] ∈ H2d(X, Q�(d)), the

classes s̃(R)∗[X̃] ∈ H2d(X̃, Q�(d)) and s
(R)∗
0 [X] ∈ H2d(X, Q�(d)) are defined. The pull-

backs σ∗
0 , σ∗

1 : H2d(X̃, Q�(d)) → H2d(X, Q�(d)) by the 0- and 1-sections σ0, σ1 : X → X̃

are isomorphisms and we have σ∗
0(s̃(R)∗[X̃]) = s

(R)∗
0 [X] and σ∗

1(s̃(R)∗[X̃]) = s(R)∗[X]
respectively. Hence the assertion for (X, P ) is reduced to that for (X, V ). Thus we may
assume P is a vector bundle over X and s : X → P is the 0-section.

Let q : P (R) → P denote the canonical map. It suffices to show the equality

[s(R)(X)] = q∗[s(X)] − p(R)∗((c(NX/P )∗ ∩ (1 + R)−1 ∩ [R])deg d)

in H2d
q−1(s(X))(P

(R), Q�(d)). For a closed subscheme F of P (R), let F ◦ denote the comple-
ment F \ (F ∩ D+). Let R∗ be the divisor of P (R) \ X defined in Lemma 2.15 (2). Then,
we have q−1(s(X)) = s(R)(X) ∪ R̄∗ and s(R)(X) ∩ R̄∗ = D+. Hence, by (1), the space
H2d

s(R)(X)∩R̄∗(P (R), Q�(d)) = H2d
D+(X, s(R)!Q�(d)) is isomorphic to H0

D+(X, Q�) = 0. By
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the exact sequence

0 = H2d
s(R)(X)∩R̄∗(P (R), Q�(d)) → H2d

q−1(s(X))(P
(R), Q�(d))

→ H2d
X◦(P (R)◦, Q�(d)) ⊕ H2d

R∗(P (R)◦, Q�(d)),

the restriction map

H2d
q−1(s(X))(P

(R), Q�(d)) → H2d
X◦(P (R)◦, Q�(d)) ⊕ H2d

R∗(P (R)◦, Q�(d))

is an injection. Therefore, it suffices to show that the components of the restriction of
q∗[s(X)] are [s(R)(X)◦] and p(R)∗(c(NX/P )∗ ∩ (1 + R)−1 ∩ [R])deg d respectively.

This is clear for the first component [s(R)(X)◦]. By the excess intersection formula [10,
Theorem 6.3], the second component is (c(p(R)∗NX/P )∗ ∩ c(NR∗/P (R)◦)∗−1 ∩ [R∗])deg d.
Hence, the assertion follows by Lemma 2.15 (2). �

2.3. Ramification along a divisor

We globalize the constructions in §§ 1.1 and 1.2 and the computations in § 1.4. They
generalize those in [3, § 4] and allows denominators and higher rank. The construction
of (X × X)(r) and H in § 1.4 is the special case of that in this subsection.

Let X be a smooth scheme of dimension d over k and D be a divisor with simple normal
crossings. Let D1, . . . , Dm be the irreducible components of D. We put U = X \ D and
let j : U → X denote the open immersion.

We define the log blow up (X × X)′ → X × X to be the blow-up at D1 × D1, D2 ×
D2, . . . , Dm × Dm. Namely the blow-up by the product ID1×D1 · ID2×D2 · · · IDm×Dm

⊂
OX×X of ideal sheaves. We define the log product (X × X)∼ ⊂ (X × X)′ to be the
complement of the proper transforms of D×X and X×D. The diagonal map X → X×X

induces a closed immersion δ̃ : X → (X × X)∼ ⊂ (X × X)′ called the log diagonal
map. The scheme (X × X)∼ is affine over X × X and is defined by the quasi-coherent
OX×X -algebra

OX×X [pr∗
1 I−1

Di
· pr∗

2 IDi , pr∗
1 IDi · pr∗

2 I−1
Di

; i = 1, . . . , m] ⊂ j×
∗ OU×U ,

where j× : U×U → X×X is the open immersion. The projections p1, p2 : (X×X)∼ → X

are smooth. The conormal sheaf NX/(X×X)∼ is canonically identified with the locally free
OX -module Ω1

X(log D) of rank d.
Let R = r1D1+· · ·+rmDm be an effective divisor with rational coefficients r1, . . . , rm �

0. We apply the construction of § 2.1 to the smooth map p2 : P = (X × X)∼ → X and
its section δ̃ : X → (X × X)∼. Then, we obtain P (R) = (X × X)(R) → X and its section
δ(R) : X → (X × X)(R). Thus, we have constructed a diagram

X × X ←−−−− (X × X)′ ←−−−− (X × X)[R]�⏐⏐ �⏐⏐
(X × X)∼ ←−−−− (X × X)(R)
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where the vertical arrows are open immersions. For R = 0, we have (X × X)(R) =
(X × X)∼.

We consider the Cartesian diagram

U × U
j(R)

−−−−→ (X × X)(R)

δU

�⏐⏐ �⏐⏐δ(R)

U
j−−−−→ X

where the horizontal arrows are open immersions and the vertical arrows are the diagonal
immersions.

Definition 2.19. Let F be a smooth sheaf on U = X \ D. We define a smooth sheaf H
on U × U by H = Hom(pr∗

2 F , pr∗
1 F). Let R =

∑
i riDi � 0 be an effective divisor with

rational coefficients and we consider the open immersion j(R) : U × U → (X × X)(R).
We identify δ∗

UH = End(F) and regard the identity idF ∈ EndU (F) as a section of
Γ (U, End(F)) = Γ (X, j∗ End(F)) = Γ (X, j∗δ

∗
UH).

We say that the log ramification of F along D is bounded by R+ if the identity
idF ∈ EndU (F) = Γ (X, j∗δ

∗
UH) is in the image of the base change map

Γ (X, δ(R)∗j
(R)
∗ H) → Γ (X, j∗δ

∗
UH) = EndU (F). (2.14)

We compare Definition 2.19 with Definition 1.28.

Lemma 2.20. Let F be a smooth sheaf on U = X \ D and let R =
∑

i riDi � 0
be an effective divisor with rational coefficients. We consider the smooth sheaf H =
Hom(pr∗

2 F , pr∗
1 F) on U × U ⊂ (X × X)(R).

(1) We consider the following conditions.

(a) The log ramification of F along D is bounded by R+.

(b) For every irreducible component Di of D, the log ramification of F along D

is bounded by ri+ at the generic point ξi of Di.

(c) There exists an open subscheme X ′ ⊂ X such that X ′ ⊃ U , that D′ = X ′ ∩D

is dense in D and that the base change map

δ(R)∗j
(R)
∗ H → j∗δ

∗
UH

is an isomorphism on D′.

(d) The base change map
δ(R)∗j

(R)
∗ H → j∗δ

∗
UH

is an isomorphism.

Then, we have implications (d) ⇒ (a) ⇒ (b) ⇒ (c).
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(2) Let Di be a component of D satisfying ri > 0 and let Ei = (X × X)(R) ×X Di be
the inverse image. Then, the vanishing

FG
ri+
K,log

η̄i
= 0

implies j∗H|Ei = 0.

Proof. (1) The implication (a) ⇒ (b) follows from Corollary 1.31 (c) ⇒ (a). The
implication (b) ⇒ (c) follows from Corollary 1.31 (a) ⇒ (b). The implication (d) ⇒ (a)
is obvious.

(2) Let ξi be the generic point of Di. It suffices to show j∗H|Ei,ξi
= 0. Hence, it follows

from Corollary 1.31. �

The author does not know a counterexample for the implication (a) ⇒ (d). The
conditions (a)–(d) are equivalent, if the rank of F is 1.

In the tamely ramified case, we have the following equivalence for R = 0.

Corollary 2.21. The following conditions are equivalent.

(1) The log ramification of F along D is bounded by 0+.

(2) F is tamely ramified along D.

(3) The base change map
δ̃∗j̃∗H → j∗δ

∗
UH

is an isomorphism on D.

Proof. By Lemma 2.20 (1) (a) ⇒ (b), the condition (1) implies (2).
Assume F is tamely ramified along D. Then H on U × U is tamely ramified along

(X × X)∼ \ (U × U). Hence, by Abhyankar’s lemma, étale locally on (X × X)∼, it
is isomorphic to the pull-back of a sheaf on U with respect to the second projection
(X × X)∼ → X. Since the projection is smooth, the condition (3) is satisfied.

It is clear that (3) implies (1). �

We have the following stability under the pull-back.

Lemma 2.22. Let Y be a smooth scheme over k and f : Y → X be a morphism
over k. Assume that the reduced inverse image DY = (D ×X Y )red is a divisor with
simple normal crossings and let RY be the pull-back f∗R.

Let F be a smooth sheaf on U = X \ D and FV be the pull-back to V = U ×X Y =
Y \ DY . If the log ramification of F is bounded by R+, then the log ramification of FV

is bounded by RY +.

Proof. We show that the map f × f : Y × Y → X × X is lifted to (f × f)(R) :
(Y × Y )(RY ) → (X × X)(R). For each irreducible component Di of D, the pull-backs
of pr1 Di and pr2 Di are equal on the log product (Y × Y )∼. Hence, the map f × f :
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Y ×Y → X ×X is uniquely lifted to (f × f)∼ : (Y ×Y )∼ → (X ×X)∼. This is uniquely
lifted to (Y × Y )(RY ) → (X × X)(R) by Lemma 2.16 (1).

Let j(R) : U × U → (X × X)(R) and j(RY ) : V × V → (Y × Y )(RY ) be the open
immersions and fU : V → U be the restriction of f : Y → X. We put FV = f∗

UF ,
H = Hom(pr∗

2 F , pr∗
1 F) and H′ = Hom(pr∗

2 FV , pr∗
1 FV ). Then, the base change map

(f × f)(R)∗
j
(R)
∗ → j

(RY )
∗ (fU × fU )∗

defines a commutative diagram

Γ (X, δ(R)∗j
(R)
∗ H) −−−−→ EndU (F)⏐⏐� ⏐⏐�

Γ (Y, δ(RY )∗j
(RY )
∗ H′) −−−−→ EndV (FV )

By the assumption that the log ramification of F is bounded by R+, the identity of F
is in the image of the upper horizontal arrow. Hence, the identity of FV is in the image
of the lower horizontal arrow and the log ramification of FV is bounded by RY +. �

We consider the restrictions of F on smooth curves in X and compare them.

Proposition 2.23. Let F be a smooth sheaf on U = X\D such that the log ramification
of F is bounded by R+. Let C and C ′ be smooth curves in X and x be a closed point
in C ∩ C ′ ∩ D. We assume that C ∩ U and C ′ ∩ U are not empty and let FC and FC′

denote the restrictions of F on C ∩U and C ′ ∩U respectively. Assume that the following
conditions are satisfied:

(1) For every irreducible component Di of D, we have (C, Di)x = (C ′, Di)x.

(2) lengthx OC∩C′,x � (C, R + D)x.

Then, étale locally at x, there exist an isomorphism f : C → C ′ and an isomorphism
f∗F|C′ → F|C .

The author thanks the referee for pointing out a similarity with [5, Théorème 4.3.1].

Proof. It suffices to consider the case C �= C ′. Since the assertion is étale local, we may
assume C ∩ D = C ′ ∩ D = C ∩ C ′ = {x} set theoretically and the residue field of x

is k. We put n = lengthx OC∩C′,x. Take an isomorphism k[t]/(tn) → OC∩C′,x and lift it
to étale morphisms C → A1

k and C ′ → A1
k. Since the assertion is étale local, we may

assume there exists an isomorphism f : C → C ′ inducing the identity on C ∩ C ′.
We consider the graph of f

g = (1, f) : C → C × C ′ ⊂ X × X.

The intersection with the diagonal defines an isomorphism C ×X×X X → (C ×
C ′) ×X×X X = C ∩ C ′ since f : C → C ′ induces the identity on C ∩ C ′. By the assump-
tion (1) and by the universal property of the log blow-up, the immersion g : C → X ×X
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is uniquely lifted to an immersion g̃ : C → (X × X)∼ to the log product. We put
C ∩log C ′ = C ×(X×X)∼ X ⊂ C ∩ C ′. We show

lengthx OC∩logC′,x = lengthx OC∩C′,x − (C, D)x. (2.15)

Let IX ⊂ OX×X and JX ⊂ O(X×X)∼ be the ideal sheaves of X ⊂ X × X and of X ⊂
(X ×X)′ respectively and let IE ⊂ O(X×X)∼ be the ideal sheaves of E = p∗D. Then, we
have IXO(X×X)∼ = JX · IE . By pulling it back by g̃, we obtain the equality (2.15).

By the assumption (2) and by (2.15), we have lengthx OC×(X×X)∼ X,x � (C, R)x. In
other words, we have inclusions J l

XOC ⊂ I[lR]OC for every integer l � 0. By the def-
inition of (X × X)(R) (2.9), the immersion g̃ : C → (X × X)∼ is further lifted to
h : C → (X × X)(R). We consider the Cartesian diagram

C ∩ U
hU−−−−→ U × U

jC

⏐⏐� ⏐⏐�j(R)

C
h−−−−→ (X × X)(R)

where the vertical arrows are open immersions. We also consider the base change maps

h∗j
(R)
∗ H → jC∗h

∗
UH = jC∗ Hom(f∗FC′ ,FC),

δ(R)∗j
(R)
∗ H → j∗δ

∗
UH = j∗ End(F).

(2.16)

Let K denote the fraction field of the henselization Oh
C,x and let η̄ denote the geo-

metric point of C defined by an algebraic closure K̄ of K. Let GK be the absolute
Galois group Gal(K̄/K). By the assumption that the log ramification is bounded by R+,
we have a unique element e in Γ (x, (δ(R)∗j

(R)
∗ H)|x) = Γ (x, (h∗j

(R)
∗ H)|x) whose image in

Γ (x, (j∗ End(F))|x) is the identity of Fη̄. The image of e in Γ (x, (jC∗ Hom(f∗FC′ ,FC))|x)
defines a GK-homomorphism ϕ : Ff(η̄) → Fη̄. Switching the two factors, we obtain a
GK-homomorphism ψ : Fη̄ → Ff(η̄). Since the construction is compatible with the com-
position, the maps ϕ and ψ are the inverse of each other. �

We study the higher direct image Rqj
(R)
∗ H. We put I+ = {i | 1 � i � m, ri > 0} and

D+ =
⋃

i∈I+ Di. First, we consider the case where the coefficients of R =
∑

i riDi are
integers. If the coefficients of R are integers, the inverse image E+ = (X × X)(R) ×X D+

is identified with the vector bundle V (Ω1
X(log D)(R))×XD+ over D+ by Lemma 2.15 (3).

We prepare a global analogue of Lemma 1.33. In the following lemma and proposition,
we consider the fibre product

(X × X) ×
p2↘X↙p1

(X × X)

with respect to the second and the first projections X ×X → X and identify it naturally
with the triple product X × X × X. To ease the notation, we drop p2 ↘↙ p1. Similarly,
we will also consider the product (X × X)(R) ×X (X × X)(R), etc., with respect to the
second and the first projections.
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Lemma 2.24. Assume the coefficients of R are integers.

(1) There exists a smooth map µ : (X × X)(R) ×X (X × X)(R) → (X × X)(R) that
makes the diagram

(X × X)(R) ×X (X × X)(R) µ−−−−→ (X × X)(R)⏐⏐� ⏐⏐�
(X × X) ×X (X × X) = X × X × X

pr13−−−−→ X × X

commutative.

(2) Let D+ be the support of R and we identify E+ = (X × X)(R) ×X D+ with the vec-
tor bundle V (Ω1

X(log D)⊗O(R))×X D+ as above. The restriction of µ defines the
addition E+ ×D+ E+ → E+ of the vector bundle E+ = V (Ω1

X(log D)(R)) ×X D+.

Proof. (1) Let P = (X × X)∼ ×X (X × X)∼ be the fibre product with respect to
the second and the first projections (X × X)∼ → X. We define P (R) → P by applying
the construction in § 2.2 to the smooth map P = (X × X)∼ ×X (X × X)∼ → X and
the diagonal section X → P . The projections P → (X × X)∼ induce an isomorphism
P (R) → (X × X)(R) ×X (X × X)(R) by Corollary 2.17.

On P = (X × X)∼ ×X (X × X)∼, the pull-backs of pr∗
1 Di and pr∗

3 Di are equal for
each component Di of D. Hence the map pr13 : (X × X) ×X (X × X) → X × X is lifted
to P = (X × X)∼ ×X (X × X)∼ → (X × X)∼. This is uniquely lifted to a smooth map
P (R) → (X × X)(R) by Lemma 2.16.

(2) The restriction E+ ×D+ E+ → E+ is a linear map of vector bundles by Lemma
2.16 (2). Hence, it suffices to show that the compositions with the injections i1, i2 :
E+ → E+ ×D+ E+ of the two factors are the identity of E+. We consider the map
ι1 : (X × X)(R) → (X × X)(R)×X (X × X)(R) defined by the identity of (X × X)(R) and
δ(R)◦pr2. Then, its restriction E+ → E+ ×D+ E+ is the injection of the first factor. Since
the composition µ ◦ ι1 is the identity, the composition µ ◦ i1 : E+ → E+ ×D+ E+ → E+

is the identity. Similarly, by considering the map ι2 : (X × X)(R) → (X × X)(R) ×X

(X × X)(R) defined by δ(R) ◦pr1 and the identity of (X × X)(R), we see that µ◦ i2 is the
identity. Hence the assertion follows. �

Proposition 2.25. Let X be a smooth scheme over k and F be a smooth sheaf on the
complement U = X\D of a divisor with simple normal crossings. Let R =

∑
i riDi � 0 be

an effective divisor with integral coefficients ri � 0. Assume that the log ramification of F
is bounded by R+. We put D+ =

⋃
i:ri>0 Di and E+ = V (Ω1

X(log D) ⊗ O(R)) ×X D+.
Let j(R) : U × U → (X × X)(R) be the open immersion.

(1) For every integer q � 0, the restriction of Rqj
(R)
∗ H on E+ is additive.

(2) Let Sq ⊂ E+∨ = V (Ω1
X(log D)∨ ⊗ O(−R)) ×X D+ be the dual support of

Rqj
(R)
∗ H|E+ . Then, we have Sq ⊂ S0.
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(3) Let Di be an irreducible component of D+ and ξi be the generic point. Then, the
intersection S0 ∩ E∨

i with E∨
i = E+∨ ×D+ Di is a subset of the closure S0

ξi
of the

generic fibre.

Proof. Since µ : (X × X)(R) ×X (X × X)(R) → (X × X)(R) is smooth, the base change
map µ∗Rj

(R)
∗ H → Rj3∗ pr∗

13 H is an isomorphism, where j3 : U×U×U → (X × X)(R)×X

(X × X)(R) denotes the open immersion. Hence, the composition

H � H = Hom(pr∗
2 F , pr∗

1 F) ⊗ Hom(pr∗
3 F , pr∗

2 F) → Hom(pr∗
3 F , pr∗

1 F) = pr∗
13 H

induces
Rj

(R)
∗ H � Rj

(R)
∗ H → Rj3∗ pr∗

13 H = µ∗Rj
(R)
∗ H. (2.17)

Let x̄ be an arbitrary geometric point of D+. We show that the restriction of Rqj
(R)
∗ H

on the fibre E+
x̄ satisfies the condition (2) in Proposition 2.5. By the assumption that the

log ramification of F is bounded by R+, we have a unique section e ∈ Γ (X, δ(R)∗j
(R)
∗ H)

lifting the identity idF ∈ Γ (X, j∗δ
∗
UH). Take an étale neighbourhood V → (X × X)(R)

of x̄ and a section ẽ ∈ Γ (V, j
(R)
∗ H) whose stalk in (j(R)

∗ H)x̄ = (δ(R)∗j
(R)
∗ H)x̄ is the stalk

of e above.
Since e is a lifting of the identity, the pairing (2.17) with the restriction of ẽ is an iso-

morphism pr∗
1 H → pr∗

13 H on (U × U) ×X ((U × U) ×(X×X)(R) V ). It is uniquely extend
to an isomorphism

pr∗
1 Rj

(R)
∗ H = Rj∗ pr∗

1 H → µ∗Rj
(R)
∗ H = Rj∗ pr∗

13 H (2.18)

on (X × X)(R) ×X V . It is equal to the map defined as the pairing (2.17) with ẽ.
For a closed point a ∈ Ex̄ in the image of V ×X x̄ → (X × X)(R) ×X x̄ = Ex̄, the

isomorphism (2.18) defines an isomorphism Rj
(R)
∗ H|Ex̄

→ (+a)∗(Rj
(R)
∗ H|Ex̄

) on the
restriction to Ex̄. Since Ex̄ is generated by the image of V ×X x̄, there is an isomor-
phism Rj

(R)
∗ H|Ex̄ → (+a)∗(Rj

(R)
∗ H|Ex̄) for every closed point a ∈ Ex̄. Thus the sheaf

Rqj
(R)
∗ H|Ex̄

satisfies the condition (2) in Proposition 2.5 and hence is additive for every
q � 0.

(2) It suffices to apply Proposition 2.6 to j
(R)
∗ H � Rqj

(R)
∗ H → µ∗Rqj

(R)
∗ H.

(3) It follows immediately from Lemma 2.7. �

We consider the general case. Namely, we drop the assumption that the coefficients
of R are integers. For a non-empty subset I ⊂ I+, we put DI =

⋂
i∈I Di and D◦

I =
DI\

⋃
i∈I+\I(Di∩DI). Recall that ni denotes the denominator of ri = mi/ni and nI is the

least common multiple of ni for i ∈ I. The inverse image E◦
I = ((X × X)(R) ×X D◦

I )red
is identified with VnI

(Ω1
X(log D),O(nIR)) ×X D◦

I by Lemma 2.15 (1).

Proposition 2.26. Let the notation be as in Proposition 2.25 except that we do not
assume the coefficients of R are integers. Assume that the log ramification of F is
bounded by R+. Let I ⊂ I+ = {i | 1 � i � m, ri > 0} be a non-empty subset
and E◦

I = VnI
(Ω1

X(log D),O(nIR)) ×X D◦
I be the reduced inverse image.
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(1) For every integer q � 0, the restriction of Rqj
(R)
∗ H on E◦

I is potentially additive.

(2) Let Sq
I ⊂ E◦∨

I = VnI
(Ω1

X(log D)∨,O(−nIR)) ×X D◦
I be the dual support of

(Rqj
(R)
∗ H)|E◦

I
. Then, we have Sq

I ⊂ S0
I .

(3) For i ∈ I, let ξi be the generic point of the irreducible component Di and Fi = κ(ξi)
be the function field of Di. We consider the canonical map

E∨
i ×Di

D◦
I = Vni

(Ω1
X(log D)∨,O(−niR)) ×X D◦

I

→ E◦∨
I = VnI

(Ω1
X(log D)∨,O(−nIR)) ×X D◦

I .

Then, S0
I is a subset of the image of the intersection S0

i,ξi
×Di

D◦
I ⊂ E∨

i ×Di
D◦

I of
the closure of the generic fibre.

Proof. (1) By replacing X by X \
⋃

i∈I+\I Di, we may assume I+ = I, EI = E◦
I

and n = nI . Since the assertion is Zariski local, we may take a smooth map X →
A = Am = Spec k[T1, . . . , Tm] such that D is the inverse image of the union of coor-
dinate hyperplanes. We put A′ = Am × Gm

m = Spec k[T1, . . . , Tm, U±1
1 , . . . , U±1

m ] and
Ã = Spec k[S1, . . . , Sm, U±1

1 , . . . , U±1
m ] and define a map Ã → A′ by Ti 
→ UiS

ni
i . We

consider the base change X ← X ′ ← X̃ of A ← A′ ← Ã.
We define schemes (X × X ′)∼ and (X × X̃)∼ by the Cartesian diagram

(X × X)∼ ←−−−− (X × X ′)∼ ←−−−− (X × X̃)∼

p2

⏐⏐� ⏐⏐� ⏐⏐�
X ←−−−− X ′ ←−−−− X̃

and consider the sections X ′ → (X × X ′)∼ and X̃ → (X × X̃)∼ induced by the log
diagonal X → (X × X)∼. The map X̃ → X induces (X̃ × X̃)∼ → (X × X̃)∼. By
applying the construction in § 2.2 to the pull-backs R′ and R̃ of R to X ′ and to X̃, we
obtain the commutative diagram

(X × X)(R) f←−−−− (X × X ′)(R
′) g←−−−− (X × X̃)(R̃) h←−−−− (X̃ × X̃)(R̃)⏐⏐� ⏐⏐� ⏐⏐�p̃

X ←−−−− X ′ ←−−−− X̃

(2.19)

Since X ′ → X is smooth, the left square of (2.19) is Cartesian and the hori-
zontal arrow f : (X × X ′)(R

′) → (X × X)(R) is smooth. Since R̃ has integral coeffi-
cients, the right vertical arrow p̃ : (X × X̃)(R̃) → X̃ is smooth. We show that the map
h : (X̃ × X̃)(R̃) → (X × X̃)(R̃) is smooth. By Lemma 2.16 (3), it suffices to show that the
map (X̃ × X̃)∼ → (X × X̃)∼ is smooth. Thus, it is reduced to showing that the map
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(Ã × Ã)∼ → (A × Ã)∼ is smooth. Since the map

(Ã × Ã)∼ = Spec k[Si, U
±1
i , S′

i, U
′±1
i , V ±1

i (i = 1, . . . , m)]/(S′
i − ViSi(i = 1, . . . , m))

= Spec k[Si, U
±1
i , U ′±1

i , V ±1
i (i = 1, . . . , m)]

↓
(A × Ã)∼ = Spec k[Ti, S

′
i, U

′±1
i , W±1

i (i = 1, . . . , m)]/(U ′
iS

′ni
i − WiTi(i = 1, . . . , m))

= Spec k[S′
i, U

′±1
i , W±1

i (i = 1, . . . , m)]

is defined by Wi 
→ V ni
i U ′

i/Ui, it is smooth.
We put U ′ = U ×X X ′ and Ũ = U ×X X̃ and consider the diagram

(X × X)(R) f←−−−− (X × X ′)(R
′) g←−−−− (X × X̃)(R̃) h←−−−− (X̃ × X̃)(R̃)

j(R)

�⏐⏐ j(R)′
�⏐⏐ j(R)∼

�⏐⏐ j̃(R)

�⏐⏐
U × U ←−−−− U × U ′ ←−−−− U × Ũ ←−−−− Ũ × Ũ

where the vertical arrows are open immersions. We consider the pull-backs H′, H∼ and
H̃ of H respectively on U × U ′, U × Ũ and on Ũ × Ũ .

Since R̃ is integral, the restriction of Rq j̃
(R)
∗ H̃ on Ẽ+ is additive by Proposition 2.25

for every q � 0. Since h is smooth, the base change map h∗Rqj
(R)∼
∗ H∼ → Rq j̃

(R)
∗ H̃

is an isomorphism. The conormal sheaves NX̃/(X×X̃)∼ and NX̃/(X̃×X̃)∼ are canon-
ically identified with Ω1

X(log D) ⊗ OX̃ and with Ω1
X̃

(log D̃) respectively. Since the
map Ω1

X(log D) ⊗ OX̃ → Ω1
X̃

(log D̃) is a locally splitting injection, the restriction of
Rqj

(R)∼
∗ H∼ is additive by Lemma 2.3.

To study the restriction of Rqj
(R)′
∗ H′, we introduce some notations. For i ∈ I, let

D′
i ⊂ X ′ be the inverse image of Di and D̃i be the divisor defined by Si. We put

D′
I =

⋂
i∈I D′

i and D̃I =
⋂

i∈I D̃i. The natural map D̃I → D′
I is an isomorphism. Let

E′
I ⊂ (X × X ′)(R

′) and ẼI ⊂ (X × X̃)(R̃) be the reduced inverse images of D′
I and of

D̃I . Recall n = nI is the least common multiple of the denominators ni for i ∈ I. By
Lemma 2.15 (1), we have a canonical isomorphism E′

I → Vn(Ω1
X(log D),O(−nR′))D′

I
and

ẼI → V1(Ω1
X(log D),O(−R̃))D̃I

. The natural map πI : ẼI → E′
I is then identified with

the canonical map πn : V1(Ω1
X(log D),O(−R̃))D′

I
→ Vn(Ω1

X(log D),O(−nR′))D′
I
.

Let n′
i be the prime-to-p part of ni and n′ be the prime-to-p part of n = nI . We

consider the natural action of G =
∏

i∈I µn′
i

on X̃ over X ′. Since the map D̃I → D′
I is

an isomorphism, the action of G on D̃I is trivial. The action of G on ẼI factors through
the product map G → µn′ and the action of µn′ on ẼI is by the multiplication.

We show that the restriction of Rqj
(R)′
∗ H′ on E′

I is potentially additive. The canon-
ical map Rqj

(R)′
∗ H′ → g∗(Rqj

(R)∼
∗ H∼)G is an isomorphism. Let G1 be the kernel of

G → µm′ . Then since the restriction of Rqj
(R)∼
∗ H∼ on ẼI is additive, its G1-fixed part

(Rqj
(R)∼
∗ H∼)|G1

ẼI
is also additive. Hence by Lemma 2.12, the µn′ -fixed part

πn∗((Rqj
(R)∼

∗ H∼)|G1

ẼI
)µn′ = g∗(Rqj

(R)∼
∗ H∼)G|E′

I

is potentially additive. Thus the restriction (Rqj
(R)′
∗ H′)|E′

I
is potentially additive.
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Since the map X ′ → X is smooth, the base change map f∗Rqj
(R)
∗ H → Rqj

(R)′
∗ H′ is

an isomorphism. Since the map X ′ → X admits a section, the restriction of Rqj
(R)
∗ H on

EI is also potentially additive.

(2) Similarly as in the proof of (1), we may assume I = I+ and DI = D◦
I . We show

the inclusion Sq
I ⊂ S0

I . Let Sq∼
I ⊂ E∼∨

I be the dual support of the additive sheaf
(Rqj

(R)∼

∗ H∼)G1 . We apply Proposition 2.6 to the map

(j(R)∼

∗ H∼)G1 � (Rqj
(R)∼

∗ H∼)G1 → µ∗(Rqj
(R)∼

∗ H∼)G1

and the pull-back to Γ (X̃, δ̃(R)∗j
(R)∼

∗ H∼) of the section e ∈ Γ (X, δ(R)∗j
(R)
∗ H) lifting the

identity of F . Then, we obtain the inclusion Sq∼
I ⊂ S0∼

I .
Since the dual support Sq′

I ⊂ E′∨
I of the potentially additive sheaf Rqj

(R)′
∗ H′ is the

image of Sq∼
I by the canonical map

E∼∗
I = V1(Ω1

X(log D)∨,OX̃(−R̃)) ×X̃ D̃I

→ E′∨
I = VnI

(Ω1
X(log D)∨ ⊗ OX′ ,O(−nIR

′)) ×X′ D̃I ,

we obtain the inclusion Sq′
I ⊂ S0′

I . Thus, we deduce Sq
I ⊂ S0

I by pull-back.

(3) We have the inclusion S0∼
I ⊂ S0∼

i,ξi
×D̃i

D̃◦
I by Lemma 2.7. Hence the assertion follows

as in the proof of (2). �

For an integer n > 0 such that nR has integral coefficients, we define the dual support

S
(n·R)
F ⊂ E∨

n = Vn(Ω1
X(log D)∨,O(−nR))D+

as a constructible subset as follows. Let I be a non-empty subset of I+ = {i | 1 � i �
m, ri > 0}. Then, the restriction H◦

I = j
(R)
∗ H|E◦

I
on E◦

I = VnI
(Ω1

X(log D),O(nIR)) ×X

D◦
I is potentially additive by Proposition 2.25. Hence the dual support SH◦

I
is defined as a

constructible subset of the dual VnI
(Ω1

X(log D)∨,O(−nIR)) ×X D◦
I . Since n is divisible

by nI , the canonical map

πnnI
: VnI

(Ω1
X(log D)∨,O(−nIR)) ×X D◦

I

→ Vn(Ω1
X(log D)∨,O(−nR)) ×X D◦

I = E∨
n ×X D◦

I

is defined.

Definition 2.27. Let the notation be as above. We define the dual support S
(n·R)
F ⊂ E∨

n

with respect to R as the union

S
(n·R)
F =

⋃
I⊂I+,I �=∅

πnnI
(SH◦

I
).

We say that the log ramification of F is non-degenerate with respect to R if the inter-
section of the closure of the dual support S

(n·R)
F with the 0-section of E∨

n is empty, for
one and hence any n.
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For n|m, we have S
(m·R)
F = πmn(S(n·R)

F ).

Corollary 2.28. Assume that the log ramification of F is bounded by R+.

(1) For an irreducible component Di of D, let ξi be the generic point of Di. Then, we
have

S
(n·R)
F ⊂

⋃
i∈I+

S
(n·R)
F,ξi

.

(2) Assume that the log ramification of F is non-degenerate with respect to R and
that Λ is a finite extension of Q�. Then Rp∗(Rqj∗H|D+) and Rp!(Rqj∗H|D+) are 0
for every q � 0.

Proof. (1) Clear from Proposition 2.26 (3).

(2) Clear from Lemma 2.14. �

We make explicit the relation between the dual support and the refined Swan character
defined in Corollary 1.25. Let Di be an irreducible component of D, ξi be the generic point
of Di and Ki be the fraction field of the henselization Oh

X,ξi
of the local ring. The residue

field Fi of Ki is the function field of Di. Let χ be a character of Grri

log GKi
. Recall that

mr
K̄

⊃ m
r+
K̄

denote {a ∈ K̄ | v(a) � r} ⊃ {a ∈ K̄ | v(a) > r}. Then, by Corollary 1.25, the
refined Swan character of χ defines an Fi-valued point

rsw χ ∈ Ω1
Fi

(log) ⊗ m
(−ri)
K̄i

/m
(−ri)+
K̄i

= V1(ΩX(log D)∨ ⊗ Fi,m
ri

K̄i
/m

ri+
K̄i

)(Fi).

Lemma 2.29. Assume the log ramification of F is bounded by R+. Let Di be an
irreducible component of D such that ri > 0. We consider the stalk Fη̄i

as a representation
of GKi and the direct sum decomposition Fη̄i

=
⊕

χ χ⊕nχ of the restriction to Gri

Ki,log
by characters of Grri

log GKi . Let

πn : V1(ΩX(log D)∨ ⊗ Fi,m
ri

K̄i
/m

ri+
K̄i

) → Vn(ΩX(log D)∨,O(−nR))ξi = E∨
n,ξi

be the canonical map.
Then, the generic fibre S

(n·R)
F,ξi

⊂ E∨
n,ξi

= Vn(ΩX(log D)∨,O(−nR))ξi
of the dual sup-

port consists of the images πn(rsw χ) of the refined Swan characters of χ appearing in
the direct sum decomposition Fη̄i =

⊕
χ χ⊕nχ .

Proof. It is reduced to the case where ri is an integer, by Lemma 1.22 and by the proof of
Proposition 2.26 (1). In the case where ri is an integer, it follows from Corollary 1.32. �

Corollary 2.30. Assume the log ramification of F is bounded by R+. The equality Fη̄i =
F (ri)

η̄i
holds if and only if the generic fibre S

(n·R)
F,ξi

does not contain 0. Also the vanishing
F (ri)

η̄i
= 0 is equivalent to the inclusion S

(n·R)
F,ξi

⊂ {0}.

Proof. By Corollary 1.25, the map

rsw : Hom(Grr
log GK , Fp) → Ω1

F (log) ⊗F m
(−r)
K̄

/m
(−r)+
K̄

is injective. Hence it follows from Lemma 2.29. �
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We study the functoriality of the dual support S
(n·R)
F . Let Y be a smooth scheme

over k and f : Y → X be a morphism over k. Assume that the reduced inverse
image DY = (D ×X Y )red is a divisor with simple normal crossings and let RY be
the pull-back f∗R. Let n > 0 be an integer such that nR is integral and we put
E∨

n = Vn(Ω1
X(log D)∨,O(−nR)) and E′∨

n = Vn(Ω1
Y (log DY )∨,O(−nRY )). Then, the

canonical map f∗Ω1
X(log D) → Ω1

Y (log DY ) induces a map ϕ : E∨
n ×X Y → E′∨

n .

Lemma 2.31. Let Y be a smooth scheme over k and f : Y → X be a morphism over
k. Assume that the reduced inverse image DY = (D ×X Y )red is a divisor with simple
normal crossings and let RY be the pull-back f∗R. Let n > 0 be an integer such that nR

is integral and let ϕ : E∨
n ×X Y → E′∨

n be the map defined above.
Let F be a smooth sheaf on U = X \ D and FV be the pull-back to V = U ×X Y =

Y \DY . Assume the log ramification of F is bounded by R+ and let f∗S
(n·R)
F ⊂ E∨

n ×X Y

denote the inverse image of S
(n·R)
F ⊂ E∨

n . Then, we have

ϕ(f∗S
(n·R)
F ) ⊂ S

(n·RY )
FV

.

Proof. Let D1, . . . , Dm and D′
1, . . . , D

′
m′ be the components of D and of DY respec-

tively. We put R =
∑m

i=1 riDi and RY =
∑m′

j=1 r′
jD

′
j . Let J be a non-empty subset of

J+ = {j | r′
j > 0, j = 1, . . . , m′} and put I = {i | f−1(Di) ⊃ D′

J , ri > 0, i = 1, . . . , m}.
The map (f × f)(R) : (Y × Y )(RY ) → (X × X)(R) defined in the proof of Lemma 2.22
induces E′◦

J = VnJ
(Ω1

Y (log DY ),O(nJRY )) → E◦
I = VnI

(Ω1
X(log D),O(nIR)). Since the

base change map (f × f)(R)∗j∗H → j′
∗(fU × fU )∗H is injective by Lemma 2.9, the asser-

tion follows. �

For an irreducible component Di of D, the residue map Ω1
X(log D) ⊗OX

ODi
→ ODi

defines a map

resi : E∨
n ×X Di = Vn(Ω1

X(log D)∨,O(−nR)) ×X Di

→ Vn(ODi
,ODi

(−nR)) = V (ODi
(−nR)).

Corollary 2.32. Let the notation be as in Lemma 2.31. Let Di be an irreducible com-
ponent of D and D′

j be an irreducible component of DY such that the multiplicity e of
D′

j in the pull-back f−1(Di) is non-zero.

(1) Let f∗ resi(S
(n·R)
F ) ⊂ V (OD′

j
(−nR)) denote the inverse image of resi(S

(n·R)
F ) ⊂

V (ODi(−nR)) by the map

V (OD′
j
(−nR)) = V (ODi(−nR)) ×Di D′

j → V (ODi(−nR))

induced by f . Then, we have e · f∗ resi(S
(n·R)
F ) ⊂ resj (S(n·RY )

FV
).

(2) Assume resi(S
(n·R)
F ) \ Di → Di is surjective and e is prime to p. Then, the log

ramification of FV along D′
j is not bounded by rj .
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Proof. (1) By the commutative diagram

E∨
n ×X D′

j
resi−−−−→ V (OD′

j
(−nR))

ϕ

⏐⏐� ⏐⏐�e

E′∨
n ×Y D′

j

resj−−−−→ V (OD′
j
(−nRY ))

it follows from Lemma 2.31.

(2) By (1), resj(S
(n·RY )
FV

) is not contained in the 0-section. �

3. Characteristic cycle

We recall in § 3.1 the definition of the characteristic class and compute it under a certain
assumption. We propose a definition of the characteristic cycle in some case and prove
that it computes the characteristic class in § 3.2.

3.1. Characteristic class

We recall the definition of the characteristic class. For more detail on the construction,
we refer to [3, §§ 1, 2] and [12, §§ 1–3]. Let X be a scheme over k and F be a constructible
sheaf of flat Λ-modules. We put KX = Ra!Λ for the structural map a : X → Spec k and
DXF = R Hom(F ,KX). We consider H = R Hom(pr∗

2 F , R pr!1 F) on X × X.
The canonical pairing

F ⊗L Rδ!H = δ∗ pr∗
2 F ⊗L Rδ!R Hom(pr∗

2 F , R pr!1 F) → Rδ!R pr!1 F = F

induces an isomorphism
H0

X(X × X, H) → EndX(F). (3.1)

Alternatively, one can apply the canonical isomorphism [12, (3.2.1)]. The inverse of the
canonical isomorphism F �DXF → R Hom(pr∗

2 F , R pr!1 F) = H and the canonical map
Rδ! → δ∗ induce a map

H0
X(X × X, H) → H0(X, F ⊗L DXF). (3.2)

The evaluation map F ⊗L DXF → KX induces a map

H0(X, F ⊗L DXF) → H0(X, KX). (3.3)

We define the characteristic class C(F) ∈ H0(X, KX) to be the image of 1 ∈ EndX(F)
by the composition

EndX(F)
(3.1)−1

−−−−−→ H0
X(X × X, H)

(3.2)−−−→ H0(X, F ⊗L DXF)
(3.3)−−−→ H0(X, KX).

If X is proper, we have an index formula [12, Corollaire 4.8]

χ(Xk̄,F) = TrC(F) (3.4)

for the Euler number χ(Xk̄,F) =
∑2 dim X

q=0 (−1)q dim Hq(Xk̄,F).
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Assume that X is smooth of dimension d and that F is a smooth sheaf of free Λ-
modules of finite rank. Then, the isomorphism EndX(F) → H0

X(X × X, H) (3.1) is
described as follows. We put H0 = Hom(pr∗

2 F , pr∗
1 F). By the assumptions on X and

on F , we have a canonical isomorphism H0(d)[2d] → H = R Hom(pr∗
2 F , R pr!1 F). We

identify δ∗H0 = End(F) and H0(X, δ∗H0) = EndX(F). Then, the isomorphism (3.1) is
the inverse of the cup product

EndX(F) = H0(X, δ∗H0)
∪[X]−−−→ H0

X(X × X, H) (3.5)

with the cycle class [X] ∈ H0
X(X × X, Λ(d)[2d]). Further, in this case, the evaluation

map δ∗H → KX is the tensor product of the trace map Tr : δ∗H0 = End(F) → Λ with
the isomorphism Λ(d)[2d] → KX defined by the cycle class. Thus, in this case, we have

C(F) = rankF · (X, X)X×X

in H2d(X, Λ(d)) where (X, X)X×X = (−1)dcd(Ω1
X) is the self-intersection class.

We will compute the characteristic class in some cases. First we consider the tamely
ramified case. Let X be a smooth scheme of dimension d over k and U = X \ D be the
complement of a divisor D with simple normal crossings. We consider the diagram

X × X (X × X)∼f�� U × U
j̃��

X

δ

��������������
δ̃

��

U

δU

��

j
��

(3.6)

where (X × X)∼ is the log product and f : (X × X)∼ → X × X is the canonical map.
The diagonal maps for X and U are denoted by δ and δU respectively and δ̃ is the log
diagonal map. The map j̃ : U × U → (X × X)∼ is the open immersion.

Proposition 3.1. Let the notation be as in the diagram (3.6) above and let F be a
smooth sheaf of free Λ-modules of finite rank on U = X \ D.

We put H0 = Hom(pr∗
2 F , pr∗

1 F) on U × U and H̄ = R Hom(pr∗
2 j!F , R pr!1 j!F) on

X × X. We also put H̃0 = j̃∗H0 and H̃ = H̃0(d)[2d] on (X × X)∼. Let e ∈ Γ (X, δ̃∗H̃0)
be the unique element that maps to the identity idF ∈ EndU (F) = H0(U, δ∗

UH0) and let
e ∪ [X] ∈ H0

X((X × X)∼, H̃) be the cup product with the cycle class [X] ∈ H0
X((X ×

X)∼, Λ(d)[2d]).

(1) There exists a unique map f∗H̄ → H̃ inducing the canonical isomorphism H =
R Hom(pr∗

2 F , R pr!1 F) → Hom(pr∗
2 F , pr∗

1 F)(d)[2d] = H0(d)[2d] on U × U .

(2) Assume further that F is tamely ramified along D. We consider the pull-back
f∗(idj!F ) ∈ H0

f−1(X)((X × X)∼, H̃) of the identity idj!F ∈ EndX(j!F) = H0
X(X ×

X, H̄). Then, we have
f∗(idj!F ) = e ∪ [X] (3.7)

in H0
f−1(X)((X × X)∼, H̃).
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Proof. (1) Let f̄ : (X × X)′ → X × X be the log blow-up. Let (U × X)′ ⊂ (X × X)′ be
the complement of the proper transform of D × X and we consider the open immersions

(X × X)∼ j2−→ (U × X)′ j1−→ (X × X)′.

We put H′ = j1!Rj2∗H̃ on (X × X)′. The log blow-up f̄ : (X × X)′ → X × X is
an isomorphism on the complement U × X of D × X. The restriction of H̄ on D ×
X is 0 and the restriction H̄|U×X = R Hom(pr∗

2 j!F , R pr!1 F) is canonically identified
with the restriction H′|U×X = R(1 × j)∗H0(d)[2d]. Hence, there exists a unique map
f̄∗H̄ → H′ inducing the canonical isomorphism H → H0(d)[2d] on U ×U . The restriction
of f̄∗H̄ → H′ on (X × X)∼ gives the desired map f∗H̄ → H̃.

(2) It suffices to show the equality f̄∗(idj!F ) = e ∪ [X] in H0
f̄−1(X)((X × X)′,H′).

Since F is assumed tamely ramified, the adjunction H̄ → Rf̄∗H′ of the canoni-
cal map f̄∗H̄ → H′ is an isomorphism, by [3, Lemma 2.2.4]. Hence, the pull-back
f̄∗ : H0

X(X × X, H̄) → H0
f̄−1(X)((X × X)′,H′) is an isomorphism. Since the restriction

map H0
X(X × X, H̄) = EndX(j!F) → H0

U (U × U,H) = EndU (F) is an isomorphism, the
arrows in the commutative diagram

H0
X(X × X, H̄) ��

��

H0
U (U × U,H)

H0
f̄−1(X)((X × X)′,H′)

����������������

are isomorphisms. Thus, it suffices to show the equality in H0
U (U × U,H). Hence the

assertion follows from the description (3.5) of the isomorphism (3.1) in the smooth case.
�

Corollary 3.2. Let the notation be as in Proposition 3.1 (2). Then, we have

C(j!F) = rankF · (X, X)(X×X)∼

in H0(X, KX) where (X, X)(X×X)∼ = (−1)dcd(Ω1
X(log D)) is the self-intersection class.

Proof. We consider the pull-back to H0(X, δ̃∗H̃) of the equality f∗(idj!F ) = e ∪ [X]
by the log diagonal map δ̃ : X → (X × X)∼. Then, since δ = f ◦ δ̃, we obtain
δ∗(idj!F ) = e ∪ (X, X)(X×X)∼ in H0(X, δ̃∗H̃) = H0(X, j∗ EndU F(d)[2d]). Since the eval-
uation map δ̃∗H̃ → KX is induced by the trace map j∗ EndU F → Λ, we obtain
C(j!F) = rankF · (X, X)(X×X)∼ . �

Corollary 3.3. Let X be a smooth scheme of dimension d over k and U = X \ D be
the complement of a divisor D with simple normal crossings. We keep the notation in
the diagram (3.6).

Let D+ ⊂ D be the union of some irreducible components and put U+ = X \D+ ⊃ U .
Let g : X → (X × X)∼ be a morphism of schemes over k that is an isomorphism on
(U+ ×U+)∼ = (U+ × U+) ×X×X (X × X)∼ ⊂ (X ×X)∼ and let j� : U ×U → X be the
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open immersion. Let δ� : X → X be a closed immersion satisfying δ̃ = g ◦ δ�. We assume
that the cycle map

Λ(d)[2d] → KX = R(p2 ◦ f ◦ g)!Λ (3.8)

is an isomorphism. Define the cycle class [X] ∈ H0
X(X, Λ(d)[2d]) to be the inverse image

of 1 by the isomorphism H0
X(X, Λ(d)[2d]) → H0

X(X,KX) = H0(X, Λ) induced by the
isomorphism (3.8).

Let F be a smooth sheaf on U of free Λ-modules of finite rank. We assume that
F is tamely ramified along D ∩ U+ = U+ \ U . We put H0 = Hom(pr∗

2 F , pr∗
1 F) on

U × U and H̄ = R Hom(pr∗
2 j!F , pr!1 j!F) on X × X. We also put H�

0 = j�
∗H0 on X. Let

e ∈ Γ (X, δ�∗H�
0) be a section such that the restriction e|U ∈ Γ (U, δ∗

UH0) = EndU (F) is
the identity of F . We put E = X \ (U+ × U+)∼ and assume

H2d
E (X,H�

0(d)) = 0. (3.9)

(1) There exists a unique map (f ◦ g)∗H̄ → H� = H�
0(d)[2d] inducing the canonical iso-

morphism H = R Hom(pr∗
2 F , R pr!1 F) → Hom(pr∗

2 F , pr∗
1 F)(d)[2d] = H0(d)[2d]

on U × U .

(2) We consider the pull-back (f ◦ g)∗(idj!F ) ∈ H0
(f◦g)−1(X)(X,H�) of the identity

idj!F ∈ EndX(j!F) = H0
X(X × X, H̄). Then, we have

(f ◦ g)∗(idj!F ) = e ∪ [X] (3.10)

in H0
(f◦g)−1(X)∪E(X,H�). Consequently, we have

C(j!F) = rankF · (X, X)X (3.11)

in H0(X, KX) where (X, X)X denotes the pull-back of the cycle class [X] ∈
H2d

X (X, Λ(d)).

Proof. (1) Since the image of (X × X)∼ \ (U × U) in X × X is a subset of D × X, we
have (f ◦ g)∗H̄ = j�

! H as in the proof of Proposition 3.1. Hence the assertion follows.

(2) Since g−1(U+) = (f ◦ g)−1(X) ∩ (U+ × U+)∼ is the complement of E ∩ (f ◦ g)−1(X)
in (f ◦ g)−1(X), we have an exact sequence

H0
E(X,H�) → H0

(f◦g)−1(X)∪E(X,H�) → H0
g−1(U+)((U

+ × U+)∼,H�).

By the assumption (3.9), we have H0
E(X,H�) = 0. Hence the restriction map

H0
(f◦g)−1(X)∪E(X,H�) → H0

g−1(U+)((U
+ × U+)∼,H�)

is an injection. By Proposition 3.1, the equality (f ◦ g)∗(idj!F ) = e ∪ [X] holds
in H0

g−1(U+)((U
+ × U+)∼,H�). Thus we obtain (f ◦ g)∗(idj!F ) = e ∪ [X] (3.10) in

H0
(f◦g)−1(X)∪E(X,H�).
The equality (3.11) is deduced from (3.10) as in the proof of Proposition 3.1. �
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Theorem 3.4. Let X be a smooth scheme of dimension d over k and U = X \ D

be the complement of a divisor D with simple normal crossings. Let R =
∑

i riDi � 0
be an effective divisor with rational coefficients. Let g : (X × X)(R) → (X × X)∼ and
δ(R) : X → (X × X)(R) be as in § 2.3 and let j(R) : U × U → (X × X)(R) be the open
immersion.

Let F be a smooth sheaf on U of free Λ-modules of finite rank. We put H0 =
Hom(pr∗

2 F , pr∗
1 F) on U × U . We assume that the log ramification of F is bounded

by R+ and let e ∈ Γ (X, δ(R)∗j
(R)
∗ H0) be the unique section whose image by the base

change map in Γ (X, j∗δ
∗
UH0) = EndU (F) is the identity of F . We further assume that

the log ramification of F along D is non-degenerate with respect to R (cf. Definition 2.27).
Then, we have

C(j!F) = rankF · (X, X)(X×X)(R) (3.12)

= (−1)d · rankF(cd(Ω1
X(log D)) + (c(Ω1

X(log D)) ∩ (1 − R)−1 ∩ [R])dim 0)
(3.13)

in H0(X, KX).

Proof. We put D+ =
∑

i:ri>0 Di. We verify that g : X = (X × X)(R) → (X × X)∼

satisfies the assumptions in Corollary 3.3. By the construction, the map g : X =
(X × X)(R) → (X × X)∼ is an isomorphism on the complement of D+ ⊂ X ⊂ (X×X)∼.
The log diagonal map δ̃ : X → (X × X)∼ is lifted to a closed immersion δ(R) :
X → (X × X)(R). The cycle map Λ(d)[2d] → K(X×X)(R) is an isomorphism by Proposi-
tion 2.18 (1).

By the definition of D+ and by the assumption that the log ramification of F is bounded
by R+, it follows that F is tamely ramified along D \ D+ = U+ \ U by Corollary 2.21.
The complement (X × X)(R) \ (U+ × U+)∼ equals the inverse image E+ of D+. We
show that H(R)

0 = j
(R)
∗ H0 satisfies the assumption

H2d
E+((X × X)(R),H(R)

0 (d)) = 0

(3.9) for X = (X × X)(R). Let i : E+ → (X × X)(R) be the closed immer-
sion and p : E+ → D+ be the projection. Since H2d

E+((X × X)(R),H(R)
0 (d)) =

H2d(D+, Rp∗Ri!j
(R)
∗ H0(d)), it suffices to show Rp∗R

qi!j
(R)
∗ H0 = 0 for q � 0. Since

Rqi!j
(R)
∗ H0 is 0 for q = 0, 1 and is isomorphic to Rq−1j

(R)
∗ H0 for q > 1, it follows from

Rp∗R
qj

(R)
∗ H0 = 0 proved in Lemma 2.29 (2). Thus, the assumptions in Corollary 3.3 are

satisfied and we obtain the equality (3.12).
The equality (3.13) follows from the equalities (3.12) and (2.12) and the isomorphism

NX/(X×X)∼ → Ω1
X(log D). �

3.2. Characteristic cycle

Let X be a smooth scheme of dimension d over k and let D be a divisor with simple
normal crossings. Let

T ∗X(log D) = V (Ω1
X(log D)∨)
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be the logarithmic cotangent bundle. We regard X as a closed subscheme of T ∗X(log D)
by the 0-section. Let Di be an irreducible component of D, ξi be the generic point of Di

and Ki be the fraction field of the henselization Oh
X,ξi

of the local ring. The residue field
Fi of Ki is the function field of Di.

Let r > 0 be a rational number and χ : Grr
log GKi

→ Fp be a non-trivial charac-
ter. The refined Swan character rsw χ ∈ Ω1

Fi
(log) ⊗ m

(−r)
K̄i

/m
(−r)+
K̄i

regarded as an injec-
tion mr

K̄i
/m

r+
K̄i

→ Ω1
X(log D)ξi ⊗ F̄i defines a line in the F̄i-vector space Ω1

X(log D)ξi ⊗ F̄i

and hence an F̄i-valued point [rsw χ] : Spec F̄i → P (Ω1
X(log D)∨). We define a reduced

closed subscheme Tχ ⊂ P (Ω1
X(log D)∨) to be the Zariski closure {[rsw χ](Spec F̄i)} of

the image and let Lχ = V (OTχ(1)) be the pull-back to Tχ of the tautological sub line
bundle L ⊂ T ∗X(log D) ×X P (Ω1

X(log D)∨). We have a commutative diagram

Lχ −−−−→ T ∗X(log D) ×X Di −−−−→ T ∗X(log D)= V (Ω1
X(log D)∨)⏐⏐� ⏐⏐� ⏐⏐�

Tχ
πχ−−−−→ Di −−−−→ X

(3.14)

The natural map πχ : Tχ → Di is generically finite.
Let F be a smooth �-adic sheaf on U = X \D and R =

∑
i riDi be an effective divisor

with rational coefficients ri � 0. In the rest of the paper, we assume that F satisfies the
following conditions.

(R) The log ramification of F along D is bounded by R+.

(C) For each irreducible component Di of D, the closure S
(n·R)
F,ξi

of the generic fibre of
the dual support is finite over Di and its intersection

S
(n·R)
F,ξi

∩ Di

with the 0-section of Vn(Ω1
X(log D)∨,O(−nR))Di

is empty.

By Lemma 2.29, the conditions (R) and (C) imply the following condition.

(R′) Fη̄i
= F (ri)

η̄i
for every irreducible component Di of D.

They also imply that the log ramification of F is non-degenerate with respect to R by
Proposition 2.26 (3). Conversely, the condition (R′) implies that both (R) and (C) are
satisfied on a dense open subscheme of X containing the generic points of the irreducible
components of D. Under the condition (R′), one may expect that the closure S

(n·R)
F,ξi

is always finite over Di. This is in fact proved in the case where rankF = 1 in [14,
Theorem (7.1)]. If F is the rank 1 sheaf defined by a continuous character χ of π1(U)ab,
the condition (C) is equivalent to that χ is clean along D in the sense of [15, (3.4.3)].
Under the assumption dimX = 2, it is proved in [15, Theorem 4.1] that the condition (C)
is satisfied after blowing-up finitely many closed points on the boundary successively.

Lemma 3.5. Assume that the log ramification of F is bounded by R+ and that F
satisfies the conditions (R) and (C). Let Di be an irreducible component of D and χ be
a character of Grri

log GKi
appearing in the direct sum decomposition Fη̄i

=
∑

χ nχχ.
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(1) The scheme Tχ is finite over Di.

(2) We put

SSχ =
1

[Tχ : Di]
πχ∗[Lχ] (3.15)

in Zd(T ∗X(log D) ×X Di)Q in the notation in (3.14). Then, we have

SSχ = (c(Ω1
X(log D)) ∩ (1 − R)−1 ∩ [T ∗X(log D) ×X Di])dim d.

Proof. (1) By Lemma 2.29, the generic fibre S
(n·R)
F,ξi

of the dual support consists of the
refined Swan characters rsw χ of the characters χ appearing in the direct sum decomposi-
tion Fη̄i

=
∑

χ nχχ. Hence, by the condition (C), the closure S
(n·R)
F,ξi

is a closed subscheme
of

Vn(Ω1
X(log D)∨,O(−nR))Di

\ Di

finite over Di. Hence, the union
⋃

χ Tχ is the image of S
(n·R)
F,ξi

by the canonical map

ϕ : Vn(Ω1
X(log D)∨,O(−nR))Di \ Di → P (Ω1

X(log D)∨).

(2) Since the conormal sheaf of Lχ ⊂ T ∗X(log D) ×X Tχ is the pull-back of the locally
free sheaf Ker(Ω1

X(log D)∨ → O(1)) of rank d − 1, we have

[Lχ] = (−1)d−1cd−1(Ker(Ω1
X(log D)∨ → O(1))) ∩ [T ∗X(log D) ×X Tχ].

Hence we have

SSχ = (c(Ω1
X(log D)) ∩ c(O(−1))−1 ∩ [T ∗X(log D) ×X Di])dim d.

By Lemma 2.11, the pull-back of O(n) on

Vn(Ω1
X(log D)∨,O(−nR))Di \ Di ⊃ S

(n·R)
F,ξi

is canonically isomorphic to O(nR). Since the union
⋃

χ Tχ is the image of S
(n·R)
F,ξi

, the
assertion follows. �

Assuming the conditions (R) and (C), we define the characteristic cycle CC(F) as a
rational d-cycle on T ∗X(log D).

Definition 3.6. Let F be a smooth Λ-sheaf on U = X \ D satisfying the conditions
(R) and (C). For an irreducible component Di of D with ri > 0, let Fη̄i =

∑
χ nχχ be

the direct sum decomposition of the representation induced on Grri

log GKi . We define the
characteristic cycle by

CC(F) = (−1)d

(
rankF · [X] +

∑
i,ri>0

ri ·
∑

χ

nχ · [SSχ]
)

(3.16)

in Zd(T ∗X(log D))Q.
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If dimX = 1, we put Sw F =
∑

x∈D Swx F · [x] ∈ Z0(X) and let p : T ∗X(log D) → X

be the projection. Then, we have

CC(F) = −(rankF · [X] + p∗[Sw F ]).

If F is a rank 1 sheaf defined by a continuous character χ of π1(U)ab and if F is clean
along D, the characteristic cycle CC(F) defined above is nothing but Char(X, U, χ)
defined in [15, (3.4.4)].

Theorem 3.7. Let X be a smooth scheme of dimension d over k and D be a divisor
with simple normal crossings. Let F be a smooth �-adic sheaf on U = X \ D satisfying
the conditions (R) and (C). Then we have

C(j!F) = [CC(F)]

in H2d(X, Λ(d)) = H2d(T ∗X(log D), Λ(d)). In other words, we have

C(j!F) = (CC(F), X)T ∗X(log D).

Proof. By the assumption (C) and by Lemma 2.29, the assumption in Theorem 3.4 is
satisfied. Hence the left-hand side is equal to

rankF · (−1)d · (cd(Ω1
X(log D)) + (c(Ω1

X(log D)) ∩ (1 − R)−1 ∩ [R])dim 0).

By Lemma 3.5, the right-hand side is also equal to this. �

By the index formula (3.4), Theorem 3.7 implies the following.

Corollary 3.8. Further if X is proper, we have

χc(Uk̄,F) = deg(CC(F), X)T ∗X(log D).
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