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Abstract  We propose a geometric method to measure the wild ramification of a smooth étale sheaf
along the boundary. Using the method, we study the graded quotients of the logarithmic ramification
groups of a local field of characteristic p > 0 with arbitrary residue field. We also define the characteristic
cycle of an ¢-adic sheaf, satisfying certain conditions, as a cycle on the logarithmic cotangent bundle
and prove that the intersection with the 0-section computes the characteristic class, and hence the Euler
number.
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Introduction

Let X be a separated scheme of finite type over a perfect field k of characteristic p > 0.
We consider a smooth ¢-adic étale sheaf F on a smooth dense open subscheme U C X
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for a prime ¢ # p. The ramification of F along the boundary X \ U has been studied
traditionally by using a finite étale covering of U trivializing F modulo ¢. In this paper,
we propose a new geometric method, inspired by the definition of the ramification groups
1,2,4].

The basic geometric construction used in this paper is the blowing-up at the ramifi-
cation divisor embedded diagonally in the self log product. A precise definition will be
given at the beginning of §2.3. We will consider two types of blow-up. The preliminary
one, called the log blow-up, is the blow-up (X x X)’ — X x X at every D; x D; where D;
denotes an irreducible component of a divisor D = X \ U with simple normal crossings
in a smooth scheme X over k. The second one is the blow-up (X x X)) — (X x X/
at R =), r;D;, with some rational multiplicities r; > 0, embedded in the log diagonal
X — (X x X)'. This construction globalizes that used in the definition of the ramification
groups in [1] and [2] recalled in § 1.

Inspired by [13], we consider the ramification along the boundary of the smooth sheaf
H = Hom(prs F,pri F) on the dense open subscheme U x U C (X x X)), We intro-
duce a measure of wild ramification by using the extension property of the identity
regarded as a section of the restriction on the diagonal of the sheaf #, in Definition 2.19.

Let ) : U x U — (X x X)) denote the open immersion. A key property of the
sheaf H established in Propositions 2.25 and 2.26 is that the restriction of jiR)’H on
the complement (X x X)) \ U x U admits a description by the Artin-Schreier sheaves
defined by certain linear forms. This fact is derived from a groupoid structure of
(X x X)) inherited from the natural one on X x X. We prove in Theorem 1.24 that
this property at the generic point of an irreducible component implies the following prop-
erties of the ramification groups conjectured in [4, Conjecture 9.4]: the graded pieces of
the ramification groups, known to be abelian, are killed by p and their character groups
are described by differential forms.

The definition of the measure of the wild ramification in this paper is closely related
to that of the characteristic class in [3]. In Definition 3.6, we propose a definition of the
characteristic cycle of an f-adic sheaf as a cycle of the logarithmic cotangent bundle,
under the conditions (R) and (C) stated in §3.2. Roughly speaking, the conditions mean
that the ramification is controlled at the generic points of the irreducible components
of the ramification divisor. Consequently, the characteristic cycle in this case does not
have components supported on subvarieties of codimension at least two. We show that its
intersection product with the O-section computes the characteristic class, in Theorem 3.7.
This is a generalization of Kato’s formula in the rank one case [15].

One expects that the same construction works for D-modules with irregular singular-
ities. It should give another evidence for the analogy between the wild ramification of
{-adic sheaves and irregular singularities of D-modules.

Notation

k denotes a perfect field of characteristic p > 0. A scheme over k is assumed to be
separated of finite type over k. For a locally free O x-module £ of finite rank on a scheme
X, E = V(&) denotes the contravariant vector bundle defined by the quasi-coherent
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Ox-algebra S*E. Similarly, P(£) denotes the projective space bundle ProjS*E. The dual
of £ is denoted by £V. For a closed subscheme X C Y defined by the ideal Zx C Oy,
the conormal sheaf Tx /Ig( is denoted by NX/y.

£ denotes a prime number invertible in k£ and A denotes a finite local Z,-algebra.

1. Ramification groups

The theory of logarithmic ramification groups of a local field with imperfect residue field
as developed in [1] and [2] relies on rigid geometry and on log geometry in an essential
way. In §§ 1.1-1.3, we give some interpretations purely in terms of schemes, without using
rigid geometry or log geometry. In § 1.3, we state the main result, Theorem 1.24, on the
structure of the graded quotients. We prove it in § 1.4 by computing the nearby cycles.

In this section, K denotes a discrete valuation field, Ok denotes the valuation ring,
and mg denotes the maximal ideal. The residue field Ok /my is denoted by F and
vk : K — Z U {oo} denotes the discrete valuation normalized by v (7) = 1 for a prime
element m. We put S = Spec Ok . Throughout the section, a morphism of schemes over
S will mean a morphism over S.

1.1. Basic constructions

Let A be a finite flat Og-algebra. We put T' = Spec A. We consider a closed immersion
T — P to a smooth scheme P over S. Let Zr = Ker(Op — Or) be the ideal sheaf
defining the closed subscheme 7" in P.

For a pair (m,n) of integers m > 0 and n > 0, let Q = P[m/n} — P be the blow-up
at the ideal 77 + mZOp and P(m/n) - P[m/n] be the complement of the support of
(Z20qg + mEOg) /m7Og. The morphism P(m/") — P is affine and P, (m/n) is defined
by the quasi-coherent Op-subalgebra Opm"Z}] C K ® Op. The maps P(m/n)

P%m/n] — P induce isomorphisms P(m/n) — P[m/n] — Px on the generic fibres. For
(0/n) _ %0/71]

-
m = 0, we have P, = P. The immersion T — P is uniquely lifted to an
immersion T — P(™/™),

Let d > 0, m" > 0, n’ > 0 be integers such that m’ < dm and n’ = dn. Then
the inclusion (m"ZR)4 > m}_(m 7% induces a canonical map P(m/n) — P( /) that
is an isomorphism on the generic fibres. If (m’,n’) = (dm,dn), the canonical map
Pimim P s finte.

For a rational number r = m/n > 0, let P! be the normalization of P{™™ . For
r >0, let Py, P be the formal completion of Pé ) along the closed fibre P%% For ' < r,

) pi)

the canonical maps P; of schemes and
P — P

of affine formal schemes are induced.
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We compare the construction above to those in [1] and [2].

Example 1.1. Assume K is complete.

(1) Let Z = (21,...,2,) be a system of generators of a finite flat Og-algebra A and
consider the closed immersion T' = Spec A — P = Spec Ok [X1,...,X,] defined
by Z. Then, the affinoid variety X3 in [1, 3.1] is defined by the formal O-scheme

Pg) fora =r.

(2) Let T — P be a closed immersion of a finite flat Ox-scheme T to a smooth scheme
P and let Spf A be the formal completion P |7 of P along the closed subscheme T
Then the aPﬁnoid variety X7(A — A) in [2, Definition 1.5] is defined by the formal

O g-scheme P ) for j=r.

Lemma 1.2. Let T be a finite flat scheme over S and T — P and T — @ be closed
immersions to smooth schemes over S. Let P — () be a smooth morphism over S such
that the diagram

T——P

AN

Q

is commutative. Then, for a positive integer r > 0, the map P — @ induces a smooth
map Pg) — Q(TT ) and an isomorphism

P’}T;I)‘? - ng:,)F XTw V(m;{T Qo Q}D/Q Xop OTF)'

Proof. It suffices to show the assertions with (r) replaced by (r/1). We show the map
Pg/ D Q(T/ D is smooth. Let ¢ € T be a closed point and d be the relative dimension
of P — @ at the image of ¢. The section defined by T" — P of the smooth morphism
P xgT — T is a regular immersion of codimension d. By choosing a minimal set
of generators of the ideal and by lifting them, we find a neighbourhood V' C P of
the image of ¢+ and an étale morphism V — A% = Q[X,...,X,] inducing an open
immersion TNV =T CT xq Ad to the O-section. Then, P( "/ X p V is isomorphic to
Vv X a3 Q(”l)[ Xi/m" ., Xy /7" and is smooth over Q(T/l)

Slnce the map QTF — Qr,F factors through the closed immersion Tr — Q7 F, the

isomorphism
P xpV sV x a0 QFV X0/, X/
above induces an open immersion P}l{,) pV — Q(T/l)[ Xq/7", ..., Xa/7"]. Since
(T/ 2 [X1/7", ..., X4/7"] is canonically 1dent1ﬁed with
) X, V(my @0, 2} 0
rp Xre V(g ®@o, 2p0 ®op Ory),
the assertion follows. g
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Let T denote the normalization of T. For positive integers m,n > 0 and for r =
m/n, the immersion 7' — P induces an immersion T — P}m/ ™) and hence a finite map
T— Pq(f). The latter further induces a map on the formal completions.

Lemma 1.3. Let T' = Spec A be a finite flat scheme over S and T — P be a closed
immersion to a smooth scheme over S. Assume that Ty is isomorphic to the disjoint
union of finitely many copies of Spec K. Then there exists an integer r > 0 such that the
map T — P}r) is a closed immersion.

Proof. By the assumption on T, the semi-local ring A is the product of finitely many
local rings and the normalization of A is generated over Ok by the idempotents in
A®op, K. Hence, we may assume P = Spec R is affine and hence P:(FT) = Spec R is
also affine. It is sufficient to show that, for every idempotent e € A ®o,. K, there exists
an integer r > 0 such that e is in the image of R") — A ®o, K. Take a non-zero element
a € mg such that ae € A. We show that r = 2uk (a) satisfies the condition.

Take a lifting f € R of ae € A. Then g = f? — af is in the kernel I = Ker(R — A).
Since g/a? is in R/, the solution f/a € RV @0, K of the equation X2 — X = g/a?
lies in R("). O

We study the relation of the basic construction with a base change of discrete valuation
rings. Let T — P be a closed immersion of a finite scheme to a smooth scheme over
S = Spec Ok as above. Let S’ = Spec Ok — S be a surjection of spectra of discrete
valuation rings of ramification index e. Then, the base change T = T xg S’ — P’ =

P xg S’ is a closed immersion of a finite flat scheme to a smooth scheme over S’. For

integers m,n > 0, the induced map P}[,em/n] — P%m/n] X g S’ is an isomorphism. Hence,
for = m/n, the scheme P}(,er)/i\s the normalization of Pg) x g 5" and the formal scheme

Pl(er) )

v~ is the normalization of Pg X g S’. Note that we need not assume that the fraction

field extension nor the residue field extension is finite.
We prepare some facts on the properties (Sg) and (Rg) of locally noetherian schemes
[11, Chapter IV, §§5.7, 5.8].

Lemma 1.4. Let f : X — S be a flat scheme of finite type over a regular noetherian
scheme S. For a point s € S, we put ¢(s) = dim Og 5. Let k > 0 be an integer.

(1) The following conditions are equivalent.

(a) For every point s € S, the fibre X, satisfies the condition (S_.(s))-
(b) X satisfies the condition (Sg).

(2) Condition (a) implies condition (b).

(a) For every point s € S, the fibre X satisfies the condition (Ry_c(s))-
(b) X satisfies the condition (Ry).
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Proof. (1) Let € X be a point and put s = f(z) € S. Let ¢1,...,t. € mg be a regular
system of parameters where ¢ = ¢(s). Since f : X — S is flat, f*t1,..., f*t. € m, is a
regular sequence of Ox , and Ox, , = Ox /(f*t1,..., f*t.). Hence, we have equalities
dimOx, , = dimOx, — ¢(s) [11, Chapter 0, Proposition (16.3.7)] and prof Ox, , =
prof Ox , — ¢(s) [11, Proposition (16.4.6) (ii)] and the assertion follows.

(2) Further, Ox , is regular if Ox, , is regular [11, Proposition (17.3.3) (ii)]. O

Corollary 1.5. Let S = SpecOg be the spectrum of a discrete valuation ring and
f: X — S be a normal scheme of finite type with smooth generic fibre.

(1) Assume X — S has geometrically reduced fibres. Then, for any surjection S" — S
of spectra of discrete valuation rings, the base change X Xg S’ is normal.

(2) There exists a surjection of spectra S’ = Spec O, — S of discrete valuation rings
such that K’ is a finite extension of K and that the normalization X' of X xg S’
has geometrically reduced fibres over S’.

Proof. (1) Since the closed fibre of Xg is reduced, it satisfies the conditions (Rg) and
(S1). Since the generic fibre is regular, Xg: satisfies the conditions (R;) and (Sz2) by
Lemma 1.4.

(2) We may assume that the residue field F' is algebraically closed since there exists an
inductive system (Og;,)ier of finite extensions of discrete valuation rings of ramification
index 1 such that the limit li iFi of the residue fields is an algebraic closure of F'. We
apply a variant [19, Appendix, Théoréme 2] of Epp’s theorem [9] corrected in [18] to
the generic points of the irreducible components of the closed fibre of X — S. Then, we
find a surjection S’ = Spec Ok — S of spectra of discrete valuation rings and an open
subscheme U of the normalization X’ of the base change X x g S’ such that K’ is a finite
extension of K and that U is smooth over S’ and contains the generic point of every
irreducible component of the closed fibre.

We show that X’ has geometrically reduced fibres. Since the generic fibre is smooth,
it suffices to show that the geometric closed fibre is reduced. Since X’ is normal, it
satisfies the condition (Sg2). By Lemma 1.4 (1), the closed fibre satisfies (S1) and hence
the geometric closed fibre also satisfies (S1). Since the geometric closed fibre has a dense
open subscheme smooth over the base field, it also satisfies the condition (Rg). Hence
the geometric closed fibre is reduced. [

Let X be a normal scheme of finite type over S = Spec Ok . Assume that the generic
fibre of X is smooth and that the closed geometric fibre is reduced. Then, the formal
completion X along the closed fibre is the stable integral model of the affinoid variety
defined by X itself. Thus, Corollary 1.5 implies the finiteness theorem of Grauert and
Remmert [6, Theorem 1.2] for algebraizable formal schemes.

Applying Corollary 1.5 to P:(FT) — S, we obtain the following.

Corollary 1.6. Let T — P be a closed immersion of a finite flat scheme to a smooth
scheme over S = Spec Ok and r > 0 be a rational number.

https://doi.org/10.1017/51474748008000364 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000364

Wild ramification and the characteristic cycle of an £-adic sheaf 775

(1) There exists a surjection of spectra S = Spec Og+ — S of discrete valuation rings
of ramification index e such that K’ is a finite extension of K and that P}(,m’) — 5’
has geometrically reduced fibres.

(2) Assume P:,(f) — S has geometrically reduced fibres. Then, for any surjection S’ — S
of spectra of discrete valuation rings of ramification index e, the canonical map
leq(,er) — P:(Fr) x g S is an isomorphism.

Definition 1.7. Let T be a finite flat scheme over S and T" — P be a closed immersion
to a smooth scheme over S. Let r > 0 be a rational number and S’ — S be a surjection
of spectra of discrete valuation rings of ramification index e.

We say P") — 5’ is a stable model of P\ if its geometric fibres are reduced. If

P},er) — S’ is a stable model, we call quf,er) x g Spec F' the stable closed fibre and write

it by ]5}?5.
By Corollary 1.6 (1), there exists an S’ such that P} — S is a stable model. By

Corollary 1.6 (2), the stable closed fibre P:(Frl)ﬁ is independent of the choice of such S’. The

finite map P:/F,er) — P:(FT) x g S’ induces a finite map _7(“T1)5 — P;f%.
Similarly as the stable closed fibre ]5;7'1)5, we define T for a finite flat scheme T such

that Tk is étale over K as follows. For S’ = Spec O+ — S such that T x g Spec K’ is
the disjoint union of finitely many copies of Spec K’, the geometric fibre T x g 8" x g/ F
of the normalization is independent of the choice of S’. We write it by 7. The condition
that T' xg Spec K’ is the disjoint union of finitely many copies of Spec K’ implies that

the normalization T X g S’ is the disjoint union of finitely many copies of S’.
Definition 1.8. Let T be a finite flat scheme over S such that Tk is étale over K.

(1) Let > 0 be a rational number. Let T — P be a closed immersion to a smooth
scheme over S and S’ = SpecOg: — S be a surjection of spectra of discrete
valuation rings of ramification index e satisfying the following conditions: the étale
covering T — Spec K splits over K’ and hence the normalization T's: of T x g S’
is isomorphic to the disjoint union of finitely many copies of S’; the product er is
an integer and the geometric fibres of Pgr), — §" are reduced.

We say the ramification of T over S is bounded by 7 if, the map T — P:(F?T), induces
an injection

Tp — mo(PL})
of finite sets.

(2) Let r > 0 be a rational number. We say the ramification of T over S is bounded
by r+ if the ramification of T' is bounded by every rational number s > 7.

By Lemma 1.2, the map 7% — Wo(Pé,T%) is independent of P. Let T be a finite flat
scheme over S and S’ — S be a surjection of spectra of discrete valuation rings of
ramification e. Then, it is clear from the definition that the ramification of T" over S is
bounded by r if and only if the ramification of T' xg S’ over S’ is bounded by er.
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We will see later that Definition 1.8 is equivalent to the definition in [1, Definition 6.3]
for finite flat Og-algebra locally of complete intersection.

Lemma 1.9. For a finite flat scheme T over S, the following conditions are equivalent.
(1) T is locally of complete intersection.
(2) There exists a Cartesian diagram

T — @

l l (1.1)

S —— P

of schemes over S satisfying the following condition.

(CI) The vertical arrows are quasi-finite flat and the horizontal arrows are closed
immersions; the schemes P and @) are smooth over S.

Proof. (1) = (2). Take a surjection Og[X1,..., X4 = A and let I denote the kernel.
The closed immersion T' — Q) = Ag is regular of codimension d and the Op-module I /12
is free of rank d. By lifting a basis, we find elements f1, ..., fq € I such that (f1,..., f4) =
I on a neighbourhood of T. We define a map Q — P = Aflg by fi,..., fq and consider
the 0-section S — P. Then, shrinking @ if necessary, the diagram (1.1) is Cartesian and
the map @ — P is quasi-finite and flat by [11, Chapter 0, Proposition (15.1.21)].

(2) = (1). Since the immersion S — P is regular, the immersion T — @ is also regular
and T is locally of complete intersection over S. O

We compute the scheme Pj(f) explicitly in the case where T'= S — P is a section of
a smooth scheme P — S of relative dimension d. The conormal sheaf Ng/p = Zg/Z2 is
canonically identified with the free Og-module !2113 /s Qop Og of rank d.

Lemma 1.10. Let S — P be a section of a smooth scheme P — S and r > 0 be a
rational number. Let j : Pk = P xg K — P be the open immersion and Zs C Op be
the ideal sheaf of S regarded as a subscheme of P by the section s : S — P.

(1) The affine P-scheme Pé.r) is defined by the quasi-coherent O p-algebra

Zml_([lr] ’ Ié' c j*OPK7 (12)
1>0

where [lr] denotes the integral part.

(2) Assume r is an integer. Then Pgﬂ) = Pg/l) is smooth over O . Further, by OP(T) =

Oplmy" - Zg] C j.Op,, the closed fibre Pérl): is identified with the F-vector space

V(2p)s ®0p F @pmy /mg*) = Spec S3-(2ps ®op F @p myg /m ).
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Proof. (1) Let n > 1 be an integer such that m = nr is an mteger Then, P( ") is defined
by the normalization A of the quasi-coherent Op-algebra Op[m ™ - I¢| C j*OpK Since
(m "zl ¢ m™ . Zol € Op[m™ - T2 for I > 0, we have an inclusion

Zm_[lr Th C A.

>0

—lir] IlS is normal.

We show the inclusion is an equality. It suffices to show that Zz>o my
Since the question is étale local on P, we may assume that P is isomorphic to A%
and that S — P is the O-section. Or equivalently, we may assume that S — P is the
0-section of the vector bundle P = V(E) = SpecS¢, (F) associated to a free Ok-
module of finite rank. By taking a basis of £, we identify the symmetric algebra S¢, (E)

with the monoid algebra Ox[M] where M is a free commutative monoid with a basis

€i,...,€eq. Let ¢ : M — N denotes the map of monoids sending e;,...,e, to 1 and
let eg € N denote the basis 1. Then the saturation M, = {(a,b) € Zx M | a+r -
o(b) > 0} of the submonoid (eg,ne; — meo,...,ne, — meg) C M x Z is equal to the

union [[;5{(a,b) € Zx M | a > —[lr], o(b) =1}. For a prime element 7 of K, the ring

Ok[M,]/(eo — 7) is normal and we have Ox[M,]/(eo — ) = D5, m;([lr SYE). Thus

the assertion follows.
(2) We show Pér) = Pér/ Y is smooth over Of. Since the question is étale local on P, we
may assume P = V(E) = Spec S*(E) as above. Then, Pg) = Pg/l) = Spec S*(m; E)
is smooth over Og.

We show that the closed immersion Ps(*z)«“ = P(T/l) — Spec S*(m" ®o, Ng/p oy F)
is an isomorphism. We conclude by reducing to the case P = V(E) = SpecS*(E) as
above. O

Let v : K — QU {oo} be the extension of the normalized discrete valuation v : K —
ZU{oo} to a separable closure. For a rational number r, we put m%; = {a € K | v(a) > r}
and m"t = {a € K | v(a) > r}.

Corollary 1.11. Let m,n > 0 be positive integers such that r = m/n and (m,n) = 1.
Then for the reduced closed fibre (Pfqu);)md, we have a commutative diagram

Py —— V(02h,5®0, F®F mi " /m )
= SpeCS ( P/S Rop F®F m(— r)/m( T)+>

| | (1.3)

(P )rea —— Spec@D S™0h g @0, F @p mg™ /mym+!
>0

The horizontal arrows are isomorphisms induced by (1.2) and the right vertical arrow is
induced by the natural inclusion.

Proof. We show that the lower horizontal arrow is induced by the surjection

—[ir] 1
o T:Em[ TIL S0 .
Py K s Py
1>0

https://doi.org/10.1017/51474748008000364 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000364

778 T. Saito

pid - ZL is nilpotent. Similarly, the image of mp
is also nilpotent. Thus, it induces a surjection

If [Ir] < lr, the image of my ply CIE

mK[(lH)T] Il+1

P m Ty o F= @ S5 ®0, Fopmy /mdm = 040

F,Sred
1>0, lreN 120, lreN

and define the lower horizontal arrow as a closed immersion.

The upper horizontal arrow is defined as the lower one for the base change to a finite
extension of K of ramification index e such that er is an integer. It is an isomorphism by
Lemma 1.10 (2). The commutativity of the diagram is clear. Since the right vertical arrow
is defined by an injection of a ring, the lower horizontal arrow is an isomorphism. (I

We consider a Cartesian diagram (1.1) satisfying the condition (CI) in Lemma 1.9. For
positive integers m,n > 0, the diagram

(Tm/n) Q

l l (1.4)

Pém/n)

Q(Tm/ m o, Pém/ " is also quasi-finite and flat and

on the closed fibres. For r = m/n, we have a quasi-

is Cartesian. Hence the canonical map
induces a finite map Q (m/n) (m/n)

— Pg @
finite morphism QT — P( "

of schemes and a finite morphism of
gf) _> Ps(f)

of affine formal schemes over § = Spf O. If Q — P is étale, the diagram (1.4) with
(m/n) replaced by (r) is also Cartesian.

A diagram (1.1) satisfying the condition (CI) in Lemma 1.9 naturally arises in the
following ways.

Example 1.12.

(1) Let A be a finite flat Og-algebra locally of complete intersection and let
OxlTy,...,Ta)/(f1,--,fn) — A be an isomorphism over Og. We define a
closed immersion T = SpecA — @ = SpecOk|[T1,...,T,] by the surjection
Okl|Ty,...,T,] — A. We also define a section S — P = Spec Ok|[S1,...,5Sn]
by Si,...,S, — 0. Then, by defining Q@ — P by S; — f;, we obtain a Cartesian
diagram (1.1) satisfying the condition (CI) in Lemma 1.9 on a neighbourhood of T

(2) Let X be a smooth scheme over k and D be a smooth irreducible divisor of X. We
consider the local ring Ox = Ox ¢ at the generic point £ of D. Let f:Y — X be
a quasi-finite flat morphism of smooth schemes over k and assume V =Y xx U —
U= X\D is étale. We assume T =Y Xxx S is finite over S. We put P = X x; S
and @ =Y x; S and let Q — P be f x 1g. We consider the immersions S — P
and T — @ defined by the natural maps S — X and T" — Y. Then we obtain a
Cartesian diagram (1.1) satisfying the condition (CI) in Lemma 1.9.
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Lemma 1.13. Let T be a finite flat scheme over S of degree d such that Tk is étale
over K. We consider a Cartesian diagram

T — Q
[
S —— P

satisfying the condition (CI) in Lemma 1.9. We consider the following conditions.
(1) The ramification of T is bounded by r.
(2) The number of connected components of the scheme Qg)p is d.

(3) The scheme ng)ﬁ over Pé(f;; is isomorphic to the disjoint union of d copies of Pg}

(4) The map Q(T) — P(Tl)ﬁ is finite and étale.

(5) The induced map T — Q(Tr) is a closed immersion.

(6) The ramification of T is bounded by r+.

Then, we have implications (1) & (2) < (3) = (4) = (5) = (6). f Qx — Px is
finite étale, we have (4) < (5).

Proof. (1) = (3). We may assume that the map QT — Ps is finite flat of degree d
on the generic fibre. Assume the ramification of T' is bounded by r. For each t € TF, let
QT i * denote the connected component containing the image of ¢ by the map T — Q
Then we have an open and closed immersion

(r)t (r)
[T @ — @i

teTr
Since the number of the points in every geometric fibre of the map Q¥ ) Pg) is at
most d, we obtain an equality
(7‘) t (r)
H Q QT,F
teTp
and the map Q(T) g P(T)— is finite flat of degree 1 for every t € Ts.
(3) = (2). It follows from the fact that sz)?“ is connected.

(2) = (1). By [7, Chapter V, § 2.4, Theorem 3] the image of every connected component
of Q(T - is P ) Hence the inclusion Tz — Q ")_ of the inverse image of 0 € P - deﬁnes a
surjectlon T I —> wo(Q 7). Since the cardlnahtles are the same, it is a leeCthIl

(3) = (4). Clear.
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(4) = (5). We may assume that the map ng) — Pg) is finite étale. Then, the diagram

j l (1.5)

is Cartesian and the upper horizontal arrow is a closed immersion.

(5) = (6). Let s > r be a rational number. Then, we have a commutative diagram

Tp —— QP p)ed —— Tp —— QY

! | ! |

Spec F —— Pésl)5 —— SpecF —— Pg)

Since the composition of the left two upper horizontal arrows is the identity, the map
Ty — Fo(ng)F.) is an injection.

(5) = (4). If Qx — Pk is finite étale, the condition (5) implies that the map Qéi” —
Pé?r) of stable models is finite étale on a neighborhood of the image of T. Hence the
assertion follows from the purity of Zariski-Nagata. O

The equivalence (1) < (2) means that Definition 1.8 (1) is equivalent to that in [1,
Definition 6.3] if A is locally of complete intersection. Under the assumption that Qg —
Py is finite étale, we have an equivalence (4) < (5) < (6) (cf. [2, Corollary 4.12]).
The author does not know how to prove the implication (6) = (4) without using rigid
geometry.

Corollary 1.14. Let T be a finite flat scheme locally of complete intersection over S
and T — P a closed immersion to a smooth scheme over S. Assume Ty is étale over K.
Then, there exists a positive rational number r such that the ramification of T' over S is
bounded by r.

Proof. By Lemma 1.13 (5) = (6), it is a consequence of Lemma 1.3. O

1.2. Logarithmic variant

We keep the notation in the previous subsection. We consider a logarithmic variant
of the constructions in the previous section, without using log geometry. We work with
Cartier divisors to replace log structures.

Let Dg C S = Spec Ok be the Cartier divisor Spec F'. Let T be a flat scheme of finite
type over S and Dr be a Cartier divisor of T satisfying the following condition.

(D) For each t € T, there exists an integer e; > 1 such that the pull-back of Dg is equal
to e; D7 on a neighbourhood of .
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The condition (D) implies that the complement T\ Dy is equal to the generic fibre
Tk. If P is a regular flat scheme of finite type over S and if the reduced closed fibre
Dp = (P xg Dg)rea is regular, then the Cartier divisor Dp satisfies the condition (D). For
(T, Dr) satisfying the condition (D), let er denote the least common multiple lemcr €.
The condition ep = 1 is equivalent to that Dy is the pull-back of Dg.

Let T be a flat scheme of finite type over S and Dp be a Cartier divisor of T satisfying
the condition (D). For a surjection S = Spec O+ — S of the spectra of discrete valuation
rings of ramification index €’ = e/, we define the log base change or the log product
7 =T x?g S’ as follows. First, we consider the case where we have e; = e for every
t € T and there exists a generator f of the ideal of Dr. Let ' be a prime element of
K'. We define w € I'(T,0F) and v € OF, by m = uf® and 7 = v7’®" and a morphism
T x5 8" — SpecZ[X,Y, U V*]/(UX® — VYEI) by X = f, Y=, U~u Vo
Let d = (e, €e’) be the greatest common divisor and put e = de; and e’ = de]j. Let a and
b be integers satisfying d = ae + be’. We define

lo
T xg®8 = (T xs5") X Spec Z[X,Y,U+1,VE1]/(UX—-VYe') Spec Z[Z, W+, U]

= (T x5 SHZ,W*/(f — ZW, 7' — Z W, v — uW?), (1.6)

where Z[X,Y, U VE/(UXe —VY*®) = Z[Z, W, UE!] is defined by X — ZEWe,
Y s Z9W=t, V s UW¢. This is independent of the choices and is well defined. In the
general case, we define T xlsog S’ by patching.

The canonical map 77 =T Xg’g S" — T xg 8 is finite. If e = 1, the canonical map
=T xlb?g S’ — T xg S is an isomorphism.

If 7' is flat over S’, we define a Cartier divisor Dp: locally to be that defined
by Z in (1.6). Then, the divisor Dy satisfies the condition (D) by putting ey =
ei/ged(er, exr ) for t € T' above t € T. We have err = er/ged(er, e k). In par-
ticular, if ex/ /i is divisible by er, we have er» = 1 and the divisor D7 is the pull-back
of DS/-

Definition 1.15. Let K be a discrete valuation field and let Dg be the Cartier divisor
Spec F' of S = Spec O.

(1) Let T be a flat scheme of finite type over S and Dy be a Cartier divisor of T'
satisfying the condition (D). We say (T, Dr) is log flat over S, if, for an arbitrary
surjection S = Spec O+ — S of the spectra of discrete valuation rings, the log
base change 7" =T xlsog S’ — 8 is flat.

(2) Let P be a regular flat scheme of finite type over S such that the reduced closed
fibre Dp = (P X g Dg)rea is regular. We say P is log smooth over S, if étale locally
on P, there exists a smooth map P — P, for some e > 1 where

| Spec Ok[t]/(t® — ) if e € O,
| Spec Ok [t, utl]/(ut® — x) otherwise,

and 7 is a prime element of K.
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(3) Let T — P be a closed immersion of flat schemes over S and Dy and Dp be Cartier
divisors satisfying the condition (D). If Dy = Dp xp T, we say T — P is an exact
closed immersion.

Lemma 1.16. Let P be a regular flat scheme of finite type over S such that
Dp = (P X g Dg)req is regular and that P is log smooth over S. Let S’ = Spec Ogr — S
be a surjection of the spectra of discrete valuation rings. We put P’ = P xls?g S’

(1) The scheme P’ is regular and flat over S’, Dp: = (P’ X g/ Dg/)yeq 1S regular and P’
is log smooth over S'. If the ramification index e’ = ek is divisible by ep, the
map P’ — S’ is smooth.

(2) Let T be a finite flat scheme over S and T' — P be a regular exact closed immersion.
Then, T is log flat and T' =T ><lSOg S" — P’ is also a regular exact closed immersion.

Proof. (1) It suffice to prove the case where P = P, for an integer e > 1. If e is invertible

in Ok, in the notation of (1.6), the log product P, x?g S’ is given by

Spec Ok [t]/(t° — m)[Z, WE/(t — ZAW e, 7' — Z9W b v — W9)
= Spec O/ [W, Z) /(W9 — v, 20 — Wha').

Since WP’ is a prime element of the unramified extension O/ [W]/(W? —v), the asser-
tion follows. Assume e is not invertible in Q. Then, in the notation of (1.6), P, x?g S’
is given by

Spec Ok [t, ut]/(ut® — m)[Z, WE /(t — Z9W e, n' — Z9W b v — uW?)
= Spec O/ [Z, WEY /(W bz — 7).

First, we consider the case where e; is invertible in Ok . In this case, the étale covering
P, x'$8 S'[V]/(Ver — W) = Spec O [Z, VE (V7P Z)r — ') of P, x'$8 S’ is smooth
over P/ = Og/[T]/(T° — 7'). Assume e; is not invertible in Og. Then, by the
definition of b, we have (b,e;) = 1 and b is invertible in Of. Hence P, xlsog S =
Spec Ok [Z, WEL] /(W ~0Ze — ') is étale over P, = Spec Ok/[Z,VE/(VZe — ).

If ¢’ divides e, we have e; = 1 and P, xg)g S’ is smooth over P} = 5.

(2) By the definition of the base change, the map T/ — P’ is a closed immersion and T”
is finite over S’. Since the ideal Zp» C Ops is locally generated by d elements where d
is the relative dimension of P’ over S’, the immersion 77 — P’ is regular and T” is flat
over S’. By the definition of D7/, the immersion T/ — P’ is a regular and exact closed
immersion. (]

Corollary 1.17. Let P be a regular flat scheme of finite type over S such that
Dp = (P x5 Dg)rea Is irreducible and regular and that P is log smooth over S. Let
S" = Spec Ok — P be the localization at the generic point £ of Dp.

Let L be a finite separable extension of K, T = SpecOp, and Dy = (T Xs Dg)red-
Then, T' =T xlsc’g S’ is equal to Spec Org, ik and we have Dy = (T X g/ Dgr)yed-
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Proof. It suffices to show that 7" =T xl,bfg S’ is regular and that Dy is defined by the
reduced closed point at each closed point & € T'. Let t € T be the image of &' and T}
be the localization at ¢. Then, the localization of T at £’ is equal to a localization of
r x?g T; and the assertion follows from Lemma 1.16 (1). O

For the convenience of a reader familiar with the terminologies on log geometry as
in [16, §4], we include a lemma, not used in the sequel, showing that the Definition 1.15
above is a special case of the standard definitions.

Lemma 1.18. We consider S = Spec Ok as a log scheme with the log structure defined
by Dg.

(1) Let T be a flat scheme of finite type over S and Dy be a Cartier divisor satisfying
the condition (D). Then, the following conditions are equivalent.

(a) The log scheme T with the log structure defined by Dr is log flat over S.
(b) (T, Dr) is log flat over S in the sense of Definition 1.15(1).

(2) Let P be a regular flat scheme of finite type over S such that the reduced closed
fibre Dp = (P X g Dg)rea is regular. Then, the following conditions are equivalent.

(a) The log scheme P with the log structure defined by Dp is log smooth over S.
(b) (P, Dp) is log smooth over S in the sense of Definition 1.15 (2).

Proof. (1) (a) = (b). Let S’ = Spec Ok — S be a surjection of the spectra of discrete
valuation rings and we show that the base change T/ = T x?g S’ — 8 is flat at each
closed point ¢ € T'. We put ¢ = ey. Let S] be the localization of P, over S’ and
consider the Cartesian diagram

T T =T x$¢ 8|

l l (1.7)

[ p— s

Since ¢ = ey, the map T — S is strict on a neighbourhood VY of the inverse image
of t'. Since T — S’ is log flat, the map V] — S} is log flat and strict and hence is flat.
Since S| — S is log flat, the map V/ — T” is also log flat and strict and hence is flat.
Hence the map 7" — S’ is flat.

(b) = (a). Let t € T be a closed point and put e = e;. Let Sy be the localization of
P, and consider the Cartesian diagram (1.7) with ' removed everywhere. Then, as above,
there exists an open neighbourhood Vi C T} of the inverse image of ¢ such that V; — T
and V3 — S are flat. Hence by [16, Proposition 4.3.10], the map T'— S is log flat.

(2) (b) = (a). Since P, is log smooth over S, the assertion follows.

(a) = (b) We consider the ring homomorphism Z|N] — Ok sending 1 € N to a prime
element 7. The question is étale local. Hence, we may assume that P = Spec Ok ®z[y;
Z[M] for a morphism N — M of fs-monoids such that the map Z — M8$P is an injection
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and that the order of the torsion part of the cokernel is invertible in Q. Further M =
M /M is isomorphic to N. We may assume M?8P is torsion free.

If the order e of the cokernel of Z — M#P is invertible in Ok, we may assume M = N.
In this case, we have P = P,. Assume e is not invertible. In this case, we may assume
M =N x Z and the map N — M sends 1 to (e, 1). Then, we also have P = P,. O

In this subsection, T denotes a finite flat scheme over S and D7 denotes a Cartier
divisor of T" satisfying the condition (D) such that (T, Dr) is log flat over S. Recall that
er denotes the least common multiple of the integers e; > 1 for closed points t € T.

Definition 1.19. Let T be a finite flat scheme over S such that Tk is étale over K and
let D7 denote a Cartier divisor of T satisfying the condition (D) such that (T, D) is log
flat over S.

(1) For a rational number r > 0, we say that the log ramification of (T, Dr) over S
is bounded by r if, for one (and hence for any) surjection S’ = Spec Ox, — S
of spectra of discrete valuation rings such that e = eg /g is divisible by er, the
ramification of the finite flat scheme T x?g S’ over S’ is bounded by er.

(2) For a rational number r > 0, we say that the log ramification of (T, D) over S is
bounded by r+ if the log ramification of (T, D) over S is bounded by s for every
rational number s > r.

(3) Let L be a finite étale K-algebra, T = Spec Oy, and Dy = Spec(Or @0y F)red-
Then, we say that the log ramification of L over K is bounded by r (respectively
by r+) if the log ramification of (T, D7) is bounded by r (respectively by r+).

Let (T, Dr) be as in Definition 1.19 and S’ — S be a surjection of spectra of discrete
valuation rings of ramification index e. Then, it is clear from the definition that the log
ramification of T over S is bounded by r if and only if the ramification of T’ x?g S’ over
S’ is bounded by er.

Lemma 1.20. Let P be a regular flat scheme of finite type over S such that
Dp = (P X5 Dg)rea is irreducible and regular and that P is log smooth over S and
let £ be the generic point of Dp. We put Ogs = Opg¢ and consider the surjection
S" = Spec Ok — S of ramification index e.

Then, for a finite separable extension L of K, the log ramification of L over K is
bounded by r if and only the log ramification of L @ ¢ K’ over K' is bounded by er.

Proof. Clear from Corollary 1.17 and the above remark. (I

Let T be a finite flat scheme over S and let D be a Cartier divisor satisfying the
condition (D). We consider an exact closed immersion 7" — P to a log smooth scheme P
over S. Let S' = Spec Ok — S be a surjection of spectra of discrete valuation rings of
ramification index e. Then, the base change T" =T x?g S P =P xlé?g S’ is an exact

closed immersion to a log smooth scheme over S’. Assume e is divisible by the integer
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ep. Then, the map P’ — S” is smooth. Thus for positive integers m,n > 0 and r = m/n,
we apply the construction in §1.1 to define Pél,em/ nl lew(/em/n), quq[,er]7 P:/r(/w), szlﬂ(/a-), etc.

Example 1.21. Assume K is complete.

(1) Let L be a finite separable extension of K and Ok [Xy,..., X,]/(f1,...,fn) = OL
be an isomorphism. Let m < n be an integer such that the images z1,...,2zmn
of X4,...,X,, are non-zero and that z; is a prime element of L for some 1 <
i < m. We define a map N"*! — N by sending the standard basis of N™*+1 to
er/k,vL(21),...,vL(2m). Let M be the inverse image of N by the induced map
Z™tt — 7. We define Nt — Ok [Xy,...,X,] by sending the standard basis to

m, X1,...,X;,m where 7 is a prime element of K.

We put P = Spec Ok[X1, ..., Xn] @znm+1) Z[M]. Then, P is regular, the reduced
closed fibre of P is regular and P is log smooth over S. Further the iso-
morphism Og[X1,...,X,]/(f1,..., fn) = Or induces an exact closed immersion
T = SpecOp — P. For a finite extension K’ over K with ramification index
e divisible by er/r, the affinoid variety over K’ defined by the formal Op-
scheme P}(,er)
I={1,....n}DP=A{1,...,m}.

is the affinoid variety Y#; p defined in [1, 3.1] for a = 7 and

(2) Assume Spf A is the completion of P at T = Spec A. For a finite extension K’
over K with ramification index e divisible by ey, the affinoid K’-variety defined
by the formal O -scheme P)™ is the affinoid variety Xf;)g(A — A)) defined
in [2, §4.2] for j =r.

We consider a Cartesian diagram

T — @

l l (1.8)

S —— P
of schemes over S satisfying the following condition.
(LCI) The vertical arrows are quasi-finite and flat and the horizontal arrows are

closed immersions. The scheme P is smooth over S, @ is regular flat over S,
Dg = (Q Xg Dg)red is smooth over F' and @ is log smooth over S.

We consider the Cartier divisor Dy = Dg xg T. Then, by Lemma 1.16 (2), the pair
(T, Dr) is log flat over S.

Let S — S be a surjection of the spectra of discrete valuation rings of ramification
index e. We assume that eg divides e. Then by Lemma 1.16, the log product Q' =
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Q x{;’g S’ is smooth and the immersion T = T xlg.)g S’ — @' is a regular immersion.
Hence the Cartesian diagram

T/ Ql

l l (1.9)

S — P/:PXSS/

satisfies the condition (CI) in Lemma 1.9.

1.3. Logarithmic ramification groups

In [1, Definitions 3.4 and 3.12], we introduced two filtrations, the non-logarithmic one
and the logarithmic one, by ramification groups of the absolute Galois group. In this
paper, we will only be interested in the logarithmic filtration.

Assume K is a henselian discrete valuation field. Let K be a separable closure and
Gxg = Gal(K/K) be the absolute Galois group. In [1, Definition 3.12], we define a
decreasing filtration by logarithmic ramification groups G ,,, C Gk indexed by positive
rational numbers r > 0. By Example 1.2.7.1, for a finite étale algebra L over K, the
logarithmic ramification of L is bounded by 7 in the sense of Definition 1.19 (3) if and
only if the action of G ., on the finite set Hompg (L, K) is trivial. We put

r+ T [T T+
GK,log U G Jlog and  Grj,, Gk = GK,log/GK,log'

q>r

Forr =0, G%,_log C G?(,log are equal to the inertia subgroup and its pro-p Sylow subgroup
PcCl.

We consider the opposite category (FE /K) of finite étale K-algebras. We identify
the category (FE/K) with that of finite discrete sets with continuous action of the
absolute Galois group G by the fibre functor X +— X(K). For a rational number
r > 0, the étale K-algebras L such that the log ramification is bounded by r+4 form a
Galois subcategory (FE/K)" of (FE/K) corresponding to a normal closed subgroup
G’]}flog C Gg = Gal(K/K). For an extension of discrete valuation field K’ over K of
ramification index e, the natural map Gk, — Gk sends G, )., into G ..

In the rest of this section, we assume that K satisfies the following condition.

(Geom) There exist a smooth scheme X over k, an irreducible divisor D smooth over k
with the generic point £ and an isomorphism S — Spec ng,é to the henselization
of the local ring.

Let 2%(log) denote the F-vector space QX/k(log D)e®oy . F. It fits in an exact
sequence 0 — 2. K 2L(log) = F — 0. We extend the normalized discrete val-
uation vg : K — Z U {0} to vk : K — QU {oo}. Let r > 0 be a rational number. We
put m% = {a € K | vg(a) 2 r} and m7" = {a € K | vk(a) > r}. Let @l(gg) @glog
denote the F-vector space V (2L (log) ®F m =) /m( TH_)

Let P’ = (X xj S)’ be the blow-up of X xk S at D xj, Dg and define the log product
P = (X x S)~ C P’ to be the complement of the proper transforms of D X S and of
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X Xg Dg. Then, P is smooth over S and the canonical map S — X induces a section
S — P. Thus, for a rational number r» > 0, applying the construction in §1.1, we
define the schemes P(r) Pél)w etc. Since NS/P = Qk/k(log D), we have a canonical
isomorphism

Y. 6l

log (1.10)
by Lemma 1.10.

Under the condition (Geom), a canonical surjection 7 (Ql(og):) — Grjg Gk is defined
n [2, (5.12.1)]. We recall the construction. Let L be a finite étale algebra over K. After
replacing X by an étale neighbourhood of £ if necessary, there exists a finite flat morphism
f:Y — X of smooth schemes over k such that V =Y xx U — U = X \ D is étale
and that Y xx S = T = Spec Op. We also assume that V' C Y is the complement of a
smooth divisor FE.

Similarly as the construction of P = (X x; 5)™, let Q" = (Y x S)" be the blow-up of
Y xS at ExyDg and Q = (Y X1 S)~ C Q' be the complement of the proper transforms
of E xS and of Y x; Dg. We consider the immersions S — P and T' — @ defined by the
natural maps S — X and T'— Y. Then we obtain a Cartesian diagram (1.8) satisfying
the condition (LCI).

Let K’ be a finite extension such that the ramification index e’ is divisible by ey, /-

We put S” = Spec Ok and consider the diagram

T'=TxFS —=Q =Q xS

| |

S’ P'=Pxgs

satisfying the condition (CI). Assume that the log ramification of L over K is bounded
by r+. Then, the conditions (4) and (6) in Lemma 1.13 are equivalent in this case and
the induced map

V) = P = 0, (1.11)

is finite étale. This construction deﬁnes a functor (FE/K)+ — (FE/ Q(Tg) to the cat-
egory of finite étale schemes over (91(02 and hence a morphism 7 (Ql(cg) — G /GY log*
n [2, Theorem 5.12.1], it is proved that it factors through the abelian quotient and
induces a surjection

(9(7“)

log

) = G}, G. (1.12)

The surjectivity is a consequence of the fact that the surjection Tp — g (QT, —) induces a
bijection T /G log 7o(Q (er)) as in the proof of [2, Theorem 2.15]. In Theorem 1.24,
we will give a refinement of the surjection (1.12).

We give a compatibility of the map (1.12) with a log smooth base change. Let S — X
be as above. Let ¢ be a uniformizer of D C X and e; > 1 be an integer. Let X; be a
scheme smooth over

I P SVAVAVASES) if ey is invertible in &,
X[ UR])(UT® —t) ifey is 0 in k,
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and assume D1 = (D Xx X1)req is irreducible. Let Ok, be the henselization (9;}1’51 at
the generic point &; of D1.

Lemma 1.22. Let S; = Spec Ok, — S = Spec Ok be the surjection of the spectra of
discrete valuation rings of ramification index e; above and let r > 0 be a rational number.
Let Fy denote the residue field of K, and let 7 : @g{;gg — @gjog be the map induced by
Fy ®p 2r(log) = 2p, (log).

Then, the map Gr|; Gk, — Grl,, G induced by the canonical map G/,
is a surjection and the diagram

T
- GK,log

PO )~ mb(e%),)

l l (1.13)

eLr ‘a
GI‘lolg GK1 — GI‘IOg GK

is commutative.

Proof. The natural map F; ®p 2r(log) — 2F, (log) is injective and hence 7 : @gfll,lrgg —
Qg% og XF F is a surjection of vector spaces and admits a section. Thus, it induces a
surjection m, : wifb(@;fl{lrgg) — wsz(@g{og). Hence, it suffices to show the commutativity
of the diagram (1.13).

Let Y = X and Q = (Y x §)~ — P = (X x S)™ be finite coverings and S’ — S be a
finite surjection that appeared in the construction of the map (1.11). The normalization
Y7 of the fibre product Y x x X; is smooth over k and V; = V x; U; is the complement of
a smooth divisor Dy, C Y;. By Corollary 1.17, the log product S’ x?g S1 is normal and
is a finite disjoint union of spectra of discrete valuation rings. Let S] = Spec Og; be a
connected component and e’ be the ramification index e KK - Applying the construction
of the map (1.11) to Y7 — X; and S| — S, we obtain a finite étale covering

~/(e’r) 5(e'r) _ A(e'r)
QT{,FH = Pg py = OF, log- (1.14)

It suffices to show that the diagram

Ql(e’t) pl(e'r)

T{,Fy Si,
~/(er) ~/(er)
mr — Pyp

is Cartesian.

By the construction, it suffices to show that the map P, — P xg S7 is smooth.
Since P; = (X1 X 51)~ — (Ze, x S1)~ is smooth, it is reduced to the case where
X1 = Z.,. First, we consider the case e; is invertible in k. Let # € Ok be the
image of t and m; € Ok, be the image of T. Then, P, = (X[T]/(T —t) x S1)~ =
X x S1[T)/(T — t)[VEN(T — Vi) equals X x S;[VE]/(Veir —t). This is étale over

PxgS = (Xx8) xs8 =X xS [WH)/(t - Wn).
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We assume e; is not invertible in k. Let @ € Ok be the image of ¢t and let m1,u € Ok,
be the image of T, U. Then, P, = (X[T,U*']/(UT* —t) x S1)~ equals

X x ST U/ (UT = )[VET ~ V) = X x S [U=, VE/(UV it — 1),
This is smooth over P xg 51 = X x S;[W*!]/(t — Wr). O

For an F-vector space V of finite dimension, we introduce a quotient 72'(V') of 72> (V')
annihilated by p. We regard V as a smooth group scheme Spec S*V" over F. For a finite
abelian group A, we identify the group H!(V, A) of isomorphism classes of A-torsors with
Hom(m3P(V), A) and the extension group Ext(V, A) in the category of smooth algebraic
groups over F as a subgroup of H'(V, A). Then, the quotient 7'¥(V') is defined by the
equality Hom(7®'8(V), A) = Ext(V, A) ¢ H'(V, A) for finite abelian groups A (cf. [20,
§6.3, Proposition 6]). The pro-finite group W?lg(V) is the Pontrjagin dual of Ext(V,Fp).

The definition of the quotient 77%(V) can be rephrased as follows. Let (FE /V)22 be
the full subcategory of (FE /V') whose objects are finite étale morphisms f : X — V such
that there exists a structure of commutative algebraic group scheme on X and that f is
a morphism of algebraic groups. Then w?lg (V) is the quotient of 7#*(V) corresponding
to the subcategory (FE /V)2,

The map VV = Homp(V, F) — Ext(V,F,) sending a linear form f:V — AL to the
pull-back by f of the Artin-Schreier sequence 0 — F), — AL LELiN AL — 0 is an iso-
morphism by [20, § 8.3, Proposition 3]. Thus we have deﬁned a canomcal isomorphism

VY — Hom(n'8(V),Q/Z) = Ext(V,F,). (1.15)

Lemma 1.23. Let V be an F-vector space of finite dimension. For a continuous character

X : (V) — Q/Z of finite order, the following conditions are equivalent.

(1) x factors through the quotient 72'(V).

(2) —*x =pr; x — prj x in Hom(7i*(V x V), Q/Z).

Proof. (1) = (2). If [x] € Ext(V,Q/Z) denotes the corresponding extension class, we
have —*[x] = pri[x] — pr3[x].

(2) = (1). Let x : m®(V) — Q/Z be a character satisfying —*x = pr} x — prj x.
Taking the pull-back by the injection into the second component V' — V' x V| we obtain
(=1)*x = —x. Hence we have +*x = prj x + prj x. By induction on n, we have n -y =
[n]*x. Hence, we have p- x = 0.

Let f: X — V be the F,-torsor corresponding to x. By +*x = pr} x + pr3 X, we have
an isomorphism (X x X)/F, = X xy (V x V) of Fp-torsors on V x V. We consider the
composition + : X x X — (X x X)/F, = X xy (V x V) — X. Take a point 0 € f~1(0).
By shifting by the Fj-action, we may assume 0+ 0 = 0. Then we can easily verify that
F defines a group structure on X and the map f : X — V is compatible with the group
structure. O

We will prove the following theorem in the next subsection.
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Theorem 1.24. Let K be a henselian discrete valuation field satisfying the condition
(Geom). The graded quotient Grj,, Gk is annihilated by p and the surjection (1.12)
induces a surjection

”ng (@(T)

log) - Grrog GK (116)

By the isomorphism (1.15), Theorem 1.24 has the following corollary.

Corollary 1.25. The dual of the surjection m§ (@(r

log) — GTlog Gi defines an injection

rsw : Hom(Grl,,, G, ) — Hom(ni"(0{1)),F,) = 2} (log) ®p miz" /m{="*.

For a character x : Gr,, G — Fp, we call the image rsw x € .Q}p(log)®pm = /m -
the refined Swan character of x. This definition generalizes that of Kato in the abelian
case in [14, Definition (5.3)] and [15, (3.4.2)].

Theorem 1.24 implies the prime-to-p part of the Hasse—Arf theorem. Let V' be an f-adic
representation V of G . Since P = G?(ﬂog is a pro-p group, there exists a unique direct
sum decomposition V =P, - quV by Gx-submodules such that the G, log~fixed
part is given by VGihos = @, VD Weput SwgV = >, 7 -rank v e Q.

q>r
Corollary 1.26.

1
SWKV€Z|::|.
p

Proof. It suffices to show that dimV - € Z[1/p] assuming V = V(7). This is equiva-
lent to that dimV is divisible by the prime-to-p part m of the denominator of r. Let
X 1 Gripa G — pp C Q) be a character appearing in the restriction of V' to Gk og-
The injection Hom(Grj,, Gr,F)) — Homp(m K/m”‘ 2% (log) ® F) is compatible with
the action of I C Gk on Grj,, G by the conjugacy. Since the action of I on m’% /m}(Jr
is by the multiplication through the quotient I — pu,,, there are m conjugates of x
appearing with the same multiplicities in V. Thus the assertion follows. (]

By the same limit argument as in the proof of [2, Theorem 2.15], Theorem 1.24 and
Corollary 1.26 imply the following.

Corollary 1.27. Let K be an arbitrary henselian discrete valuation field K of charac-
teristic p > 0.

(1) The pro-finite abelian group Grj,, Gk is annihilated by p.
(2) For an ¢-adic representation V of Gy, we have Swi V € Z[1/p].

In the mixed characteristic case, one can prove results analogous to Theorem 1.24 and
Corollaries 1.25 and 1.26. The author plans to discuss them in a paper in preparation.
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1.4. Nearby cycles

Let X be a smooth scheme over k, D be a smooth irreducible divisor of X and U =
X \ D be the complement. Let £ be the generic point of D and Ok = Ol}ﬂ& be the
henselization of the local ring at £. We put S = Spec Ok and let n = Spec K be the
generic point. We consider the log product P = (X xj S)™ as in the last subsection and
the section S — P induced by the canonical map S — X.

For a rational number r > 0, we consider the Cartesian diagram

(™ i(r) .
Pg} Pér) 4 éfl U><77*>U

ol

Spec F —— § ! 1n = Spec K

Let s : § — P(T) be the section induced by S — P. By abuse of notation, we will also
write p(") P( ) — Spec F and s(") : Spec F — Péz)r for the maps induced on the closed
fibres. For r = 0 we have P(O) P = (X x3 S)™~. Let 4(") be the nearby cycle functor
Ry for p) . P ) 5 S and w be the nearby cycle functor for the identity S — S. For a
sheaf F, on 77, we identify ¢ (F,) with the Gx-module F3.

Definition 1.28. Let F be a locally constant constructible sheaf of A-modules on U =
X \ D. The stalk F; defines a representation of the absolute Galois group G .

For a rational number r > 0, we say that the log ramification of F at £ along D is
bounded by r if G ,, acts trivially on F3. Similarly, for a rational number r > 0, we say
that the log ramification of F along D is bounded by r+ if GK log acts trivially on F.

. _ + . . . . o, .
Since P =G K log 1S & Pro-p group, there exists a unique direct sum decomposition

b F (1.17)

q20,q€Q

by G g-submodules such that the G?‘log—ﬁxed part is given by

Giliog ()
Fa :@}-ﬁq'

q<r

Replacing X by an étale neighbourhood of ¢ if necessary, we may assume that there
exists a direct sum decomposition F' = @ >, F (@ inducing (1.17).

We identify the stable closed fibre P - w1th the F-vector space @ ") by the isomor-
phism in Corollary 1.11.

Proposition 1.29. Let r > 0 be a rational number and let 7(") : Pg} — P(TI), be the
canonical map. Let F be a smooth sheaf on U. We assume that Fy = .7:((1) for a rational

number q > 0.

(1) Assume q¢ = r. Let F =€, F X be the decomposition by characters x
Grl,g Gk — A*. Let L, be the bIHOOtb sheaf of rank 1 on P =0") defined

log
by the composition Wl(Ql(g;)ab = Grjg G — A*.
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Then, there exists a canonical isomorphism

Y (pr; F) —» @i, @ p* FR (1.18)
X

(r)
on Ps, Er
(2) If g < r, then there exists a canonical isomorphism
W (pr} F) = D A @ p ) (Fy) (1.19)
(r)
on PS, Y

Proof. Let V — U be the finite étale covering trivializing F. Replacing X by an étale
neighbourhood of £, we may assume that V' is the complement of a smooth irreducible
divisor of the normalization Y of X in V as in the previous subsection. We put 7" =
Y xx SpecOg = SpecOp. By the assumption, the log ramification of L is bounded
by q+.

We consider the diagram (1.8). Since ¢ < r, there exists a finite extension K’ of
K of ramification index e such that er is an integer and that, for the base change by

S" = Spec O+ — S, the map Q') — PL") is finite étale by Lemma 1.13. Further, if
q < r, the finite étale covering Qg?,T% — PSTI; is trivial.

The pull-back of prj F to U x Sbec K’ C’ Pb(fT) is trivialized by the restriction of the
finite étale covering ng/r) — Péfr). Hence, it is extended to a smooth sheaf G on P,
By the definition of the surjection wl(Ql(gé)ab — Grj,g Gk, the pull-back of G to @l(g) =
Pg})ﬁ = Péfr) X g F' is defined by the induced action of m; (@l(gé)ab on F; = @, sz).
Hence, it is isomorphic to @, L3 FX'if g = r. If ¢ < r, the pull-back of G to Péf%, is
constant.

We consider the nearby cycle functor ¢ for the smooth map p/(¢") : Péfr) — S’. Let
s S = Pé?r) be the section induced by S — Pér). Then ¢’ (pr} F) is the restriction of
g on Péf?, and the base change map

s (pry F) = Go — ¢(F) (1.20)
is an isomorphism, where 0 € @1(;; denotes the origin. Thus we obtain a canonical iso-
morphism

P Lo FY itq=r,
Y (pri F) = ¢ x (1.21)

p’(e’“)*w(]:n) ifg<nm.
Since (™) (pr} F) = ﬂ,(kr)w'(pr’{ F), the isomorphism (1.21) induces isomorphisms (1.18)
and (1.19). O

Corollary 1.30. Let r > 0 be a rational number.

(1) If the log ramification of F is bounded by r+, then the base change map
s (pr} F) = o(Fy) (1.22)

is an isomorphism.
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(2) The base change map (1.22) induces an isomorphism

T+

s RO (prt F) = F 508 © Fy = () (1.23)
from the degree 0-part to the G’}(flog—ﬁxed part.

Proof. (1) We may assume F = F@ for some rational number 0 < ¢ < r. First, we
consider the case r > 0. We use the notation of the proof of Proposition 1.29. Since the
inverse image 7(")~1(0) of 0 € Qlog P( )— consists of the image of the geometric closed
point by the section S — Pé ), the 1somorphlsm (1.20) shows that the base change map
(1.22) is an isomorphism.

Assume 7 = g = 0. Then, the smooth sheaf priF on U xn C P = Péo) is tamely
ramified along P xg Spec F'. By Abhyankar’s lemma, the projections U x n — U and
U x n — n induce isomorphisms on the tame inertia. Hence, étale locally on P, it is
isomorphic to the pull-back of a sheaf on 7. Since P is smooth over S, the assertion
follows.

(2) We may assume F = F (@) for some rational number ¢ > 0. By 1, it suffices to consider
the case ¢ > r. Since the base change map R%(")(pri F)s — Roz/)( F,) is injective, it
suffices to show that the base change map is the 0-map.

Let frq: P(q) P(T) be the canonical map. The sheaf /(9 (pr’ F) has no non-trivial
geometrlcally constant subsheaf, by Proposition 1.29. Since the image f,q( éQ)F) is a
point, the base change map qu(r)(pr F) — 4@ (prt F) is the 0-map. Thus the com-

position ¥ (pri F)s — (@ (pr} F)s — ¢(F,) is also the O-map as required. O

We consider H = Hom(prs Fy, pr; F) on P( N U x 1 and the base change map with
respect to the diagram

j(T) (r)
Uxn —— Py

T Tsm
Corollary 1.31. Let r > 0 be a rational number.

(1) The following conditions are equivalent.

(a) The log ramification of F is bounded by r+.

(b) The base change map
s 5§, End(F,)

is an isomorphism.

¢) The identity 1 € Endg,. (F7) = I'(S,j« End(F,)) is in the image of the base
K n n
change map
(8, s*i) = (S, j. End(F,)).

Gt

(2) Assume that the G?lo -fixed part F; “icies io 0. Then we have i s+ — .
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Proof. (1) (a) = (b). It suffices to show the isomorphism for the geometric closed fibre
at 5§ = Spec F' — S. By the assumption (a), we have

f f? §(+log

and the base change map (1.23) induces an isomorphism
SR (H)s = Hom((F,), s RO (pr] 7))
= Hom((Fy), ¥(Fy)) = End (v (Fy)).
Taking the fixed parts by the inertia subgroup I C Gk, we obtain an isomorphism
(715 H)s = s RO (H) = End ($(F,)) = (. End(Fy))s

as required.

(b) = (c). Clear.

(¢) = (a). We consider the direct sum decomposmon Fy =D, F5 (@) Tt suffices to
show that the identity is not in the image assuming .7-" 75 0 for some g > r. Thus it is
reduced to the assertion (2).

T+
(2) Assume }'ﬁGK’“’g = 0. Then, similarly as in the proof of (1) (a) = (b) above, we have
(S(T)*jir)q_[)g — S(T)*RO,(/)(T') (H)I =0. O

Corollary 1.32. Assume that r > 0 is an integer and that the restriction to G ., of
the action on JFy is by the multiplication by a character x : Grj,, Gx — A*.

(1) There exists a canonical isomorphism
WO (pr] F) = Ly @ pl D (Fy) (1.24)
(r)
on PS,F'
(2) There exists a canonical isomorphism
i s £, @ pM*i*, End(F,) (1.25)
on Pg},
Proof. (1) Clear from Proposition 1.29 (1).
(2) By (1), we have an isomorphism
Hom(p\"* (7). w1 (prf F)) = w1 ()
l (1.26)
Hom(p(”*w(fn)v Ly ®p(r)*1/’(-7:n)) =Ly ®p(r)*7f’(5nd(}—n))

We have canonical isomorphisms RI'(I,()) — i(r)*Rjir) and RI'(I,v)) — i*Rj, of
functors. Thus, we obtain the isomorphism (1.25) by taking the inertia fixed parts
n (1.26). O
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The following geometric construction is crucial in the proof of Theorem 1.24. Let
(X x X)) - X x X be the blow-up at D x D and let (X x X)~ C (X x X)' be the
complement of the proper transforms of D x X and of X x D. We call the immersion
b X o (X x X)~ induced by the diagonal § : X — X x X the log diagonal. Let
Jx C (X x X)~ be the ideal defining the log diagonal and let j : U x U — (X x X)~
be the open immersion. For an integer r > 0, we define a scheme (X x X)) affine over
(X x X)~ by the quasi-coherent Ox  x)~-algebra 2120 IB” Tk C 7:Ouxu.

The fibre product (X x X )(T) X x D with respect to the second projection is canoni-
cally identified with the vector bundle V(2% (log D)(rD)) x x D, similarly as in Corol-
lary 1.11. Hence the map (X x S)(") — (X x X)) defined by the canonical map S — X
induces an isomorphism

(X x S)" xx Spec F = @1((2

l (1.27)
(X x X)) x x Spec F = V(2% (log D)(rD)) x x Spec F

Lemma 1.33. Let r > 0 be an integer.

(1) There exists a unique map p : (X x S)(") x5 (X x S)(") — (X x X)) that makes
the diagram

(X x8)") xg (X x 8)n 5 (X x X))

l l (1.28)

(Xx8)xg(XxS)=XxXx8 22, XxX
commutative.

(2) Under the identification (1.27) (X x X)) x x Spec F' = @1(02’ the map

p: (X x8)M xg (X x 89" = (X x X))

induces the difference —: @1(02 x 76" — ©") on the fibre over Spec F.

log log

Proof. (1) We put P = (X x 5)~ xg (X x 5)™~. Applying the basic construction to the
smooth scheme P and the diagonal section S — P, we define q : Pér) — P and a section
s .8 — Pér). The projections P — (X x S)~ induce Pér) — (X x 8)("). We show that
the product

P = (X x 8)") xg (X x )" (1.29)

is an isomorphism. The ideal defining the closed subscheme S C P is generated by the
two pull-backs of the ideal defining the closed subscheme S C (X x S)~. Hence, the map
(1.29) is a closed immersion. Since both Pé(f) and (X x §)") xg (X x 8)(") are smooth
over S of the same dimension, the closed immersion (1.29) is an open immersion. Since
the map (1.29) is an isomorphism on each fibre, it is an isomorphism.
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Let D(xxs)~ C (X x S)~ be the pull-back prj D = pr3 Dg. Since pri D(xxgs)~ =
pr3 D(xxs)~ on P, there exists a unique map A : P — (X x X)~ that makes the
diagram (1.28) with p: P = (X x 8)") x5 (X x $)" — (X x X)) replaced by
A: P — (X x X)~ commutative. By the commutative diagram

S — X

l |

P —2 5 (X x X)™
the pull-back \*(Zp"" - J&) is contained in mg'" - ZL. Hence the assertion follows.

(2) Let Jx C O(xxx)~ and Js C Oxxs)~ be the ideals defining the closed subschemes
X C (X x X ) and S C (X x S)~ respectlvely By the identification in Corollary 1.11,
the map 810g X (91(02 91(,:; C (X x X) is defined by Z," Ix — my" - Jsdmy" - Ts.
Hence, it is a linear map of vector bundlcs. Thus it suffices to show that the composition
with the injections i1, i : Ql(gg — @bg X 91(5; of the two factors are the identity of (91(53);
and the multiplication by —1 respectively.

Let 5: 5 — (X x S)") be the map induced by the canonical map S — X. We con-
sider the map 1,1 = (id ){Xs)m,s opry) : (X x S)M — (X x )" xg (X x S)(". Then,
its restriction @log — QIOg X f ng to the closed fibre i 1s the injection into the first com-
ponent. The composition g o ¢; is the map (X x S)) — (X x X)) induced by the
canonical map S — X. Hence the composition p o7y is the identity of Ql(gg). Similarly,
we consider the map 1o = (s 0 pry,id xxg)m) : (X X S — (X x 8)") xg (X x §)).
Then the composition o5 : (X x S)") — (X x X)) is the composition of the canoni-
cal map (X x S)(") — (X x X)) and the map (X x X)) — (X x X)) sw1tching the
two factors. Hence the composition p o s is the multiplication by —1 of @1og Hence the

assertion is proved. O

Proof of Theorem 1.24. We start with some reduction steps. For each non-trivial
character x : Grj,, Gx — /1X the surjection (1.12) defines a locally constant sheaf £, of
A-modules of rank 1 on 9 ) By Lemma 1.23, in order to prove Theorem 1.24, it sufﬁces
to show that, for every character X ¢ Grj,s Gk — A*, there exists an isomorphism
—*L,, = Hom(psL,,pi L) assuming A is a finite field.

We reduce it to the case where r is an integer. Let e > 0 be an integer such that er is an
integer and let K be an extension of K of ramification index e as in Lemma 1.22. Then
the construction of £, commutes with the base change K — K;. Hence, it is reduced to
the case where r is an integer.

We further reduce it to the case where the restriction to G ., of the action on Fj
is by the multiplication by a character x : Grj,, Gk — A*. By the same argument as
in the last paragraph, we may replace K by a tamely ramified extension. Hence we may
assume the restriction to G K+lo is irreducible. By [2, Theorem 5.12.1], Grj,, G is in the
centre of G?jlog/G’}jlog Hence the action on Fj to G ,, is by the multiplication by a
character x : Grj,, Gx — A*.
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We assume that » > 0 is an integer and the restriction of 5 to G ., is the mul-
tiplication by a non-trivial character x : Grj,, Gx — A*. We consider the commutative

diagram
OF) xp O —1 (X x 8)™) x5 (X x §)") L (U xn) xy (U xn)
fl =UxUxn
Ql(;é HJ{ lprlz
(X x X)) xxD —" (X x X)) I UxU

The left square is commutative by Lemma 1.33 (2). We consider the base change map
_*((7'/*.7;%”@&;) r prIQH (1.30)

for H = Hom(pry F,pry F) on U x U.
First, we compute i*j. pri, H. We have ¢(priyH) = ¥ (Hom(prs F,pri F)) where
pr; : U x U x n = U denote the projections. Further, we have

¥(Hom(prs F, pr; F)) = Hom(1(prs F), v (pr} F)) = Hom(prs ) F, pr (7 F),

where pr; : 91((2: X 91(02 — 81(02 denote the projections in the right-hand side. By Propo-

sition 1.29, it is further identified with
Hom(pry L, ® ¢(fn)v pri Ly ® w(]:n)) — Hom(pry Ly, pry £X) ® w(gnd(]:n))-

Here and in the following, (F,,), etc., on the base also denote their pull-backs by abuse
of notation. Thus, similarly as Corollary 1.32, we obtain an isomorphism i*j, pri, H —
Hom(ps Ly, piLy) ® End;(F,;) by taking the inertia fixed parts.

Next, we compute the restriction (i’*ji?—[)|91(m. This is the same as z'*j,(f)H computed
in Corollary 1.32. Hence it is canonically isomorphic to £, ® End(F;). Hence, the map

(1.30) induces a map
—*L, ® End;(F,) = Hom(p5 Ly, pi Ly) ® End;(F,)

of smooth sheaves. Since, this is an isomorphism at the origin, it is an isomorphism on

@l(gg) X @1((2' By evaluating at the identity of F,, we obtain an isomorphism —*£, —
Hom(psL,,,piLy) as required. O

2. Ramification along a divisor

We introduce the notion of additive sheaves on vector bundles and its generalization
in §2.1. In §2.2, we study a global variant of the basic construction in §1.1. After these
preliminaries, we study the ramification of smooth sheaves on the complement of a divisor
with normal crossings along the divisor in §2.3.
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2.1. Additive sheaves on vector bundles and generalizations

We recall the definition of the Fourier—Deligne transform [17]. Let X be a scheme over
F,. Let E = V() — X be a vector bundle of rank d and let EY = V(Y) — X be
the dual. The canonical pairing defines a map (-,-) : E xx EY — Al. We consider the
diagram

E <™ pacpY 0 gt

Przl

EV
where pr; denote the projections.

We fix a non-trivial character ¢ : F, - A* and let £, be the smooth rank 1 Artin—
Schreier sheaf on A' = Speck]t] defined by the F,-torsor A* — A! : ¢ — t? — ¢ and
by ). For a sheaf G on the dual EY of a vector bundle E, we define the naive Fourier
transform F,(G) on E by

Fy(G) = Rpry(pra G @ (-, )" Ly).
For a sheaf H on E, we define the inverse Fourier transform F),(H) by
F(H) = Rproyy(pri H @ (-, )" Ly)(d)[2d],

where ¢’ : F,, = A* denotes the inverse of .
We have canonical isomorphisms

Let f : E — F be a linear morphism of vector bundles over X and f¥ : IV — EV be
the dual. Then, we have a canonical isomorphism

f*FyG — FyRfYG (2.2)
for a sheaf G on FV. Similarly, we have a canonical isomorphism
FufY*G — RfiFyG (2.3)
for a sheaf G on EV. Dually, we have a canonical isomorphism
Rf.FyG — Fy,RfY'G (2.4)

for a sheaf G on EV.
We introduce the notion of additive sheaves on vector bundles.

Definition 2.1. Let E = V(£) be a vector bundle over a scheme X over k and let H be
a constructible sheaf on E. Let G = F 12,,7‘-{, be the inverse Fourier transform and define a
constructible subset S C EV to be the support of G.

We say H on E is additive if, for every point x of X, the fibre S X x x is finite. For
an additive constructible sheaf H on E, we call the support S = Sy C EV of the inverse
Fourier transform G = F[b,’H the dual support of H. We say an additive constructible
sheaf is non-degenerate if the intersection of the closure of the dual support Sy with the
0-section is empty.
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Example 2.2. Let f be a linear form on a vector bundle £ — X and H be the Artin—
Schreier sheaf on E defined by the equation 7? — T = f and by . Then, H is the naive
Fourier transform Fy(Ag) of the constant sheaf on the image S of the corresponding
section X — EV. Hence H is additive and its dual support is S. It is non-degenerate if
and only if the intersection of S with the 0-section is empty.

A constructible sheaf H on a vector bundle F is additive if and only if, for every
geometric point & — X, the pull-back H|g, is additive, by the proper base change
theorem. If X = Spec F is the spectrum of an algebraically closed field, a constructible
sheaf H on a vector space F is additive if and only if H is a direct sum of rank 1
Artin—Schreier sheaves defined by linear forms by the isomorphism (2.1). A constructible
subsheaf H’ of an additive constructible sheaf H is additive if and only if it is smooth on
each fibre.

We have the following elementary properties on additive sheaves.

Lemma 2.3.

(1) Let f : E' — E be a linear map of vector bundles over X and f¥ : EY — E" be
the dual. If H is additive, then f*H is additive and we have Sy-3 = f¥(Su).
Assume f : E' — E is surjective and identify EV with the image fY(EV) by the
closed immersion f¥ : EV — E'V. Then, conversely, H is additive if f*H is additive.

(2) Let f: E — X be a vector bundle and let H be an additive constructible sheaf. If
‘H is non-degenerate, we have Rf,H = RfiH = 0.

Proof. (1) Clear from (2.2).
(2) Clear from (2.2) and (2.4). O

An additive sheaf is uniquely determined by the restriction to the complement of the
0-section.

Proposition 2.4. Let E be a vector bundle over X and ‘H be an additive sheaf on E.
Let E° = E\ 0(X) be the complement of the O-section and g : E° — E be the open
immersion. Then, the canonical map H — g.g*H is an isomorphism.

Proof. By devissage, we may assume that the dual support S = Sy C EV is locally
closed and normal and that the inverse Fourier transform G = F,(H) is locally con-
stant on S. We have an isomorphism H — pry(pr5 G ® p*Ly,) where p denote the
composition of the inclusion F xx S — E xx EY with (-,) : E xx EV — Al
Since the canonical map pr5G — (g X 1).(g x 1)*pr5 G is an isomorphism, the map
priG @ pu* Ly — (g x 1)«(g x 1)*(prs G @ u*Ly) is also an isomorphism.

Since S — X is quasi-finite, there exists a normal scheme S finite over X and containing
S as a dense open subscheme, by Zariski’s main theorem. Let j : S — S denote the open
immersion. Then, the isomorphism pry G ® p*Ly — (g x 1)+(g x 1)*(pr3 G @ p*Ly) is
extended to an isomorphism (1 X j)i(pr5 G @ p*Ly) — (g x 1)x(g x 1)*(1 x j)i(pr3 G &
w*Ly). Hence the assertion follows by the proper base change theorem for the finite map
pr;: Exx S — E. O
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Proposition 2.5. Let X be a scheme over k and E — X be a vector bundle. For a
constructible sheaf H on E, the following conditions are equivalent.

(1) H is additive.

(2) For every geometric point & € X and for every closed point a € Ez, there exists an
isomorphism (+a)*(H|g,) = H|E, -

Proof. We may assume k is algebraically closed and X = Speck. Let G = F&,,’H be the
inverse Fourier transform and S C EVY be the support of G. A closed point a € E defines
a linear form (a,-) : EV — A'. The conditions (1) and (2) are equivalent to the following
conditions respectively.

(1) For every closed point a € E, the image of S by the map (a,-) : EY — Al is finite.
(2) For every closed point a € E, there exists an isomorphism G ® (a,-)*Ly — G.

The condition (1’) implies (2') since the restriction of (a,-)*Ly on S is constant. We
show that (2) implies (1’). Let U C EY be a normal integral locally closed subscheme
supported in S such that the restriction G|y is locally constant. Let 7 : V. — U be a
connected finite étale covering such that 7*G|y is constant. Then, by the condition (2'),
7*(ca,-)*Ly is constant on V for every a € E and ¢ € k. Namely, the Artin—Schreier
coverings TP — T = ct of A' = Specklt] for all ¢ € k are trivialized by the pull-back
by the map (a,-) om : V — Al If this map was dominant, the function field k(V)
would contain infinitely many linearly disjoint extensions of k(t). Therefore, the image
of (a,-) om: V — Al collapses to a point. Hence the condition (2’) implies (1'). O

For a vector bundle F over X let + : E xx E — E denote the sum. Its dual is the
diagonal map 6 : EV — EY xx EV.

Proposition 2.6. Let X be a scheme over k and E — X be a vector bundle. Let H
be an additive constructible sheaf on E and K be a constructible sheaf on E. Let H|o
denote the restriction on the 0-section X C E and let e € I'(X, H|o) be a section. Let
u:HXK — +*K be a map such that the composition

uloxpo(e® k) : K= Hlo@ K = K (2.5)

is the identity of K. Then K is additive and the support Sy C EY of M = FyK is a
subset of the support Sg C EV of G = FyH.

Proof. We regard e as a global section e € I'(EY,G) = I'(X, H|o). By (2.3), the map u
induces GRXM — 6, M on the Fourier transform and hence a bilinear map v : GM — M
by adjunction. We show that the composition

vo(e®@lpm) M —=>GOIM — M (2.6)

is the identity of M. Let é : Ax(—d)[—2d] — H be the cup product of e : Ax — H|o
with the map Ax(—d)[—2d] — Ag defined by the cycle class of the 0-section X C E. We
consider the map

wo (R 1x) : Ax(—d)[-2d|RK — HRK — +*K. (2.7)
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By the assumption that the composition of (2.5) is the identity, the induced map
+.(Ax(—=d)[-2d] K K) = K(—=d)[-2d] — 4. +* K = K(—d)[—2d] is the identity map.
Therefore, the Fourier transform

Fyuo(e®1lp): AgRM - GRM — 6, M

of (2.7) induces the identity in (2.6).
Since the composition in (2.6) is the identity of M, the support Spq is a subset of the
support of e € I'(EY,G). Hence we have Sy C Sg and K is additive. O

Lemma 2.7. Let X be a normal scheme over k and E — X be a vector bundle. Let H be

a constructible sheaf on E satisfying the following condition: for every point x € X, the

restriction H| g, is locally constant and there exists a dense open subscheme U C X such

that, if j : By = E X x U — E denotes the open immersion, the pull-back Hy = j*H is

an additive locally constant sheaf and that the canonical map H — j.j*H is injective.
Then, the sheaf H is additive and we have Sy C Sy, C EV.

Proof. Let S C EY be the support of F,H. It suffices to show that, for each z € X\ U,
the fibre S, is a finite set and that we have S, C % Let f : X’ — X be the
normalization of the blowing-up of X at the closure {z} and j': U’ = f~Y(U) — X’ be
the open immersion. Let H’ be the pull-back of H on E' = E x x X’ and S’ C E'V be the
support of F/,H'. Then we have S’ = f=(S) and S = f(S’) where f : E’Y — EV also
denotes the induced map by abuse of notation. Since the base change map f*j,j*H —
Jij™H' is injective by Lemma 2.9 below, the canonical map H' — j,j*H' is also injective.
Hence, it suffices to show the assertion for the generic point of the exceptional divisor
and we may assume Ox ; is a discrete valuation ring.

We may assume X is integral. Let n be the generic point of X and K = k(n) be the
fraction field of X. By replacing X by the normalization in a finite extension of K, we
may assume that the fibre S, C E,Y consists of finitely many K-rational points. Then,
we may assume Hy = @fesn Ly ® Fy is the direct sum of the tensor product of the
rank one sheaves L defined by the Artin—Schreier equations T? —T' = f for linear forms
f €8, on Ey with a constant sheaf F;. Let S, , C S, denote the subset consisting of
the linear forms regular at x and, for f € S, ., let f denotes the reduction at z. Then,
the following lemma and the purity imply that the restriction j.j*H|g, on the fibre is
Dyes, ., L7 ® Fy- Since H|p, is a smooth subsheaf of j.j*H|p, = Bjes, , L7 @ Fy, it
is reduced to the following lemma.

Lemma 2.8. Let K be a discrete valuation field of characteristic p > 0 and we consider
the valuation vy, of L = K(t1,...,t,) defined by the prime ideal my - Ok|[t1,...,t,] of
the polynomial ring. Then, for a linear form f € Kty +- -+ Kt, C L, the Artin-Schreier
extension of L defined by TP — T = f is unramified with respect to vy, if and only if
f€ Okt +---+ Okty.

Proof. It suffices to show that the Artin—Schreier extension is ramified assuming
v (f) = —m < 0. If p { m, it is a totally ramified extension. If p|m, the residue field
extension is the purely inseparable extension generated by the pth root of the non-zero
linear form 7m/? f. O
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Lemma 2.9. Let f: X — Y be a morphism of normal schemes and V C'Y be a dense
open subscheme such that U = X xy V C X is a dense open subscheme. Let j: V — Y
and j' : U — X be open immersions and [’ : U — V be the restriction of f. Then, for a
locally constant sheaf on V', the base change map f*j,.JF — j' f*F is an injection.

Proof. Exercise. O

We introduce a generalization of vector bundles.

Definition 2.10. Let X be a scheme and let £ and £ be an invertible O x-module and
a locally free Ox-module of finite rank, respectively, and let n > 1 be an integer. We call
the vector bundloid of degree n associated to (€, L) the affine X-scheme

E=V,(&,L)

defined by the quasi-coherent Ox-algebra P, S™ME @ LP. We call BV = V,(EY,LY)
the dual of E.

The grading defines a natural action of the multiplicative group G,, on V,, (&, L). For
n =1, we have V1(&,£) = V(£ ® £). For m = nr, the inclusion ;s Snrilg @ Lo C
@120 S™ME ® LP defines a finite surjection

T Vi€, L) = Vi (€, LET).

It induces an isomorphism V,,(&,L)/pu, — Vi (E,LP") with respect to the action
restricted to the group p, C Gy, of rth roots of unity. If X is a scheme over F, and
if r is a power of p, the map Ty, : Vo(E,L) — Vi (€, LP") induces an isomorphism
on the étale site. If £L — Ox is an isomorphism, the map 7,; defines a finite surjection
V(E)=Vi(E,0x) = V,(E,0x) = Vi, (E,L). If £ =0Ox, we have V,,(Ox,L) = V(L).
We call the section X — E = V,,(€,L) defined by the augmentation B, SME ®
L2 — Ox the 0-section of E. We identify X with a closed subscheme of E by the
0-section. On the complement E° = E'\ X of the O-section, we have a natural map

¢ : E° = P(E) = Proj(S*€)

since P(&) is canonically identified with Proj(€D;-, S™E @ L£L8Y). Tt induces an isomor-
phism E°/G,, — P(€). The finite map mmn @ Vi(E,L) — Vi, (€,L27) is compatible
with the map ¢ : E° — P(&).

Lemma 2.11. Let O(n) be the tautological sheaf on P(£). Then, there exists a canonical
isomorphism ¢*O(n) — LY on E°.

Proof. The invertible sheaf O(n) on P(E€) is the pull-back of O(1) on P(S™E) by the
Veronese embedding P(€) — P(S™E). We put E = V,,(€,L) and let p : E — X denote
the projection. Then, we have a tautological map p*(S"E ® L) — Og. On E°, this is a
surjection and defines a surjection p*S"E — p* LY. Since the composition E® — P(&) —
P(S"€) is defined by the surjection p*S™E — p*LY, the assertion follows. O
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Lemma 2.12. Let E = V,(€,L) — X be a vector bundloid on a scheme X over k.
Let M be an invertible O x-module and £ — M®" be an isomorphism and let = : E =

V(E@M) =Vi(E, M) = E =V,(&,L) be the induced map. Let g : E°=E\X - E
and g g E° = E\ X — E be the open immersions of the complements of the 0-section
and 7° : E° — E° be the restriction of w : E — E. We consider the following condition
on a constructible sheaf H on E.

(P) The canonical map H — g.g*H is an isomorphism and the sheaf §,m%*g*H on E
is additive.

(1) Let M’ be another invertible Ox-module and £ — M'®™ be an isomorphism. We
define ©’ : E' — FE etc. as above. Then the condition (P) for H with respect to
m: B — E is equivalent to that for o’ : ' — E.

Assume M satisfies the equivalent conditions and put H = §. 7% ¢*H on E and
H' = g.n'%*¢g*H on E'. Then Sz C EV and Sy, C E'"Y have the same images
in EV.

(2) Let n’ be the prime-to-p part of n and assume that k contains a primitive n’th root
of 1. We consider the natural action of G = u,, on E over E. Then, the condition
(P) for H is equivalent to the following condition.

(P") There exist an additive constructible sheaf H on E with an action of G and an
isomorphism H — (m,H)C.

Proof. (1) The assertion is étale local on X. Let n = n'n” be the decomposition into
the prime-to-p part and the p-primary part. Replacing X by the covering defined by the
equation T™" — u for a unit u does not change the étale topology. Hence, we may assume
there exists an isomorphism M — M’ compatible with £ — M®" and £ — M'®",
Then the assertion is clear.

(2) On the restriction on E°, the canonical map g*H — (727 ¢*H)% to the G-fixed
part is an isomorphism. Hence, it induces an isomorphism

99" H = (gum27 g H)% = (mgun ™ g* H)C. (2.8)

(P) = (P'). We put H = §,m°*g*H. Then, if the canonical map H — g.g*H is an
isomorphism, we obtain an isomorphism H — (7, H)¢ by the isomorphism (2.8).

(P} = (P). Let # — (m.H)C be an isomorphism. Then, it induces an isomorphism

Oxg*H — G*H compatible with the G-action. By Proposition 2.4, it induces an iso-
morphism G, 7% ¢*H — H and §.7%*g*H is additive. By the isomorphism (2.8), the
isomorphism H — (7r*7-l)G implies that the canonical map H — g.g*H is an isomor-
phism. O

We generalize the notion of additive sheaves on vector bundloids.

https://doi.org/10.1017/51474748008000364 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000364

804 T. Saito

Definition 2.13. Let E = V,,(€,£) — X be a vector bundloid of degree n over a scheme
X over k. We say a constructible sheaf # on FE is potentially additive if it satisfies the
condition (P) in Lemma 2.12 Zariski locally on X.

Let H be a potentially additive constructible sheaf on E. Then, we define a con-
structible subset Sy of the dual EV as the image of the dual support Sy of the additive
sheaf H = §,7%*¢g*H in the notation of Lemma 2.12 Zariski locally on X and call Sy
the dual support of H. We say a potentially additive constructible sheaf H on F is
non-degenerate if the intersection of the closure of S3; C EV with the O-section is empty.

Lemma 2.14. Let p : E = V,(£,L£) — X be a vector bundloid of degree n over a
scheme X over k. Let H be a potentially additive constructible Qg-sheaf on E. If it is
non-degenerate, then we have Rp'H = Rp,H = 0.

Proof. Since the assertion is Zariski local on X, we may use the notation in Lemma 2.12.
Let p : E — X denote the structural map. Since H is assumed non-degenerate, we
have RpyH = Rp,H = 0 by Lemma 2.3 (2). Therefore, RpyH = (RpH) and Rp,H =

(Rp.H)C are 0. O

2.2. Global basic construction

We study the basic construction in § 1.1 in a global setting. Let X be a smooth scheme
over k, D be a divisor with simple normal crossings and j : U = X \ D — X be the
open immersion of the complement. Let p : P — X be a smooth morphism of relative
dimension d and s : X — P be a section. By the section s, we regard X as a closed
subscheme of P.

Let Dyq,..., D,, be the irreducible components of D. We consider an effective divisor
R=r1Dy+ -+ ry,D, with rational coefficients ry,...,r, > 0. For an integer [ > 0,
let [IR] denote the integral part of [R and Zj;z C Ox be the ideal sheaf of the effective
divisor [IR]. Let Zx C Op be the ideal sheaf of X C P and jp: Py = Pxx U — P be

the open immersion. We define an affine P-scheme ¢ : P() — P by the quasi-coherent
Op-algebra
> v I Ty CireOny. (2.9)
1>0

Let p®) . P(B) 5 X be the canonical map and s : X — P be the section induced
by s: X — P. We also regard D C X as closed subschemes of P by the section s().

Here is an alternative construction of ¢ : PUY) — P. Let n > 0 be an integer such
that M = nR has integral coefficients. Let § : PIM/?l — P be the blow-up by the
ideal p*Zyr + 1% C Op and pWM/n) « pIM/nl be the complement of the support of
T (p*In +I%)/q p*In. The morphism PM/™) — P is affine and PM/™) is defined
by the quasi-coherent O p-subalgebra (’)p[p*I]\}1 -I%] C jp+Op,. Then, similarly as
Lemma 1.10 (1), P*) is identified with the normalization of P(M/™),

We put It ={i |1 <i<m, r; >0} and DT =3, D;. We describe the structure
of the inverse image ET = P x x DT in terms of vector bundloids introduced in the
previous subsection.
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Lemma 2.15. Let Dy,...,D,, be the irreducible components of D and put I = {i |
1<i<m, r; >0}

(1) Let I C I'" be a non-empty subset and n; > 1 be the minimum integer n such that
the coefficients in nR of D; are integers for all © € I. Let Dy be the intersection
Nier Di and put D} = Dy \ U;ep+\ 1 (Di N Dy).

Then, there exists a canonical isomorphism
Ey = (P(R) Xx D7)red = Vo, (Nx/p, O(n1R)) xx D7

over D%. The restriction D — E$ of the section s : X — P) corresponds to
the 0-section of the right-hand side.

(2) Let R* = X xp (PU)\ X) be the inverse image of X = s(X) C P by the restriction
of the canonical map q : P(®) — P on the complement P \ X of the section s,
Then R* is a divisor of PY) \ X and satisfies R* = p*R.

(3) Assume the coefficients of R are integers. Then, the map pt®) : P(®) — X is smooth.
The inverse image Et = PU) x x Dt of Dt = > icr+ Di is canonically isomorphic
to the vector bundle V(Nx,p ® O(R)) xx DT.

Proof. (1) We may assume I = I". Similarly as the definition of the lower horizontal
arrow of (1.3), a surjection

@ (O(ZR) ® Sle/p) Rox OD? — OE?
130, sl

is defined by using the definition (2.9) of P In other words, we have a closed immersion
E} = Vi, (Nx/p,O(niR)) xx Dj. We show this is an isomorphism. Since the question
is étale local on P, we may assume P = V(&) is a vector bundle defined by a locally
free Ox-module € of rank d and s : X — P is the 0O-section. Then P is the affine
scheme over X defined by the Ox-algebra P, S'& ® O([IR]). Since the image of the
l-component in O is 0 unless [[R] = IR, the assertion follows.

(2) Let n > 0 be an integer such that M = nR has integral coefficients. Since the question
is local on P, we may assume the ideal Zx C Op is generated by d sections ey, ..., eq and
T, r has a basis [. Then, on the open subscheme of P where f; = [~le? is invertible, the
pull-back of the ideal Zx = (ey1,...,eq) is generated by e; since e; = e; - l_lejezkl/fi.
Since the support of the closed subscheme of P(?) defined by the ideal (f1,---, fa) is
s(F)(X), the assertion follows.

(3) We show that the scheme P is smooth over X. Since the question is étale local on
P, we may assume P = V() is a vector bundle defined by a locally free Ox-module &£
of rank d and s : X — P is the O-section as in the proof of (1). Then P is the vector
bundle V(£ ® O(R)) and the assertion follows.

Similarly as in the proof of (1), we obtain a closed immersion ET = E xx Dt —
V(Nx/p ® O(R)) xx D and we see that this is an isomorphism. O

https://doi.org/10.1017/51474748008000364 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000364

806 T. Saito

We have the following functoriality of the construction of P,

Lemma 2.16. We consider a commutative diagram

t

Y Q 1Yy

1o b

X > sp 2 x

of smooth schemes over k. We assume that s : X — P andt:Y — (@ are sections of
smooth maps p : P — X and q : Q — Y respectively. Let D be a divisor of X with
simple normal crossings. Assume that the divisor Dy = (D X x Y');eq has simple normal
crossings. Let R =Y. 1;D; > 0 be an effective divisor with rational coefficients r; > 0
and let Ry = f*R be the pull-back.

(1) There exists a unique map g . QWBY) — PR Jifting g : Q — P.

(2) Suppose that the coefficients of R are integral. Let DV and D¢ be the supports
of R and of Ry respectively. We identify E+* = P®) xy D¥ with V(Nx,p ®
O(R)) xx D and Eff = Q®) xy D with V(Ny,q ® O(Ry)) xy DY as in
Lemma 2.15 (1). Then the restriction

of gt . QUv) — P(R) s the linear map of vector bundles induced by the canonical
map f*NX/P — Ny/Q

(3) Suppose further that f : Y — X is the identity of X and g : Q — P is smooth.
Then the induced map g™ : Q) — P s smooth.

Proof. (1) We have g*Zx C Zy since the left square is commutative. By the inequalities
9°[IR] < [IRy] < lg* R, we have g* Ty C Iyp 1. Hence we have g*(Zy - Zk ) € Iy Ty
and the assertion follows from the definition of Q).

(2) The restriction E5- — E¥ is induced by the linear map g* : Ilgl Ix — Iﬁi -Zy and
the assertion follows.

(3) On the complements of the inverse images of D*, the maps P®) — P and Q) —
QQ are isomorphisms. Hence, the assumption that f : Q — P is smooth implies that
the restriction on the complements of the inverse images of DT is smooth. Since the
coefficients of R are assumed integral, the maps P — X and Q) — X are smooth
by Lemma 2.15 (1). Hence, it suffices to show that the induced map E*/ = QU x y Dt —
Et = P x x Dt is smooth by [11, Proposition (17.8.1)].

By (2), it is identified with the map V(Nx,q ® O(R)) xx DT = V(Nx/p @ O(R)) x x
D™ of vector bundles induced by the canonical map f*Nx,p = Nx/q. Since Q@ — P is
assumed smooth, the map f*Nx,p — NX/Q is a locally splitting injection and the map
V(Nx/o ® O(R)) xx DT = V(Nx/p ® O(R)) xx DT is smooth. O
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Corollary 2.17. Let P and (Q be smooth schemes over X ands: X — P andt: X — Q
be sections. Similarly as PY) and QU9 we define (P xx Q) by the section (s,t) :
X —>Pxx Q

Assume the coefficients of R are integers. Then the maps (P xx Q) — P and
(P xx Q)" — QU induces an isomorphism

(Pxx QW — PH xx Q). (2.10)

Proof. The ideal defining the closed subscheme X C P x x @ is generated by the pull-
backs of those defining X C P and X C Q. Hence the map (2.10) is a closed immersion.
Since the both schemes (P x x Q) and P9 x x Q™ are smooth of the same dimen-
sion over X, the closed immersion (2.10) is an open immersion. By Lemma 2.15 (3), it
induces an isomorphism on the fibres over DT. Hence the assertion follows. O

We establish some cohomological properties of P9,

Proposition 2.18.

(1) The cycle class defines an isomorphism
Qe(d)[2d] — Rp'™'Qy. (2.11)

(2) Define the cycle class [X] € H2(PY) Qu(d)) to be the inverse image of 1 €
HO(X,Q) = HY(PY RpU™'Qy,) by the isomorphism (2.11). Then, for the pull-
back s/ [X] = (X, X) pry € H?*4(X,Qu(d)), we have

(X, X)pim = (X, X)p = (cWx/p)" N (1 +R)™ N [R])aega
= (~1)%(caNx/p) + (cNx/p) N (1= R) " N [R)dega).  (2.12)

Proof. (1) Since the question is étale local, we may assume there exists a smooth map
X — A]" such that D is the inverse image of the union of the coordinate hyperplanes.
Let ny,...,n,, > 0 be integers such that niry,...,n,7r, are integers and let 7 : X =
X Xap A — X be the base change by the map Am A} defined by t; — t;". We
put P = P xx X and R = 7*R. We consider the commutative diagram

pR) T PR

p(R)l lﬁ(é) (2.13)
X +—— X

Here and in the follpwings, let 7 also denote the base changes of 7w by abuse of notation.
The map ) : P — X is smooth by Lemma 2.15. Let n’l, ...,n, be the prime-to-p
parts of ny,...,n, and we consider the action of G'= pi,; X -++ X pipr - on A™ by the
multlphcatlon on the coordinates. We also consider the induced actions of Gon X, P(R)

etc. The induced map p# /G — P) defines an isomorphism on the étale sites.
We put Kpry = RpU'Q, and Kpir = R(p™ o 7)'Qy. The trace map mm*Kpmr =
T K pry — Kpry [8, Théoreme 6.2.3] defines its adjoints 7K pry — 7'Kpr) = Kpw
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and Kpm) — mK pr). We also have the adjunction map m.Kpr) = mm Kpm — Kpen .
The composition Kpmry — mKpgnr — Kpm is the multiplication by the degree
[P(R) ; P(R)] by [8, Théoreme 6.2.3 (Var 4)]. Hence Kpr is a direct summand of the
G-fixed part (7K pr))°.

We consider the commutative diagram

Q(d)2d] —— Kpm

l l

(1 Qe(d)[2d))¢ —— (mKpw))©

where the horizontal arrows are defined by the cycle classes. Since P® i smooth over
k, the lower horizontal arrow is an isomorphism. Since the left vertical arrow is an iso-
morphism, (7,K 5z))¢ is a direct summand of K pr). Thus the assertion is proved.

(2) First, we reduce it to the case where P is a vector bundle over X and s : X — P
is the O-section, by the deformation to the normal bundle. We put X = X x A! and
D = D x A'. Let P be the blow-up of P x A' at X x {0} and P C P be the complement
of the proper transform of P x {0}. Then, the map  : P — X is smooth. We consider
the Cartesian diagram

1% P P x Gy,
[
X X X x G
| | |
{0} Al Gm

where V' = V(Nx,p) denotes the normal bundle. . )

The section s : X — P induces a section s : X — P. By applying the basic
construction, we define p® : P — X and pgR) : VB 5 X and their sections
R . X = PW and s : X — V) Similarly as s®*[X] € H2(X,Q(d)), the
classes 5(*[X] € H*(X,Q¢(d)) and S(R)*[ X] € H?}(X,Qy(d)) are defined. The pull-
backs o, 0% : H**(X,Qu(d)) — H?**(X,Qq(d)) by the 0- and 1-sections og,01 : X — X
are isomorphisms and we have o (3(*[X]) = séR)*[X] and o} (5 [X]) = s(F*[X]
respectively. Hence the assertion for (X, P) is reduced to that for (X, V). Thus we may
assume P is a vector bundle over X and s : X — P is the O-section.

Let ¢ : P — P denote the canonical map. It suffices to show the equality

[ (0] = ¢ [s(X)] = P ((cWx/p)" N (L+ B) ™ N [R])aeg a)

in H 1(&(X))( R) . Qq(d)). For a closed subscheme F of PU9 let F° denote the comple-
ment F\ (FND7%). Let R* be the divisor of P4\ X deﬁned in Lemma 2.15 (2). Then,
we have ¢~ (s(X)) = s (X) U R* and s/ (X) N R* = D*. Hence, by (1), the space
Hsz(dR)(X)ﬂR* (P(R)a(@f(d)) = H%)d-*— (X7S(R)!Qf(d)) is iSOl’IlOI'phiC to H%-%—(Xa Ql) = 0. By
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the exact sequence

0= Hidwxm* (P, Qy(d)) — H(?gl(s(X))(P(R)v Qe(d))
— H2L (PB° Qy(d)) @ HE (PT° Qu(d)),

the restriction map
H? (0 (P, Qu(d)) — HE(PU°,Qu(d) & HEE (PUY°, Qe(d))

is an injection. Therefore, it suffices to show that the components of the restriction of
q*[s(X)] are [s)(X)°] and p*(¢(Nx,p)* N (1 + R) ' N [R])deg a respectively.

This is clear for the first component [s(%)(X)°]. By the excess intersection formula [10),
Theorem 6.3], the second component is (c(pUD*Ny/p)* N c(Ng/ptre)* " N [R*])deg d-
Hence, the assertion follows by Lemma 2.15 (2). O

2.3. Ramification along a divisor

We globalize the constructions in §§1.1 and 1.2 and the computations in §1.4. They
generalize those in [3, §4] and allows denominators and higher rank. The construction
of (X x X)) and H in §1.4 is the special case of that in this subsection.

Let X be a smooth scheme of dimension d over k and D be a divisor with simple normal
crossings. Let Dy, ..., D,, be the irreducible components of D. We put U = X \ D and
let j : U — X denote the open immersion.

We define the log blow up (X x X)" = X x X to be the blow-up at Dy x D, Dy X
Dy, ..., Dy, X Dy,. Namely the blow-up by the product Zp,xp, - Zp,xp, ** LD, xD,, C
Oxxx of ideal sheaves. We define the log product (X x X)~ C (X x X)’ to be the
complement of the proper transforms of D x X and X x D. The diagonal map X — X x X
induces a closed immersion 6 : X — (X x X)~ C (X x X) called the log diagonal
map. The scheme (X x X)~ is affine over X x X and is defined by the quasi-coherent
Ox x x-algebra

Oxxx[priZp! - pr3Zp,,priIp, -prsZpls i=1,...,m] C jXOvxu,

where j* : UxU — X x X is the open immersion. The projections p1,p2 : (X xX)~ — X
are smooth. The conormal sheaf Ny /(X xx)~ 1s canonically identified with the locally free
Ox-module 2% (log D) of rank d.

Let R = ri D1+ - -+r,,D,, be an effective divisor with rational coefficients 1, ..., 7, >
0. We apply the construction of §2.1 to the smooth map ps : P = (X x X)~ — X and
its section & : X — (X x X)~. Then, we obtain P = (X x X)(® — X and its section
s . X — (X x X)), Thus, we have constructed a diagram

XxX ¢—— (X xX) +— (X x X)#

I I

(X x X))~ +— (X x X))
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where the vertical arrows are open immersions. For R = 0, we have (X x X)) =
(X x X)~.
We consider the Cartesian diagram

Fiso) R
UxU 41— (X x X))

6uT T(;(R)

J
v —-— X
where the horizontal arrows are open immersions and the vertical arrows are the diagonal
immersions.

Definition 2.19. Let F be a smooth sheaf on U = X \ D. We define a smooth sheaf H
on U x U by H = Hom(prs F,pr; F). Let R =>",r;D; > 0 be an effective divisor with
rational coefficients and we consider the open immersion (%) : U x U — (X x X)),
We identify d;5;H = End(F) and regard the identity idy € Endy(F) as a section of
I'(U,&énd(F)) = I'(X, j« End(F)) = I'(X, j.05H).

We say that the log ramification of F along D is bounded by R+ if the identity
idg € Endy (F) = I'(X, j«05;#H) is in the image of the base change map

DX, 6889y 4 1(X,7,65H) = Endy (F). (2.14)

We compare Definition 2.19 with Definition 1.28.

Lemma 2.20. Let F be a smooth sheaf on U = X \ D and let R=73__,r;D; >0
be an effective divisor with rational coefficients. We consider the smooth sheaf H =
Hom(prs F,pri F) on U x U C (X x X)B),

(1) We consider the following conditions.

(a) The log ramification of F along D is bounded by R+.

(b) For every irreducible component D; of D, the log ramification of F along D
is bounded by r;+ at the generic point &; of D;.

(¢) There exists an open subscheme X’ C X such that X' D U, that D' = X'ND
is dense in D and that the base change map

BRIk VR L]

is an isomorphism on D’.

(d) The base change map
OISR VNG e

is an isomorphism.

Then, we have implications (d) = (a) = (b) = (c).
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(2) Let D; be a component of D satistying r; > 0 and let E; = (X x X)(R) xx D; be
the inverse image. Then, the vanishing

i+
Gi
fﬁiK,log — O

implies j.H|g, = 0.

Proof. (1) The implication (a) = (b) follows from Corollary 1.31 (¢) = (a). The
implication (b) = (c) follows from Corollary 1.31 (a) = (b). The implication (d) = (a)
is obvious.

(2) Let & be the generic point of D;. It suffices to show j.H|g, ., = 0. Hence, it follows
from Corollary 1.31. O

The author does not know a counterexample for the implication (a) = (d). The
conditions (a)-(d) are equivalent, if the rank of F is 1.
In the tamely ramified case, we have the following equivalence for R = 0.

Corollary 2.21. The following conditions are equivalent.
(1) The log ramification of F along D is bounded by 0+.
(2) F is tamely ramified along D.

(3) The base change map
0" JuH — JuOpH
is an isomorphism on D.

Proof. By Lemma 2.20 (1) (a) = (b), the condition (1) implies (2).

Assume F is tamely ramified along D. Then H on U x U is tamely ramified along
(X x X)~\ (U x U). Hence, by Abhyankar’s lemma, étale locally on (X x X)~, it
is isomorphic to the pull-back of a sheaf on U with respect to the second projection
(X x X)~ — X. Since the projection is smooth, the condition (3) is satisfied.

It is clear that (3) implies (1). O

We have the following stability under the pull-back.

Lemma 2.22. Let Y be a smooth scheme over k and f : Y — X be a morphism
over k. Assume that the reduced inverse image Dy = (D Xx Y )ea is a divisor with
simple normal crossings and let Ry be the pull-back f*R.

Let F be a smooth sheaf on U = X \ D and Fy be the pull-back to V =U xx Y =
Y \ Dy. If the log ramification of F is bounded by R+, then the log ramification of Fy
is bounded by Ry +.

Proof. We show that the map f x f : ¥ x Y — X x X is lifted to (f x f)() :
(Y x Y)Fy) - (X x X)B), For each irreducible component D; of D, the pull-backs
of pry D; and pry D; are equal on the log product (Y x Y)™~. Hence, the map f x f :
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Y XY — X x X is uniquely lifted to (f x )~ : (Y xY)~ — (X x X)~. This is uniquely
lifted to (Y x Y)(Bv) — (X x X)) by Lemma 2.16 (1).

Let ) : U xU — (X x X)# and j(B) . V x V — (Y x Y)B) be the open
immersions and fy : V. — U be the restriction of f : ¥ — X. We put Fy = f;F,
H = Hom(prs F,pri F) and H' = Hom(prs Fy,pri; Fv). Then, the base change map

(F x I = 5 (fy x fu)
defines a commutative diagram

N(X,6®*iHyy 5 Endy(F)

l I

r(y, 659y — 5 Endy(Fy)

By the assumption that the log ramification of F is bounded by R+, the identity of F
is in the image of the upper horizontal arrow. Hence, the identity of Fy, is in the image
of the lower horizontal arrow and the log ramification of Fy is bounded by Ry +. (]

We consider the restrictions of F on smooth curves in X and compare them.

Proposition 2.23. Let F be a smooth sheaf on U = X\ D such that the log ramification
of F is bounded by R+. Let C and C' be smooth curves in X and x be a closed point
in CNC'ND. We assume that C NU and C' NU are not empty and let Fec and Fer
denote the restrictions of F on CNU and C' NU respectively. Assume that the following
conditions are satisfied:

(1) For every irreducible component D; of D, we have (C, D;), = (C', D;),.
(2) lengthx OCﬂC/,z 2 (C, R + D)w

Then, étale locally at x, there exist an isomorphism f : C — C’ and an isomorphism
f*]: |c/ - F |C'

The author thanks the referee for pointing out a similarity with [5, Théoréme 4.3.1].

Proof. It suffices to consider the case C # C’. Since the assertion is étale local, we may
assume CND =C'"ND = CNC" = {z} set theoretically and the residue field of z
is k. We put n = length, Ocncr 5. Take an isomorphism k[t]/(t") — Ocner o and lift it
to étale morphisms C' — A} and C’ — Aj}. Since the assertion is étale local, we may
assume there exists an isomorphism f : C — C’ inducing the identity on C' N C".

We consider the graph of f

g=(1,f):C=CxC"cXxX.

The intersection with the diagonal defines an isomorphism Cxxxx X — (C x
CYxxxx X =CNC" since f: C — C’ induces the identity on C N C’. By the assump-
tion (1) and by the universal property of the log blow-up, the immersion g : C — X x X
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is uniquely lifted to an immersion § : C — (X x X)~ to the log product. We put
cnles ' =C X(xxx)~ X C CNC'. We show

length,, OCﬁlogC/,w = length,, (OCQC/JJ — (C, D)I (215)

Let ZTx C Oxxx and Jx C O(xxx)~ be the ideal sheaves of X C X x X and of X C
(X x X)" respectively and let Zr C O(x x x)~ be the ideal sheaves of E = p*D. Then, we
have Zx O(x x x)~ = Jx - Ig. By pulling it back by g, we obtain the equality (2.15).

By the assumption (2) and by (2.15), we have length, Ocx y, <)~ X,z = (C, R)z. In
other words, we have inclusions J,O¢ C I;r)Oc for every integer | > 0. By the def-
inition of (X x X)¥) (2.9), the immersion § : C — (X x X)~ is further lifted to
h:C — (X x X)), We consider the Cartesian diagram

cnu M Uxu

J’cl lj(R)
c s (xxx)®

where the vertical arrows are open immersions. We also consider the base change maps

W3O = jouhipH = joun Hom(f* For, Fo),

(2.16)
§R* iy 565 H = 4, End(F).

Let K denote the fraction field of the henselization Og,z and let 77 denote the geo-
metric point of C defined by an algebraic closure K of K. Let Gg be the absolute
Galois group Gal(K/K). By the assumption that the log ramification is bounded by R+,
we have a unique element e in I'(z, (J(R)*j,(FR)”HHm) = ['(z, (h*jiR)H)h) whose image in
I'(z, (j« End(F))|,) is the identity of . The image of e in I'(z, (jox Hom(f*Fer, Fe))l|a)
defines a G'gx-homomorphism ¢ : Fy ) — F. Switching the two factors, we obtain a
G i-homomorphism ¢ : F5 — Fj(y). Since the construction is compatible with the com-
position, the maps ¢ and 1 are the inverse of each other. O

We study the higher direct image qu£R)7-L. Weput I™ ={i|1<i<m, r; >0} and
Dt = Uicr+ Di- First, we consider the case where the coefficients of R =), r;D; are
integers. If the coefficients of R are integers, the inverse image E+ = (X x X)(R) xx DT
is identified with the vector bundle V (2% (log D)(R)) x x D over D* by Lemma 2.15 (3).
We prepare a global analogue of Lemma 1.33. In the following lemma and proposition,
we consider the fibre product

(X x X) X (X x X)
P2 X p1
with respect to the second and the first projections X x X — X and identify it naturally
with the triple product X x X x X. To ease the notation, we drop p2 \,/ p1. Similarly,
we will also consider the product (X x X)) x x (X x X)) etc., with respect to the
second and the first projections.
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Lemma 2.24. Assume the coefficients of R are integers.

(1) There exists a smooth map p: (X x X)) xx (X x X)) — (X x X)) that
makes the diagram

(X x X)) xy (X x X)) — (X x X))

l |

(XxX)xx (X xX)=XxXxX 22, XxX
commutative.

(2) Let D* be the support of R and we identify E* = (X x X)) x x D¥ with the vec-
tor bundle V (2% (log D) @ O(R)) x x D as above. The restriction of j1 defines the
addition E* x p+ Et — ET of the vector bundle E* = V (2% (log D)(R)) xx D™.

Proof. (1) Let P = (X x X)~ xx (X x X)~ be the fibre product with respect to
the second and the first projections (X x X)~ — X. We define P(E) — P by applying
the construction in §2.2 to the smooth map P = (X x X)~ xx (X x X)~ — X and
the diagonal section X — P. The projections P — (X x X)~ induce an isomorphism
P 5 (X x X)B) x x (X x X)) by Corollary 2.17.

On P = (X x X)~ xx (X x X)"~, the pull-backs of pri D; and pr} D; are equal for
each component D; of D. Hence the map pry5: (X x X) xx (X x X) = X x X is lifted
to P=(X x X))~ xx (X x X)~ — (X x X)~. This is uniquely lifted to a smooth map
PH) 5 (X x X)) by Lemma 2.16.

(2) The restriction ET Xp+ ET — ET is a linear map of vector bundles by Lemma
2.16 (2). Hence, it suffices to show that the compositions with the injections iy,ia :
ET — E* xpty ET of the two factors are the identity of E+. We consider the map
1 (X x X)) 5 (X x X)) x (X x X)) defined by the identity of (X x X)) and
5" opr,. Then, its restriction E+ — E+ x p1 E* is the injection of the first factor. Since
the composition p o ¢; is the identity, the composition goi; : EY — E* xpr BT — ET
is the identity. Similarly, by considering the map 5 : (X x X)) — (X x X)) x
(X x X)) defined by 6 o pr, and the identity of (X x X)) we see that 01y is the
identity. Hence the assertion follows. O

Proposition 2.25. Let X be a smooth scheme over k and F be a smooth sheaf on the
complement U = X\ D of a divisor with simple normal crossings. Let R =Y. r;D; > 0 be
an effective divisor with integral coefficients r; > 0. Assume that the log ramification of F
is bounded by R+. We put Dt =J,,, .o D; and ET = V(2% (log D) ® O(R)) xx D*.
Let ) . U x U — (X x X)%) be the open immersion.

(1) For every integer q > 0, the restriction of qu,(kR)H on ET is additive.

(2) Let S9 c ETY = V(2%(logD)V @ O(-R)) xx DT be the dual support of
quiR)’}-[|E+. Then, we have S? C S°.
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(3) Let D; be an irreducible component of D* and &; be the generic point. Then, the
intersection S° N B} with EY = E*Y xp+ D; is a subset of the closure S of the
generic fibre.

Proof. Since i : (X x X)5) x x (X x X)) - (X x X)B) is smooth, the base change
map u*RjiR)’H — Rjs, pris H is an isomorphism, where js : UxU xU — (X x X)) x x
(X x X)) denotes the open immersion. Hence, the composition

HXH =Hom(pry F,pri F) @ Hom(pry F,pry F) — Hom(pry F,pri F) = pris H

induces
RiUR RO = Rijs, prisH = p*Rj. (2.17)

Let Z be an arbitrary geometric point of DT. We show that the restriction of RY jiR)H
on the fibre E satisfies the condition (2) in Proposition 2.5. By the assumption that the
log ramification of F is bounded by R+, we have a unique section e € I'(X, 6(R)*j>,(<R)fH)
lifting the identity idz € I'(X, j.03;H). Take an étale neighbourhood V — (X x X)(F)
of Z and a section é € I'(V, jiR)"H) whose stalk in (j£R)’H,):E = (5(R)*j£R)’H)5 is the stalk
of e above.

Since e is a lifting of the identity, the pairing (2.17) with the restriction of € is an iso-
morphism pri H — priz H on (U x U) xx (U x U) X (xxxym V). It is uniquely extend
to an isomorphism

prt RO = Rj, priH — w RiH = Rj, prig (2.18)

on (X x X)) x x V. It is equal to the map defined as the pairing (2.17) with é.

For a closed point a € Ej; in the image of V xx & — (X x X)) x x & = Ej, the
isomorphism (2.18) defines an isomorphism Rj,.ER)H|Ei — (+a)*(Rj£R)H\Ei) on the
restriction to Ez. Since Fj; is generated by the image of V X x Z, there is an isomor-
phism RjiR)'H|Ei — (+a)*(Rj£R)H|Ei) for every closed point a € Ez. Thus the sheaf
R jiR)"H\ E, satisfies the condition (2) in Proposition 2.5 and hence is additive for every
q=0.

(2) Tt suffices to apply Proposition 2.6 to jiR)H X quiR)H — ,u*quﬁR)H.
(3) It follows immediately from Lemma 2.7. O

We consider the general case. Namely, we drop the assumption that the coefficients
of R are integers. For a non-empty subset I C I", we put D; = Nic; Di and D} =
Dl\Uiej+\1(DiﬂD1)~ Recall that n; denotes the denominator of r; = m;/n; and ny is the
least common multiple of n; for ¢ € I. The inverse image Ef = ((X X X)(R) Xx D9 )red
is identified with V,,, (2% (log D), O(n;R)) x x D$ by Lemma 2.15 (1).

Proposition 2.26. Let the notation be as in Proposition 2.25 except that we do not
assume the coefficients of R are integers. Assume that the log ramification of F is
bounded by R+. Let I Cc I™ = {i | 1 < i < m, 7, > 0} be a non-empty subset
and E9 =V, (2% (log D),O(n1R)) xx DS be the reduced inverse image.
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(1) For every integer q > 0, the restriction of qu»ER)’H on EY is potentially additive.

(2) Let S C E3Y = V,,(2%(logD)V,0(—nrR)) xx D% be the dual support of
(qu£R)H)|E?. Then, we have S? C S9.

(3) Fori € I, let&; be the generic point of the irreducible component D; and F; = k(§;)
be the function field of D;. We consider the canonical map

Ezv XD, D? = Vm(()}((log D)vv O(_n’LR)) XX D?
— E7Y =V, (2% (log D)¥,0(—n;R)) x x Dj.
Then, S} is a subset of the image of the intersection S{ . xp, D} C EY xp, D} of
the closure of the generic fibre.

Proof. (1) By replacing X by X\Uie[+\[ D;, we may assume [T = I, E; = E}
and n = ny. Since the assertion is Zariski local, we may take a smooth map X —
A = A™ = Speck[Ty,...,Ty] such that D is the inverse image of the union of coor-
dinate hyperplanes. We put A’ = A™ x G™ = Speck|[T},..., T, UL, ..., U] and
A = Speck[Sl,...,Sm,Ulﬂ,...,Uﬁl} and define a map A — A’ by T} — U;S. We
consider the base change X < X’ <+ X of A+ A’ « A.

We define schemes (X x X’)~ and (X x X)~ by the Cartesian diagram

(X xX)Y —— (X xX')Y +—— (X xX)~

.| | |

X — X' —

and consider the sections X’ — (X x X’)~ and X — (X x X)~ induced by the log
diagonal X — (X x X)~. The map X — X induces (X x X)~ — (X x X)~. By
applying the construction in §2.2 to the pull-backs R’ and R of R to X’ and to X, we
obtain the commutative diagram

(X xX)B® L (Xxx)B) 2 (XxX)P® " (X xX)B

| | |

X — X' —

!

(2.19)

Since X’ — X is smooth, the left square of (2.19) is Cartesian and the hori-
zontal arrow f: (X x X)) — (X x X)) is smooth. Since R has integral coeffi-
cients, the right vertical arrow p: (X x )N()(R) — X is smooth. We show that the map
h: (X x X)3) 5 (X x X)@) is smooth. By Lemma 2.16 (3), it suffices to show that the
map (X x X)~ = (X x X)~ is smooth. Thus, it is reduced to showing that the map
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(A x A)~ — (A x A)~ is smooth. Since the map

(A x A)~ = Speck[S;, U, S, UE VE (i =1,...,m)]/(S, — ViSi(i =1,...,m))
= Speck[S;, UL, UEL VE (i =1,...,m))

(A x A)~ = Speck[T;, S, UEY WE i =1,...,m)|/(U/S!"™ —WiTi(i = 1,...,m))
= SpeCk[Sz{an/ilawiil(Z =1..., )}

is defined by W; — V;"U! /U, it is smooth.
We put U' = U xx X' and U =U xx X and consider the diagram

(X xX)B® L (X xXx)B) 2 (XxX)B® " (X x X)R

j(R)T j(R)’T j(R)NT _;(R)T

UxU +—— UxU' — UxU +— UxU

where the vertical arrows are open immersions. We consider the pull-backs H', H™~ and
H of H respectively on U x U’, U x U and on U x U.

Since R is integral the restriction of quimﬁ on Bt is additive by Proposition 2.25
for every g > 0. Since h is smooth, the base change map h*qu “HY — quiR)’H
is an isomorphism. The conormal sheaves Ny, y, %)~ and Ny J(XxX)~ are canon-
ically identified with 2% (logD) ® O% and with 2% (logD) respectively. Since the
map Ql L (logD) ® O5 — 0L < (log D) is a locally sphttlng injection, the restriction of
RYj ( TH™ s addltlve by Lemma 2.3.

To study the restriction of qu*R)/’H’ , we introduce some notations. For ¢ € I, let
D' C X' be the inverse image of D; and D; be the divisor defined by S;. We put

=V;er D; and D; = ﬂZGID The natural map Dj — D4 is an isomorphism. Let
E’ C (X x X)) E) and E; C (X x X)(R) be the reduced inverse images of D} and of
Dl. Recall n = ny is the least common multiple of the denominators n; for ¢ € I. By
Lemma 2.15 (1), we have a canonical isomorphism E} — V,,(£2% (log D), O(—nR')) p, and
E; — V(24 (log D), O(— I:E)) . The natural map 77 : E; — E} is then identified with
the canonical map 7, : V4 (2% (log D),O(— R))D/ — Vo(2% (log D), O(—nR'))

Let n; be the prime-to-p part of n; and n’ be the prime-to-p part of n = ny. We
consider the natural action of G' = [];c; pn; on X over X'. Since the map Dy — DY is
an isomorphism, the action of G on Dy is trivial. The action of G on E; factors through
the product map G — p,,» and the action of y, on Ey is by the multiplication.

We show that the restriction of R? ]*R)/’H’ on EY is potentially additive. The canon-
ical map qu(R)/’H’ — g*(qu(R)N'H )€ s an isomorphism. Let G be the kernel of
G — ,um/ Then since the restriction of R9j¢ j “H~ on Ej is additive, its Gq-fixed part
(Rq G 7—[N)|G1 is also additive. Hence by Lemma 2.12, the pu,/-fixed part

Tan (R H) G = gu (R H™) O g,

I

is potentially additive. Thus the restriction (R? jiR)/H’ )| is potentially additive.
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Since the map X’ — X is smooth, the base change map f*qu£R)H — qu,ER)/’H’ is
an isomorphism. Since the map X’ — X admits a section, the restriction of RY jiR)'H on
E; is also potentially additive.

(2) Similarly as in the proof of (1), we may assume I = I™ and D; = D$. We show
the inclusion S7 C S9. Let S~ C E7Y be the dual support of the additive sheaf
(quiR) H~)%1. We apply Proposition 2.6 to the map

G H) O BRI H) D (RIS H) S

and the pull-back to I'(X, 5(R)*j£R)N’HN) of the section e € I'(X, 5(R)*j£R)”H) lifting the
identity of F. Then, we obtain the inclusion S¥~ C S9~.
Since the dual support S}]/ C E}Y of the potentially additive sheaf qu,ER)/H' is the
image of S7~ by the canonical map
Ey* = Vi(2%(log D), 0% (—R)) x5 Dy
— EY = an(Qﬁc(log D)v ® Oxr, O(—’I’L]R/)) X x/ D[,

we obtain the inclusion S C SY. Thus, we deduce S C S9 by pull-back.

(3) We have the inclusion S7~ C SR; X p, D¢ by Lemma 2.7. Hence the assertion follows
as in the proof of (2). O

For an integer n > 0 such that nR has integral coefficients, we define the dual support
SE ™ c B = Vi(2) (log D), O(=nR)) p+

as a constructible subset as follows. Let I be a non-empty subset of It = {i | 1 < i <
m, r; > 0}. Then, the restriction H; = jiR)H|E; on B =V, (2%(log D), O(n;R)) xx
Dy is potentially additive by Proposition 2.25. Hence the dual support S0 is defined as a
constructible subset of the dual V,,, (£2% (log D)V, O(—n;R)) x x D5. Since n is divisible
by ny, the canonical map

Tom; © Vi, (2% (log D), O(—=n1R)) xx DS
— V(2% (log D)Y,0(—nR)) xx Dy = E) xx DS
is defined.

Definition 2.27. Let the notation be as above. We define the dual support SSTH'R) CE)
with respect to R as the union

SE =\ T, (Swy).
ICI+,I#0

We say that the log ramification of F is non-degenerate with respect to R if the inter-
section of the closure of the dual support S;_?'R) with the O-section of ) is empty, for
one and hence any n.
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For n|m, we have S(m B) (S(" =)
Corollary 2.28. Assume that the log ramification of F is bounded by R+.

(1) For an irreducible component D; of D, let &; be the generic point of D;. Then, we

have r) -5
n-R n-R
Sy c | sy
iel+
(2) Assume that the log ramification of F is non-degenerate with respect to R and
that A is a finite extension of Q. Then Rp.(RYj,H|p+) and Rp(R%j.H|p+) are 0
for every q = 0.

Proof. (1) Clear from Proposition 2.26 (3).
(2) Clear from Lemma 2.14. O

We make explicit the relation between the dual support and the refined Swan character
defined in Corollary 1.25. Let D; be an irreducible component of D, &; be the generic point
of D; and K; be the fraction field of the henselization O% ¢, of the local ring. The residue
field F; of K; is the function field of D;. Let x be a character of Gr10 Gk,. Recall that
my D mT+ denote {a € K |v(a) > r} D {a € K | v(a) > r}. Then, by Corollary 1.25, the
reﬁned Swan character of x defines an Fj-valued point

rsw € 02}, (log) @ m ") /ml " = Vi(2x (log D)¥ @ F;, mz /m7t)(F).

Lemma 2.29. Assume the log ramification of F is bounded by R+. Let D; be an
irreducible component of D such that r; > 0. We consider the stalk F5, as a representation
of Gk, and the direct sum decomposition Fj, = @X X®"x of the restriction to G%i,log
by characters of Gr}, Gk,. Let

7 2 Vi(£2x(log D)Y ® Fl,m“ /m” ) = Va(2x(log D)V, O(—nR))e, = E ¢,

PN

be the canonical map.

Then, the generic fibre S ) ¢ E) ¢, = Va(£2x(log D)Y,0(=nR))¢, of the dual sup-
port consists of the images ﬂ'n(I‘SW X) of the refined Swan characters of x appearing in
the direct sum decomposition Fy, = @X X P

Proof. It is reduced to the case where r; is an integer, by Lemma 1.22 and by the proof of
Proposition 2.26 (1). In the case where r; is an integer, it follows from Corollary 1.32. O

Corollary 2.30. Assume the log ramification of F is bounded by R-+. The equality F7,
I, (") holds if and only if the generic fibre S (n- F b %) does not contain 0. Also the Vamshmg
.7:,—(,1 ) = 0 is equivalent to the inclusion S(f gR c {0}.
Proof. By Corollary 1.25, the map
rsw : Hom(Grj,, G, Fp) — 25 (log) ®p tl‘L;;T)/tl‘t(I—;T)+

is injective. Hence it follows from Lemma 2.29. O
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We study the functoriality of the dual support Sgb‘R). Let Y be a smooth scheme
over k and f : Y — X be a morphism over k. Assume that the reduced inverse
image Dy = (D Xx Y)yea is a divisor with simple normal crossings and let Ry be
the pull-back f*R. Let n > 0 be an integer such that nR is integral and we put
EY = V,(02%(ogD)V,0(—nR)) and E/ =V, () (log Dy)¥,O(—nRy)). Then, the
canonical map f*2% (log D) — (23 (log Dy) induces a map ¢ : EY xx Y — E!Y.

Lemma 2.31. Let Y be a smooth scheme over k and f : Y — X be a morphism over
k. Assume that the reduced inverse image Dy = (D X x Y)iea is a divisor with simple
normal crossings and let Ry be the pull-back f*R. Let n > 0 be an integer such that nR
is integral and let ¢ : EY xx Y — E!Y be the map defined above.

Let F be a smooth sheaf on U = X \ D and Fy be the pull-back toV =U xx Y =
Y\ Dy. Assume the log ramification of F is bounded by R+ and let f*S(;'R) CE!xxY
denote the inverse image of Sff"'R) C E). Then, we have

o(fr8E Ty c sl

Proof. Let Ds,...,D,, and Di,..., D, , be ‘/che components of D and of Dy respec-
tively. We put R=3"", rD; and Ry =>7_, r;D}. Let J be a non-empty subset of
Jt={jlr;>0,j=1,....,m'} and put I = {i | YD) > Dy, ri>0,i=1,...,m}
The map (f x ) : (Y x Y)E) - (X x X)) defined in the proof of Lemma 2.22
induces EY =V, ({-(log Dy ),O(n;jRy)) — E$ = V,,, (2% (log D), O(n;R)). Since the
base change map (f x f)*j,H — j.(fu x fu)*H is injective by Lemma 2.9, the asser-
tion follows. O

For an irreducible component D; of D, the residue map 2% (log D) ®o, Op, — Op,
defines a map

res; : EY xx D; = V(2% (log D)V, 0(-nR)) xx D;
— V,(Op,,0p,(—nR)) = V(Op,(—nR)).

Corollary 2.32. Let the notation be as in Lemma 2.31. Let D; be an irreducible com-
ponent of D and D; be an irreducible component of Dy such that the multiplicity e of
D) in the pull-back f~'(D;) is non-zero.

(1) Let f~ resi(s(}fb'm) C V(OD;(—TLR)) denote the inverse image of resi(Sgl'R)) C
V(Op,(—nR)) by the map

V(Op;(—nR)) = V(Op,(-nR)) x p, D} — V(Op,(~nR))
(n-R)

induced by f. Then, we have e - f*res;(Sy ) C res; (S%RY)),

(2) Assume resi(S}”'R)) \ D; — D; is surjective and e is prime to p. Then, the log
ramification of Fy along D; is not bounded by ;.
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Proof. (1) By the commutative diagram

E) xx D} —>= V(Op;(-nR))

o] |

E} xy D} —= V(Op,(-nRy))
it follows from Lemma 2.31.
(2) By (1), resj(S(}flv'RY)) is not contained in the 0-section. O

3. Characteristic cycle

We recall in § 3.1 the definition of the characteristic class and compute it under a certain
assumption. We propose a definition of the characteristic cycle in some case and prove
that it computes the characteristic class in §3.2.

3.1. Characteristic class

We recall the definition of the characteristic class. For more detail on the construction,
we refer to [3, §§1, 2] and [12, §§1-3]. Let X be a scheme over k and F be a constructible
sheaf of flat A-modules. We put Kx = Ra'A for the structural map a : X — Speck and
DxF = RHom(F,Kx). We consider H = RHom(prs F, Rpry F) on X x X.

The canonical pairing

F @" R6'H = 6" pry F ®" R6' R Hom(prs F,Rpry F) — RS'Rpr) F = F
induces an isomorphism
HS% (X x X,H) — Endx (F). (3.1)

Alternatively, one can apply the canonical isomorphism [12, (3.2.1)]. The inverse of the
canonical isomorphism F X DxF — RHom(pry F, Rpry F) = H and the canonical map
RS' — ¢* induce a map

H% (X x X,H) — H*(X,F @ DxF). (3.2)
The evaluation map F @ DxF — Kx induces a map
HY(X,F @ DxF) - H(X,Kx). (3.3)

We define the characteristic class C(F) € H°(X,Kx) to be the image of 1 € Endx (F)
by the composition

(3.1)7 1 (3.2)

End (F) HY (X x X, H) 22 mO(X, F o Dy F) &2 HO(X, Kx).
If X is proper, we have an index formula [12, Corollaire 4.8]
X(X5, F) =Tr CO(F) (34)

for the Euler number x (X3, F) = Ziiiomx(fl)q dim H9(X%, F).
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Assume that X is smooth of dimension d and that F is a smooth sheaf of free A-
modules of finite rank. Then, the isomorphism Endx(F) — H%(X x X,H) (3.1) is
described as follows. We put Ho = Hom(prs F,pr; F). By the assumptions on X and
on F, we have a canonical isomorphism Ho(d)[2d] — H = RHom(pry F, Rpr} F). We
identify 6*Ho = End(F) and H(X,0*Ho) = Endx (F). Then, the isomorphism (3.1) is
the inverse of the cup product

Endy (F) = HO(X, 6" Ho) 2 HY (X x X, H) (3.5)

with the cycle class [X] € H% (X x X, A(d)[2d]). Further, in this case, the evaluation
map 0*H — Kx is the tensor product of the trace map Tr : §*Ho = End(F) — A with
the isomorphism A(d)[2d] — Kx defined by the cycle class. Thus, in this case, we have

C(F)=rank F - (X, X)xxx

in H2(X, A(d)) where (X, X)xxx = (—1)%4(£2%) is the self-intersection class.

We will compute the characteristic class in some cases. First we consider the tamely
ramified case. Let X be a smooth scheme of dimension d over k and U = X \ D be the
complement of a divisor D with simple normal crossings. We consider the diagram

Xx X<l (XxX)"<l—UxvU (3.6)

\ T Tég
X -~ U
where (X x X)~ is the log product and f : (X x X)~ — X x X is the canonical map.
The diagonal maps for X and U are denoted by ¢ and dy respectively and d is the log

diagonal map. The map j : U x U — (X x X)~ is the open immersion.

Proposition 3.1. Let the notation be as in the diagram (3.6) above and let F be a
smooth sheaf of free A-modules of finite rank on U = X \ D.

We put Ho = Hom(prs F,pr; F) on U x U and H = RHom(prs j1.F, Rpry jiF) on
X x X. We also put Ho = j.Ho and H = Ho(d)[2d] on (X x X)~. Let e € I'(X,6*H,)
be the unique element that maps to the identity idr € Endy (F) = HY(U, 6 Ho) and let
eU[X] € HY((X x X)~,H) be the cup product with the cycle class [X] € H%((X x

X)~, Ald)[2d]).

(1) There exists a unique map f*H — #H inducing the canonical isomorphism H =
RHom(prs F, Rpry F) — Hom(prs F,pr; F)(d)[2d] = Ho(d)[2d] on U x U.

(2) Assume further that F is tamely ramified along D. We consider the pull-back
f*(iflj!]-') € H]?,I(X)((X x X)™,H) of the identity idj, 7 € Endx(jiF) = H} (X x
X,H). Then, we have

F*(id5) = e U [X] (3.7)

in HY, ) (X x X)~, R).
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Proof. (1) Let f: (X x X)" = X x X be the log blow-up. Let (U x X)' C (X x X)' be
the complement of the proper transform of D x X and we consider the open immersions

(X x X)™~ 2 (U x X) 25 (X x X).

We put #' = jiRjaH on (X x X). The log blow-up f : (X x X)) = X x X is
an isomorphism on the complement U x X of D x X. The restriction of H on D x
X is 0 and the restriction H|yxx = RHom(prs jiF, Rpry F) is canonically identified
with the restriction H'|yxx = R(1 x j)«Ho(d)[2d]. Hence, there exists a unique map
f*H — H' inducing the canonical isomorphism H — Ho(d)[2d] on U x U. The restriction
of f*H — H' on (X x X)~ gives the desired map f*H — H.

(2) It suffices to show the equality f*(id;r) = e U [X] in H](%:l(X)((X x X)), H').
Since F is assumed tamely ramified, the adjunction H — Rf.H' of the canoni-
cal map f*H — H' is an isomorphism, by [3, Lemma 2.2.4]. Hence, the pull-back
o HY (X x X, H) — HJ(},I(X)((X x X)',H') is an isomorphism. Since the restriction
map HY (X x X,H) = Endx (jiF) — HE (U x U,H) = Endy (F) is an isomorphism, the
arrows in the commutative diagram

HY (X x X,H) HY(U x U, H)

L

HY (X x X),H)

F=1(x)
are isomorphisms. Thus, it suffices to show the equality in H}(U x U,H). Hence the

assertion follows from the description (3.5) of the isomorphism (3.1) in the smooth case.
O

Corollary 3.2. Let the notation be as in Proposition 3.1 (2). Then, we have
C(]l]'-) =rank F - (X,X>(X><X)N
in HO(X, Kx) where (X, X)(xxx)~ = (—1)%ca(£2% (log D)) is the self-intersection class.

Proof. We consider the pull-back to HO(X,5*H) of the equality f*(id;r)=eU [X]
by the log diagonal map § : X — (X x X)~. Then, since 6 = f o 5, we obtain
5*(idj7) = e U (X, X)(xxx)~ in HO(X,6*H) = H(X, j. Endy F(d)[2d)). Since the eval-
uation map §*H — Kx is induced by the trace map j.Endy F — A, we obtain
C(jl]:) = rank F - (XaX)(XXX)N- U

Corollary 3.3. Let X be a smooth scheme of dimension d over k and U = X \ D be
the complement of a divisor D with simple normal crossings. We keep the notation in
the diagram (3.6).

Let D™ C D be the union of some irreducible components and put Ut = X\ DT > U.
Let g : X — (X x X)~ be a morphism of schemes over k that is an isomorphism on
(Ut xUH)™ = (Ut xUT) xxxx (X x X)~ C (X x X)~ and let j* : U x U — X be the
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open immersion. Let 6% : X — X be a closed immersion satisfying § = godt. We assume
that the cycle map

A(d)[2d] = Kx = R(p2 o fog)'A (3.8)
is an isomorphism. Define the cycle class [X] € H% (X, A(d)[2d]) to be the inverse image
of 1 by the isomorphism H% (X, A(d)[2d]) — H%(X,Kx) = HY(X, A) induced by the
isomorphism (3.8).

Let F be a smooth sheaf on U of free A-modules of finite rank. We assume that
F is tamely ramified along D N Ut = Ut \ U. We put Ho = Hom(prs F,pri F) on
U x U and H = RHom(pr} j1F,prl 51 F) on X x X. We also put 'Hg = jE’HO on X. Let
e € I'(X,6"H2) be a section such that the restriction €|y € I'(U, 05 Ho) = Endy (F) is
the identity of F. We put E =X\ (Ut x UT)™~ and assume

HE(X, H(d)) = 0. (3.9)

(1) There exists a unique map (f o g)*H — H* = H%(d)[2d] inducing the canonical iso-
morphism H = RHom(pry F, Rpry F) — Hom(prs F,pr; F)(d)[2d] = Ho(d)[2d]
onU xU.

(2) We consider the pull-back (f o g)*(id;r) € H?fog),l(x)(XHh) of the identity
id;, r € Endx (jiF) = HY (X x X,H). Then, we have

(f 0 9)"(idj7) = e U[X] (3.10)
in H(Ofog),l(x)uE(X,Hh). Consequently, we have
C(jHF) =rank F - (X, X)x (3.11)

in H(X,Kx) where (X,X)x denotes the pull-back of the cycle class [X] €
H (X, A(d)).
Proof. (1) Since the image of (X x X)~\ (U x U) in X x X is a subset of D x X, we
have (f o g)*H = jf’H as in the proof of Proposition 3.1. Hence the assertion follows.
(2) Since g1 (UT) = (fog) Y (X) N (UT x UT)™ is the complement of EN(fog)~1(X)

in (f og)~!(X), we have an exact sequence

H%(X,Hh) — H?fog)*l(X)UE(X’Hh) — H271(U+)((U+ X U+)N7Hh).

By the assumption (3.9), we have H%(X, H%) = 0. Hence the restriction map
H?fog)—l(X)UE(X,Hh) — ITI—‘((])_1(U-¢-)((U'+ X U+)~,Hh)

is an injection. By Proposition 3.1, the equality (fog)*(idj,7) = eU[X] holds
in HY iy ((UT < UF)™, H). Thus we obtain (fog)*(idjr) = eU[X] (3.10) in

9
H{pog)-1 coyop (%o H2).
The equality (3.11) is deduced from (3.10) as in the proof of Proposition 3.1. O
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Theorem 3.4. Let X be a smooth scheme of dimension d over k and U = X \ D
be the complement of a divisor D with simple normal crossings. Let R =3, 7;D; > 0
be an effective divisor with rational coefficients. Let g : (X x X)) — (X x X)~ and
S X = (X x X)) be as in §2.3 and let j) : U x U — (X x X)) be the open
immersion.

Let F be a smooth sheaf on U of free A-modules of finite rank. We put Ho =
Hom(prs F,pri F) on U x U. We assume that the log ramification of F is bounded
by R+ and let e € I'(X, 5(R)*jiR)7-[o) be the unique section whose image by the base
change map in I'(X, j.05;Ho) = Endy (F) is the identity of . We further assume that
the log ramification of F along D is non-degenerate with respect to R (cf. Definition 2.27).

Then, we have

C(]r]:) = rank F - (X7X)(X><X)<R) (3.12)
= (=1)?- rank F(cq(2% (log D)) + (¢(2% (log D)) N (1 — R) "' N [R)])dimo)
(3.13)
in HO(X, IC)()

Proof. We put D* = 3", D;. We verify that g : X = (X x X)®) — (X x X)~
satisfies the assumptions in Corollary 3.3. By the construction, the map g : X =
(X x X)) 5 (X x X)~ is an isomorphism on the complement of D* € X C (X XX)
The log diagonal map 6 : X — (X x X)~ is lifted to a closed immersion §(%

X — (X x X)) The cycle map A(d)[2d] — K(x xx)m is an isomorphism by PI‘OpOSl—
tion 2.18(1).

By the definition of DT and by the assumption that the log ramification of F is bounded
by R+, it follows that F is tamely ramified along D\ DT = U* \ U by Corollary 2.21.
The Complement (X >< X))\ (Ut x UT)™ equals the inverse image ET of Dt. We
show that Hé = ]* 'Ho satisfies the assumption

HEL (X x X)B® 1P (d)) = 0

(3.9) for X = (X x X)), Let i : Bt — (X xX)® be the closed immer-
sion and p : E* — D* be the projection. Since H2 (X x X)® 1™ (a))
H2d(D+,Rp*Ri!j£R)’H0(d)), it suffices to show Rp,RY%:' j@t Ho =0 for ¢ > 0. Since
qu!j,ER)Ho is 0 for ¢ = 0,1 and is isomorphic to R~} £ )’Ho for ¢ > 1, it follows from
Rp*quiR)'Ho = 0 proved in Lemma 2.29 (2). Thus, the assumptions in Corollary 3.3 are
satisfied and we obtain the equality (3.12).

The equality (3.13) follows from the equalities (3.12) and (2.12) and the isomorphism
NX/(XXX)"‘ — Q}((logD) U

3.2. Characteristic cycle

Let X be a smooth scheme of dimension d over k and let D be a divisor with simple
normal crossings. Let

T* X (log D) = V(2% (log D))
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be the logarithmic cotangent bundle. We regard X as a closed subscheme of T* X (log D)
by the O-section. Let D; be an irreducible component of D, & be the generic point of D;
and K; be the fraction field of the henselization Ol}ﬂ& of the local ring. The residue field
F; of K; is the function field of D;.

Let r > 0 be a rational number and x : Grj,, Gk, — F, be a non-trivial charac-
ter. The refined Swan character rsw x € 2}, (log) ® mﬁ—;r) /mg—;f” regarded as an injec-
tion m7 /1117[1;1r — 2% (log D)¢, @ F; defines a line in the F;-vector space 2% (log D)¢, @ F;
and hence an Fj-valued point [rswx] : Spec F; — P(£2%(log D)V). We define a reduced
closed subscheme T, C P(£2%(log D)V) to be the Zariski closure {[rsw x](Spec F})} of
the image and let L, = V(Or, (1)) be the pull-back to T of the tautological sub line

bundle L C T*X (log D) x x P(£2% (log D)V). We have a commutative diagram
L, —— T*X(log D) xx D; —— T*X(log D)=V (£2%(log D)")

| | | (3.14)

Ty LN D; —_— X

The natural map 7, : T\, — D; is generically finite.

Let F be a smooth ¢-adic sheaf on U = X\ D and R =}, r; D; be an effective divisor
with rational coefficients r; > 0. In the rest of the paper, we assume that F satisfies the
following conditions.

(R) The log ramification of F along D is bounded by R+.

(C) For each irreducible component D; of D, the closure nggj) of the generic fibre of
the dual support is finite over D; and its intersection

S50 A b,
with the 0-section of V,,(2% (log D)V, O(—nR))p, is empty.
By Lemma 2.29, the conditions (R) and (C) imply the following condition.
(R) Fy = ]—"7%”) for every irreducible component D; of D.

They also imply that the log ramification of F is non-degenerate with respect to R by
Proposition 2.26 (3). Conversely, the condition (R’) implies that both (R) and (C) are
satisfied on a dense open subscheme of X containing the generic points of the irreducible
components of D. Under the condition (R’), one may expect that the closure S(;g)
is always finite over D;. This is in fact proved in the case where rank F = 1 in [14,
Theorem (7.1)]. If F is the rank 1 sheaf defined by a continuous character y of w1 (U)2P,
the condition (C) is equivalent to that x is clean along D in the sense of [15, (3.4.3)].
Under the assumption dim X = 2, it is proved in [15, Theorem 4.1] that the condition (C)

is satisfied after blowing-up finitely many closed points on the boundary successively.

Lemma 3.5. Assume that the log ramification of F is bounded by R+ and that F
satisfies the conditions (R) and (C). Let D; be an irreducible component of D and x be
a character of Grﬂ;‘g Gk, appearing in the direct sum decomposition F, = Zx Ty X
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(1) The scheme T, is finite over D;.

(2) We put
SS, = mﬂx*[Lx} (3.15)

in Zq4(T*X (log D) xx D;)q in the notation in (3.14). Then, we have
SS, = (c(2%(log D)) N (1 — R)~' N [T*X (log D) % x Di])dim a-
Proof. (1) By Lemma 2.29, the generic fibre ng';) of the dual support consists of the
refined Swan characters rsw x of the characters y appearing in the direct sum decomposi-
tion F, = > nyx. Hence, by the condition (C), the closure S;Zf';j') is a closed subscheme

of
Vo (2% (log )", O(=nR))p, \ D;

finite over D;. Hence, the union Ux T, is the image of S (}7 ;j) by the canonical map
¢ : Vo (2% (log D)Y,0(—nR))p, \ D; — P (2% (log D)").

(2) Since the conormal sheaf of L, C T*X(log D) x x T is the pull-back of the locally
free sheaf Ker(§2% (log D)V — O(1)) of rank d — 1, we have

(L] = (—1)%eq_1 (Ker(2% (log D) — O(1))) N [T* X (log D) x x Ty].
Hence we have
SS, = (c(2%(log D)) N c(O(=1)) "' N [T* X (log D) % x D;])dim a-

By Lemma 2.11, the pull-back of O(n) on
Vo(22k (log D), O(~nR))p, \ D; > S¥"Y

is canonically isomorphic to O(nR). Since the union |J, Ty is the image of Sglé?), the
assertion follows. O

Assuming the conditions (R) and (C), we define the characteristic cycle CC(F) as a
rational d-cycle on T* X (log D).

Definition 3.6. Let F be a smooth A-sheaf on U = X \ D satisfying the conditions
(R) and (C). For an irreducible component D; of D with r; > 0, let F, = >° nyx be
the direct sum decomposition of the representation induced on Grﬂ’;g Gk,. We define the
characteristic cycle by

CC(F)= (—1)d<rank.7:~ [(X]+ Z ;- an . [SSX]> (3.16)

1,7, >0 X

in Z4(T*X (log D))q.
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If dimX =1, we put SwWF =5
be the projection. Then, we have

wep SWe F - [x] € Zo(X) and let p: T* X (log D) — X

CO(F) = —(vank F - [X] + p*[Sw F)).

If F is a rank 1 sheaf defined by a continuous character x of 7 (U)?" and if F is clean

along D, the characteristic cycle CC(F) defined above is nothing but Char(X, U, x)
defined in [15, (3.4.4)].

Theorem 3.7. Let X be a smooth scheme of dimension d over k and D be a divisor
with simple normal crossings. Let F be a smooth ¢-adic sheaf on U = X \ D satisfying
the conditions (R) and (C). Then we have

CiF) =[CC(F)]
in H?4(X, A(d)) = H*{(T*X (log D), A(d)). In other words, we have
C(]‘]:) = (CC(‘T)7X)T*X(logD)-

Proof. By the assumption (C) and by Lemma 2.29, the assumption in Theorem 3.4 is
satisfied. Hence the left-hand side is equal to

rank F - (—=1)% - (cq(2% (log D)) + (c(2% (log D)) N (1 = R) ' N [R])dimo)-
By Lemma 3.5, the right-hand side is also equal to this. O

By the index formula (3.4), Theorem 3.7 implies the following.
Corollary 3.8. Further if X is proper, we have

Xe(Ug, F) = deg(cc(]:)vX)T*X(log D)-
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