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ABsTRACT—A paleoecological study of benthic foraminifera through the lower Hettangian in the Doniford Bay section
(west Somerset, U.K.) is presented. The sudden and brief appearance of Oberhauserellidae in the aftermath of the Late
Triassic extinction is defined as a proxy for environmental perturbations indicating severe biotic stress conditions.
Oberhauserellidae, associated with the genus Reinholdella are distinguished from other species by a high abundance, low
diversity, high dominance and an abnormally small size. This suite of characters mimics an opportunistic behavior where
these r-strategists and grazer feeders maximize their full ecological potential at a time of low-oxygen conditions on the sea-
floor and a high food supply: both of which appear to be the main triggers of this paleoecological change. The
disappearance of these opportunistic benthic foraminifera coincides with the appearance of infaunal, low-oxygen-tolerant
generalists, and the restoration of stable environmental conditions (e.g., well-stratified water mass and oligotrophic
conditions), characterizing the initial stages of recovery following the Late Triassic extinction event.

INTRODUCTION

THE OBERHUSERELLIDAE Fuchs 1970 are a group of small-sized,
aragonitic trochospiral, benthic foraminifera that are
sporadically known from the mid-Triassic to the Early Jurassic
(Fig. 1). Their spatial and temporal distributions are poorly
known and their paleoecology is inadequately understood. This
is largely due to their sporadic stratigraphical and geographical
occurrence and to their relatively small size (63—100 pm) which
often results in them being ignored in some foraminiferal
analyses. Among them, various tiny species of Oberhauserella
Fuchs 1967 and Praegubkinella Fuchs 1967 (often associated
with abundant Reinholdella Brotzen, 1948) appear in large
numbers during rapidly rising sea level, associated with the
extensive spread of anoxic/dysoxic bottom waters, especially in
the earliest Toarcian (e.g., Wernli, 1988, 1995; Hylton and Hart,
2000; Hart et al., 2003) and through the Triassic—Jurassic (Tr—J)
boundary interval (e.g., Hillebrandt et al., 2007; Hillebrandt,
2008, 2010a, 2010b, 2012; Hillebrandt and Urlichs, 2008;
Clémence et al., 2010). The Reinholdella and Oberhauserella
lineages begin in the mid-Triassic (Oberhauser, 1960; Fuchs,
1967), with the first appearance of Oberhauserella mesotrias-
sica Fuchs 1967 and Oberhauserella karinthiaca Fuchs 1967, in
the Ladinian and the Carnian (Fuchs, 1967). Their origin can be
traced back to Kollmannita Fuchs 1967. Most of the evolution-
arily important Oberhauserellidae group was established by the
Rhaetian, with high rates of speciation, and probably a direct
connection to Reinholdella (Fuchs, 1967). In 1995, Wernli
described a new species, P. racemosa, which he considered to
be morphologically transitional to the planktic genus Conoglo-
bigerina Morozova 1961, just above the anoxic event in the
Falciferum Zone of the Toarcian (Fig. 1). In the U.K., at exactly
the same level, Hylton and Hart (2000) and Hart et al. (2003)
recorded a flood of highly variable and inflated Oberhauserella
quadrilobata Fuchs 1967 immediately above the black mud-
stones of the Falciferum Zone. Wernli (1988) described the
same transition to a ‘“protoglobigerinid” in the Toarcian—
Aalenian succession in the Taurus Mountains of Turkey.

According to these authors, the Oberhauserellidae have been
traditionally considered as the ancestors of the Jurassic planktic
foraminifera that appear at, or about, the level of the Toarcian
Oceanic Anoxic Event in Europe (e.g., Jenkyns, 1988; Hesselbo
et al., 2000; Fig. 1). Recently, Hillebrandt (2012) showed that
the morphological differences between Oberhauserellidae and
Conoglobigerinidae Simmons, BouDagher-Fadel, Banner and
Whittaker 1997 are very large to militate in favor of a planktic
mode of life. It is interesting to speculate on whether it was the
occurrence of northwest European epi-continental sea-floor
anoxia at these levels that led to development of a planktic mode
life (Hart et al., 2003). However, the establishment of a
paleoecological profile of the Oberhauserellidae, in low-
oxygenated environments may be considered as a potential
key towards the understanding of the planktic foraminiferal
origination and evolution.

In this study, the benthic foraminiferal abundance data from
the lowermost Hettangian, organic-rich sediments at the
Doniford Bay section (Somerset, SW England; Clémence et
al., 2010) is investigated. A statistical approach is applied to
explore why, and how, the proliferation of Oberhauserellidae are
associated with the particular lower Hettangian environment,
that is characterized by an interval of marine ecosystem
recovery, highly perturbed by low-oxygen conditions (Mander
et al., 2008; Clémence et al., 2010; Paris et al., 2010). The aims
of the present paper are: 1) to examine the stratigraphical
distribution of the Oberhauserellidae; 2) to characterize the
paleoecology of the benthic foraminifera and especially of the
Oberhauserellidae; and 3) to determine which paleoenviron-
mental parameters favored the presence of the Oberhauserelli-
dae during the study interval.

GEOLOGICAL AND ENVIRONMENTAL SETTING

The Tr—J boundary sections of west Somerset (SW England,
including the Doniford Bay section; Fig. 2) have been subject to
geological research for over 100 years (e.g., Richardson, 1911;
Whittaker and Green, 1983; Warrington et al., 1994; Page and
Bloos, 1998; Hesselbo et al., 2004; Barras and Twitchett, 2007)
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Ficure [—Stratigraphical ranges of Jurassic and Early Cretaceous planktic foraminifera, partly based on Simmons et al. (1997), BouDagher-Fadel (2012), and
this study for the Triassic—Jurassic boundary interval, together with the stratigraphical ranges of related benthic taxa.

and are of international significance. The Doniford Bay section
contains a good exposure of the Upper Triassic Lilstock
Formation (Cotham and Langport members), and of the
overlying Lower Jurassic Blue Lias Formation (Fig. 2). These
formations were deposited in an east-west trending extensional
Bristol Channel Basin between Wales and Somerset (Whittaker
and Green, 1983; Swift, 1999; Fig. 2).

Shallow marine conditions were present throughout the
deposition of the Lilstock Formation. The lower Cotham
Member represents a shallowing upward succession and brief
emergence is evidenced by the presence of desiccation cracks
(e.g., Hallam and Wignall, 1999; Hesselbo et al., 2004; Wignall
and Bond, 2008). The upper Cotham Member represents a
coastal environment (Mander et al., 2008) with a flooding
surface at the transition between the Cotham and the Langport
members (Hesselbo et al., 2004). The Langport Member was
deposited in a shallow lagoonal environment in a broad and
shallow seaway (Warrington et al., 2008). Sea-level changes
during the Lilstock to Blue Lias formation transition are
debated, and have been interpreted as being either a sea-level
fall (Wignall and Bond, 2008) or a sea-level rise and the
drowning of the carbonate-rich environment (Hesselbo et al.,
2004). The overlying Blue Lias Formation represents an
offshore sedimentary setting, with a phase of rapid flooding
allowing the development of rhythmic interbeds of laminated
organic-rich shale, dark and pale mudstones and limestone. The
formation appears to represent an environment that was prone to
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intermittent anoxic conditions (e.g., Hallam, 1995, 1997,
Wignall, 2001; Allison and Wright, 2005; Paris et al., 2010).

Reference bed numbers, ammonite zones and subzones follow
Page and Bloos (1998) and Bloos and Page (2000), as noted on
Figure 3; the position of the Tr—J boundary interval follows the
integrated stratigraphical approach proposed and explained by
Clémence et al. (2010).

MATERIAL AND METHODS

Sampling and laboratory preparation—The coastal section
was sampled at Doniford Bay (west Somerset, SW England; Fig.
2). Exposure degree on this wave-cut platform is close to 100
percent. The total dataset consists of 84 samples of quantitative
abundance data of benthic foraminifera. Samples were collected
mainly in the marly layers with an average stratigraphic
resolution of 5-10 cm. Each sample, which consisted of 300
grams of dry rock, was immersed in Desogen (alchyldimethyl-
benzylamin chorure) for 48 hours to floculate the argillaceous
fraction. Material larger than 0.063 mm was sieved, washed and
dried at 50°C. After drying and sieving through meshes of various
sizes (1 mm, 500 pm, 250 pm, 125 pum and 63 pm), the
foraminifera were retrieved, counted, and identified using a
standard binocular stereo-microscope. Foraminifera were also
examined using scanning electron microscope (SEM; FRE3206
CNRS/MNHN, Paris). In total, 117,419 benthic foraminiferal
tests mainly from the two smaller size fractions were counted
(800—1500 specimens per 300 grams of dry rock) and sorted into
15 species from 10 genera. In the statistical analysis, species
occurring in only one sample were removed, and samples
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FIGURE 2—1, location of the study area; 2, geographical and geological setting of the Triassic—Jurassic boundary in onshore and offshore of United Kingdom

(modified from Hesselbo et al., 2004).

containing less than 20 individuals were excluded. The resulting
data set includes 15 species, 45 samples and 117,419 individuals
(55% of the original samples and 100% of the original
specimens).

Analysis of faunal composition—Non-metric multidimensional
scaling (nMDS) was used as one of the best ordination techniques
available (Holland et al., 2001; Holland and Patzkowsky, 2004;
Dominici et al., 2008). Ordinations can be used as graphical
templates to identify groups of sampling units, as well as
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trajectories of the multivariate species data through time to
estimate the magnitude and rates of change in species assemblage
composition (e.g., Clarke and Warwick, 1994; Olszewski and
Patzkowsky, 2001; Patzkowski and Holland, 2012). To perform
the nMDS analysis, the Bray Curtis similarity was applied to the
raw data matrix. Foraminiferal relative abundance data were
square-root transformed to lessen the influence of the more
prevalent species and increase the weight of rare species.
Analysis of diversity patterns—The statistical analyses were
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Figure 3—Foraminiferal range chart with the total abundance of benthic foraminifera (X1000 specimens per gram of sediment) in the lower Hettangian, in the

Doniford Bay section.

performed using the statistical program PAST (Hammer et al.,
2001). To permit a suitable measurement of the diversity, such as
species richness and as evenness, rarefaction curves were
constructed and the Simpson index (1-D) was computed. The
rarefaction (Hurlbert, 1971) allows the calculation of species
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richness for a given number of individual samples, based on the
construction of so-called rarefaction curves. This curve is a plot
of the number of species as a function of the number of samples.
In fact, the height of a rarefaction curve is a function of
community species richness, and the steepness of the curve is a
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function of species evenness (Hayek and Buzas, 1997). If the
rarefaction curve reaches an asymptotic shape, it indicates that the
original sample has recovered most of the species. To perform the
rarefaction analysis, samples have been grouped according to
their bed number. The Simpson index of diversity ranges from 0
(one taxon dominates the community completely) to 1 (all taxa
are equally present), and can be considered a measure of
evenness. Simpson index scores were plotted against the
stratigraphic log. For each of the species, the frequency of
occurrence (FO) was calculated, as the percentage of samples
where the species occurred (p) relative to the total number of
samples analysed (P), where FO=p X 100/P (Aratjo and
Machado, 2008).

RESULTS

Stratigraphic ranges—The stratigraphical distribution of the
recorded species shows that no significant biostratigraphical
events (in terms of extinction and/or renewal) occurred during the
lower Hettangian (Fig. 3). Raw species diversity increased from
two species at the Tr—J boundary interval (Bed 1, Foguttulina
liassica and Pseudonodosaria simpsonensis) to nine species (Bed
24, E. liassica, P. simpsonensis, Prodentalina pseudocommunis,
Frondicularia brizaeformis, Paralingulina tenera tenera, Para-
lingulina tenera collenoti, Prodentalina tenuistriata, Paralingu-
lina tenera praepulpa, and Astacolus speciosus) at the top of the
Blue Lias Formation. Substantial compositional change of
assemblage is recorded in Bed 7, which is characterized by the
appearance and disappearance of a significant number of taxa
(Oberhauserella sp. cf. O. alta, Oberhauserella parviforamen,
Oberhauserella quadrilobata, and Reinholdella sp.): from the
lower half part of Bed 7, seven new species in five genera appear
(0. sp. cf. O. alta, O. parviforamen, O. quadrilobata, Rein-
holdella sp., Nodosaria mentensis, P. tenera tenera, and
Ammodiscus sp.). Of these taxa, three species (O. sp. cf. O. alta,
O. parviforamen, and O. quadrilobata) disappear by the middle
part of Bed 7, with a further genus (Reinholdella sp.) and species
(N. mentensis) disappearing in the top of Bed 7. This last
disappearance is synchronous with the appearance of two new
species (P. tenera collenoti, P. tenuistriata), which continue
throughout the upper part of the Blue Lias Formation.

Abundance—The transition between the Lilstock Formation
and the Tr—J boundary interval is devoid of foraminifera (Fig. 3).
From Bed 6 in the Blue Lias Formation, there is a significant
increase in abundance (Fig. 3). Within this general trend, several
marked fluctuations between absence and abundance are
recorded. At the base of Bed 6, assemblages are monospecific
(mainly E. liassica, Fig. 3). There is a quantitative change in
abundance throughout Beds 7 and 8, which occurs at the same
level as the significant taxonomic change described above. This
change is characterized by a double peak in the abundance of
Oberhauserella and Reinholdella in Bed 7 (respectively 12,000
and 22,000 specimens/300 g of rock), immediately followed by a
third one in Bed 8, which is characterized by a monospecific
assemblage of Reinholdella (13,000 specimens/300 g of rock).
These two last assemblages are only recorded in the smaller (63—
100 pm) size fraction. A period of sustained low abundance is
then recorded from Bed 9 to Bed 17, followed by two other peaks,
in Bed 21 and in the upper part of Bed 24 (E. liassica, P.
simpsonensis, P. pseudocommunis, F. brizaeformis, P. tenera
tenera, Ammodiscus sp., P. tenera collenoti, P. tenuistriata, P.
tenera praepulpa, and A. speciosus; Fig. 3).

Taxonomic composition. —The nMDS analysis segregated the
samples into three groups (Fig. 4). The stress value for the nMDS
ordination is 0.12, which gives confidence that the two
dimensional plot is an accurate representation of the sample
relationships. Group 1 includes most of the samples from Beds 1
to 6 and from Beds 9 to 23, comprising low abundance
assemblages of shallow infaunal, deposit-feeders. This group is
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dominated by taxa tolerant of low-oxygen conditions (i.e., E.
liassica, P. tenera collenoti, and P. tenera tenera; Tyszka, 1994,
Bartolini et al., 1992; Nocchi and Bartolini, 1994). Group 2
comprises taxa of Beds 7 and 8, and is dominated by aragonitic
trochospiral Robertinida (Oberhauserella and Reinholdella),
which are opportunistic epifaunal grazers (Boutakiout and Elmi,
1996; Hylton and Hart, 2000; Mailliot et al., 2009; Clémence et
al., 2010). This group is related to the highest abundance and the
compositional change of assemblage recorded in the same
stratigraphical interval. Group 3 comprises the abundant hyaline
benthic foraminifera (P. tenera praepulpa and A. speciosus) from
Bed 24, characterized by a shallow infaunal habitat. These
deposit-feeders indicate well-ventilated conditions that are
characterized by abundant and labile organic matter (e.g., Rey
et al., 1994; Bartolini et al., 1992; Reolid et al., 2008).

Diversity and evenness—Dominance and evenness of the
benthic foraminiferal assemblages fluctuate throughout the lower
Hettangian (Fig. 5). The same three groups of samples identified
by the nMDS analysis have been recorded by the rarefaction
diversity curves and the Simpson index of diversity. All the
rarefaction curves have an asymptotic profile, which means that
samples are a reliable representation of the original diversity.
Group 2, which is represented by the genera Oberhauserella and
Reinholdella, exhibits locally (Beds 7 and 8) the highest expected
species diversity, with a maximum of 10 (Fig. 5). This diversity is
associated with a strong dominance (Simpson 1-D index between
0.1 and 0.5; Fig. 5) and a low frequency of occurrence (7—12%;
Table 1). Groups 1 and 3, which are both characterized by
calcareous infaunal foraminifera record high diversity (at the top
of the section) and low diversity (at the base of the section)
respectively (Fig. 5). The less diverse group (Group 1) has a
maximum expected species diversity of 6, according to the
rarefaction curve (Fig. 5). Paleoecological patterns of groups 1
and 3 are coupled to a high evenness (Simpson 1-D index
comprised between 0.5 and 0.8; Fig. 5) and a high frequency of
occurrence (19-59%; Table 1).

DISCUSSION

Preservation and diagenesis—The tests of the foraminifera are
moderately well preserved in the Doniford Bay section, despite
species of Robertinina having an aragonitic wall structure. SEM
analyses revealed some traces of etching and overgrowth of the
aragonitic tests to a varying degree (Fig. 6). Most of the calcitic
tests are filled with secondary calcite, with frequent visible
overgrowth on the test walls. Despite this, enrichment in
dissolution-resistant taxa in the assemblages (e.g., Lenticulina
Lamarck 1804) is not documented. In contrast, the foraminiferal
assemblages are dominated by relatively fragile tests, such as
those of the aragonitic genera Reinholdella and Oberhauserella,
or the thin, calcitic species Paralingulina tenera (Bornmann,
1854). This preservation pattern indicates that a strong selective
dissolution process did not affect these foraminiferal assemblag-
es.

Clémence et al. (2010) showed that, in the Doniford Bay
section, fluctuations in the abundance of foraminifera do not
correlate with oxygen isotope values. The wide range and very
low values of 8'®0 clearly indicate a diagenetic overprint. If the
fluctuations in abundance of microfossils were driven exclusively
by diagenesis, a positive correlation between low abundances of
foraminifera and low values of oxygen isotope would to be
expected. Nevertheless, in the studied interval, high levels of
abundance of microfossils are associated with low values of 8'%0,
and their low abundances with the higher values. It is concluded,
therefore, that the diagenetic impact resulted in an under
estimation of the abundance of aragonitic taxa. Notwithstanding
this, the sequence of foraminiferal assemblages and their
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fluctuations in abundance may still provide significant paleo-
environmental information.

Paleoecological succession and recovery phases—The lower
Hettangian provides a record of the recovery interval following
the Late Triassic extinction crisis. Based on our nMDS, diversity
and evenness analysis, three ecological recovery phases are
recognized, from the initial post-extinction aftermath to the final
recovery of the benthic assemblages in the Hettangian.

Phase 1—from Bed 1 to Bed 6—is characterized by
assemblages (Group 1) of low abundance, low diversity, high
dominance (i.e., Eoguttulina liassica Stickland, 1846) and high
FO (Figs. 35, Table 1). Specimens constituting these assem-
blages are shallow infaunal deposit-feeders. The increase of r-
strategists, such as E. liassica, with great mobility in the infaunal
microhabitat at the base of the section indicates initial
deterioration of the oxygen conditions in the infaunal habitat
(Reolid et al., 2008, 2012a).

Phase 2—from Bed 7 to Bed 8—is characterized by the sudden
appearance of epifaunal organisms represented by the genera
Oberhauserella and Reinholdella (Group 2) (Fig. 2). This group is
marked by low diversity (two genera), high dominance, and low
FO in a relatively large population to cope with a phase of stress
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in the benthic environment, affecting some particular species,
while others remain unaffected (Fig. 5, Table 1). Such pattern
may indicate an opportunistic behavior, according to the
definition of Harries et al. (1996). The presence of Oberhauser-
ella and Reinholdella in Beds 7 and 8 is coincident with a rapid
transgression, high total organic content values (TOC>5%), and
lower 513C0rg and ?SISNOrg values, suggesting dysaerobic condi-
tions during the lower Hettangian (Clémence et al., 2010; Paris et
al., 2010). Previous studies documented similar paleoecological
patterns during the early Toarcian Oceanic Anoxic Event (Wernli,
1988, 1995; Hylton and Hart, 2000; Hart et al., 2003; Reolid et
al., 2012a, 2012b). The genus Reinholdella frequently occurs in
abundance in the Early Jurassic. It has been described as an
epifaunal phytodetritus feeder tolerant of low-oxygen conditions
that may have benefited from short periods of bottom-water re-
oxygenation, during transgressive events (Brouwer, 1969; Co-
pestake and Johnson, 1989; Reolid et al., 2008; Mailliot et al.,
2009). Oberhauserella quadrilobata was considered as a disaster/
opportunist species related to the early Toarcian extinction event,
and characterizing high stress conditions (Hart et al., 2003).
Phase 3—from Bed 9 to Bed 24—marks the re-appearance in
higher proportions of shallow infaunal K-strategists (P. tenera,
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groups 1-3) and the total absence of epifaunal organisms. This is
accompanied by an increase in the diversity, evenness and FO,
and low TOC values indicating return to stable, constant, and
oligotrophic environmental conditions.

Size change—The most striking benthic foraminiferal response
during the recovery interval of the lower Hettangian is revealed in
the smaller (63—125 pm) size fraction, which records the

temporary appearance of dwarfed adult forms of Oberhauserella
and Reinholdella (Group 2; Fig. 5). Reductions in the size of
many kinds of organisms are common immediately in the
aftermath of most major Phanerozoic extinction events (e.g.,
Luterbacher and Premoli Silva, 1964; Smit, 1982; Twitchett,
2007; Luo et al., 2008; Harries and Knorr, 2009; Keller et al.,
2009; Morten and Twitchett, 2009; Posenato, 2009; Wade and
Twitchett, 2009; Huang et al., 2010; Nagy et al., 2010) when,

TaBLE /—The frequency of occurrence (FO) on the dominant (>50%) and other common (>25%) foraminiferal species in the Doniford Bay sediments. The FO
is the ratio between the number of samples in which the species occurred and the total number of samples analyzed.

Species Habitats Group FO(%)
Pseudonodosaria simpsonensis Shallow infaunal Groups 1 and 3 6
Prodentalina pseudocommunis Shallow infaunal Groups 1 and 3 59
Frondicularia brizaeformis Shallow infaunal Groups 1 and 3 48
Oberhauserella sp. cf. O. alta Epifaunal Group 2 7
Oberhauserella parviforamen Epifaunal Group 2 7
Oberhauserella quadrilobata Epifaunal Group 2 7
Reinholdella sp. Epifaunal Group 2 12
Nodosaria mentensis Shallow infaunal Group 2 3
Paralingulina tenera tenera Shallow infaunal Groups 1 and 3 26
Ammodiscus sp. Shallow infaunal Groups 1 and 3 19
Paralingulina tenera collenoti Shallow infaunal Groups 1 and 3 26
Prodentalina tenuistriata Shallow infaunal Groups 1 and 3 34
Paralingulina tenera praepulpa Shallow infaunal Group 3 5
Astacolus speciosus Shallow infaunal Group 3 6
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predominantly, the larger species were eliminated leaving
survivors which were smaller in size. Size reduction in the
immediate aftermath of the extinction event has been termed the
Lilliput effect (Urbaneck, 1993; Twittchett, 2007; Harries and
Knorr, 2009). As originally defined by Urbaneck (1993), this
effect refers to a temporary reduction in body-size of the
surviving species that occurs in the immediate aftermath of the
extinction event. Twitchett (2007) suggested four criteria that
may be used to recognize a potential ‘Lilliput Effect’ in the
aftermath of an extinction event in the fossil record: 1) extinction
of large taxa; 2) the post-crisis appearance of many small taxa; 3)
the temporary disappearance of large taxa; and 4) within-lineage
size decrease. As indicated earlier, the foraminifera from this
study have experienced three of the four criteria. Most of the large
taxa disappear temporarily, before the sudden and brief
appearance of many small-sized Oberhauserella and Reinholdella
in the aftermath of the Late Triassic extinction, which may be due
to a Lilliput effect. These observations are consistent with the
impact on other fossil groups, such as invertebrate macrofauna
and trace fossils (Mander et al., 2008) during the same
stratigraphic interval in SW Britain.

Drivers of Paleoecological changes: Low-oxygen conditions
and high food supply—The lower Hettangian is associated with a
time of recovery after the Late Triassic extinction, and is marked
by a perturbed environment (Twitchett and Barras, 2004; Barras
and Twitchett, 2007; Mander et al., 2008; Kiessling et al., 2009;
Clémence et al., 2010; Paris et al., 2010). Clémence et al. (2010)
show that, immediately after the Late Triassic extinction, the
restoration of optimal environmental conditions within the water
column was delayed by a succession of alternating dysoxic and
anoxic phases, favoring the deposition of black-shale sediments.
This Milankovitch cyclicity (Weedon et al., 1999; Paris et al.,
2010) likely reflects a succession of nutrient input increase,
leading to enhanced productivity, eutrophication and efficient
export production. The lower Hettangian is also marked by a
rapid sea level rise and greenhouse warming (e.g., Hallam and
Wignall, 1999; McElwain et al., 1999; Tanner et al., 2001;
Hesselbo et al., 2002). It has been suggested that both of these
may have been triggered by the physical and chemical effects of
the Central Atlantic Magmatic Province (CAMP) volcanism (e.g.,
Hesselbo et al., 2002; Guex et al., 2004; van de Schootbrugge et
al., 2009; Clémence et al., 2010). Consequently, the low-oxygen
conditions, the high food supply and the global warming in the
lower Hettangian may be responsible for the opportunistic
behavior and the ‘Lilliput Effect’ of the Oberhauserella and
Reinholdella, likely triggered by environmental instability. In
fact, foraminifera are very sensitive to environmental changes.
Basov (1979) detected that benthic foraminifera were small-sized,
thin-walled, transparent, and without sculpture if they inhabit a
lowered-oxygen environment. There is a well-documented link
between small body-size and low oxygen conditions in both
modern and ancient assemblages (Rhoads and Morse, 1971;
Pérez-Cruz and Machain-Castillo, 1990; Koutsoukos et al., 1990;
Kaiho, 1994, 1998). Among them, Kaiho (1998) considered that
deep-sea foraminiferal size was probably controlled by fluctua-
tions in the level of dissolved oxygen: i.e., low dissolved oxygen
conditions with high dissolved nutrient and CO, levels induced
reductions in test size among benthic foraminifera. During such
environmental conditions, Oberhauserella and Reinholdella
could generate by an early reproduction (growth to ‘full size’
not completed) lots of juveniles quickly, as a survival strategy.
Furthermore, the surviving Oberhauserella and Reinholdella need
1) to reduce energy consumption by reducing their body sizes,
and 2) to grow rapidly, thus increasing their populations
exponentially to adapt to the declining dissolved oxygen level
and to exploit and take advantage of food resource without
interference from competitors (MacArthur and Wilson, 1967;
Levinton, 1970; Koutsoukos et al., 1996; MacLeod et al., 2000).
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Thus, they exhibit a well-developed r-strategy that allows these
organisms to take full advantage of stressed and low-oxygen
conditions.

Of the environmental factors known to influence body size, the
food supply is another significant. In modern ecosystems, a
correlation between body size and the food supply has been well
documented (Sarmiento and Herbert, 1988; Parrish, 1995; Hay,
1995). High rates of food supply to the sea-floor might increase
the consumption of dissolved oxygen (Speijer and Wagner, 2002;
Gavrilov et al., 2003), accumulation of dissolved nutrients and
CO,, which in turn limits calcification (Peypouquet et al., 1988)
and/or the metabolic rate, favoring the abnormal development of
small body size. Moreover, the calcite tests are better adapted to
high CO, concentration than aragonitic tests, because calcite is
more resistant to dissolution. For these reasons, high productivity
could provide an additional explanation for the dominance of
small opportunists observed in Beds 7 and 8 (Fig. 3). Evidence of
the renewal of surface carbonate production in association with
dominance of type 2 kerogen (indicative of increased marine
surface productivity) was documented by Clémence et al. (2010)
and Paris et al. (2010) from the upper part of Bed 6 (Blue Lias
Formation) in the Doniford Bay section. The global warming
recorded in the lower Hettangian promoted a more humid climate
that accelerated continental runoff and increased the input of
continental-derived nutrients into the marine environment (Guex
et al.,, 2004). This may have, in turn, stimulated primary
productivity, the coupling of surface-bottom productivity (effi-
cient export production of organic matter) and then, high food
supply (Clémence et al., 2010). When nutrient levels become
insufficient to sustain the growth of Oberhauserella and
Reinholdella, both of them cease their development, thus opening
niches to low-oxygen-tolerant infaunal ecologic generalists, from
groups 1 and 3, characterizing the initial recovery of environ-
mental conditions. The change of feeding strategy between
grazers (Group 2) and deposit feeders (groups 1 and 3) indicate a
modification of the food origin in the lower Hettangian. It is a
supplementary argument to establish a correlation between the
restoration of the primary productivity and the benthic opportu-
nistic proliferation of small body-size, in the aftermath of the Late
Triassic extinction.

CONCLUSIONS

This study is the first paleoecological analysis of the genera
Oberhauserella and Reinholdella (benthic foraminifera) through
the post-extinction recovery following the Late Triassic
extinction in the U.K. The following key conclusions are drawn:

Even though lower Hettangian corresponds to just a part of
the Oberhauserellidae evolution, it is the over-abundance and
small-size that is the environmental signal.

The sudden appearance of Reinholdella and Oberhauserella
occurs in a short stratigraphic interval, in the aftermath of the
Late Triassic extinction, and records a significant paleoecolog-
ical change in the lower Hettangian.

Reinholdella and Oberhauserella assemblages are distin-
guished from other assemblages by their high abundance, high
diversity, high dominance and low FO, which are typical of
opportunistic behavior.

Reinholdella and Oberhauserella seem to be well-adapted r-
strategists and grazers that maximize their full ecological
potential in areas, and at times, of significant increase in the
nutrient content of marine surface waters resulting in phyto-
plankton proliferation.

Reinholdella and Oberhauserella show abnormally small
body-size. This is an example of ‘Lilliput Effect’ and similar
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changes are documented in invertebrate shelly macrofauna and
trace fossils during the same stratigraphical interval.

The paleoecological characteristics of Reinholdella and
Oberhauserella are typical of assemblages in initial stages of
recovery following an extinction event.

Low-oxygen conditions at the sea-floor, and the high food
supply triggered by local and global environmental conditions in
the early Hettangian seem to be plausible explanations for the
observed changes in body size, and possibly opportunistic
behavior of Reinholdella and Oberhauserella, through the early
recovery interval.

The disappearance of Reinholdella and Oberhauserella above
Bed 8 of the Blue Lias Formation coincides with the appearance
of infaunal, low-oxygen-tolerant generalists, and the restoration
of stable environmental conditions, characterized by well-
stratified water mass and oligotrophic conditions.
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