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In this paper, we extend and complement previous works about propagation in kinetic

reaction–transport equations. The model we study describes particles moving according to

a velocity-jump process, and proliferating according to a reaction term of monostable type.

We focus on the case of bounded velocities, having dimension higher than one. We extend

previous results obtained by the first author with Calvez and Nadin in dimension one. We

study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together

with the half-relaxed limits method. We deduce spreading results and the existence of travelling

wave solutions. A crucial difference with the mono-dimensional case is the resolution of the

spectral problem at the edge of the front, that yields potential singular velocity distributions.

As a consequence, the minimal speed of propagation may not be determined by a first-order

condition.
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1 Introduction

1.1 The model

In this paper, we are interested in propagation phenomena occurring in the following

reaction–transport equation:⎧⎪⎪⎨⎪⎪⎩
∂tf(t, x, v) + v · ∇xf(t, x, v) = M(v)ρ(t, x) − f(t, x, v) + rρ(t, x) (M(v) − f(t, x, v)) ,

(t, x, v) ∈ �+ × �n × V ,

f(0, x, v) = f0(x, v) , (x, v) ∈ �n × V ,

(1.1)
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where r > 0. The mesoscopic density f depends on time t ∈ �+, position x ∈ �n and

velocity v ∈ V and describes a population of individuals. The macroscopic density is

ρ(t, x) =
∫
V
f(t, x, v) dv. The subset V ⊂ �n is the set of all possible velocities. From now

on, we assume the following:

(H0) The velocity set V ⊂ �n is compact.

For any given direction e ∈ �n−1 and p ∈ �n, we define

v(e) = max {v · e, v ∈ V} , μ(0) = 0, μ(p) = |p|v
(
p

|p|

)
, if p �= 0,

and

Arg μ(p) = {v ∈ V | v · p = μ(p)} .
We set

vmax := max
v∈V

|v|, |V | :=

∫
V

dv.

Individuals move following a so-called velocity-jump process. That is, they alternate

successively a run phase, with velocity v ∈ V , and a change of velocity at rate 1, which

we call the tumbling. The new velocity is chosen according to the probability distribution

M. Throughout the paper, we assume

(H1) M ∈ L1(V ), and

〈v〉M :=

∫
V

vM(v)dv = 0. (1.2)

Note that it is challenging to replace the linear BGK (Bhatnagar-Gross-Krook) operator

Mρ− f by a more general collision operator of the form P (f)−Σf where P is a positive

operator. However, to remain consistent with [11], we will stick to their framework and

leave this question for future work.

Remark 1.1 In fact, our analysis can easily be extended to the case 〈v〉M ∈ �n \ 0. Setting

� := V − 〈v〉M , �(w) := M(w + 〈v〉M) and �(t, x, w) := f(t, x+ 〈v〉M t, w + 〈v〉M), for all

(t, x, w) ∈ �+ × �n × �, we recover our assumptions in the new framework.

The reproduction of individuals is taken into account through a reaction term of

monostable type. The constant r > 0 is the growth rate in absence of any saturation. New

individuals start with a velocity chosen at random with the same probability distribution

M. The quadratic saturation term accounts for a local competition between individuals,

regardless of their speed.

We assume that initially 0 � f0 � M, so that this remains true for all times, see [11,19].

1.2 Earlier works and related topics

It is relatively natural to address the question of spreading for (1.1), since there is a

strong link between (1.1) and the classical Fisher-KPP (Kolmogorov-Petrovskii-Piskunov)
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equation [24, 30]. Indeed, a suitable parabolic rescaling

ε2∂tgε + εv · ∇xgε =
(
M(v)ρgε − gε

)
+ ε2rρgε (M(v) − gε) , (1.3)

leads to the Fisher–KPP equation (see [19] for example) in the limit ε→ 0,

∂tρ
0 −

〈
v2

〉
M

∂xxρ
0 = rρ0

(
1 − ρ0

)
, (1.4)

g0 := lim
ε→0

gε = Mρ0,

assuming that the two following conditions on M hold:∫
V

vM(v)dv = 0,
〈
v2

〉
M

:=

∫
V

v2M(v)dv > 0.

We recall that for non-increasing initial data decaying sufficiently fast at x = +∞, the

solution of (1.4) behaves asymptotically as a travelling front moving at the minimal speed

c∗ = 2
√
r 〈v2〉M [1, 30]. However, even though the philosophy of the results will be the

same in spirit, we emphasize that nothing related to this parabolic limit will be used in

the present paper. Our argumentation does not rely on any perturbative analysis. Hence,

we obtain results without any smallness assumption on the parameters. This will yield

significant differences, regarding both the results and the methods of proof.

A short review of earlier results is now in order. Hadeler has worked on propagation

for reaction–telegraph equations [20,27], which can be seen as two-speeds kinetic models.

Moreover, a similar type of result was obtained by Cuesta et al. [19] in the diffusive

regime (i.e., for sufficiently small ε in (1.1)). Using a micro–macro decomposition, they

constructed possibly oscillatory travelling waves of speed c � 2
√
rD for ε small enough

(depending on c). In addition, when the set of admissible speeds V is bounded, c > 2
√
rD,

and ε is small enough, they prove that the travelling wave constructed in this way is

indeed non-negative.

Propagation for the full kinetic model (1.1) has then been investigated by the first author

with Calvez and Nadin in [11]. In one dimension of velocities, and when the velocities are

bounded, they proved the existence and stability of travelling waves solutions to (1.1). The

minimal speed of propagation of the waves is determined by the resolution of a spectral

problem in the velocity variable. In particular, it is not related with the KPP speed, except

that the speeds coincide in the diffusive regime. It is worth mentioning that the case of

unbounded velocities is significantly different as the front spreads with arbitrarily large

speed [11]. This case shall not be discussed further in this paper. This phenomenon was

newly appearing for this type of equations and unexpected from the macroscopic limit.

One aim of this paper is to extend the construction of travelling waves solutions to any

velocity dimension, which was left open after [11].

There is a strong link between this KPP type propagation phenomena and large

deviations for the underlying velocity-jump process. Indeed, it is well known that fronts

in Fisher–KPP equations are so-called pulled fronts, that is, are triggered by very small

populations at the edge that are able to reproduce almost exponentially. Thus, studying

large deviations for these type of processes at the kinetic level is an interesting problem

in itself. In [7, 8], the authors have combined Hamilton–Jacobi equations and kinetic
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equations to study large deviations (and propagation) from a PDE (Partial Differential

Equations) point of view. These works show that the asymptotics of large deviations in

the kinetic equation do not coincide with the asymptotic of large deviations obtained

after a diffusive approximation.

As a side note, the Hamilton–Jacobi technique (that will be described in the next

subsection) has also much been used recently to study long time dynamics in all sorts

of structured models. An interested reader could describe the evolution of dominant

phenotypical traits in a given population reading [4, 12, 31] and the references therein,

study different adaptative dynamics issues [21], describe propagation in reaction–diffusion

models of kinetic types [10] but also in age renewal equations [16]. This approach has

also recently been used to study large deviations of velocity jump-processes [8, 9, 15] or

slow–fast systems [13, 14, 23, 29, 32].

1.3 The Hamilton–Jacobi limit

After the seminal paper by Evans and Souganidis [22,25], an important technique to derive

the propagating behavior in reaction–diffusion equations is to revisit the WKB (Wentzel-

Kramers-Brillouin) expansion to study hyperbolic limits. We will directly present the

technique on our problem for conciseness but one can find the original framework for the

Fisher–KPP equation in [22] and complements in [2, 3, 18, 33].

We perform the hyperbolic scaling (t, x, v) →
(
t
ε
, x
ε
, v

)
in (1.1). Importantly, the velocity

variable is not rescaled (it cannot be rescaled since it lies in a bounded set). The kinetic

Hopf–Cole transformation (already used in [8, 15]) is written

∀(t, x, v) ∈ �+ × �n × V , ϕε(t, x, v) = −εln
(
fε(t, x, v)

M(v)

)
, (1.5)

or, equivalently:

fε(t, x, v) = M(v)e−
ϕε (t,x,v)

ε . (1.6)

Thanks to the maximum principle [19], ϕε is well defined and remains non-negative for

all times. Plugging (1.6) in (1.1), one obtains the following equation for ϕε:

∂tϕ
ε + v · ∇xϕ

ε + r = (1 + r)

∫
V

M(v′)
(
1 − e

ϕε (v)−ϕε (v′)
ε

)
dv′ + rρε. (1.7)

Our aim is to pass to the limit in (1.7). To make the convergence result appear naturally,

we shall start by providing formal arguments. Assuming Lipschitz bounds on ϕε, and since

ρε is uniformly bounded, the boundedness of
∫
V
M(v′)(1−exp((ϕε(v)−ϕε(v′))/ε)dv′ implies

that we expect the limit ϕ0 to be independent of v. To identify the limit ϕ0, we shall thus

perform the following expansion:

ϕε(t, x, v) = ϕ0(t, x) + εη(t, x, v). (1.8)

Plugging the latter into (1.7), we get formally at the order ε0

∂tϕ
0 + v · ∇xϕ

0 + r = (1 + r)

∫
V

M(v′)
(
1 − eη(v)−η(v

′)
)
dv′ + re−

ϕ0

ε

∫
V

e−η(v
′)dv′.
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As a consequence, for any (t, x) ∈
{
ϕ0 > 0

}
, we have

∂tϕ
0 + v · ∇xϕ

0 = 1 − eη(v)(1 + r)

∫
V

M(v′)e−η(v
′)dv′. (1.9)

One should read this equation as an eigenvalue problem in the velocity variable. Indeed,

setting

p(t, x) = ∇xϕ
0(t, x), Qp(t,x)(v) := M(v)e−η(t,x,v), H(p(t, x)) := −∂tϕ

0(t, x),

we see that (H,Q) are the principal eigenelements of the following spectral problem:

(1 + r)M(v)

∫
V

Qp(v
′) dv′ − (1 − v · p)Qp(v) = H(p)Qp(v).

The dependency with respect to r can be identified by setting p′ := p
1+r

, H(·) := H((1+r)·)−r
1+r

and Q̃p′ = Qp. Indeed, we have then that ∂tϕ
0 +(r+1)H( p

r+1
)+ r = 0 and the Hamiltonian

H is given by (
1 + H

(
p′

)
− v · p′

)
Q̃p′ (v) = M(v)

∫
V

Q̃p′ (v
′) dv′. (1.10)

After these heuristics, we are now ready to define properly the Hamiltonian H involved.

Definition 1.2 We define, for e ∈ �n−1,

l(e) =

∫
V

M(v)

v(e) − v · edv.

The so-called singular set is defined by

Sing (M) :=

{
p ∈ �n,

∫
V

M(v)

μ(p) − v · pdv � 1

}
=

{
p ∈ �n, l

(
p

|p|

)
� |p|

}
. (1.11)

Then, the Hamiltonian H involved in this paper is given as follows:

• If p � Sing (M), then H is uniquely defined by the following implicit relation:∫
V

M(v)

1 + H(p) − v · pdv = 1, (1.12)

• else, H(p) = μ (p) − 1.

The relevancy of such a definition, i.e., the resolution of (1.10), will be discussed in

Section 2 below. This hamiltonian is the same as the one from [15]. In particular, let

us mention that H is Lipschitz continuous and convex on �n and that it is C1 on

�n \ ∂Sing(M). Moreover, H(p) � μ(p)− 1, which implies that lim|p|→+∞H(p) = +∞. The

proof of those results can be found in [8, Section 1] and in [15, Proposition 2].

With this definition in hand, the convergence result for the sequence of functions ϕε is

as follows.
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Theorem 1.3 Suppose that (H0) and (H1) hold, and that the initial data satisfies

∀(x, v) ∈ �n × V , ϕε(0, x, v) = ϕ0(x, v).

Then, (ϕε)ε converges uniformly on all compacts of �∗
+×�n×V towards ϕ0, where ϕ0 does

not depend on v. Moreover, ϕ0 is the unique viscosity solution of the following Hamilton–

Jacobi equation:

⎧⎪⎨⎪⎩
min

{
∂tϕ

0 + (1 + r)H
(

∇xϕ
0

1+r

)
+ r, ϕ0

}
= 0, (t, x) ∈ �∗

+ × �n,

ϕ0(0, x) = min
v∈V

ϕ0(x, v), x ∈ �n.
(1.13)

Let us now emphasize the differences between the result presented here and the very

related works [7, 8, 15]. First, the results from [8] and [7] only hold for n = 1 and for

M � δ > 0. In [7], the first author successfully proved a convergence result in the case

r > 0. It is worth mentioning that a much wider class of collision operators was considered

in [7], but under the condition of existence of a L1 eigenvector. We believe that the ideas

of the present work could be used there, but with technicalities inherent from the spectral

problem that would require a special study.

As explained before, the multidimensional case (n > 1) is more delicate since the relation

(1.12) may not have a solution. We refer to our Examples 2.3 and 2.4 for situations where

this happens. In [15], the second author generalized the convergence result of [8] in the

multidimensional case, with no reaction term. However, the proof we design in this paper

is simpler and more adaptable. For this, we manage to use the half-relaxed limits of Barles

and Perthame [5] in the spirit of [12].

We point out that an asymptotic preserving scheme has been developed by Hivert

in [28] to numerically solve (1.7) using the Hamilton–Jacobi framework developed in [7].

We present the proof of Theorem 1.3 in Section 2 below.

1.4 Travelling wave solutions and spreading of planar like initial data

We then investigate the existence of travelling wave solutions of (1.1). As in the mono-

dimensional case treated in [11], we will prove that there exists a minimal speed c∗ for

which travelling wave solutions exist. We will use the following definition throughout the

paper.

Definition 1.1 A function f is a travelling wave solution of speed c ∈ �+ and direction

e ∈ �n−1 of equation (1.1) if it can be written f(t, x, v) = f̃ (x · e− ct, v), where the profile

f̃ ∈ L∞ (
�, L1(V )

)
solves

(v · e− c) ∂zf̃ = M(v)ρ̃− f̃ + rρ̃
(
M(v) − f̃

)
, (1.14)
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in the sense of distributions and satisfies

∀(z, v) ∈ � × V , 0 � f̃(z, v) � M(v) , lim
z→−∞

f̃(z, v) = M(v) , lim
z→+∞

f̃(z, v) = 0 .

(1.15)

It is well known for this kind of Fisher–KPP type problems that propagation fronts are

so-called pulled fronts, that is, the speed of propagation is given by seeking exponentially

decaying solutions of the linearized problem in a moving frame. As a consequence, for

any λ > 0, one can define c(λ, e) using the spectral problem solved in Theorem 1.2. Indeed,

we set

c(λ, e) = (1 + r)H
(

λe

1 + r

)
+ r. (1.16)

Then, we have the formula for the minimal speed in the direction e ∈ �n−1.

c∗(e) = inf
λ>0

c(λ, e) .

We obtain the following existence result.

Theorem 1.4 Let e ∈ �n−1. For all c ∈ [c∗(e), v(e)), there exists a travelling wave solution of

(1.1) with speed c and direction e. Moreover, there exists no positive travelling wave solution

of speed c ∈ [0, c∗(e)).

Following very closely the proof used in the mono-dimensional case, we shall prove

this Theorem using sub- and super-solution and a comparison principle satisfied by

(1.1). We shall construct these sub- and super-solution using travelling wave solutions

of the linearized problem. The main difference concerning the travelling wave result is

the way we prove the minimality of the speed c∗(e). Indeed, it might happen that c(λ, e)

is singular at its minimum λ∗ so that one can not reproduce the same argument as for

the mono-dimensional case used in [11], that was based on the Rouché theorem. Using

the Hamilton–Jacobi framework above, in a similar fashion as in [6] for the Fisher–KPP

equation in an heterogeneous media, we prove the following result.

Proposition 1.5 Let f0 be a non-zero initial data, compactly supported in some direction e0,

such that there exists γ < 1 such that

γM(v)1[−xm,xm]·e0+e⊥0 (x) � f0(x, v) � M(v)1[−xM,xM ]·e0+e⊥0 (x),

for all (x, v) ∈ �n × V , where e⊥0 denotes the orthogonal complement of Span(e0). Let f be

the solution of the Cauchy problem (1.1) associated to this initial data. Then, we have

lim
t→+∞

sup
x·e0>ct

ρ(t, x) = 0, if c > c∗(e0), (1.17)

lim
t→+∞

f(t, e⊥0 + cte0, v) = M(v) , if c < c∗(e0), (1.18)

uniformly in v ∈ V .
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1.5 Spreading of compactly supported initial data

Finally, we also deduce from the Hamilton–Jacobi framework a spreading result for initial

conditions that are compactly supported. To this aim, let us first define the speed w∗(e0)

associated to any direction e0 ∈ �n−1 via the following Freidlin–Gärtner formula (see [26]

for its first derivation).

w∗(e0) = min
e∈�n−1

e0·e>0

(
c∗(e)

e0 · e

)
.

We obtain the following result.

Proposition 1.6 Let f0 be a non-zero compactly supported initial data such that 0 �
f0(x, v) � M(v) for all (x, v) ∈ �n × V . Let f be the solution of the Cauchy problem

(1.1) associated to this initial data. Then, for any e0 ∈ �n−1 and all x ∈ �n, we have

lim
t→∞

f(t, x+ cte0, v) = 0, if c > w∗(e0), (1.19)

pointwise and

lim
t→∞

f(t, cte0, v) = M(v), if 0 � c < w∗(e0), (1.20)

for all v ∈ V .

This result is interesting since, contrary to the case of the usual Fisher–KPP equation for

which the Freidlin–Gärtner formula holds when coefficients vary in space, this Freidlin–

Gärtner formula in space is induced by an heterogeneity of the velocity set. This would

not be present in the macroscopic limit (the Fisher–KPP equation, see above). Of course,

if V is rotationally symmetric, the speed w∗ is independent of the direction, and the

propagation is radial.

One could wonder how the shape of V (e.g., its topological properties or its convexity)

influences the shape of the front and the speed of propagation. We will investigate this

question in a future work.

The rest of this paper is organized as follows. In Section 2, we prove the Hamilton–

Jacobi limit. We discuss the construction of travelling waves and the spreading results in

Section 3.

2 The Hamilton–Jacobi limit

In this section, we present the proof of the convergence result Theorem 1.3. We then

prove a convergence result for ρε in the region {ϕ0 = 0}. This result will help us to show

that the speed of propagation is still the minimal speed of existence of travelling waves,

despite the fact that H may have a C1 discontinuity.

2.1 The spectral problem

In this section, we discuss the resolution of the spectral problem given by (1.10). We also

provide examples for which the singular set of M is not empty.
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2.1.1 The resolution

For any p′ > 0, we look for an eigenvalue H(p′) associated to a positive eigenvector Q̃p′

such that

s
(
1 + H(p′) − v · p′

)
Q̃p′ (v) = M(v)

∫
V

Q̃p′ (v
′) dv′, v ∈ V .

Note, that it may happen that Q̃p′ has a singular part. Since the problem is linear, one can

always assume that Q̃p′ is a probability measure. We are thus led to find an eigenvalue

H(p′) such that there exists a probability measure Q̃p′
1 such that

(
1 + H(p′) − v · p′

)
Q̃p′ (v) = M(v), v ∈ V .

To make the singular set Sing (M) appear naturally, let us first investigate the case when

Q̃p′ ∈ L1(V ). If a solution exists, then the profile Q̃p′ necessarily satisfies the following

equation:

Q̃p′ (v) =
M(v)

1 + H(p′) − v · p′ , v ∈ V . (2.1)

This is only possible if such an expression defines a probability measure. As a consequence,

one shall look for conditions under which there exists H(p′) such that

I
(
H(p′), p′

)
:=

∫
V

M(v′)

1 + H(p′) − v′ · p′ dv
′ = 1,

with 1 + H(p′) − v′ · p > 0 for all v′ ∈ V , that is, H(p′) > μ(p′) − 1.

For any p′ � Sing(M), since the function ξ �→ I(ξ, p′) is decreasing over (μ(p′)− 1,+∞),

H(p′) exists and is unique in this interval since I(μ(p′) − 1, p′) > 1, by the definition of p′

not being in the singular set.

However, for any p′ ∈ Sing(M), it is not possible to solve I
(
H(p′), p′

)
= 1 since

I(μ(p′) − 1, p′) � 1. After Theorem 1.2 in [17], there exists a solution to (1.10), given by

the couple (H(p′), Q̃p′ ) where H(p′) = μ(p′) − 1 and Q̃p′ is a positive measure given by

Q̃p′ :=
M(v)

μ(p′) − v · p′ dv +

(
1 −

∫
V

M(v)

μ(p′) − v · p′ dv
)
δw,

where δw is the dirac mass located at w ∈ Arg μ(p′). If Arg μ(p′) is actually the set {w},
then this solution is unique but if #Arg μ(p′) > 1, then the spectral problem has infinitely

many solutions in the set of positive measures (see, e.g., [17] for more details).

From [15], we know that the set Sing(M)c is convex and contains 0. To identify the

different cases where such a singularity set may occur, we detail four examples hereafter.

1 To avoid too many notation, we identify Q̃p′ to its density when relevant.
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2.1.2 Examples

Example 2.1 In the one-dimensional case (n = 1), we have Sing(M) = ∅ when inf
v∈V

M(v) > 0

since ∫ v

−v

M(v′)

μ(p′) − vp′
dv =

∫ v

−v

M(v)

|p′|vmax − vp′
dv �

infM(v)

|p′|v ·
∫ 1

−1

dv

1 − v
= +∞. (2.2)

By monotone convergence, we have

lim
H→μ(p′)−1

∫ v

−v

M(v)

1 +H − vp′
dv = +∞,

hence, for all p′ ∈ �, there exists a unique H(p′) that solves the spectral problem in L1(V ).

In [11], it was assumed that n = 1 and inf
v∈V

M(v) > 0, as in Example 2.1. In fact, we only

require that M does not cancel in a neighbourhood of v = v in order to get Sing(M) = ∅.
Indeed, the integral in (2.2) will also diverge in that scenario. If M(v) = 0, this argument

may not work out. Consider, for example,

Example 2.2 Let n = 1, V = [−1, 1] and M(v) = 3
2
(1 − |v|)2. Then,

l(1) =

∫ 1

−1

M(v)

1 − v
dv =

3

2

∫ 1

−1

(1 − |v|)2
1 − v

dv = 3

∫ 1

0

(1 − v)2

(1 − v)(1 + v)
dv

= 3

∫ 1

0

1 − v

1 + v
dv = 3

∫ 1

0

2 − (1 + v)

1 + v
dv

= 3

(∫ 1

0

2

1 + v
dv − 1

)
= 3(2 ln(2) − 1).

Hence, |p′| � 3(2 ln(2) − 1) if and only if∫ 1

−1

M(v)

μ(p′) − vp′
dv =

3

2|p′|

∫ 1

−1

(1 − |v|)2
1 − v

dv � 1,

therefore, Sing(M) = (−3(2 ln(2) − 1), 3(2 ln(2) − 1))c. Let us also notice that∫
V

M(v)

(v(1) − v)2
dv =

3

2

∫ 1

−1

(1 − |v|)2
(1 − v)2

dv = 3

∫ 1

0

1 + v2

(1 + v)2
dv

= 3

∫ 1

0

(1 + v)2 − 2(1 + v) + 2

(1 + v)2
dv

= 3

∫ 1

0

(
1 − 2

1 + v
+

2

(1 + v)2

)
dv

= 3(1 − 2 ln(2) + 1) = 6(1 − ln(2)) < +∞.

We will make a use of this result later.
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In the multidimensional case, we may encounter a singular set, even when inf
v∈V

M(v) > 0.

These singularities can occur in the simplest cases.

Example 2.3 Let n � 1, let V = B(0, 1) be the n-dimensional unit ball. Let e = e1 and

M = ω−1
n .1B(0,1), where ωn is the Lebesgue measure of V . For n = 1, since M > 0, we have

Sing(M) = ∅ (recall Theorem 2.1). Suppose now that n > 1. Then,

l(e1) =

∫
B(0,1)

M(v)

v(e1) − v · e1
dv =

1

ωn

∫
B(0,1)

1

1 − v1
dv

=
1

ωn

∫ 1

−1

1

1 − v1

(∫
1{v21+v22+···+v2n�1}(v2, . . . , vn)dv2, . . . , dvn

)
dv1.

Now, for fixed v1, the quantity
∫
1{v21+v22+···+v2n�1}(v2, . . . , vn)dv2, . . . , dvn is the Lebesgue meas-

ure of the (n− 1)-dimensional ball of radius
√

1 − v21 , hence

∫
1{v21+v22+···+v2n�1}(v2, . . . , vn)dv2, . . . , dvn = ωn−1 ×

(√
1 − v21

)n−1

.

Finally,

l(e1) =
ωn−1

ωn

∫ 1

−1

(
1 − v21

) n−1
2

1 − v1
dv1 =

2ωn−1

ωn

∫ 1

0

(
1 − v21

) n−3
2 dv1

=
2ωn−1

ωn

∫ π
2

0

(cos(θ))n−2 dθ =
n

n− 1
,

where we have used, for example, the relationship between the volume of the unit ball and

the Wallis integrals. By rotational invariance, Sing(M) = B
(
0, n−1

n

)c
.

When, V is a polyhedron, the set Sing(M) may have a different shape since the l(e)

might be infinite along certain directions.

Example 2.4

Let n � 2, let V = [−1, 1]n be the n-dimensional unit cube and M ≡ 2−n on V . Let

e ∈ �n−1. In this situation v̄(e) = ‖e‖1. Let us consider two typical examples.

Consider first e = e1. Then, v̄(e) = 1. Moreover,

l(e) =

∫
V

M(v)

v̄(e) − v · edv =
1

2n

∫
V

1

1 − v1
dv =

2n−1

2n

∫ 1

−1

1

1 − v1
dv1 = +∞.

Consider now e = e1+e2
‖e1+e2‖2

. Then, v̄(e) = ‖e1+e2‖1

‖e1+e2‖2
.

l(e) =

∫
V

M(v)

v̄(e) − v · edv =
2n−2

2n

∫ 1

−1

∫ 1

−1

‖e1 + e2‖2

‖e1 + e2‖1 − v1 − v2
dv1dv2

=
√

2 ln(2) < +∞.
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−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 1. The set Sing(M) when V = [−1, 1]2. Red plain line: ∂V . Black plain line: ∂Sing(M). The

set Sing(M)c is the connected component of �n that contains (0, 0). The lines {y = 0} and {x = 0}
are included in Sing(M)c.

The computations can be extended to a general e, but with not much more informative

formulas, so we keep only these two examples for simplicity. We represent in Figure 1 the

shape of Sing(M). It is worth mentioning that, unlike what happened in Example 2.3, the

set Sing(M)c is not bounded here.

2.2 Proof of Theorem 1.3

In this section, we now prove Theorem 1.3. We will use the half-relaxed limits method

of Barles and Perthame [5]. In addition to that, and similarly to the papers [8, 15], we

need to use the perturbed test-function method. We emphasize that the corrected test

function is defined thanks to the spectral problem (1.10), keeping only the regular part of

the eigenfunction (recall that it may have singularities).

Since the sequence ϕε is uniformly bounded by the maximum principle (check

Proposition 5 in [7]), we can define its upper- and lower- semi-continuous envelopes
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by the following formulas:

ϕ∗(t, x, v) = lim sup
ε→0

(s,y,w)→(t,x,v)

ϕε(s, y, w), ϕ∗(t, x, v) = lim inf
ε→0

(s,y,w)→(t,x,v)

ϕε(s, y, w).

Recall that ϕ∗ is upper semi-continuous, ϕ∗ is lower semi-continuous and that from their

definition, one has ϕ∗ � ϕ∗. We have the following:

Proposition 2.5 Let ϕε be a solution to (1.7).

(i) The upper semi-limit ϕ∗ is constant with respect to the velocity variable on �∗
+ ×�n.

(ii) The function (t, x) �→ ϕ∗(t, x) is a viscosity sub-solution to (1.13) on �∗
+ × �n.

(iii) The function (t, x) �→ minw∈V ϕ∗(t, x, w) is a viscosity super-solution to (1.13) on

�∗
+ × �n.

We recall that for all (t, x), the minimum minw∈V ϕ∗(t, x, w) is attained since V is

bounded and ϕ∗ is lower semi-continuous. We point out here that if r = 0, that is, the

case of [8,15], it is not necessary to prove that ϕ∗ is constant in the velocity variable. One

can replace this by proving that maxw∈V ϕ
∗ is a sub-solution to (1.13). The fact that ϕ∗

is constant in the velocity variable is needed to control the limit of ρε.

Proof of Theorem 2.5 We start with the proof of (i). Take (t0, x0, v0) ∈ �∗
+ ×�n ×V . Let

ψ be a test function such that ϕ∗−ψ has a strict local maximum at (t0, x0, v0). Then, there

exists a sequence (tε, xε, vε) of maximum points of ϕε−ψ satisfying (tε, xε, vε) → (t0, x0, v0).

From this, we deduce that limε→0 ϕ
ε(tε, xε, vε) = ϕ∗(t, x, v). Recalling (1.7), we have at

(tε, xε, vε)

∂tψ + vε · ∇xψ + r = (1 + r)

(
1 −

∫
V

M(v′)e
ϕε−ϕε

′

ε dv′
)

+ rρε.

From this, we deduce that ∫
V ′
M(v′)e

ϕε (tε ,xε ,vε)−ϕε (tε ,xε ,v′)
ε dv′

is uniformly bounded for any V ′ ⊂ V . By the Jensen inequality,

exp

(
1

ε |V ′|M

∫
V ′

(
ϕε(tε, xε, vε) − ϕε(tε, xε, v′)

)
M(v′)dv′

)
�

1

|V ′|M

∫
V ′
M(v′)e

ϕε (tε ,xε ,vε)−ϕε (tε ,xε ,v′)
ε dv′,

where |V ′|M :=
∫
V ′ M(v)dv. Thus,

lim sup
ε→0

(∫
V ′

(
ϕε(tε, xε, vε) − ϕε(tε, xε, v′)

)
M(v′)dv′

)
� 0.
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We write ∫
V ′

(
ϕε(vε) − ϕε(v′)

)
M(v′)dv′

=

∫
V ′

[
(ϕε(vε) − ψ(vε)) −

(
ϕε(v′) − ψ(v′)

)
+

(
ψ(vε) − ψ(v′)

)]
M(v′)dv′

=

∫
V ′

[
(ϕε(vε) − ψ(vε)) −

(
ϕε(v′) − ψ(v′)

)]
M(v′)dv′

+

∫
V ′

(
ψ(vε) − ψ(v′)

)
M(v′)dv′.

We can thus use the Fatou Lemma, together with − lim supε→0 ϕ
ε(tε, xε, v′) � −ϕ∗(t0, x0, v′)

to get(∫
V ′
M(v′)dv′

)
ϕ∗(v0) −

∫
V ′
ϕ∗(v′)M(v′)dv′ =

∫
V ′

(
ϕ∗(v0) − ϕ∗(v′)

)
M(v′)dv′

�

∫
V ′

lim inf
ε→0

(
ϕε(vε) − ϕε(v′)

)
M(v′)dv′

� lim inf
ε→0

(∫
V ′

(
ϕε(vε) − ϕε(v′)

)
M(v′)dv′

)
� lim sup

ε→0

(∫
V ′

(
ϕε(vε) − ϕε(v′)

)
M(v′)dv′

)
� 0,

We shall deduce, since the latter is true for any |V ′| that

ϕ∗(t0, x0, v0) � inf
V
ϕ∗(t0, x0, ·),

and thus ϕ∗ is constant in velocity.

We now continue with the proof of (ii). We have to prove that on {ϕ∗ > 0}∩ (�∗
+×�n),

the function ϕ∗ is a viscosity sub-solution of (1.13). To this aim, let ψ ∈ C2(�∗
+ ×�n) be

a test function such that ϕ∗ −ψ has a local maximum in (t0, x0) ∈ (�∗
+ ×�n)∩ {ϕ∗ > 0}.

We denote by p0(t0, x0) = ∇xψ(t0 ,x0)
1+r

.

First case: p0(t0, x0) � SingM.

We define a corrector η according to the following formula:

η(v) = ln
(
1 + H

(
p0(t0, x0)

)
− v · p0(t0, x0)

)
Let us define the perturbed test function ψε := ψ+ εη. We recall the fact that in this case∫
V
M(v′) exp(−η(v′))dv′ = 1. The function ψε converges uniformly to ψ since η is bounded

on V . As a consequence, there exists a sequence (tε, xε, vε) of maximum points of ϕε − ψε

satisfying (tε, xε) → (t0, x0) and such that limε→0 ϕ
ε(tε, xε, vε) = ϕ∗(t0, x0). Recalling (1.7),

we have at (tε, xε, vε)

∂tψ
ε + vε · ∇xψ

ε + r = (1 + r)

(
1 −

∫
V

M(v′)e
ϕε−ϕε

′

ε dv′
)

+ rρε.
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Since (tε, xε, vε) is a maximum point, we may rearrange the r.h.s. of the latter so that the

previous equation may be rewritten as follows:

∂tψ
ε + vε · ∇xψ

ε + r � (1 + r)

(
1 −

∫
V

M(v′) exp
(
η(vε) − η(v′)

)
dv′

)
+ rρε,

= (1 + r)

(
1 −

(∫
V

M(v′) exp
(
−η(v′)

)
dv′

)
exp (η(vε))

)
+ rρε,

= (1 + r) (1 − exp (η(vε))) + rρε,

= −(1 + r)H
(
p0(t0, x0)

)
+ vε · ∇xψ

0(t0, x0) + rρε.

Since (t0, x0) ∈ {ϕ∗ > 0} and limε→0 ϕ
ε(tε, xε, vε) = ϕ∗(t0, x0), we have that, eventually,

ϕε(tε, xε, vε) > ϕ∗(t0, x0)/2 > 0 for ε sufficiently small. Since

rρε
(
e
ϕε

ε − 1
)

=

(
1 −

∫
V

M(v′)e
ϕε−ϕε

′

ε dv′
)
− (∂tψ

ε + vε · ∇xψ
ε) ,

and the latter r.h.s. is uniformly bounded from above in ε, we deduce that

limε→0 ρ
ε(tε, xε) = 0. Taking the limit ε→ 0, we get

∂tψ
(
t0, x0

)
+ (1 + r)H

(
∇xψ(t0, x0)

1 + r

)
+ r � 0.

Second case: p0(t0, x0) ∈ SingM.

Let v∗ ∈ Arg μ(p0(t0, x0)). The function (t, x) �→ ϕε(t, x, v∗) − ψ(t, x) has a local maximum

at a point (tε, xε) satisfying (tε, xε) → (t0, x0) as ε→ 0. We then have

∂tψ(tε, xε) + v∗ · ∇xψ(tε, xε) + r = ∂tϕ
ε(tε, xε, v∗) + v∗ · ∇xϕ

ε(tε, xε, v∗) + r

= (1 + r)

∫
V

M(v′)
(
1 − e

ϕε (v∗ )−ϕε (v′)
ε

)
dv′ + rρε

� (1 + r) + rρε.

Since (t0, x0) ∈ {ϕ∗ > 0}, we have ρε(tε, xε) → 0. As a consequence, taking the limit ε→ 0,

we get

∂tψ(t0, x0) + μ(∇xψ(t0, x0)) � 1.

We finally turn to the proof of (iii). That is, the fact that on �∗
+ × �n, the function

minw∈V ϕ∗(·, w) is a viscosity super-solution of (1.13).

Let ψ ∈ C1(�∗
+ ×�n) be a test function such that minw∈V ϕ∗ −ψ has a local minimum

in (t0, x0) ∈ �∗
+. We denote by p0(t0, x0) = ∇xψ(t0 ,x0)

1+r
. We define the truncated corrector ηδ ,

η(v) = ln
(
1 + H

(
p0(t, x)

)
− v · p0(t, x)

)
,

ηδ(v) = max
(
η(v),−1/δ

)
.

Let us define the perturbed test function ψε := ψ + εηδ . For any δ > 0, the function ψε

converges uniformly to ψ as ε→ 0 since ηδ is bounded on V . Since ϕ∗(t
0, x0, ·) attains its
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minimum at, say, v0, we have, for all v ∈ V and locally in the (t, x) variables,

ϕ∗(t
0, x0, v0)−ψ(t0, x0)= min

w∈V
ϕ∗(t

0, x0)−ψ(t0, x0) � min
w∈V

ϕ∗(t, x)−ψ(t, x)�ϕ∗(t, x, v)−ψ(t, x),

and thus (t0, x0, v0) is a local minimum of ϕ∗ − ψ, strict in the (t, x) variables. By the

definition of the lower semi-limit, there exists a sequence
(
tεδ , x

ε
δ , v

ε
δ

)
of minimum points

of ϕε − ψε satisfying (tεδ , x
ε
δ) → (t0, x0), as ε → 0. We obtain, after (1.7), at the point(

tεδ , x
ε
δ , v

ε
δ

)
,

∂tψ
ε + vεδ · ∇xψ

ε + r � (1 + r)

(
1 −

∫
V

M(v′) exp
(
ηδ(v

ε) − ηδ(v
′)
)
dv′

)
,

= (1 + r)

(
1 −

(∫
V

M(v′) exp
(
−ηδ(v′)

)
dv′

)
exp

(
ηδ(v

ε
δ)

))
.

Since the sequence vεδ lies in a compact set, taking the limit ε → 0 (up to extraction), we

obtain v0δ such that

∂tψ + v0δ · ∇xψ + r � (1 + r)

(
1 −

(∫
V

M(v′)e−ηδ (v
′)dv′

)
eηδ (v

0
δ )

)
.

By construction, ηδ � η. As a consequence,
∫
V
M(v′)e−ηδ (v

′)dv′ �
∫
V
M(v′)e−η(v

′)dv′ � 1.

Thus,

∂tψ + v0δ · ∇xψ + r � (1 + r)
(
1 − eηδ (v

0
δ )
)
.

We now pass to the limit δ → 0. By compactness of V , one can extract a converging

subsequence from (v0δ)δ , we denote by v∗ the limit.

First case: p0(t0, x0) � SingM.

In this case, since η is bounded, ηδ = η for δ sufficiently small. Thus, passing to the limit

δ → 0, one gets

∂tψ + v∗ · ∇xψ + r � (1 + r)
(
1 − exp

(
η(v∗)

))
,

= −(1 + r)H
(
p0(t0, x0)

)
+ v∗ · ∇xψ(t0, x0),

from which we deduce

∂tψ
(
t0, x0

)
+ (1 + r)H

(
∇xψ(t0, x0)

1 + r

)
+ r � 0.

Second case: p0(t0, x0) ∈ SingM.

In this case, the corrector ηδ is

ηδ(v) = max
(
ln

(
μ

(
∇xψ(t0, x0)

)
− v · ∇xψ(t0, x0)

)
,−1/δ

)
.

If v∗ � Arg μ(p0(t0, x0)), since η is bounded on all compacts of V \ Arg μ(p0(t0, x0)), we

get ηδ(v
0
δ) = η(v0δ) for δ sufficiently small and we recover the first case.
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If v∗ ∈ Arg μ(p0(t0, x0)), then take δ′ > 0, one has when δ < δ′ is sufficiently small,

− 1

δ′
= ηδ′ (v

0
δ) � ηδ(v

0
δ),

and thus, limδ→0 ηδ(v
0
δ) = −∞. From that, we conclude

∂tψ + μ
(
∇xψ(t0, x0)

)
� 1.

�

We now conclude with the proof of the convergence result. For this, we need to input

initial conditions. Obviously, one cannot get any uniqueness result for the Hamilton–

Jacobi equation (1.13) without imposing any initial condition. We now check the initial

condition of (1.13) in the viscosity sense.

Proposition 2.6 If one assumes that ϕε0 = ϕ0, the sequence ϕε converges uniformly on com-

pact subsets of �∗
+ × �n to ϕ0, the unique viscosity solution of⎧⎪⎨⎪⎩

min
{

∂tϕ
0 + (1 + r)H

(
∇xϕ

0

1+r

)
+ r, ϕ0

}
= 0, (t, x) ∈ �∗

+ × �n,

ϕ0(0, x) = min
v∈V

ϕ0(x, v), x ∈ �n.

Proof of Theorem 2.6 We extend the definition of ϕ∗ to {t = 0} × �n by the formula

ϕ∗(0, x) = lim sup
t↘0+

x′→x

ϕ∗(t, x′).

One has to prove the following:

min

(
min

{
∂tϕ

∗ + (1 + r)H
(
∇xϕ

∗

1 + r

)
+ r, ϕ∗

}
, ϕ∗ − min

v∈V
ϕ0(·, v)

)
� 0, (2.3)

on {t = 0} × �n in the viscosity sense.

Let ψ ∈ C1
(
�+ × �

)
be a test function such that ϕ∗ − ψ has a strict local maximum

at (t0 = 0, x0). We now prove that either

ϕ∗(0, x0) � min
v∈V

ϕ0(x, v),

or

∂tψ + (1 + r)H
(
∇xψ

1 + r

)
+ r � 0 when ϕ∗(0, x0) > 0.

Suppose then that

ϕ∗(0, x0) > min
v∈V

ϕ0(x, v).
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We shall now prove that

∂tψ + (1 + r)H
(
∇xψ

1 + r

)
+ r � 0,

since then ϕ∗(0, x0) > 0. We now go through the same steps as for the proof of Theorem 2.5,

but with slight changes due to the present situation. We keep the same notations.

First case: p0(t0, x0) � SingM.

The function ψε converges uniformly to ψ since η is bounded on V . Adding this fact to

the definition of ϕ∗(0, x0), we get the existence of a sequence (tε, xε, vε) of maximum points

of ϕε − ψε satisfying tε > 0, (tε, xε) → (0, x0) and such that limε→0 ϕ
ε(tε, xε, vε) = ϕ∗(0, x0).

The rest of the proof is similar.

Second case: p0(t0, x0) ∈ SingM.

Let v∗ ∈ Arg μ(p0(t0, x0)). As for the previous case, due to the definition of ϕ∗, the

function (t, x) �→ ϕε(t, x, v∗) − ψ(t, x) has a local maximum at a point (tε, xε) satisfying

(tε > 0, xε) → (t0, x0) as ε→ 0. The conclusion is the same.

We shall now prove that the initial condition for minw ϕ∗ is given by

max

(
min

{
∂t

(
min
w
ϕ∗

)
+ (1 + r)H

(
∇x(minw ϕ∗)

1 + r

)
+ r,min

w
ϕ∗

}
,min

w
ϕ∗ − min

v∈V
ϕ0

)
� 0,

(2.4)

on {t = 0} × �n in the viscosity sense.

Let us prove (2.4). Let ψ ∈ C1
(
�+ × �

)
be a test function such that minw∈V ϕ∗ − ψ

has a strict local minimum at (t0 = 0, x0). We now prove that either

min
w∈V

ϕ∗(0, x
0, w) � min

v∈V
ϕ0(x

0, v),

or

∂tψ + (1 + r)H
(
∇xψ

1 + r

)
+ r � 0 and min

w∈V
ϕ∗(0, x

0, w) � 0.

Suppose that minw∈V ϕ∗(0, x
0, w) < minv∈V ϕ0(x

0, v). The argument now starts similarly

as in the proof above. Let us define the perturbed test function ψε := ψ + εηδ . For any

δ > 0, the function ψε converges uniformly to ψ since ηδ is bounded on V . Since ϕ∗(0, x
0, ·)

attains its minimum at, say, v0, we have, for all v ∈ V and locally in the (t, x) variables,

ϕ∗(0, x
0, v0)−ψ(0, x0) � min

w∈V
ϕ∗(0, x

0)−ψ(0, x0) � min
w∈V

ϕ∗(t, x)−ψ(t, x) � ϕ∗(t, x, v)−ψ(t, x),

and thus (0, x0, v0) is a local minimum of ϕ∗ − ψ, strict in the (t, x) variables. By the

definition of the lower semi-limit, there exists a sequence
(
tεδ , x

ε
δ , v

ε
δ

)
of minimum points of

ϕε−ψε satisfying (tεδ , x
ε
δ) → (0, x0), as ε→ 0. We first claim that there exists a subsequence

(tεk , xεk , vεk )k of the above sequence, with εk → 0 as k → ∞, such that tεk > 0, for all k.

Suppose that this is wt true. Then, take a sequence (x
εk′
δ , v

εk′
δ )k′ such that (εk′ , x

εk′
δ ) →

(0, x0) and that ϕεk′ − ψεk′ has a local minimum at
(
0, x

εk′
δ , v

εk′
δ

)
. It follows that, for all
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(t, x, v) in some neighbourhood of (0, x
εk′
δ , v

εk′
δ ), we have

min
v∈V

ϕ0(x
εk′
δ , v) − ψεk′

(
0, x

εk′
δ , v

εk′
δ

)
� ϕ0(x

εk′
δ , v

εk′
δ ) − ψεk′

(
0, x

εk′
δ , v

εk′
δ

)
� ϕεk′

(
0, x

εk′
δ , v

εk′
δ

)
− ψεk′

(
0, x

εk′
δ , v

εk′
δ

)
� ϕεk′ (t, x, v) − ψεk′ (t, x, v) .

Taking lim inf
k′→∞

(t,x,v)→(0,x0 ,v0)

at the both sides of the inequality, one obtains

min
v∈V

ϕ0(x
0, v) − ψ

(
0, x0

)
� min

w∈V
ϕ∗(0, x

0) − ψ
(
0, x0

)
.

However, this is in contradiction with minw∈V ϕ∗(0, x
0, w) < minv∈V ϕ0(x

0, v). Now having

in hand that this sequence of times tεn > 0, one can reproduce the same argument as from

the proof above along the subsequence (tεn , xεn , vεn ).

By the strong uniqueness principle satisfied by (1.13) (that is, a comparison principle

for discontinuous sub- and super-solutions), we deduce that for all (t, x, v) ∈ �∗
+×�n×V ,

min
w∈V

ϕ∗(t, x, w) � ϕ∗(t, x, v) � ϕ∗(t, x, v) = ϕ∗(t, x) � min
w∈V

ϕ∗(t, x, w)

We deduce that necessarily all these inequalities are equalities, and thus that ϕε converges

locally uniformly towards ϕ0, independent of v, on any subcompact of �∗
+ × �n. �

2.3 Convergence of the macroscopic density ρε

We prove a convergence result for ρε in the region {ϕ0 = 0}. Namely,

Proposition 2.7 Let ϕε be the solution of (1.7). Then, uniformly on compact subsets of

Int
{
ϕ0 = 0

}
,

lim
ε→0

ρε = 1, lim
ε→0

fε (·, v) = M(v).

Proof of Proposition 2.7 We develop similar arguments as in [22]. Let K be a compact

set of {ϕ0 = 0}. Note that it suffices to prove the result when K is a cylinder. Let

(t0, x0) ∈ Int (K) and the test function

∀(t, x) ∈ K, ψ0(t, x) = |x− x0|2 +
(
t− t0

)2
.

Since ϕ0 = 0 on K , the function ϕ0 − ψ0 admits a strict maximum in (t0, x0). The locally

uniform convergence of ϕε − ψ0 gives a sequence (tε, xε, vε) of maximum points with

(tε, xε) → (t0, x0) and a bounded sequence (vε)ε such that at the point (tε, xε, vε) one has

∂tψ
0 + vε · ∇xψ

0 + r � rρε. (2.5)

As a consequence, one has, since r > 0,

ρε(tε, xε) � 1 + o(1), as ε→ 0, (2.6)
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and then limε→0 ρ
ε(tε, xε) = 1 if one recalls ρε � 1 (which, again, is a consequence of the

maximum principle).

However, we need an extra argument to get limε→0 ρ
ε(t0, x0) = 1. Since (tε, xε, vε)

maximizes ϕε − ψ0, we deduce that for all v ∈ V , we have

ϕε (tε, xε, vε) − ψ0(tε, xε) � ϕε
(
t0, x0, v

)
− ψ0(t0, x0).

Since ψ0(tε, xε) � 0, ψ0(t0, x0) = 0, we find

fε(t0, x0, v) = M(v)e−
ϕε (t0 ,x0 ,v)

ε � M(v)e−
ϕε (tε ,xε ,vε)

ε . (2.7)

We shall now prove that limε→0 ε
−1ϕε(tε, xε, vε) = 0. Let us rewrite (1.7) at the point

(tε, xε, vε) in the form

rρε(tε, xε)
(
e
ϕε (tε ,xε ,vε)

ε − 1
)

=

(
1 −

∫
V

M(v′)e
ϕε (tε ,xε ,vε)−ϕε (tε ,xε ,v′)

ε dv′
)
−

(
∂tψ

0 + v · ∇xψ
0
)
(tε, xε, vε)

We finally deduce using the maximum principle in the latter r.h.s. that

0 � rρε(tε, xε)
(
e
ϕε (tε ,xε ,vε)

ε − 1
)

� oε→0(1),

and thus limε→0

(
ε−1ϕε(tε, xε, vε)

)
= 0. This implies limε→0 f

ε(t, x, v) = M(v) locally uni-

formly on K × V . �

2.4 Speed of expansion

To be self-contained, we recall here how to study the propagation of the front after deriving

the limit variational equation, in the case r > 0. From Evans and Souganidis [22], we are

able to identify the solution of the variational Hamilton–Jacobi equation (1.13) using the

Lagrangian duality. We emphasize that, in this context, one may assume that our initial

condition is well prepared, i.e., ϕ(0, x, v) = ϕ0(x). We recall the following equation:⎧⎨⎩min
{

∂tϕ+ (1 + r)H
(

∇xϕ
1+r

)
+ r, ϕ

}
= 0, ∀(t, x) ∈ �∗

+ × �n,

ϕ(0, x) = ϕ0(x).

We recall from [8,15] that the Hamiltonian H is convex. For any e0 ∈ �n−1, we define the

minimal speed in that direction by the formula

c∗(e) = inf
λ>0

c(λ, e), c(λ, e) =
1

λ

(
(1 + r)H

(
λe

1 + r

)
+ r

)
. (2.8)

We first discuss the speed of propagation of a front-like initial data.

Proposition 2.8 Assume that

ϕ0(x) :=

{
0 x ∈ e⊥0
+∞ else

.
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Then, the nullset of ϕ propagates at speed c∗(e0):

∀t � 0, {ϕ(t, ·) = 0} = e⊥0 + c∗(e0)t e0.

Proof of Proposition 2.8 We first notice that since the initial data is invariant under any

translation in e⊥0 , and the equation (1.13) invariant by translation, the solution ϕ depends

only on x · e0, that is, ϕ(t, x) = ϕ(t, (x · e0)e0) = ϕ(t, x · e0). The function ϕ satisfies⎧⎨⎩min
{

∂tϕ+ (1 + r)H
(

∂ξϕ
1+r
e0

)
+ r, ϕ

}
= 0, ∀(t, ξ) ∈ �∗

+ × �,

ϕ(0, ξ) = ϕ0(ξ),

where

ϕ0(ξ) :=

{
0 ξ = 0,

+∞ else
.

The Lagrangian associated to the latter Hamilton–Jacobi equation is by definition

L(p) = sup
q∈�

(
pq − (1 + r)H

(
q

1 + r
e0

)
− r

)
,

= sup
q∈�

(
pq − (1 + r)H

(
|q|

1 + r
e0

)
− r

)
,

= sup
q∈�

(
pq − |q|c(|q|, e0)

)
,

To solve the variational Hamilton–Jacobi equation, let us define

J(x, t) = inf
y∈C1

{∫ t

0

[L(ẏ(s))] ds | y(0) = x, y(t) = 0

}
the minimizer of the action associated to the Lagrangian. Thanks to the so-called Freidlin

condition, see [22, 25] we deduce that the solution of (1.13) is

ϕ(t, ξ) = max (J(ξ, t), 0) .

The Hopf–Lax formula gives J(ξ, t) = tL
(
t−1ξ

)
thanks to the assumption on the initial

condition. Hence,

ξ ∈ {ϕ(t, ·) = 0} ⇐⇒ L
(
t−1ξ

)
� 0 ⇐⇒ sup

q∈�

(
qξ − |q|c(|q|, e0)t

)
� 0,

⇐⇒ ∀q ∈ �, qξ − |q|c(|q|, e0)t � 0,

⇐⇒ |ξ| � c∗(e0)t.

We deduce the result for ϕ by changing the variables back. �

For a compactly supported initial data, the issue of the speed of propagation in general

is more involved, since different directions may have different speeds of propagation.

Namely, the following Freidlin–Gärtner formula holds.
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Proposition 2.9 Assume that

ϕ0(x) :=

{
0 x = 0

+∞ else
.

Define

w∗(e0) = min
e∈�n−1

e0·e>0

(
c∗(e)

e0 · e

)
.

Then, the nullset of ϕ propagates at speed w∗(e0) in the direction e0:

∀t � 0, {x ∈ �, ϕ(t, x e0) = 0} = {x ∈ �, |x| � w∗(e0)t} .

Proof of Proposition 2.9 The Lagrangian is by definition

L(p) = sup
q∈�n

(
p · q − (1 + r)H

(
q

1 + r

)
− r

)
,

= sup
e∈�n−1

sup
λ∈�+

(
λp · e−

[
(1 + r)H

(
λe

1 + r

)
+ r

])
,

= sup
e∈�n−1

sup
λ∈�+

(λ [p · e− c(λ, e)]) ,

To solve the variational Hamilton–Jacobi equation, let us define

J(x, t) = inf
y∈C1

{∫ t

0

[L(ẏ(s))] ds | y(0) = x, y(t) = 0

}
the minimizer of the action associated to the Lagrangian. Thanks to the so-called Freidlin

condition, see [22, 25] we deduce that the solution of (1.13) is

ϕ(x, t) = max (J(x, t), 0) .

The Lax formula gives

J(x, t) = min
y∈�n

{
tL

(
x− y

t

)
+ ϕ0(y)

}
= tL

(x
t

)
,

thanks to the assumption on the initial condition. Hence,

ϕ(t, xe0) = 0 ⇐⇒ L
(x
t
e0

)
� 0 ⇐⇒ sup

e∈�n−1

sup
λ∈�+

(λ [x(e0 · e) − ce(λ)t]) � 0,

⇐⇒ ∀λ ∈ �+,∀e ∈ �n−1, λ [(x · e0)(e0 · e)−ce(λ)t]� 0,

⇐⇒ ∀e ∈ �n−1, x(e0 · e) � c∗(e)t

⇐⇒ |x| � min
e∈�n−1

e0·e>0

(
c∗(e)

e0 · e

)
t = w∗(e0)t.

�
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3 Existence of travelling waves and spreading result

In this section, we now explain how to construct travelling wave solutions to (1.1). We will

follow closely the construction in [11]. As is classical in this type of Fisher–KPP problems,

the speeds of propagation are given by studying the linearized problem at infinity. As

we will see later on, the main difference that has motivated this paper is the possible

singularity of c(λ, e) at λ∗(e).

3.1 Proof of Theorem 1.4: Travelling wave solutions

Given a direction e ∈ �n−1, looking for exponential solutions to the linearized problem of

the form e−λ(x·e−c(λ,e)t)Fλ,e(v) for any positive λ is exactly looking for solutions to

[1 + λ(c(λ, e) − v · e)]Fλ,e(v) = (1 + r)M(v)

∫
V

Fλ,e(v
′)dv′, v ∈ V .

In view of earlier computations, it boils down to setting c(λ, e) as in (2.8) and Fλ,e := Q̃ λe
1+r

as in (2.1).

Recall that λe
1+r

∈ Sing(M) if and only if l(e) � λ
1+r

, that is, λ � λ̃(e) := (1+ r)l(e). Thus,

for λ � λ̃(e), the function c(λ, e) is convex and regular, and the profile is explicitly given

by

Fλ,e (v) =
(1 + r)M (v)

1 + λ(c(λ, e) − v · e) > 0.

For λ � λ̃(e), that is, to say λe
1+r

∈ Sing(M), one has c(λ, e) = v(e)− 1
λ
, which is concave and

increasing. As such, the infimum of λ �→ c(λ, e) is attained for a λ � λ̃(e), which we denote

λ∗(e). As a consequence, the minimal speed c∗(e) is always associated to an integrable

eigenvector, since if λ∗(e) = λ̃(e), one has

Fλ̃(e),e (v) =
(1 + r)M (v)

λ̃(e) (v̄(e) − v · e)
,

with
∫
V
Fλ̃(e),e (v) dv = 1 thanks to the definition of λ̃(e).

Given a direction e ∈ �n−1, we shall now discuss the type of functions λ �→ c(λ, e)

that may arise from this problem. Qualitatively, four situations may happen. The first

possibility is the one already appearing in [11] in the mono-dimensional case, that is,

λ̃(e) = +∞ and thus Sing(M) = ∅. We plot an example of this case in Figure 2, case 1. If

λ̃(e) < +∞, three supplementary situations can occur. Either the infimum of λ �→ c(λ, e)

is attained for λ < λ̃(e), as shown in Figure 2, case 2, either it is attained for λ = λ̃(e). In

the latter case, the infimum can either be attained at a point where the left derivative of

c(λ, e) is zero (Figure 2, case 3), or where it is negative (Figure 2, case 4).

Remark 3.1 One can get a criterion to check which case holds. The dispersion relation

defining c(λ, e) on (0, λ̃(e)) is

I(λ, c(λ, e), e) = 1,
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1.2

(a) Case 1

1 2 3 4 5 6

0.6

0.8

1

1.2

(b) Case 2

1 1.5 2

0.35

0.4

0.45

(c) Case 3

2 2.5 3

0.56

0.6

0.64

0.68

(d) Case 4

Figure 2. Various cases of speed functions λ �→ c(λ, e). Red plain line: λ �→ c(λ, e). Black dotted

line: λ �→ v̄(e)− 1
λ
. (a) n = 1, V = [−1, 1], e = 1, M ≡ 1

2
and r = 1. In this case, Sing(M) = ∅ so that

the function λ �→ c(λ, 1) is regular. This is the case discussed in [11]. (b) n = 2, V = D(0, 1), M ≡ 1
π

and r = 1. In this case, Sing(M) �= ∅ but the minimum of c(λ, e1) is attained for λ < λ̃(e1) = 4. (c)

n = 1, V = [−1, 1], M(v) = 3
2
(1 − |v|)2 and r = −1 + l(1)−2

∫ 1

−1
M(v)

(1−v)2
dv ≈ 0.37. In this case, the

minimum of c(λ, e1) is attained for λ = λ̃(e1), with a zero left derivative. Numerically, λ̃(1) ≈ 1.58.

(d) n = 1, V = [−1, 1], M(v) = 3
2
(1− |v|)2 and r = 1. In this case, the minimum of c(λ, 1) is attained

for λ = λ̃(1), with a negative left derivative. Numerically, λ̃(1) ≈ 2.31. (a) Case 1. (b) Case 2. (c)

Case 3. (d) Case 4.

where

I(λ, c, e) :=

∫
V

(1 + r)M (v)

1 + λ(c− v · e)dv. (3.1)

Differentiating with respect to λ, we find∫
V

λc′(λ, e)M (v)

[1 + λ(c(λ, e) − v · e)]2
dv +

∫
V

(c(λ, e) − v · e)M (v)

[1 + λ(c(λ, e) − v · e)]2
dv = 0.

https://doi.org/10.1017/S0956792518000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000037


Spreading in kinetic reaction–transport equations in higher velocity dimensions 243

Recalling
∫
V

M(v)
1+λ(c(λ,e)−v·e)dv = (1 + r)−1 and defining

J (λ, e) =

∫
V

M (v)

[1 + λ(c(λ, e) − v · e)]2
dv,

we get

c′(λ, e) =

(
1 − (1 + r)−1

J (λ, e)

)
1

λ2
.

As such, computing the value of limλ→λ̃(e)− J (λ, e) allows to know in which case one falls.

Indeed, the function λ �→ c(λ) attains its minimum at λ̃(e) if and only if c′
(
λ̃−(e)

)
� 0, which

is equivalent to J (λ̃(e)) � (1 + r)−1 which is in turn equivalent to∫
V

M (v)

(v̄(e) − v · e)2
dv � (1 + r)l(e)2, (3.2)

which can be checked case by case. Note that one has always, given the Cauchy–Schwarz

inequality, l(e)2 �
∫
V

M(v)
(v̄(e)−v·e)2 dv.

Example 3.2 Let us look back at Theorem 2.2. As was stated, l(1) = 3(2 ln(2) − 1)

and
∫
V

M(v)
(1−v)2 dv = 6(1 − ln(2)) < +∞. Thus, for r > −1 + l(1)−2

∫
M(v)

(1−v)2 dv > 0,

the condition (3.2) is satisfied so the minimum of λ �→ c(λ, e) is attained at λ̃(e). For

r = −1+l(1)−2
∫
V

M(v)
(1−v)2 dv, the minimum has its left derivative equal to 0 (i.e., λ∗(1) = λ̃(1)).

We illustrate those results in Figure 2, cases 3 and 4.

Since c(λ, e) tends to infinity when λ tends to 0, for any c � c∗(e), one can find

λ ∈ (0, λ̃(e)] such that c(λ, e) = c.

Fix c ∈ (c∗(e), v(e)). Denote λc is the smallest solution in (0, λ̃(e)) of c(λc, e) = c.

Notice that by construction, it is possible to obtain Fλc,e integrable and bounded

(bounded since c > c∗(e)), the proof of [11], Section 3.2, that constructs sub- and

super-solutions for (1.1) is unchanged. From the construction of a pair of sub- and

super-solutions, we deduce the existence of travelling wave solutions exactly as in [11],

by a monotonicity method when c > c∗(e) and passing to the limit c → c∗(e) to get the

case c = c∗(e).

The main difference between the mono-dimensional case of [11] and the higher

dimensional case comes here. It is rather non-standard and interesting that the

function giving the speed of propagation could be singular at its minimum

value.

To prove that c∗ is still the minimal speed of propagation, the arguments used in [11,

Lemma 3.10] are not applicable. These arguments can be summarized as follows: in the

one-dimensional case when M � δ > 0, the function λ �→ I(λ, c, e) (recall (3.1)) is analytic.

Thus, we can not find λ > 0 such that I(λ, c, e) = 1 when c < c∗. However, an argument

using the Rouché theorem states that we can solve this problem in � \ �. Assuming

that there exists a travelling wave solution f for c < c∗, we then can use such a λ ∈ �
to construct a sub-solution under f which does not converge to 0 as x → ∞. In our

framework, the function λ �→ I(λ, c, e) might not be analytic around λ∗(e), which prevents
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us from using this technique. We thus choose to use the Hamilton–Jacobi framework

combined to the comparison principle.

We now prove the following lemma.

Lemma 3.3 Let f be a travelling wave solution to (1.1) in the direction e ∈ �n−1, with

speed c. Then, c � c∗(e).

Proof of Theorem 3.3 Let f be such a travelling wave solution with initial data f̃(x, v), i.e.,

f(t, x, v) = f̃(x ·e−ct, v). After Theorem 2.7, we deduce that fε(t, x, v) = f̃
(

1
ε
(x · e− ct) , v

)
satisfies limε→0 f

ε = M on x · e− ct < 0 and limε→0 f
ε = 0 on x · e− ct > 0. Take 0 < γ < 1

and define g(x, v) = γM(v)1[−1,1]×�n−1 (x) and gε(x, v) = g(x/ε, v). We have

ψε(x) = −ε ln(g(x/ε, v)/M) =

{
−ε ln(γ) x ∈ [−ε, ε]e0 + e⊥0
+∞ else

.

Since limz→−∞ f̃(z, v) = M uniformly in v ∈ V , one can shift the profile sufficiently

enough so that M � f � g � 0. Thus, the comparison principle (see [11], Proposition 2.2

for a proof) yields that fε � gε. Passing to the limit ε → 0, and recalling Theorems 1.3,

2.7 and 2.8, we deduce that (
e⊥0 + c∗(e0)te0

)
· e0 − ct � 0,

from which the result follows. �

From the Hamilton–Jacobi formalism, we may also deduce the following.

Proof of Proposition 1.5 We start by proving (1.17). For this, we use the super-solution

naturally provided by the linearized problem. We have

f(t, x, v) � min{M(v), e−λ
∗(e0)(x·e0−c∗(e0)t)Fλ∗(e0),e0 (v)}.

As a consequence,

ρ(t, x) � min{1, e−λ∗(e0)(x·e0−c∗(e0)t)},

and thus one has limt→+∞ supx·e0>ct ρ(t, x) = 0.

For (1.18), we use the Hamilton–Jacobi results in the following way. We first notice

that since the initial data is invariant under any translation in e⊥0 , and the equation

(1.13) is invariant by translation, the solution f(t, x, v) depends only on x · e0, that is,

f(t, x, v) = f(t, (x · e0)e0, v) = f̃(t, x · e0, v). For any c < c∗(e0), recalling Theorems 1.3, 2.7

and 2.8, we have

lim
t→∞

f(t, e⊥0 + cte0, v) = lim
t→∞

f̃(t, ct, v) = lim
ε→0

f̃ε(1, c, v) = M(v),

since c < c∗(e0). �
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3.2 Proof of Theorem 1.6: Spreading of a compactly supported initial data

We finally prove Theorem 1.6. The spreading result (1.19) goes as for the Fisher–KPP

equation in an heterogeneous media [6]. It can be found by using the super-solution

f(t, x, v) = inf
e∈�n−1

e−λ
∗(e)(x·e−c∗(e)t)Qλ∗(e)e(v).

By the comparison principle, and since the initial data is compactly supported, the function

f lies above f (multiplying f by a big constant if necessary). We deduce that for any given

e0 ∈ �n−1, and any fixed x ∈ �n,

f(t, x+ce0t, v) � inf
e∈�n−1

e−λ
∗(e)((x+ce0t)·e−c∗(e)t)Qλ∗(e)e(v) = inf

e∈�n−1
e−λ

∗(e)(x·e+ce0·et−c∗(e)t)Qλ∗(e)e(v).

Moreover, the domain of Qλ∗(e)e contains V \ {vmaxe} and Qλ∗(e)e is bounded on all

compact sets of V \ {vmaxe}. Hence, for fixed v ∈ V , we can choose e ∈ �n−1 such that

v ∈ V \ {vmaxe}. Then, as soon as c > w∗(e0), we have c(e · e0) > c∗(e) for any e, and thus

limt→∞ f(t, x+ ce0t, v) = 0.

Moreover, we shall prove (1.20) as follows. For any c < c∗(e0), recalling Theorems 1.3,

2.7 and 2.9, we have

lim
t→∞

f(t, cte0, v) = lim
t→∞

f̃(t, ct, v) = lim
ε→0

f̃ε(1, ce0, v) = M(v),

since c < w∗(e0).

�
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